ring-buffer: Fix crash due to uninitialized new_pages list head
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
7a8e76a3
SR
8#include <linux/spinlock.h>
9#include <linux/debugfs.h>
10#include <linux/uaccess.h>
a81bd80a 11#include <linux/hardirq.h>
1744a21d 12#include <linux/kmemcheck.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
5a0e3ad6 16#include <linux/slab.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
79615760 23#include <asm/local.h>
182e9f5f
SR
24#include "trace.h"
25
83f40318
VN
26static void update_pages_handler(struct work_struct *work);
27
d1b182a8
SR
28/*
29 * The ring buffer header is special. We must manually up keep it.
30 */
31int ring_buffer_print_entry_header(struct trace_seq *s)
32{
33 int ret;
34
334d4169
LJ
35 ret = trace_seq_printf(s, "# compressed entry header\n");
36 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
37 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
38 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
39 ret = trace_seq_printf(s, "\n");
40 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
44 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
46
47 return ret;
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
033601a3
SR
118/*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136/*
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
139 *
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
145 */
146
147enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
150};
151
152enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155};
156
5e39841c 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 158
499e5470
SR
159/* Used for individual buffers (after the counter) */
160#define RB_BUFFER_OFF (1 << 20)
a3583244 161
499e5470 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
163
164/**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
c3706f00 168 * permanently.
033601a3
SR
169 */
170void tracing_off_permanent(void)
171{
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
173}
174
e3d6bf0a 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 176#define RB_ALIGNMENT 4U
334d4169 177#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 178#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 179
2271048d
SR
180#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181# define RB_FORCE_8BYTE_ALIGNMENT 0
182# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183#else
184# define RB_FORCE_8BYTE_ALIGNMENT 1
185# define RB_ARCH_ALIGNMENT 8U
186#endif
187
334d4169
LJ
188/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
190
191enum {
192 RB_LEN_TIME_EXTEND = 8,
193 RB_LEN_TIME_STAMP = 16,
194};
195
69d1b839
SR
196#define skip_time_extend(event) \
197 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
2d622719
TZ
199static inline int rb_null_event(struct ring_buffer_event *event)
200{
a1863c21 201 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
202}
203
204static void rb_event_set_padding(struct ring_buffer_event *event)
205{
a1863c21 206 /* padding has a NULL time_delta */
334d4169 207 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
208 event->time_delta = 0;
209}
210
34a148bf 211static unsigned
2d622719 212rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
213{
214 unsigned length;
215
334d4169
LJ
216 if (event->type_len)
217 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
218 else
219 length = event->array[0];
220 return length + RB_EVNT_HDR_SIZE;
221}
222
69d1b839
SR
223/*
224 * Return the length of the given event. Will return
225 * the length of the time extend if the event is a
226 * time extend.
227 */
228static inline unsigned
2d622719
TZ
229rb_event_length(struct ring_buffer_event *event)
230{
334d4169 231 switch (event->type_len) {
7a8e76a3 232 case RINGBUF_TYPE_PADDING:
2d622719
TZ
233 if (rb_null_event(event))
234 /* undefined */
235 return -1;
334d4169 236 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
237
238 case RINGBUF_TYPE_TIME_EXTEND:
239 return RB_LEN_TIME_EXTEND;
240
241 case RINGBUF_TYPE_TIME_STAMP:
242 return RB_LEN_TIME_STAMP;
243
244 case RINGBUF_TYPE_DATA:
2d622719 245 return rb_event_data_length(event);
7a8e76a3
SR
246 default:
247 BUG();
248 }
249 /* not hit */
250 return 0;
251}
252
69d1b839
SR
253/*
254 * Return total length of time extend and data,
255 * or just the event length for all other events.
256 */
257static inline unsigned
258rb_event_ts_length(struct ring_buffer_event *event)
259{
260 unsigned len = 0;
261
262 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 /* time extends include the data event after it */
264 len = RB_LEN_TIME_EXTEND;
265 event = skip_time_extend(event);
266 }
267 return len + rb_event_length(event);
268}
269
7a8e76a3
SR
270/**
271 * ring_buffer_event_length - return the length of the event
272 * @event: the event to get the length of
69d1b839
SR
273 *
274 * Returns the size of the data load of a data event.
275 * If the event is something other than a data event, it
276 * returns the size of the event itself. With the exception
277 * of a TIME EXTEND, where it still returns the size of the
278 * data load of the data event after it.
7a8e76a3
SR
279 */
280unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281{
69d1b839
SR
282 unsigned length;
283
284 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 event = skip_time_extend(event);
286
287 length = rb_event_length(event);
334d4169 288 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
289 return length;
290 length -= RB_EVNT_HDR_SIZE;
291 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292 length -= sizeof(event->array[0]);
293 return length;
7a8e76a3 294}
c4f50183 295EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
296
297/* inline for ring buffer fast paths */
34a148bf 298static void *
7a8e76a3
SR
299rb_event_data(struct ring_buffer_event *event)
300{
69d1b839
SR
301 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 event = skip_time_extend(event);
334d4169 303 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 304 /* If length is in len field, then array[0] has the data */
334d4169 305 if (event->type_len)
7a8e76a3
SR
306 return (void *)&event->array[0];
307 /* Otherwise length is in array[0] and array[1] has the data */
308 return (void *)&event->array[1];
309}
310
311/**
312 * ring_buffer_event_data - return the data of the event
313 * @event: the event to get the data from
314 */
315void *ring_buffer_event_data(struct ring_buffer_event *event)
316{
317 return rb_event_data(event);
318}
c4f50183 319EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
320
321#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 322 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
323
324#define TS_SHIFT 27
325#define TS_MASK ((1ULL << TS_SHIFT) - 1)
326#define TS_DELTA_TEST (~TS_MASK)
327
66a8cb95
SR
328/* Flag when events were overwritten */
329#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
330/* Missed count stored at end */
331#define RB_MISSED_STORED (1 << 30)
66a8cb95 332
abc9b56d 333struct buffer_data_page {
e4c2ce82 334 u64 time_stamp; /* page time stamp */
c3706f00 335 local_t commit; /* write committed index */
abc9b56d
SR
336 unsigned char data[]; /* data of buffer page */
337};
338
77ae365e
SR
339/*
340 * Note, the buffer_page list must be first. The buffer pages
341 * are allocated in cache lines, which means that each buffer
342 * page will be at the beginning of a cache line, and thus
343 * the least significant bits will be zero. We use this to
344 * add flags in the list struct pointers, to make the ring buffer
345 * lockless.
346 */
abc9b56d 347struct buffer_page {
778c55d4 348 struct list_head list; /* list of buffer pages */
abc9b56d 349 local_t write; /* index for next write */
6f807acd 350 unsigned read; /* index for next read */
778c55d4 351 local_t entries; /* entries on this page */
ff0ff84a 352 unsigned long real_end; /* real end of data */
abc9b56d 353 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
354};
355
77ae365e
SR
356/*
357 * The buffer page counters, write and entries, must be reset
358 * atomically when crossing page boundaries. To synchronize this
359 * update, two counters are inserted into the number. One is
360 * the actual counter for the write position or count on the page.
361 *
362 * The other is a counter of updaters. Before an update happens
363 * the update partition of the counter is incremented. This will
364 * allow the updater to update the counter atomically.
365 *
366 * The counter is 20 bits, and the state data is 12.
367 */
368#define RB_WRITE_MASK 0xfffff
369#define RB_WRITE_INTCNT (1 << 20)
370
044fa782 371static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 372{
044fa782 373 local_set(&bpage->commit, 0);
abc9b56d
SR
374}
375
474d32b6
SR
376/**
377 * ring_buffer_page_len - the size of data on the page.
378 * @page: The page to read
379 *
380 * Returns the amount of data on the page, including buffer page header.
381 */
ef7a4a16
SR
382size_t ring_buffer_page_len(void *page)
383{
474d32b6
SR
384 return local_read(&((struct buffer_data_page *)page)->commit)
385 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
386}
387
ed56829c
SR
388/*
389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390 * this issue out.
391 */
34a148bf 392static void free_buffer_page(struct buffer_page *bpage)
ed56829c 393{
34a148bf 394 free_page((unsigned long)bpage->page);
e4c2ce82 395 kfree(bpage);
ed56829c
SR
396}
397
7a8e76a3
SR
398/*
399 * We need to fit the time_stamp delta into 27 bits.
400 */
401static inline int test_time_stamp(u64 delta)
402{
403 if (delta & TS_DELTA_TEST)
404 return 1;
405 return 0;
406}
407
474d32b6 408#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 409
be957c44
SR
410/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
d1b182a8
SR
413int ring_buffer_print_page_header(struct trace_seq *s)
414{
415 struct buffer_data_page field;
416 int ret;
417
418 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
419 "offset:0;\tsize:%u;\tsigned:%u;\n",
420 (unsigned int)sizeof(field.time_stamp),
421 (unsigned int)is_signed_type(u64));
d1b182a8
SR
422
423 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 424 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 425 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
426 (unsigned int)sizeof(field.commit),
427 (unsigned int)is_signed_type(long));
d1b182a8 428
66a8cb95
SR
429 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 1,
433 (unsigned int)is_signed_type(long));
434
d1b182a8 435 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 437 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
438 (unsigned int)BUF_PAGE_SIZE,
439 (unsigned int)is_signed_type(char));
d1b182a8
SR
440
441 return ret;
442}
443
7a8e76a3
SR
444/*
445 * head_page == tail_page && head == tail then buffer is empty.
446 */
447struct ring_buffer_per_cpu {
448 int cpu;
985023de 449 atomic_t record_disabled;
7a8e76a3 450 struct ring_buffer *buffer;
5389f6fa 451 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 452 arch_spinlock_t lock;
7a8e76a3 453 struct lock_class_key lock_key;
438ced17 454 unsigned int nr_pages;
3adc54fa 455 struct list_head *pages;
6f807acd
SR
456 struct buffer_page *head_page; /* read from head */
457 struct buffer_page *tail_page; /* write to tail */
c3706f00 458 struct buffer_page *commit_page; /* committed pages */
d769041f 459 struct buffer_page *reader_page;
66a8cb95
SR
460 unsigned long lost_events;
461 unsigned long last_overrun;
c64e148a 462 local_t entries_bytes;
77ae365e
SR
463 local_t commit_overrun;
464 local_t overrun;
e4906eff 465 local_t entries;
fa743953
SR
466 local_t committing;
467 local_t commits;
77ae365e 468 unsigned long read;
c64e148a 469 unsigned long read_bytes;
7a8e76a3
SR
470 u64 write_stamp;
471 u64 read_stamp;
438ced17
VN
472 /* ring buffer pages to update, > 0 to add, < 0 to remove */
473 int nr_pages_to_update;
474 struct list_head new_pages; /* new pages to add */
83f40318 475 struct work_struct update_pages_work;
05fdd70d 476 struct completion update_done;
7a8e76a3
SR
477};
478
479struct ring_buffer {
7a8e76a3
SR
480 unsigned flags;
481 int cpus;
7a8e76a3 482 atomic_t record_disabled;
83f40318 483 atomic_t resize_disabled;
00f62f61 484 cpumask_var_t cpumask;
7a8e76a3 485
1f8a6a10
PZ
486 struct lock_class_key *reader_lock_key;
487
7a8e76a3
SR
488 struct mutex mutex;
489
490 struct ring_buffer_per_cpu **buffers;
554f786e 491
59222efe 492#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
493 struct notifier_block cpu_notify;
494#endif
37886f6a 495 u64 (*clock)(void);
7a8e76a3
SR
496};
497
498struct ring_buffer_iter {
499 struct ring_buffer_per_cpu *cpu_buffer;
500 unsigned long head;
501 struct buffer_page *head_page;
492a74f4
SR
502 struct buffer_page *cache_reader_page;
503 unsigned long cache_read;
7a8e76a3
SR
504 u64 read_stamp;
505};
506
f536aafc 507/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
508#define RB_WARN_ON(b, cond) \
509 ({ \
510 int _____ret = unlikely(cond); \
511 if (_____ret) { \
512 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513 struct ring_buffer_per_cpu *__b = \
514 (void *)b; \
515 atomic_inc(&__b->buffer->record_disabled); \
516 } else \
517 atomic_inc(&b->record_disabled); \
518 WARN_ON(1); \
519 } \
520 _____ret; \
3e89c7bb 521 })
f536aafc 522
37886f6a
SR
523/* Up this if you want to test the TIME_EXTENTS and normalization */
524#define DEBUG_SHIFT 0
525
6d3f1e12 526static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
527{
528 /* shift to debug/test normalization and TIME_EXTENTS */
529 return buffer->clock() << DEBUG_SHIFT;
530}
531
37886f6a
SR
532u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533{
534 u64 time;
535
536 preempt_disable_notrace();
6d3f1e12 537 time = rb_time_stamp(buffer);
37886f6a
SR
538 preempt_enable_no_resched_notrace();
539
540 return time;
541}
542EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543
544void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545 int cpu, u64 *ts)
546{
547 /* Just stupid testing the normalize function and deltas */
548 *ts >>= DEBUG_SHIFT;
549}
550EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551
77ae365e
SR
552/*
553 * Making the ring buffer lockless makes things tricky.
554 * Although writes only happen on the CPU that they are on,
555 * and they only need to worry about interrupts. Reads can
556 * happen on any CPU.
557 *
558 * The reader page is always off the ring buffer, but when the
559 * reader finishes with a page, it needs to swap its page with
560 * a new one from the buffer. The reader needs to take from
561 * the head (writes go to the tail). But if a writer is in overwrite
562 * mode and wraps, it must push the head page forward.
563 *
564 * Here lies the problem.
565 *
566 * The reader must be careful to replace only the head page, and
567 * not another one. As described at the top of the file in the
568 * ASCII art, the reader sets its old page to point to the next
569 * page after head. It then sets the page after head to point to
570 * the old reader page. But if the writer moves the head page
571 * during this operation, the reader could end up with the tail.
572 *
573 * We use cmpxchg to help prevent this race. We also do something
574 * special with the page before head. We set the LSB to 1.
575 *
576 * When the writer must push the page forward, it will clear the
577 * bit that points to the head page, move the head, and then set
578 * the bit that points to the new head page.
579 *
580 * We also don't want an interrupt coming in and moving the head
581 * page on another writer. Thus we use the second LSB to catch
582 * that too. Thus:
583 *
584 * head->list->prev->next bit 1 bit 0
585 * ------- -------
586 * Normal page 0 0
587 * Points to head page 0 1
588 * New head page 1 0
589 *
590 * Note we can not trust the prev pointer of the head page, because:
591 *
592 * +----+ +-----+ +-----+
593 * | |------>| T |---X--->| N |
594 * | |<------| | | |
595 * +----+ +-----+ +-----+
596 * ^ ^ |
597 * | +-----+ | |
598 * +----------| R |----------+ |
599 * | |<-----------+
600 * +-----+
601 *
602 * Key: ---X--> HEAD flag set in pointer
603 * T Tail page
604 * R Reader page
605 * N Next page
606 *
607 * (see __rb_reserve_next() to see where this happens)
608 *
609 * What the above shows is that the reader just swapped out
610 * the reader page with a page in the buffer, but before it
611 * could make the new header point back to the new page added
612 * it was preempted by a writer. The writer moved forward onto
613 * the new page added by the reader and is about to move forward
614 * again.
615 *
616 * You can see, it is legitimate for the previous pointer of
617 * the head (or any page) not to point back to itself. But only
618 * temporarially.
619 */
620
621#define RB_PAGE_NORMAL 0UL
622#define RB_PAGE_HEAD 1UL
623#define RB_PAGE_UPDATE 2UL
624
625
626#define RB_FLAG_MASK 3UL
627
628/* PAGE_MOVED is not part of the mask */
629#define RB_PAGE_MOVED 4UL
630
631/*
632 * rb_list_head - remove any bit
633 */
634static struct list_head *rb_list_head(struct list_head *list)
635{
636 unsigned long val = (unsigned long)list;
637
638 return (struct list_head *)(val & ~RB_FLAG_MASK);
639}
640
641/*
6d3f1e12 642 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
643 *
644 * Because the reader may move the head_page pointer, we can
645 * not trust what the head page is (it may be pointing to
646 * the reader page). But if the next page is a header page,
647 * its flags will be non zero.
648 */
42b16b3f 649static inline int
77ae365e
SR
650rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651 struct buffer_page *page, struct list_head *list)
652{
653 unsigned long val;
654
655 val = (unsigned long)list->next;
656
657 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658 return RB_PAGE_MOVED;
659
660 return val & RB_FLAG_MASK;
661}
662
663/*
664 * rb_is_reader_page
665 *
666 * The unique thing about the reader page, is that, if the
667 * writer is ever on it, the previous pointer never points
668 * back to the reader page.
669 */
670static int rb_is_reader_page(struct buffer_page *page)
671{
672 struct list_head *list = page->list.prev;
673
674 return rb_list_head(list->next) != &page->list;
675}
676
677/*
678 * rb_set_list_to_head - set a list_head to be pointing to head.
679 */
680static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681 struct list_head *list)
682{
683 unsigned long *ptr;
684
685 ptr = (unsigned long *)&list->next;
686 *ptr |= RB_PAGE_HEAD;
687 *ptr &= ~RB_PAGE_UPDATE;
688}
689
690/*
691 * rb_head_page_activate - sets up head page
692 */
693static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694{
695 struct buffer_page *head;
696
697 head = cpu_buffer->head_page;
698 if (!head)
699 return;
700
701 /*
702 * Set the previous list pointer to have the HEAD flag.
703 */
704 rb_set_list_to_head(cpu_buffer, head->list.prev);
705}
706
707static void rb_list_head_clear(struct list_head *list)
708{
709 unsigned long *ptr = (unsigned long *)&list->next;
710
711 *ptr &= ~RB_FLAG_MASK;
712}
713
714/*
715 * rb_head_page_dactivate - clears head page ptr (for free list)
716 */
717static void
718rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719{
720 struct list_head *hd;
721
722 /* Go through the whole list and clear any pointers found. */
723 rb_list_head_clear(cpu_buffer->pages);
724
725 list_for_each(hd, cpu_buffer->pages)
726 rb_list_head_clear(hd);
727}
728
729static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730 struct buffer_page *head,
731 struct buffer_page *prev,
732 int old_flag, int new_flag)
733{
734 struct list_head *list;
735 unsigned long val = (unsigned long)&head->list;
736 unsigned long ret;
737
738 list = &prev->list;
739
740 val &= ~RB_FLAG_MASK;
741
08a40816
SR
742 ret = cmpxchg((unsigned long *)&list->next,
743 val | old_flag, val | new_flag);
77ae365e
SR
744
745 /* check if the reader took the page */
746 if ((ret & ~RB_FLAG_MASK) != val)
747 return RB_PAGE_MOVED;
748
749 return ret & RB_FLAG_MASK;
750}
751
752static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753 struct buffer_page *head,
754 struct buffer_page *prev,
755 int old_flag)
756{
757 return rb_head_page_set(cpu_buffer, head, prev,
758 old_flag, RB_PAGE_UPDATE);
759}
760
761static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762 struct buffer_page *head,
763 struct buffer_page *prev,
764 int old_flag)
765{
766 return rb_head_page_set(cpu_buffer, head, prev,
767 old_flag, RB_PAGE_HEAD);
768}
769
770static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771 struct buffer_page *head,
772 struct buffer_page *prev,
773 int old_flag)
774{
775 return rb_head_page_set(cpu_buffer, head, prev,
776 old_flag, RB_PAGE_NORMAL);
777}
778
779static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780 struct buffer_page **bpage)
781{
782 struct list_head *p = rb_list_head((*bpage)->list.next);
783
784 *bpage = list_entry(p, struct buffer_page, list);
785}
786
787static struct buffer_page *
788rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789{
790 struct buffer_page *head;
791 struct buffer_page *page;
792 struct list_head *list;
793 int i;
794
795 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796 return NULL;
797
798 /* sanity check */
799 list = cpu_buffer->pages;
800 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801 return NULL;
802
803 page = head = cpu_buffer->head_page;
804 /*
805 * It is possible that the writer moves the header behind
806 * where we started, and we miss in one loop.
807 * A second loop should grab the header, but we'll do
808 * three loops just because I'm paranoid.
809 */
810 for (i = 0; i < 3; i++) {
811 do {
812 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813 cpu_buffer->head_page = page;
814 return page;
815 }
816 rb_inc_page(cpu_buffer, &page);
817 } while (page != head);
818 }
819
820 RB_WARN_ON(cpu_buffer, 1);
821
822 return NULL;
823}
824
825static int rb_head_page_replace(struct buffer_page *old,
826 struct buffer_page *new)
827{
828 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829 unsigned long val;
830 unsigned long ret;
831
832 val = *ptr & ~RB_FLAG_MASK;
833 val |= RB_PAGE_HEAD;
834
08a40816 835 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
836
837 return ret == val;
838}
839
840/*
841 * rb_tail_page_update - move the tail page forward
842 *
843 * Returns 1 if moved tail page, 0 if someone else did.
844 */
845static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846 struct buffer_page *tail_page,
847 struct buffer_page *next_page)
848{
849 struct buffer_page *old_tail;
850 unsigned long old_entries;
851 unsigned long old_write;
852 int ret = 0;
853
854 /*
855 * The tail page now needs to be moved forward.
856 *
857 * We need to reset the tail page, but without messing
858 * with possible erasing of data brought in by interrupts
859 * that have moved the tail page and are currently on it.
860 *
861 * We add a counter to the write field to denote this.
862 */
863 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865
866 /*
867 * Just make sure we have seen our old_write and synchronize
868 * with any interrupts that come in.
869 */
870 barrier();
871
872 /*
873 * If the tail page is still the same as what we think
874 * it is, then it is up to us to update the tail
875 * pointer.
876 */
877 if (tail_page == cpu_buffer->tail_page) {
878 /* Zero the write counter */
879 unsigned long val = old_write & ~RB_WRITE_MASK;
880 unsigned long eval = old_entries & ~RB_WRITE_MASK;
881
882 /*
883 * This will only succeed if an interrupt did
884 * not come in and change it. In which case, we
885 * do not want to modify it.
da706d8b
LJ
886 *
887 * We add (void) to let the compiler know that we do not care
888 * about the return value of these functions. We use the
889 * cmpxchg to only update if an interrupt did not already
890 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 891 */
da706d8b
LJ
892 (void)local_cmpxchg(&next_page->write, old_write, val);
893 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
894
895 /*
896 * No need to worry about races with clearing out the commit.
897 * it only can increment when a commit takes place. But that
898 * only happens in the outer most nested commit.
899 */
900 local_set(&next_page->page->commit, 0);
901
902 old_tail = cmpxchg(&cpu_buffer->tail_page,
903 tail_page, next_page);
904
905 if (old_tail == tail_page)
906 ret = 1;
907 }
908
909 return ret;
910}
911
912static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913 struct buffer_page *bpage)
914{
915 unsigned long val = (unsigned long)bpage;
916
917 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918 return 1;
919
920 return 0;
921}
922
923/**
924 * rb_check_list - make sure a pointer to a list has the last bits zero
925 */
926static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927 struct list_head *list)
928{
929 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930 return 1;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932 return 1;
933 return 0;
934}
935
7a8e76a3
SR
936/**
937 * check_pages - integrity check of buffer pages
938 * @cpu_buffer: CPU buffer with pages to test
939 *
c3706f00 940 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
941 * been corrupted.
942 */
943static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944{
3adc54fa 945 struct list_head *head = cpu_buffer->pages;
044fa782 946 struct buffer_page *bpage, *tmp;
7a8e76a3 947
308f7eeb
SR
948 /* Reset the head page if it exists */
949 if (cpu_buffer->head_page)
950 rb_set_head_page(cpu_buffer);
951
77ae365e
SR
952 rb_head_page_deactivate(cpu_buffer);
953
3e89c7bb
SR
954 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
955 return -1;
956 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
957 return -1;
7a8e76a3 958
77ae365e
SR
959 if (rb_check_list(cpu_buffer, head))
960 return -1;
961
044fa782 962 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 963 if (RB_WARN_ON(cpu_buffer,
044fa782 964 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
965 return -1;
966 if (RB_WARN_ON(cpu_buffer,
044fa782 967 bpage->list.prev->next != &bpage->list))
3e89c7bb 968 return -1;
77ae365e
SR
969 if (rb_check_list(cpu_buffer, &bpage->list))
970 return -1;
7a8e76a3
SR
971 }
972
77ae365e
SR
973 rb_head_page_activate(cpu_buffer);
974
7a8e76a3
SR
975 return 0;
976}
977
438ced17 978static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 979{
438ced17 980 int i;
044fa782 981 struct buffer_page *bpage, *tmp;
3adc54fa 982
7a8e76a3 983 for (i = 0; i < nr_pages; i++) {
7ea59064 984 struct page *page;
d7ec4bfe
VN
985 /*
986 * __GFP_NORETRY flag makes sure that the allocation fails
987 * gracefully without invoking oom-killer and the system is
988 * not destabilized.
989 */
044fa782 990 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 991 GFP_KERNEL | __GFP_NORETRY,
438ced17 992 cpu_to_node(cpu));
044fa782 993 if (!bpage)
e4c2ce82 994 goto free_pages;
77ae365e 995
438ced17 996 list_add(&bpage->list, pages);
77ae365e 997
438ced17 998 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 999 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1000 if (!page)
7a8e76a3 1001 goto free_pages;
7ea59064 1002 bpage->page = page_address(page);
044fa782 1003 rb_init_page(bpage->page);
7a8e76a3
SR
1004 }
1005
438ced17
VN
1006 return 0;
1007
1008free_pages:
1009 list_for_each_entry_safe(bpage, tmp, pages, list) {
1010 list_del_init(&bpage->list);
1011 free_buffer_page(bpage);
1012 }
1013
1014 return -ENOMEM;
1015}
1016
1017static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018 unsigned nr_pages)
1019{
1020 LIST_HEAD(pages);
1021
1022 WARN_ON(!nr_pages);
1023
1024 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025 return -ENOMEM;
1026
3adc54fa
SR
1027 /*
1028 * The ring buffer page list is a circular list that does not
1029 * start and end with a list head. All page list items point to
1030 * other pages.
1031 */
1032 cpu_buffer->pages = pages.next;
1033 list_del(&pages);
7a8e76a3 1034
438ced17
VN
1035 cpu_buffer->nr_pages = nr_pages;
1036
7a8e76a3
SR
1037 rb_check_pages(cpu_buffer);
1038
1039 return 0;
7a8e76a3
SR
1040}
1041
1042static struct ring_buffer_per_cpu *
438ced17 1043rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1044{
1045 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1046 struct buffer_page *bpage;
7ea59064 1047 struct page *page;
7a8e76a3
SR
1048 int ret;
1049
1050 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051 GFP_KERNEL, cpu_to_node(cpu));
1052 if (!cpu_buffer)
1053 return NULL;
1054
1055 cpu_buffer->cpu = cpu;
1056 cpu_buffer->buffer = buffer;
5389f6fa 1057 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1058 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1059 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1060 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1061 init_completion(&cpu_buffer->update_done);
7a8e76a3 1062
044fa782 1063 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1064 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1065 if (!bpage)
e4c2ce82
SR
1066 goto fail_free_buffer;
1067
77ae365e
SR
1068 rb_check_bpage(cpu_buffer, bpage);
1069
044fa782 1070 cpu_buffer->reader_page = bpage;
7ea59064
VN
1071 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072 if (!page)
e4c2ce82 1073 goto fail_free_reader;
7ea59064 1074 bpage->page = page_address(page);
044fa782 1075 rb_init_page(bpage->page);
e4c2ce82 1076
d769041f 1077 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1078 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1079
438ced17 1080 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1081 if (ret < 0)
d769041f 1082 goto fail_free_reader;
7a8e76a3
SR
1083
1084 cpu_buffer->head_page
3adc54fa 1085 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1086 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1087
77ae365e
SR
1088 rb_head_page_activate(cpu_buffer);
1089
7a8e76a3
SR
1090 return cpu_buffer;
1091
d769041f
SR
1092 fail_free_reader:
1093 free_buffer_page(cpu_buffer->reader_page);
1094
7a8e76a3
SR
1095 fail_free_buffer:
1096 kfree(cpu_buffer);
1097 return NULL;
1098}
1099
1100static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101{
3adc54fa 1102 struct list_head *head = cpu_buffer->pages;
044fa782 1103 struct buffer_page *bpage, *tmp;
7a8e76a3 1104
d769041f
SR
1105 free_buffer_page(cpu_buffer->reader_page);
1106
77ae365e
SR
1107 rb_head_page_deactivate(cpu_buffer);
1108
3adc54fa
SR
1109 if (head) {
1110 list_for_each_entry_safe(bpage, tmp, head, list) {
1111 list_del_init(&bpage->list);
1112 free_buffer_page(bpage);
1113 }
1114 bpage = list_entry(head, struct buffer_page, list);
044fa782 1115 free_buffer_page(bpage);
7a8e76a3 1116 }
3adc54fa 1117
7a8e76a3
SR
1118 kfree(cpu_buffer);
1119}
1120
59222efe 1121#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1122static int rb_cpu_notify(struct notifier_block *self,
1123 unsigned long action, void *hcpu);
554f786e
SR
1124#endif
1125
7a8e76a3
SR
1126/**
1127 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1128 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1129 * @flags: attributes to set for the ring buffer.
1130 *
1131 * Currently the only flag that is available is the RB_FL_OVERWRITE
1132 * flag. This flag means that the buffer will overwrite old data
1133 * when the buffer wraps. If this flag is not set, the buffer will
1134 * drop data when the tail hits the head.
1135 */
1f8a6a10
PZ
1136struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137 struct lock_class_key *key)
7a8e76a3
SR
1138{
1139 struct ring_buffer *buffer;
1140 int bsize;
438ced17 1141 int cpu, nr_pages;
7a8e76a3
SR
1142
1143 /* keep it in its own cache line */
1144 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145 GFP_KERNEL);
1146 if (!buffer)
1147 return NULL;
1148
9e01c1b7
RR
1149 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150 goto fail_free_buffer;
1151
438ced17 1152 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1153 buffer->flags = flags;
37886f6a 1154 buffer->clock = trace_clock_local;
1f8a6a10 1155 buffer->reader_lock_key = key;
7a8e76a3
SR
1156
1157 /* need at least two pages */
438ced17
VN
1158 if (nr_pages < 2)
1159 nr_pages = 2;
7a8e76a3 1160
3bf832ce
FW
1161 /*
1162 * In case of non-hotplug cpu, if the ring-buffer is allocated
1163 * in early initcall, it will not be notified of secondary cpus.
1164 * In that off case, we need to allocate for all possible cpus.
1165 */
1166#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1167 get_online_cpus();
1168 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1169#else
1170 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171#endif
7a8e76a3
SR
1172 buffer->cpus = nr_cpu_ids;
1173
1174 bsize = sizeof(void *) * nr_cpu_ids;
1175 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176 GFP_KERNEL);
1177 if (!buffer->buffers)
9e01c1b7 1178 goto fail_free_cpumask;
7a8e76a3
SR
1179
1180 for_each_buffer_cpu(buffer, cpu) {
1181 buffer->buffers[cpu] =
438ced17 1182 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1183 if (!buffer->buffers[cpu])
1184 goto fail_free_buffers;
1185 }
1186
59222efe 1187#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1188 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189 buffer->cpu_notify.priority = 0;
1190 register_cpu_notifier(&buffer->cpu_notify);
1191#endif
1192
1193 put_online_cpus();
7a8e76a3
SR
1194 mutex_init(&buffer->mutex);
1195
1196 return buffer;
1197
1198 fail_free_buffers:
1199 for_each_buffer_cpu(buffer, cpu) {
1200 if (buffer->buffers[cpu])
1201 rb_free_cpu_buffer(buffer->buffers[cpu]);
1202 }
1203 kfree(buffer->buffers);
1204
9e01c1b7
RR
1205 fail_free_cpumask:
1206 free_cpumask_var(buffer->cpumask);
554f786e 1207 put_online_cpus();
9e01c1b7 1208
7a8e76a3
SR
1209 fail_free_buffer:
1210 kfree(buffer);
1211 return NULL;
1212}
1f8a6a10 1213EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1214
1215/**
1216 * ring_buffer_free - free a ring buffer.
1217 * @buffer: the buffer to free.
1218 */
1219void
1220ring_buffer_free(struct ring_buffer *buffer)
1221{
1222 int cpu;
1223
554f786e
SR
1224 get_online_cpus();
1225
59222efe 1226#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1227 unregister_cpu_notifier(&buffer->cpu_notify);
1228#endif
1229
7a8e76a3
SR
1230 for_each_buffer_cpu(buffer, cpu)
1231 rb_free_cpu_buffer(buffer->buffers[cpu]);
1232
554f786e
SR
1233 put_online_cpus();
1234
bd3f0221 1235 kfree(buffer->buffers);
9e01c1b7
RR
1236 free_cpumask_var(buffer->cpumask);
1237
7a8e76a3
SR
1238 kfree(buffer);
1239}
c4f50183 1240EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1241
37886f6a
SR
1242void ring_buffer_set_clock(struct ring_buffer *buffer,
1243 u64 (*clock)(void))
1244{
1245 buffer->clock = clock;
1246}
1247
7a8e76a3
SR
1248static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249
83f40318
VN
1250static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1251{
1252 return local_read(&bpage->entries) & RB_WRITE_MASK;
1253}
1254
1255static inline unsigned long rb_page_write(struct buffer_page *bpage)
1256{
1257 return local_read(&bpage->write) & RB_WRITE_MASK;
1258}
1259
5040b4b7 1260static int
83f40318 1261rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1262{
83f40318
VN
1263 struct list_head *tail_page, *to_remove, *next_page;
1264 struct buffer_page *to_remove_page, *tmp_iter_page;
1265 struct buffer_page *last_page, *first_page;
1266 unsigned int nr_removed;
1267 unsigned long head_bit;
1268 int page_entries;
1269
1270 head_bit = 0;
7a8e76a3 1271
5389f6fa 1272 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1273 atomic_inc(&cpu_buffer->record_disabled);
1274 /*
1275 * We don't race with the readers since we have acquired the reader
1276 * lock. We also don't race with writers after disabling recording.
1277 * This makes it easy to figure out the first and the last page to be
1278 * removed from the list. We unlink all the pages in between including
1279 * the first and last pages. This is done in a busy loop so that we
1280 * lose the least number of traces.
1281 * The pages are freed after we restart recording and unlock readers.
1282 */
1283 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1284
83f40318
VN
1285 /*
1286 * tail page might be on reader page, we remove the next page
1287 * from the ring buffer
1288 */
1289 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1290 tail_page = rb_list_head(tail_page->next);
1291 to_remove = tail_page;
1292
1293 /* start of pages to remove */
1294 first_page = list_entry(rb_list_head(to_remove->next),
1295 struct buffer_page, list);
1296
1297 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1298 to_remove = rb_list_head(to_remove)->next;
1299 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1300 }
7a8e76a3 1301
83f40318 1302 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1303
83f40318
VN
1304 /*
1305 * Now we remove all pages between tail_page and next_page.
1306 * Make sure that we have head_bit value preserved for the
1307 * next page
1308 */
1309 tail_page->next = (struct list_head *)((unsigned long)next_page |
1310 head_bit);
1311 next_page = rb_list_head(next_page);
1312 next_page->prev = tail_page;
1313
1314 /* make sure pages points to a valid page in the ring buffer */
1315 cpu_buffer->pages = next_page;
1316
1317 /* update head page */
1318 if (head_bit)
1319 cpu_buffer->head_page = list_entry(next_page,
1320 struct buffer_page, list);
1321
1322 /*
1323 * change read pointer to make sure any read iterators reset
1324 * themselves
1325 */
1326 cpu_buffer->read = 0;
1327
1328 /* pages are removed, resume tracing and then free the pages */
1329 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1330 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1331
1332 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1333
1334 /* last buffer page to remove */
1335 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1336 list);
1337 tmp_iter_page = first_page;
1338
1339 do {
1340 to_remove_page = tmp_iter_page;
1341 rb_inc_page(cpu_buffer, &tmp_iter_page);
1342
1343 /* update the counters */
1344 page_entries = rb_page_entries(to_remove_page);
1345 if (page_entries) {
1346 /*
1347 * If something was added to this page, it was full
1348 * since it is not the tail page. So we deduct the
1349 * bytes consumed in ring buffer from here.
1350 * No need to update overruns, since this page is
1351 * deleted from ring buffer and its entries are
1352 * already accounted for.
1353 */
1354 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1355 }
1356
1357 /*
1358 * We have already removed references to this list item, just
1359 * free up the buffer_page and its page
1360 */
1361 free_buffer_page(to_remove_page);
1362 nr_removed--;
1363
1364 } while (to_remove_page != last_page);
1365
1366 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1367
1368 return nr_removed == 0;
7a8e76a3
SR
1369}
1370
5040b4b7
VN
1371static int
1372rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1373{
5040b4b7
VN
1374 struct list_head *pages = &cpu_buffer->new_pages;
1375 int retries, success;
7a8e76a3 1376
5389f6fa 1377 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1378 /*
1379 * We are holding the reader lock, so the reader page won't be swapped
1380 * in the ring buffer. Now we are racing with the writer trying to
1381 * move head page and the tail page.
1382 * We are going to adapt the reader page update process where:
1383 * 1. We first splice the start and end of list of new pages between
1384 * the head page and its previous page.
1385 * 2. We cmpxchg the prev_page->next to point from head page to the
1386 * start of new pages list.
1387 * 3. Finally, we update the head->prev to the end of new list.
1388 *
1389 * We will try this process 10 times, to make sure that we don't keep
1390 * spinning.
1391 */
1392 retries = 10;
1393 success = 0;
1394 while (retries--) {
1395 struct list_head *head_page, *prev_page, *r;
1396 struct list_head *last_page, *first_page;
1397 struct list_head *head_page_with_bit;
77ae365e 1398
5040b4b7
VN
1399 head_page = &rb_set_head_page(cpu_buffer)->list;
1400 prev_page = head_page->prev;
1401
1402 first_page = pages->next;
1403 last_page = pages->prev;
1404
1405 head_page_with_bit = (struct list_head *)
1406 ((unsigned long)head_page | RB_PAGE_HEAD);
1407
1408 last_page->next = head_page_with_bit;
1409 first_page->prev = prev_page;
1410
1411 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1412
1413 if (r == head_page_with_bit) {
1414 /*
1415 * yay, we replaced the page pointer to our new list,
1416 * now, we just have to update to head page's prev
1417 * pointer to point to end of list
1418 */
1419 head_page->prev = last_page;
1420 success = 1;
1421 break;
1422 }
7a8e76a3 1423 }
7a8e76a3 1424
5040b4b7
VN
1425 if (success)
1426 INIT_LIST_HEAD(pages);
1427 /*
1428 * If we weren't successful in adding in new pages, warn and stop
1429 * tracing
1430 */
1431 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1432 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1433
1434 /* free pages if they weren't inserted */
1435 if (!success) {
1436 struct buffer_page *bpage, *tmp;
1437 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1438 list) {
1439 list_del_init(&bpage->list);
1440 free_buffer_page(bpage);
1441 }
1442 }
1443 return success;
7a8e76a3
SR
1444}
1445
83f40318 1446static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1447{
5040b4b7
VN
1448 int success;
1449
438ced17 1450 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1451 success = rb_insert_pages(cpu_buffer);
438ced17 1452 else
5040b4b7
VN
1453 success = rb_remove_pages(cpu_buffer,
1454 -cpu_buffer->nr_pages_to_update);
83f40318 1455
5040b4b7
VN
1456 if (success)
1457 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1458}
1459
1460static void update_pages_handler(struct work_struct *work)
1461{
1462 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1463 struct ring_buffer_per_cpu, update_pages_work);
1464 rb_update_pages(cpu_buffer);
05fdd70d 1465 complete(&cpu_buffer->update_done);
438ced17
VN
1466}
1467
7a8e76a3
SR
1468/**
1469 * ring_buffer_resize - resize the ring buffer
1470 * @buffer: the buffer to resize.
1471 * @size: the new size.
1472 *
7a8e76a3
SR
1473 * Minimum size is 2 * BUF_PAGE_SIZE.
1474 *
83f40318 1475 * Returns 0 on success and < 0 on failure.
7a8e76a3 1476 */
438ced17
VN
1477int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1478 int cpu_id)
7a8e76a3
SR
1479{
1480 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1481 unsigned nr_pages;
83f40318 1482 int cpu, err = 0;
7a8e76a3 1483
ee51a1de
IM
1484 /*
1485 * Always succeed at resizing a non-existent buffer:
1486 */
1487 if (!buffer)
1488 return size;
1489
6a31e1f1
SR
1490 /* Make sure the requested buffer exists */
1491 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1492 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1493 return size;
1494
7a8e76a3
SR
1495 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1496 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1497
1498 /* we need a minimum of two pages */
1499 if (size < BUF_PAGE_SIZE * 2)
1500 size = BUF_PAGE_SIZE * 2;
1501
83f40318 1502 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1503
83f40318
VN
1504 /*
1505 * Don't succeed if resizing is disabled, as a reader might be
1506 * manipulating the ring buffer and is expecting a sane state while
1507 * this is true.
1508 */
1509 if (atomic_read(&buffer->resize_disabled))
1510 return -EBUSY;
18421015 1511
83f40318 1512 /* prevent another thread from changing buffer sizes */
7a8e76a3 1513 mutex_lock(&buffer->mutex);
7a8e76a3 1514
438ced17
VN
1515 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1516 /* calculate the pages to update */
7a8e76a3
SR
1517 for_each_buffer_cpu(buffer, cpu) {
1518 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1519
438ced17
VN
1520 cpu_buffer->nr_pages_to_update = nr_pages -
1521 cpu_buffer->nr_pages;
438ced17
VN
1522 /*
1523 * nothing more to do for removing pages or no update
1524 */
1525 if (cpu_buffer->nr_pages_to_update <= 0)
1526 continue;
d7ec4bfe 1527 /*
438ced17
VN
1528 * to add pages, make sure all new pages can be
1529 * allocated without receiving ENOMEM
d7ec4bfe 1530 */
438ced17
VN
1531 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1532 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1533 &cpu_buffer->new_pages, cpu)) {
438ced17 1534 /* not enough memory for new pages */
83f40318
VN
1535 err = -ENOMEM;
1536 goto out_err;
1537 }
1538 }
1539
1540 get_online_cpus();
1541 /*
1542 * Fire off all the required work handlers
05fdd70d 1543 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1544 * since we can change their buffer sizes without any race.
1545 */
1546 for_each_buffer_cpu(buffer, cpu) {
1547 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1548 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1549 continue;
1550
05fdd70d
VN
1551 if (cpu_online(cpu))
1552 schedule_work_on(cpu,
1553 &cpu_buffer->update_pages_work);
1554 else
1555 rb_update_pages(cpu_buffer);
7a8e76a3 1556 }
7a8e76a3 1557
438ced17
VN
1558 /* wait for all the updates to complete */
1559 for_each_buffer_cpu(buffer, cpu) {
1560 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1561 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1562 continue;
1563
05fdd70d
VN
1564 if (cpu_online(cpu))
1565 wait_for_completion(&cpu_buffer->update_done);
83f40318 1566 cpu_buffer->nr_pages_to_update = 0;
438ced17 1567 }
83f40318
VN
1568
1569 put_online_cpus();
438ced17
VN
1570 } else {
1571 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1572
438ced17
VN
1573 if (nr_pages == cpu_buffer->nr_pages)
1574 goto out;
7a8e76a3 1575
438ced17
VN
1576 cpu_buffer->nr_pages_to_update = nr_pages -
1577 cpu_buffer->nr_pages;
1578
1579 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1580 if (cpu_buffer->nr_pages_to_update > 0 &&
1581 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1582 &cpu_buffer->new_pages, cpu_id)) {
1583 err = -ENOMEM;
1584 goto out_err;
1585 }
438ced17 1586
83f40318
VN
1587 get_online_cpus();
1588
1589 if (cpu_online(cpu_id)) {
1590 schedule_work_on(cpu_id,
1591 &cpu_buffer->update_pages_work);
05fdd70d 1592 wait_for_completion(&cpu_buffer->update_done);
83f40318
VN
1593 } else
1594 rb_update_pages(cpu_buffer);
1595
83f40318 1596 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1597 put_online_cpus();
438ced17 1598 }
7a8e76a3
SR
1599
1600 out:
659f451f
SR
1601 /*
1602 * The ring buffer resize can happen with the ring buffer
1603 * enabled, so that the update disturbs the tracing as little
1604 * as possible. But if the buffer is disabled, we do not need
1605 * to worry about that, and we can take the time to verify
1606 * that the buffer is not corrupt.
1607 */
1608 if (atomic_read(&buffer->record_disabled)) {
1609 atomic_inc(&buffer->record_disabled);
1610 /*
1611 * Even though the buffer was disabled, we must make sure
1612 * that it is truly disabled before calling rb_check_pages.
1613 * There could have been a race between checking
1614 * record_disable and incrementing it.
1615 */
1616 synchronize_sched();
1617 for_each_buffer_cpu(buffer, cpu) {
1618 cpu_buffer = buffer->buffers[cpu];
1619 rb_check_pages(cpu_buffer);
1620 }
1621 atomic_dec(&buffer->record_disabled);
1622 }
1623
7a8e76a3 1624 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1625 return size;
1626
83f40318 1627 out_err:
438ced17
VN
1628 for_each_buffer_cpu(buffer, cpu) {
1629 struct buffer_page *bpage, *tmp;
83f40318 1630
438ced17 1631 cpu_buffer = buffer->buffers[cpu];
438ced17 1632 cpu_buffer->nr_pages_to_update = 0;
83f40318 1633
438ced17
VN
1634 if (list_empty(&cpu_buffer->new_pages))
1635 continue;
83f40318 1636
438ced17
VN
1637 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1638 list) {
1639 list_del_init(&bpage->list);
1640 free_buffer_page(bpage);
1641 }
7a8e76a3 1642 }
641d2f63 1643 mutex_unlock(&buffer->mutex);
83f40318 1644 return err;
7a8e76a3 1645}
c4f50183 1646EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1647
750912fa
DS
1648void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1649{
1650 mutex_lock(&buffer->mutex);
1651 if (val)
1652 buffer->flags |= RB_FL_OVERWRITE;
1653 else
1654 buffer->flags &= ~RB_FL_OVERWRITE;
1655 mutex_unlock(&buffer->mutex);
1656}
1657EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1658
8789a9e7 1659static inline void *
044fa782 1660__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1661{
044fa782 1662 return bpage->data + index;
8789a9e7
SR
1663}
1664
044fa782 1665static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1666{
044fa782 1667 return bpage->page->data + index;
7a8e76a3
SR
1668}
1669
1670static inline struct ring_buffer_event *
d769041f 1671rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1672{
6f807acd
SR
1673 return __rb_page_index(cpu_buffer->reader_page,
1674 cpu_buffer->reader_page->read);
1675}
1676
7a8e76a3
SR
1677static inline struct ring_buffer_event *
1678rb_iter_head_event(struct ring_buffer_iter *iter)
1679{
6f807acd 1680 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1681}
1682
bf41a158
SR
1683static inline unsigned rb_page_commit(struct buffer_page *bpage)
1684{
abc9b56d 1685 return local_read(&bpage->page->commit);
bf41a158
SR
1686}
1687
25985edc 1688/* Size is determined by what has been committed */
bf41a158
SR
1689static inline unsigned rb_page_size(struct buffer_page *bpage)
1690{
1691 return rb_page_commit(bpage);
1692}
1693
1694static inline unsigned
1695rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1696{
1697 return rb_page_commit(cpu_buffer->commit_page);
1698}
1699
bf41a158
SR
1700static inline unsigned
1701rb_event_index(struct ring_buffer_event *event)
1702{
1703 unsigned long addr = (unsigned long)event;
1704
22f470f8 1705 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1706}
1707
0f0c85fc 1708static inline int
fa743953
SR
1709rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1710 struct ring_buffer_event *event)
bf41a158
SR
1711{
1712 unsigned long addr = (unsigned long)event;
1713 unsigned long index;
1714
1715 index = rb_event_index(event);
1716 addr &= PAGE_MASK;
1717
1718 return cpu_buffer->commit_page->page == (void *)addr &&
1719 rb_commit_index(cpu_buffer) == index;
1720}
1721
34a148bf 1722static void
bf41a158 1723rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1724{
77ae365e
SR
1725 unsigned long max_count;
1726
bf41a158
SR
1727 /*
1728 * We only race with interrupts and NMIs on this CPU.
1729 * If we own the commit event, then we can commit
1730 * all others that interrupted us, since the interruptions
1731 * are in stack format (they finish before they come
1732 * back to us). This allows us to do a simple loop to
1733 * assign the commit to the tail.
1734 */
a8ccf1d6 1735 again:
438ced17 1736 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1737
bf41a158 1738 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1739 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1740 return;
1741 if (RB_WARN_ON(cpu_buffer,
1742 rb_is_reader_page(cpu_buffer->tail_page)))
1743 return;
1744 local_set(&cpu_buffer->commit_page->page->commit,
1745 rb_page_write(cpu_buffer->commit_page));
bf41a158 1746 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1747 cpu_buffer->write_stamp =
1748 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1749 /* add barrier to keep gcc from optimizing too much */
1750 barrier();
1751 }
1752 while (rb_commit_index(cpu_buffer) !=
1753 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1754
1755 local_set(&cpu_buffer->commit_page->page->commit,
1756 rb_page_write(cpu_buffer->commit_page));
1757 RB_WARN_ON(cpu_buffer,
1758 local_read(&cpu_buffer->commit_page->page->commit) &
1759 ~RB_WRITE_MASK);
bf41a158
SR
1760 barrier();
1761 }
a8ccf1d6
SR
1762
1763 /* again, keep gcc from optimizing */
1764 barrier();
1765
1766 /*
1767 * If an interrupt came in just after the first while loop
1768 * and pushed the tail page forward, we will be left with
1769 * a dangling commit that will never go forward.
1770 */
1771 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1772 goto again;
7a8e76a3
SR
1773}
1774
d769041f 1775static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1776{
abc9b56d 1777 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1778 cpu_buffer->reader_page->read = 0;
d769041f
SR
1779}
1780
34a148bf 1781static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1782{
1783 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1784
1785 /*
1786 * The iterator could be on the reader page (it starts there).
1787 * But the head could have moved, since the reader was
1788 * found. Check for this case and assign the iterator
1789 * to the head page instead of next.
1790 */
1791 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1792 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1793 else
1794 rb_inc_page(cpu_buffer, &iter->head_page);
1795
abc9b56d 1796 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1797 iter->head = 0;
1798}
1799
69d1b839
SR
1800/* Slow path, do not inline */
1801static noinline struct ring_buffer_event *
1802rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1803{
1804 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1805
1806 /* Not the first event on the page? */
1807 if (rb_event_index(event)) {
1808 event->time_delta = delta & TS_MASK;
1809 event->array[0] = delta >> TS_SHIFT;
1810 } else {
1811 /* nope, just zero it */
1812 event->time_delta = 0;
1813 event->array[0] = 0;
1814 }
1815
1816 return skip_time_extend(event);
1817}
1818
7a8e76a3
SR
1819/**
1820 * ring_buffer_update_event - update event type and data
1821 * @event: the even to update
1822 * @type: the type of event
1823 * @length: the size of the event field in the ring buffer
1824 *
1825 * Update the type and data fields of the event. The length
1826 * is the actual size that is written to the ring buffer,
1827 * and with this, we can determine what to place into the
1828 * data field.
1829 */
34a148bf 1830static void
69d1b839
SR
1831rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1832 struct ring_buffer_event *event, unsigned length,
1833 int add_timestamp, u64 delta)
7a8e76a3 1834{
69d1b839
SR
1835 /* Only a commit updates the timestamp */
1836 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1837 delta = 0;
7a8e76a3 1838
69d1b839
SR
1839 /*
1840 * If we need to add a timestamp, then we
1841 * add it to the start of the resevered space.
1842 */
1843 if (unlikely(add_timestamp)) {
1844 event = rb_add_time_stamp(event, delta);
1845 length -= RB_LEN_TIME_EXTEND;
1846 delta = 0;
7a8e76a3 1847 }
69d1b839
SR
1848
1849 event->time_delta = delta;
1850 length -= RB_EVNT_HDR_SIZE;
1851 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1852 event->type_len = 0;
1853 event->array[0] = length;
1854 } else
1855 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1856}
1857
77ae365e
SR
1858/*
1859 * rb_handle_head_page - writer hit the head page
1860 *
1861 * Returns: +1 to retry page
1862 * 0 to continue
1863 * -1 on error
1864 */
1865static int
1866rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1867 struct buffer_page *tail_page,
1868 struct buffer_page *next_page)
1869{
1870 struct buffer_page *new_head;
1871 int entries;
1872 int type;
1873 int ret;
1874
1875 entries = rb_page_entries(next_page);
1876
1877 /*
1878 * The hard part is here. We need to move the head
1879 * forward, and protect against both readers on
1880 * other CPUs and writers coming in via interrupts.
1881 */
1882 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1883 RB_PAGE_HEAD);
1884
1885 /*
1886 * type can be one of four:
1887 * NORMAL - an interrupt already moved it for us
1888 * HEAD - we are the first to get here.
1889 * UPDATE - we are the interrupt interrupting
1890 * a current move.
1891 * MOVED - a reader on another CPU moved the next
1892 * pointer to its reader page. Give up
1893 * and try again.
1894 */
1895
1896 switch (type) {
1897 case RB_PAGE_HEAD:
1898 /*
1899 * We changed the head to UPDATE, thus
1900 * it is our responsibility to update
1901 * the counters.
1902 */
1903 local_add(entries, &cpu_buffer->overrun);
c64e148a 1904 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1905
1906 /*
1907 * The entries will be zeroed out when we move the
1908 * tail page.
1909 */
1910
1911 /* still more to do */
1912 break;
1913
1914 case RB_PAGE_UPDATE:
1915 /*
1916 * This is an interrupt that interrupt the
1917 * previous update. Still more to do.
1918 */
1919 break;
1920 case RB_PAGE_NORMAL:
1921 /*
1922 * An interrupt came in before the update
1923 * and processed this for us.
1924 * Nothing left to do.
1925 */
1926 return 1;
1927 case RB_PAGE_MOVED:
1928 /*
1929 * The reader is on another CPU and just did
1930 * a swap with our next_page.
1931 * Try again.
1932 */
1933 return 1;
1934 default:
1935 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1936 return -1;
1937 }
1938
1939 /*
1940 * Now that we are here, the old head pointer is
1941 * set to UPDATE. This will keep the reader from
1942 * swapping the head page with the reader page.
1943 * The reader (on another CPU) will spin till
1944 * we are finished.
1945 *
1946 * We just need to protect against interrupts
1947 * doing the job. We will set the next pointer
1948 * to HEAD. After that, we set the old pointer
1949 * to NORMAL, but only if it was HEAD before.
1950 * otherwise we are an interrupt, and only
1951 * want the outer most commit to reset it.
1952 */
1953 new_head = next_page;
1954 rb_inc_page(cpu_buffer, &new_head);
1955
1956 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1957 RB_PAGE_NORMAL);
1958
1959 /*
1960 * Valid returns are:
1961 * HEAD - an interrupt came in and already set it.
1962 * NORMAL - One of two things:
1963 * 1) We really set it.
1964 * 2) A bunch of interrupts came in and moved
1965 * the page forward again.
1966 */
1967 switch (ret) {
1968 case RB_PAGE_HEAD:
1969 case RB_PAGE_NORMAL:
1970 /* OK */
1971 break;
1972 default:
1973 RB_WARN_ON(cpu_buffer, 1);
1974 return -1;
1975 }
1976
1977 /*
1978 * It is possible that an interrupt came in,
1979 * set the head up, then more interrupts came in
1980 * and moved it again. When we get back here,
1981 * the page would have been set to NORMAL but we
1982 * just set it back to HEAD.
1983 *
1984 * How do you detect this? Well, if that happened
1985 * the tail page would have moved.
1986 */
1987 if (ret == RB_PAGE_NORMAL) {
1988 /*
1989 * If the tail had moved passed next, then we need
1990 * to reset the pointer.
1991 */
1992 if (cpu_buffer->tail_page != tail_page &&
1993 cpu_buffer->tail_page != next_page)
1994 rb_head_page_set_normal(cpu_buffer, new_head,
1995 next_page,
1996 RB_PAGE_HEAD);
1997 }
1998
1999 /*
2000 * If this was the outer most commit (the one that
2001 * changed the original pointer from HEAD to UPDATE),
2002 * then it is up to us to reset it to NORMAL.
2003 */
2004 if (type == RB_PAGE_HEAD) {
2005 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2006 tail_page,
2007 RB_PAGE_UPDATE);
2008 if (RB_WARN_ON(cpu_buffer,
2009 ret != RB_PAGE_UPDATE))
2010 return -1;
2011 }
2012
2013 return 0;
2014}
2015
34a148bf 2016static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2017{
2018 struct ring_buffer_event event; /* Used only for sizeof array */
2019
2020 /* zero length can cause confusions */
2021 if (!length)
2022 length = 1;
2023
2271048d 2024 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2025 length += sizeof(event.array[0]);
2026
2027 length += RB_EVNT_HDR_SIZE;
2271048d 2028 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2029
2030 return length;
2031}
2032
c7b09308
SR
2033static inline void
2034rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2035 struct buffer_page *tail_page,
2036 unsigned long tail, unsigned long length)
2037{
2038 struct ring_buffer_event *event;
2039
2040 /*
2041 * Only the event that crossed the page boundary
2042 * must fill the old tail_page with padding.
2043 */
2044 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2045 /*
2046 * If the page was filled, then we still need
2047 * to update the real_end. Reset it to zero
2048 * and the reader will ignore it.
2049 */
2050 if (tail == BUF_PAGE_SIZE)
2051 tail_page->real_end = 0;
2052
c7b09308
SR
2053 local_sub(length, &tail_page->write);
2054 return;
2055 }
2056
2057 event = __rb_page_index(tail_page, tail);
b0b7065b 2058 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2059
c64e148a
VN
2060 /* account for padding bytes */
2061 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2062
ff0ff84a
SR
2063 /*
2064 * Save the original length to the meta data.
2065 * This will be used by the reader to add lost event
2066 * counter.
2067 */
2068 tail_page->real_end = tail;
2069
c7b09308
SR
2070 /*
2071 * If this event is bigger than the minimum size, then
2072 * we need to be careful that we don't subtract the
2073 * write counter enough to allow another writer to slip
2074 * in on this page.
2075 * We put in a discarded commit instead, to make sure
2076 * that this space is not used again.
2077 *
2078 * If we are less than the minimum size, we don't need to
2079 * worry about it.
2080 */
2081 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2082 /* No room for any events */
2083
2084 /* Mark the rest of the page with padding */
2085 rb_event_set_padding(event);
2086
2087 /* Set the write back to the previous setting */
2088 local_sub(length, &tail_page->write);
2089 return;
2090 }
2091
2092 /* Put in a discarded event */
2093 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2094 event->type_len = RINGBUF_TYPE_PADDING;
2095 /* time delta must be non zero */
2096 event->time_delta = 1;
c7b09308
SR
2097
2098 /* Set write to end of buffer */
2099 length = (tail + length) - BUF_PAGE_SIZE;
2100 local_sub(length, &tail_page->write);
2101}
6634ff26 2102
747e94ae
SR
2103/*
2104 * This is the slow path, force gcc not to inline it.
2105 */
2106static noinline struct ring_buffer_event *
6634ff26
SR
2107rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2108 unsigned long length, unsigned long tail,
e8bc43e8 2109 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2110{
5a50e33c 2111 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2112 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2113 struct buffer_page *next_page;
2114 int ret;
aa20ae84
SR
2115
2116 next_page = tail_page;
2117
aa20ae84
SR
2118 rb_inc_page(cpu_buffer, &next_page);
2119
aa20ae84
SR
2120 /*
2121 * If for some reason, we had an interrupt storm that made
2122 * it all the way around the buffer, bail, and warn
2123 * about it.
2124 */
2125 if (unlikely(next_page == commit_page)) {
77ae365e 2126 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2127 goto out_reset;
2128 }
2129
77ae365e
SR
2130 /*
2131 * This is where the fun begins!
2132 *
2133 * We are fighting against races between a reader that
2134 * could be on another CPU trying to swap its reader
2135 * page with the buffer head.
2136 *
2137 * We are also fighting against interrupts coming in and
2138 * moving the head or tail on us as well.
2139 *
2140 * If the next page is the head page then we have filled
2141 * the buffer, unless the commit page is still on the
2142 * reader page.
2143 */
2144 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2145
77ae365e
SR
2146 /*
2147 * If the commit is not on the reader page, then
2148 * move the header page.
2149 */
2150 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2151 /*
2152 * If we are not in overwrite mode,
2153 * this is easy, just stop here.
2154 */
2155 if (!(buffer->flags & RB_FL_OVERWRITE))
2156 goto out_reset;
2157
2158 ret = rb_handle_head_page(cpu_buffer,
2159 tail_page,
2160 next_page);
2161 if (ret < 0)
2162 goto out_reset;
2163 if (ret)
2164 goto out_again;
2165 } else {
2166 /*
2167 * We need to be careful here too. The
2168 * commit page could still be on the reader
2169 * page. We could have a small buffer, and
2170 * have filled up the buffer with events
2171 * from interrupts and such, and wrapped.
2172 *
2173 * Note, if the tail page is also the on the
2174 * reader_page, we let it move out.
2175 */
2176 if (unlikely((cpu_buffer->commit_page !=
2177 cpu_buffer->tail_page) &&
2178 (cpu_buffer->commit_page ==
2179 cpu_buffer->reader_page))) {
2180 local_inc(&cpu_buffer->commit_overrun);
2181 goto out_reset;
2182 }
aa20ae84
SR
2183 }
2184 }
2185
77ae365e
SR
2186 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2187 if (ret) {
2188 /*
2189 * Nested commits always have zero deltas, so
2190 * just reread the time stamp
2191 */
e8bc43e8
SR
2192 ts = rb_time_stamp(buffer);
2193 next_page->page->time_stamp = ts;
aa20ae84
SR
2194 }
2195
77ae365e 2196 out_again:
aa20ae84 2197
77ae365e 2198 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2199
2200 /* fail and let the caller try again */
2201 return ERR_PTR(-EAGAIN);
2202
45141d46 2203 out_reset:
6f3b3440 2204 /* reset write */
c7b09308 2205 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2206
bf41a158 2207 return NULL;
7a8e76a3
SR
2208}
2209
6634ff26
SR
2210static struct ring_buffer_event *
2211__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2212 unsigned long length, u64 ts,
2213 u64 delta, int add_timestamp)
6634ff26 2214{
5a50e33c 2215 struct buffer_page *tail_page;
6634ff26
SR
2216 struct ring_buffer_event *event;
2217 unsigned long tail, write;
2218
69d1b839
SR
2219 /*
2220 * If the time delta since the last event is too big to
2221 * hold in the time field of the event, then we append a
2222 * TIME EXTEND event ahead of the data event.
2223 */
2224 if (unlikely(add_timestamp))
2225 length += RB_LEN_TIME_EXTEND;
2226
6634ff26
SR
2227 tail_page = cpu_buffer->tail_page;
2228 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2229
2230 /* set write to only the index of the write */
2231 write &= RB_WRITE_MASK;
6634ff26
SR
2232 tail = write - length;
2233
2234 /* See if we shot pass the end of this buffer page */
747e94ae 2235 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2236 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2237 tail_page, ts);
6634ff26
SR
2238
2239 /* We reserved something on the buffer */
2240
6634ff26 2241 event = __rb_page_index(tail_page, tail);
1744a21d 2242 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2243 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2244
69d1b839 2245 local_inc(&tail_page->entries);
6634ff26
SR
2246
2247 /*
fa743953
SR
2248 * If this is the first commit on the page, then update
2249 * its timestamp.
6634ff26 2250 */
fa743953 2251 if (!tail)
e8bc43e8 2252 tail_page->page->time_stamp = ts;
6634ff26 2253
c64e148a
VN
2254 /* account for these added bytes */
2255 local_add(length, &cpu_buffer->entries_bytes);
2256
6634ff26
SR
2257 return event;
2258}
2259
edd813bf
SR
2260static inline int
2261rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2262 struct ring_buffer_event *event)
2263{
2264 unsigned long new_index, old_index;
2265 struct buffer_page *bpage;
2266 unsigned long index;
2267 unsigned long addr;
2268
2269 new_index = rb_event_index(event);
69d1b839 2270 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2271 addr = (unsigned long)event;
2272 addr &= PAGE_MASK;
2273
2274 bpage = cpu_buffer->tail_page;
2275
2276 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2277 unsigned long write_mask =
2278 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2279 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2280 /*
2281 * This is on the tail page. It is possible that
2282 * a write could come in and move the tail page
2283 * and write to the next page. That is fine
2284 * because we just shorten what is on this page.
2285 */
77ae365e
SR
2286 old_index += write_mask;
2287 new_index += write_mask;
edd813bf 2288 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2289 if (index == old_index) {
2290 /* update counters */
2291 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2292 return 1;
c64e148a 2293 }
edd813bf
SR
2294 }
2295
2296 /* could not discard */
2297 return 0;
2298}
2299
fa743953
SR
2300static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2301{
2302 local_inc(&cpu_buffer->committing);
2303 local_inc(&cpu_buffer->commits);
2304}
2305
d9abde21 2306static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2307{
2308 unsigned long commits;
2309
2310 if (RB_WARN_ON(cpu_buffer,
2311 !local_read(&cpu_buffer->committing)))
2312 return;
2313
2314 again:
2315 commits = local_read(&cpu_buffer->commits);
2316 /* synchronize with interrupts */
2317 barrier();
2318 if (local_read(&cpu_buffer->committing) == 1)
2319 rb_set_commit_to_write(cpu_buffer);
2320
2321 local_dec(&cpu_buffer->committing);
2322
2323 /* synchronize with interrupts */
2324 barrier();
2325
2326 /*
2327 * Need to account for interrupts coming in between the
2328 * updating of the commit page and the clearing of the
2329 * committing counter.
2330 */
2331 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2332 !local_read(&cpu_buffer->committing)) {
2333 local_inc(&cpu_buffer->committing);
2334 goto again;
2335 }
2336}
2337
7a8e76a3 2338static struct ring_buffer_event *
62f0b3eb
SR
2339rb_reserve_next_event(struct ring_buffer *buffer,
2340 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2341 unsigned long length)
7a8e76a3
SR
2342{
2343 struct ring_buffer_event *event;
69d1b839 2344 u64 ts, delta;
818e3dd3 2345 int nr_loops = 0;
69d1b839 2346 int add_timestamp;
140ff891 2347 u64 diff;
7a8e76a3 2348
fa743953
SR
2349 rb_start_commit(cpu_buffer);
2350
85bac32c 2351#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2352 /*
2353 * Due to the ability to swap a cpu buffer from a buffer
2354 * it is possible it was swapped before we committed.
2355 * (committing stops a swap). We check for it here and
2356 * if it happened, we have to fail the write.
2357 */
2358 barrier();
2359 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2360 local_dec(&cpu_buffer->committing);
2361 local_dec(&cpu_buffer->commits);
2362 return NULL;
2363 }
85bac32c 2364#endif
62f0b3eb 2365
be957c44 2366 length = rb_calculate_event_length(length);
bf41a158 2367 again:
69d1b839
SR
2368 add_timestamp = 0;
2369 delta = 0;
2370
818e3dd3
SR
2371 /*
2372 * We allow for interrupts to reenter here and do a trace.
2373 * If one does, it will cause this original code to loop
2374 * back here. Even with heavy interrupts happening, this
2375 * should only happen a few times in a row. If this happens
2376 * 1000 times in a row, there must be either an interrupt
2377 * storm or we have something buggy.
2378 * Bail!
2379 */
3e89c7bb 2380 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2381 goto out_fail;
818e3dd3 2382
6d3f1e12 2383 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2384 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2385
140ff891
SR
2386 /* make sure this diff is calculated here */
2387 barrier();
bf41a158 2388
140ff891
SR
2389 /* Did the write stamp get updated already? */
2390 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2391 delta = diff;
2392 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2393 int local_clock_stable = 1;
2394#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2395 local_clock_stable = sched_clock_stable;
2396#endif
69d1b839 2397 WARN_ONCE(delta > (1ULL << 59),
31274d72 2398 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2399 (unsigned long long)delta,
2400 (unsigned long long)ts,
31274d72
JO
2401 (unsigned long long)cpu_buffer->write_stamp,
2402 local_clock_stable ? "" :
2403 "If you just came from a suspend/resume,\n"
2404 "please switch to the trace global clock:\n"
2405 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2406 add_timestamp = 1;
7a8e76a3 2407 }
168b6b1d 2408 }
7a8e76a3 2409
69d1b839
SR
2410 event = __rb_reserve_next(cpu_buffer, length, ts,
2411 delta, add_timestamp);
168b6b1d 2412 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2413 goto again;
2414
fa743953
SR
2415 if (!event)
2416 goto out_fail;
7a8e76a3 2417
7a8e76a3 2418 return event;
fa743953
SR
2419
2420 out_fail:
2421 rb_end_commit(cpu_buffer);
2422 return NULL;
7a8e76a3
SR
2423}
2424
1155de47
PM
2425#ifdef CONFIG_TRACING
2426
aa18efb2 2427#define TRACE_RECURSIVE_DEPTH 16
261842b7 2428
d9abde21
SR
2429/* Keep this code out of the fast path cache */
2430static noinline void trace_recursive_fail(void)
261842b7 2431{
aa18efb2
SR
2432 /* Disable all tracing before we do anything else */
2433 tracing_off_permanent();
261842b7 2434
7d7d2b80 2435 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2 2436 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
b1cff0ad 2437 trace_recursion_buffer(),
aa18efb2
SR
2438 hardirq_count() >> HARDIRQ_SHIFT,
2439 softirq_count() >> SOFTIRQ_SHIFT,
2440 in_nmi());
261842b7 2441
aa18efb2 2442 WARN_ON_ONCE(1);
d9abde21
SR
2443}
2444
2445static inline int trace_recursive_lock(void)
2446{
b1cff0ad 2447 trace_recursion_inc();
d9abde21 2448
b1cff0ad 2449 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
d9abde21
SR
2450 return 0;
2451
2452 trace_recursive_fail();
2453
aa18efb2 2454 return -1;
261842b7
SR
2455}
2456
d9abde21 2457static inline void trace_recursive_unlock(void)
261842b7 2458{
b1cff0ad 2459 WARN_ON_ONCE(!trace_recursion_buffer());
261842b7 2460
b1cff0ad 2461 trace_recursion_dec();
261842b7
SR
2462}
2463
1155de47
PM
2464#else
2465
2466#define trace_recursive_lock() (0)
2467#define trace_recursive_unlock() do { } while (0)
2468
2469#endif
2470
7a8e76a3
SR
2471/**
2472 * ring_buffer_lock_reserve - reserve a part of the buffer
2473 * @buffer: the ring buffer to reserve from
2474 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2475 *
2476 * Returns a reseverd event on the ring buffer to copy directly to.
2477 * The user of this interface will need to get the body to write into
2478 * and can use the ring_buffer_event_data() interface.
2479 *
2480 * The length is the length of the data needed, not the event length
2481 * which also includes the event header.
2482 *
2483 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2484 * If NULL is returned, then nothing has been allocated or locked.
2485 */
2486struct ring_buffer_event *
0a987751 2487ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2488{
2489 struct ring_buffer_per_cpu *cpu_buffer;
2490 struct ring_buffer_event *event;
5168ae50 2491 int cpu;
7a8e76a3 2492
033601a3 2493 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2494 return NULL;
2495
bf41a158 2496 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2497 preempt_disable_notrace();
bf41a158 2498
52fbe9cd
LJ
2499 if (atomic_read(&buffer->record_disabled))
2500 goto out_nocheck;
2501
261842b7
SR
2502 if (trace_recursive_lock())
2503 goto out_nocheck;
2504
7a8e76a3
SR
2505 cpu = raw_smp_processor_id();
2506
9e01c1b7 2507 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2508 goto out;
7a8e76a3
SR
2509
2510 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2511
2512 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2513 goto out;
7a8e76a3 2514
be957c44 2515 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2516 goto out;
7a8e76a3 2517
62f0b3eb 2518 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2519 if (!event)
d769041f 2520 goto out;
7a8e76a3
SR
2521
2522 return event;
2523
d769041f 2524 out:
261842b7
SR
2525 trace_recursive_unlock();
2526
2527 out_nocheck:
5168ae50 2528 preempt_enable_notrace();
7a8e76a3
SR
2529 return NULL;
2530}
c4f50183 2531EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2532
a1863c21
SR
2533static void
2534rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2535 struct ring_buffer_event *event)
2536{
69d1b839
SR
2537 u64 delta;
2538
fa743953
SR
2539 /*
2540 * The event first in the commit queue updates the
2541 * time stamp.
2542 */
69d1b839
SR
2543 if (rb_event_is_commit(cpu_buffer, event)) {
2544 /*
2545 * A commit event that is first on a page
2546 * updates the write timestamp with the page stamp
2547 */
2548 if (!rb_event_index(event))
2549 cpu_buffer->write_stamp =
2550 cpu_buffer->commit_page->page->time_stamp;
2551 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2552 delta = event->array[0];
2553 delta <<= TS_SHIFT;
2554 delta += event->time_delta;
2555 cpu_buffer->write_stamp += delta;
2556 } else
2557 cpu_buffer->write_stamp += event->time_delta;
2558 }
a1863c21 2559}
bf41a158 2560
a1863c21
SR
2561static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2562 struct ring_buffer_event *event)
2563{
2564 local_inc(&cpu_buffer->entries);
2565 rb_update_write_stamp(cpu_buffer, event);
fa743953 2566 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2567}
2568
2569/**
2570 * ring_buffer_unlock_commit - commit a reserved
2571 * @buffer: The buffer to commit to
2572 * @event: The event pointer to commit.
7a8e76a3
SR
2573 *
2574 * This commits the data to the ring buffer, and releases any locks held.
2575 *
2576 * Must be paired with ring_buffer_lock_reserve.
2577 */
2578int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2579 struct ring_buffer_event *event)
7a8e76a3
SR
2580{
2581 struct ring_buffer_per_cpu *cpu_buffer;
2582 int cpu = raw_smp_processor_id();
2583
2584 cpu_buffer = buffer->buffers[cpu];
2585
7a8e76a3
SR
2586 rb_commit(cpu_buffer, event);
2587
261842b7
SR
2588 trace_recursive_unlock();
2589
5168ae50 2590 preempt_enable_notrace();
7a8e76a3
SR
2591
2592 return 0;
2593}
c4f50183 2594EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2595
f3b9aae1
FW
2596static inline void rb_event_discard(struct ring_buffer_event *event)
2597{
69d1b839
SR
2598 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2599 event = skip_time_extend(event);
2600
334d4169
LJ
2601 /* array[0] holds the actual length for the discarded event */
2602 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2603 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2604 /* time delta must be non zero */
2605 if (!event->time_delta)
2606 event->time_delta = 1;
2607}
2608
a1863c21
SR
2609/*
2610 * Decrement the entries to the page that an event is on.
2611 * The event does not even need to exist, only the pointer
2612 * to the page it is on. This may only be called before the commit
2613 * takes place.
2614 */
2615static inline void
2616rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2617 struct ring_buffer_event *event)
2618{
2619 unsigned long addr = (unsigned long)event;
2620 struct buffer_page *bpage = cpu_buffer->commit_page;
2621 struct buffer_page *start;
2622
2623 addr &= PAGE_MASK;
2624
2625 /* Do the likely case first */
2626 if (likely(bpage->page == (void *)addr)) {
2627 local_dec(&bpage->entries);
2628 return;
2629 }
2630
2631 /*
2632 * Because the commit page may be on the reader page we
2633 * start with the next page and check the end loop there.
2634 */
2635 rb_inc_page(cpu_buffer, &bpage);
2636 start = bpage;
2637 do {
2638 if (bpage->page == (void *)addr) {
2639 local_dec(&bpage->entries);
2640 return;
2641 }
2642 rb_inc_page(cpu_buffer, &bpage);
2643 } while (bpage != start);
2644
2645 /* commit not part of this buffer?? */
2646 RB_WARN_ON(cpu_buffer, 1);
2647}
2648
fa1b47dd
SR
2649/**
2650 * ring_buffer_commit_discard - discard an event that has not been committed
2651 * @buffer: the ring buffer
2652 * @event: non committed event to discard
2653 *
dc892f73
SR
2654 * Sometimes an event that is in the ring buffer needs to be ignored.
2655 * This function lets the user discard an event in the ring buffer
2656 * and then that event will not be read later.
2657 *
2658 * This function only works if it is called before the the item has been
2659 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2660 * if another event has not been added behind it.
2661 *
2662 * If another event has been added behind it, it will set the event
2663 * up as discarded, and perform the commit.
2664 *
2665 * If this function is called, do not call ring_buffer_unlock_commit on
2666 * the event.
2667 */
2668void ring_buffer_discard_commit(struct ring_buffer *buffer,
2669 struct ring_buffer_event *event)
2670{
2671 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2672 int cpu;
2673
2674 /* The event is discarded regardless */
f3b9aae1 2675 rb_event_discard(event);
fa1b47dd 2676
fa743953
SR
2677 cpu = smp_processor_id();
2678 cpu_buffer = buffer->buffers[cpu];
2679
fa1b47dd
SR
2680 /*
2681 * This must only be called if the event has not been
2682 * committed yet. Thus we can assume that preemption
2683 * is still disabled.
2684 */
fa743953 2685 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2686
a1863c21 2687 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2688 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2689 goto out;
fa1b47dd
SR
2690
2691 /*
2692 * The commit is still visible by the reader, so we
a1863c21 2693 * must still update the timestamp.
fa1b47dd 2694 */
a1863c21 2695 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2696 out:
fa743953 2697 rb_end_commit(cpu_buffer);
fa1b47dd 2698
f3b9aae1
FW
2699 trace_recursive_unlock();
2700
5168ae50 2701 preempt_enable_notrace();
fa1b47dd
SR
2702
2703}
2704EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2705
7a8e76a3
SR
2706/**
2707 * ring_buffer_write - write data to the buffer without reserving
2708 * @buffer: The ring buffer to write to.
2709 * @length: The length of the data being written (excluding the event header)
2710 * @data: The data to write to the buffer.
2711 *
2712 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2713 * one function. If you already have the data to write to the buffer, it
2714 * may be easier to simply call this function.
2715 *
2716 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2717 * and not the length of the event which would hold the header.
2718 */
2719int ring_buffer_write(struct ring_buffer *buffer,
2720 unsigned long length,
2721 void *data)
2722{
2723 struct ring_buffer_per_cpu *cpu_buffer;
2724 struct ring_buffer_event *event;
7a8e76a3
SR
2725 void *body;
2726 int ret = -EBUSY;
5168ae50 2727 int cpu;
7a8e76a3 2728
033601a3 2729 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2730 return -EBUSY;
2731
5168ae50 2732 preempt_disable_notrace();
bf41a158 2733
52fbe9cd
LJ
2734 if (atomic_read(&buffer->record_disabled))
2735 goto out;
2736
7a8e76a3
SR
2737 cpu = raw_smp_processor_id();
2738
9e01c1b7 2739 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2740 goto out;
7a8e76a3
SR
2741
2742 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2743
2744 if (atomic_read(&cpu_buffer->record_disabled))
2745 goto out;
2746
be957c44
SR
2747 if (length > BUF_MAX_DATA_SIZE)
2748 goto out;
2749
62f0b3eb 2750 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2751 if (!event)
2752 goto out;
2753
2754 body = rb_event_data(event);
2755
2756 memcpy(body, data, length);
2757
2758 rb_commit(cpu_buffer, event);
2759
2760 ret = 0;
2761 out:
5168ae50 2762 preempt_enable_notrace();
7a8e76a3
SR
2763
2764 return ret;
2765}
c4f50183 2766EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2767
34a148bf 2768static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2769{
2770 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2771 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2772 struct buffer_page *commit = cpu_buffer->commit_page;
2773
77ae365e
SR
2774 /* In case of error, head will be NULL */
2775 if (unlikely(!head))
2776 return 1;
2777
bf41a158
SR
2778 return reader->read == rb_page_commit(reader) &&
2779 (commit == reader ||
2780 (commit == head &&
2781 head->read == rb_page_commit(commit)));
2782}
2783
7a8e76a3
SR
2784/**
2785 * ring_buffer_record_disable - stop all writes into the buffer
2786 * @buffer: The ring buffer to stop writes to.
2787 *
2788 * This prevents all writes to the buffer. Any attempt to write
2789 * to the buffer after this will fail and return NULL.
2790 *
2791 * The caller should call synchronize_sched() after this.
2792 */
2793void ring_buffer_record_disable(struct ring_buffer *buffer)
2794{
2795 atomic_inc(&buffer->record_disabled);
2796}
c4f50183 2797EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2798
2799/**
2800 * ring_buffer_record_enable - enable writes to the buffer
2801 * @buffer: The ring buffer to enable writes
2802 *
2803 * Note, multiple disables will need the same number of enables
c41b20e7 2804 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2805 */
2806void ring_buffer_record_enable(struct ring_buffer *buffer)
2807{
2808 atomic_dec(&buffer->record_disabled);
2809}
c4f50183 2810EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 2811
499e5470
SR
2812/**
2813 * ring_buffer_record_off - stop all writes into the buffer
2814 * @buffer: The ring buffer to stop writes to.
2815 *
2816 * This prevents all writes to the buffer. Any attempt to write
2817 * to the buffer after this will fail and return NULL.
2818 *
2819 * This is different than ring_buffer_record_disable() as
2820 * it works like an on/off switch, where as the disable() verison
2821 * must be paired with a enable().
2822 */
2823void ring_buffer_record_off(struct ring_buffer *buffer)
2824{
2825 unsigned int rd;
2826 unsigned int new_rd;
2827
2828 do {
2829 rd = atomic_read(&buffer->record_disabled);
2830 new_rd = rd | RB_BUFFER_OFF;
2831 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2832}
2833EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2834
2835/**
2836 * ring_buffer_record_on - restart writes into the buffer
2837 * @buffer: The ring buffer to start writes to.
2838 *
2839 * This enables all writes to the buffer that was disabled by
2840 * ring_buffer_record_off().
2841 *
2842 * This is different than ring_buffer_record_enable() as
2843 * it works like an on/off switch, where as the enable() verison
2844 * must be paired with a disable().
2845 */
2846void ring_buffer_record_on(struct ring_buffer *buffer)
2847{
2848 unsigned int rd;
2849 unsigned int new_rd;
2850
2851 do {
2852 rd = atomic_read(&buffer->record_disabled);
2853 new_rd = rd & ~RB_BUFFER_OFF;
2854 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2855}
2856EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2857
2858/**
2859 * ring_buffer_record_is_on - return true if the ring buffer can write
2860 * @buffer: The ring buffer to see if write is enabled
2861 *
2862 * Returns true if the ring buffer is in a state that it accepts writes.
2863 */
2864int ring_buffer_record_is_on(struct ring_buffer *buffer)
2865{
2866 return !atomic_read(&buffer->record_disabled);
2867}
2868
7a8e76a3
SR
2869/**
2870 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2871 * @buffer: The ring buffer to stop writes to.
2872 * @cpu: The CPU buffer to stop
2873 *
2874 * This prevents all writes to the buffer. Any attempt to write
2875 * to the buffer after this will fail and return NULL.
2876 *
2877 * The caller should call synchronize_sched() after this.
2878 */
2879void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2880{
2881 struct ring_buffer_per_cpu *cpu_buffer;
2882
9e01c1b7 2883 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2884 return;
7a8e76a3
SR
2885
2886 cpu_buffer = buffer->buffers[cpu];
2887 atomic_inc(&cpu_buffer->record_disabled);
2888}
c4f50183 2889EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2890
2891/**
2892 * ring_buffer_record_enable_cpu - enable writes to the buffer
2893 * @buffer: The ring buffer to enable writes
2894 * @cpu: The CPU to enable.
2895 *
2896 * Note, multiple disables will need the same number of enables
c41b20e7 2897 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2898 */
2899void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2900{
2901 struct ring_buffer_per_cpu *cpu_buffer;
2902
9e01c1b7 2903 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2904 return;
7a8e76a3
SR
2905
2906 cpu_buffer = buffer->buffers[cpu];
2907 atomic_dec(&cpu_buffer->record_disabled);
2908}
c4f50183 2909EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 2910
f6195aa0
SR
2911/*
2912 * The total entries in the ring buffer is the running counter
2913 * of entries entered into the ring buffer, minus the sum of
2914 * the entries read from the ring buffer and the number of
2915 * entries that were overwritten.
2916 */
2917static inline unsigned long
2918rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2919{
2920 return local_read(&cpu_buffer->entries) -
2921 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2922}
2923
c64e148a
VN
2924/**
2925 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2926 * @buffer: The ring buffer
2927 * @cpu: The per CPU buffer to read from.
2928 */
2929unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2930{
2931 unsigned long flags;
2932 struct ring_buffer_per_cpu *cpu_buffer;
2933 struct buffer_page *bpage;
2934 unsigned long ret;
2935
2936 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2937 return 0;
2938
2939 cpu_buffer = buffer->buffers[cpu];
7115e3fc 2940 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2941 /*
2942 * if the tail is on reader_page, oldest time stamp is on the reader
2943 * page
2944 */
2945 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2946 bpage = cpu_buffer->reader_page;
2947 else
2948 bpage = rb_set_head_page(cpu_buffer);
2949 ret = bpage->page->time_stamp;
7115e3fc 2950 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2951
2952 return ret;
2953}
2954EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2955
2956/**
2957 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2958 * @buffer: The ring buffer
2959 * @cpu: The per CPU buffer to read from.
2960 */
2961unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2962{
2963 struct ring_buffer_per_cpu *cpu_buffer;
2964 unsigned long ret;
2965
2966 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2967 return 0;
2968
2969 cpu_buffer = buffer->buffers[cpu];
2970 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2971
2972 return ret;
2973}
2974EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2975
7a8e76a3
SR
2976/**
2977 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2978 * @buffer: The ring buffer
2979 * @cpu: The per CPU buffer to get the entries from.
2980 */
2981unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2982{
2983 struct ring_buffer_per_cpu *cpu_buffer;
2984
9e01c1b7 2985 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2986 return 0;
7a8e76a3
SR
2987
2988 cpu_buffer = buffer->buffers[cpu];
554f786e 2989
f6195aa0 2990 return rb_num_of_entries(cpu_buffer);
7a8e76a3 2991}
c4f50183 2992EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2993
2994/**
2995 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2996 * @buffer: The ring buffer
2997 * @cpu: The per CPU buffer to get the number of overruns from
2998 */
2999unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3000{
3001 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3002 unsigned long ret;
7a8e76a3 3003
9e01c1b7 3004 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3005 return 0;
7a8e76a3
SR
3006
3007 cpu_buffer = buffer->buffers[cpu];
77ae365e 3008 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3009
3010 return ret;
7a8e76a3 3011}
c4f50183 3012EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3013
f0d2c681
SR
3014/**
3015 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3016 * @buffer: The ring buffer
3017 * @cpu: The per CPU buffer to get the number of overruns from
3018 */
3019unsigned long
3020ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3021{
3022 struct ring_buffer_per_cpu *cpu_buffer;
3023 unsigned long ret;
3024
3025 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3026 return 0;
3027
3028 cpu_buffer = buffer->buffers[cpu];
77ae365e 3029 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3030
3031 return ret;
3032}
3033EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3034
7a8e76a3
SR
3035/**
3036 * ring_buffer_entries - get the number of entries in a buffer
3037 * @buffer: The ring buffer
3038 *
3039 * Returns the total number of entries in the ring buffer
3040 * (all CPU entries)
3041 */
3042unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3043{
3044 struct ring_buffer_per_cpu *cpu_buffer;
3045 unsigned long entries = 0;
3046 int cpu;
3047
3048 /* if you care about this being correct, lock the buffer */
3049 for_each_buffer_cpu(buffer, cpu) {
3050 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3051 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3052 }
3053
3054 return entries;
3055}
c4f50183 3056EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3057
3058/**
67b394f7 3059 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3060 * @buffer: The ring buffer
3061 *
3062 * Returns the total number of overruns in the ring buffer
3063 * (all CPU entries)
3064 */
3065unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3066{
3067 struct ring_buffer_per_cpu *cpu_buffer;
3068 unsigned long overruns = 0;
3069 int cpu;
3070
3071 /* if you care about this being correct, lock the buffer */
3072 for_each_buffer_cpu(buffer, cpu) {
3073 cpu_buffer = buffer->buffers[cpu];
77ae365e 3074 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3075 }
3076
3077 return overruns;
3078}
c4f50183 3079EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3080
642edba5 3081static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3082{
3083 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3084
d769041f
SR
3085 /* Iterator usage is expected to have record disabled */
3086 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3087 iter->head_page = rb_set_head_page(cpu_buffer);
3088 if (unlikely(!iter->head_page))
3089 return;
3090 iter->head = iter->head_page->read;
d769041f
SR
3091 } else {
3092 iter->head_page = cpu_buffer->reader_page;
6f807acd 3093 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3094 }
3095 if (iter->head)
3096 iter->read_stamp = cpu_buffer->read_stamp;
3097 else
abc9b56d 3098 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3099 iter->cache_reader_page = cpu_buffer->reader_page;
3100 iter->cache_read = cpu_buffer->read;
642edba5 3101}
f83c9d0f 3102
642edba5
SR
3103/**
3104 * ring_buffer_iter_reset - reset an iterator
3105 * @iter: The iterator to reset
3106 *
3107 * Resets the iterator, so that it will start from the beginning
3108 * again.
3109 */
3110void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3111{
554f786e 3112 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3113 unsigned long flags;
3114
554f786e
SR
3115 if (!iter)
3116 return;
3117
3118 cpu_buffer = iter->cpu_buffer;
3119
5389f6fa 3120 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3121 rb_iter_reset(iter);
5389f6fa 3122 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3123}
c4f50183 3124EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3125
3126/**
3127 * ring_buffer_iter_empty - check if an iterator has no more to read
3128 * @iter: The iterator to check
3129 */
3130int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3131{
3132 struct ring_buffer_per_cpu *cpu_buffer;
3133
3134 cpu_buffer = iter->cpu_buffer;
3135
bf41a158
SR
3136 return iter->head_page == cpu_buffer->commit_page &&
3137 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3138}
c4f50183 3139EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3140
3141static void
3142rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3143 struct ring_buffer_event *event)
3144{
3145 u64 delta;
3146
334d4169 3147 switch (event->type_len) {
7a8e76a3
SR
3148 case RINGBUF_TYPE_PADDING:
3149 return;
3150
3151 case RINGBUF_TYPE_TIME_EXTEND:
3152 delta = event->array[0];
3153 delta <<= TS_SHIFT;
3154 delta += event->time_delta;
3155 cpu_buffer->read_stamp += delta;
3156 return;
3157
3158 case RINGBUF_TYPE_TIME_STAMP:
3159 /* FIXME: not implemented */
3160 return;
3161
3162 case RINGBUF_TYPE_DATA:
3163 cpu_buffer->read_stamp += event->time_delta;
3164 return;
3165
3166 default:
3167 BUG();
3168 }
3169 return;
3170}
3171
3172static void
3173rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3174 struct ring_buffer_event *event)
3175{
3176 u64 delta;
3177
334d4169 3178 switch (event->type_len) {
7a8e76a3
SR
3179 case RINGBUF_TYPE_PADDING:
3180 return;
3181
3182 case RINGBUF_TYPE_TIME_EXTEND:
3183 delta = event->array[0];
3184 delta <<= TS_SHIFT;
3185 delta += event->time_delta;
3186 iter->read_stamp += delta;
3187 return;
3188
3189 case RINGBUF_TYPE_TIME_STAMP:
3190 /* FIXME: not implemented */
3191 return;
3192
3193 case RINGBUF_TYPE_DATA:
3194 iter->read_stamp += event->time_delta;
3195 return;
3196
3197 default:
3198 BUG();
3199 }
3200 return;
3201}
3202
d769041f
SR
3203static struct buffer_page *
3204rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3205{
d769041f 3206 struct buffer_page *reader = NULL;
66a8cb95 3207 unsigned long overwrite;
d769041f 3208 unsigned long flags;
818e3dd3 3209 int nr_loops = 0;
77ae365e 3210 int ret;
d769041f 3211
3e03fb7f 3212 local_irq_save(flags);
0199c4e6 3213 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3214
3215 again:
818e3dd3
SR
3216 /*
3217 * This should normally only loop twice. But because the
3218 * start of the reader inserts an empty page, it causes
3219 * a case where we will loop three times. There should be no
3220 * reason to loop four times (that I know of).
3221 */
3e89c7bb 3222 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3223 reader = NULL;
3224 goto out;
3225 }
3226
d769041f
SR
3227 reader = cpu_buffer->reader_page;
3228
3229 /* If there's more to read, return this page */
bf41a158 3230 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3231 goto out;
3232
3233 /* Never should we have an index greater than the size */
3e89c7bb
SR
3234 if (RB_WARN_ON(cpu_buffer,
3235 cpu_buffer->reader_page->read > rb_page_size(reader)))
3236 goto out;
d769041f
SR
3237
3238 /* check if we caught up to the tail */
3239 reader = NULL;
bf41a158 3240 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3241 goto out;
7a8e76a3
SR
3242
3243 /*
d769041f 3244 * Reset the reader page to size zero.
7a8e76a3 3245 */
77ae365e
SR
3246 local_set(&cpu_buffer->reader_page->write, 0);
3247 local_set(&cpu_buffer->reader_page->entries, 0);
3248 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3249 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3250
77ae365e
SR
3251 spin:
3252 /*
3253 * Splice the empty reader page into the list around the head.
3254 */
3255 reader = rb_set_head_page(cpu_buffer);
0e1ff5d7 3256 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3257 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3258
3adc54fa
SR
3259 /*
3260 * cpu_buffer->pages just needs to point to the buffer, it
3261 * has no specific buffer page to point to. Lets move it out
25985edc 3262 * of our way so we don't accidentally swap it.
3adc54fa
SR
3263 */
3264 cpu_buffer->pages = reader->list.prev;
3265
77ae365e
SR
3266 /* The reader page will be pointing to the new head */
3267 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3268
66a8cb95
SR
3269 /*
3270 * We want to make sure we read the overruns after we set up our
3271 * pointers to the next object. The writer side does a
3272 * cmpxchg to cross pages which acts as the mb on the writer
3273 * side. Note, the reader will constantly fail the swap
3274 * while the writer is updating the pointers, so this
3275 * guarantees that the overwrite recorded here is the one we
3276 * want to compare with the last_overrun.
3277 */
3278 smp_mb();
3279 overwrite = local_read(&(cpu_buffer->overrun));
3280
77ae365e
SR
3281 /*
3282 * Here's the tricky part.
3283 *
3284 * We need to move the pointer past the header page.
3285 * But we can only do that if a writer is not currently
3286 * moving it. The page before the header page has the
3287 * flag bit '1' set if it is pointing to the page we want.
3288 * but if the writer is in the process of moving it
3289 * than it will be '2' or already moved '0'.
3290 */
3291
3292 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3293
3294 /*
77ae365e 3295 * If we did not convert it, then we must try again.
7a8e76a3 3296 */
77ae365e
SR
3297 if (!ret)
3298 goto spin;
7a8e76a3 3299
77ae365e
SR
3300 /*
3301 * Yeah! We succeeded in replacing the page.
3302 *
3303 * Now make the new head point back to the reader page.
3304 */
5ded3dc6 3305 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3306 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3307
3308 /* Finally update the reader page to the new head */
3309 cpu_buffer->reader_page = reader;
3310 rb_reset_reader_page(cpu_buffer);
3311
66a8cb95
SR
3312 if (overwrite != cpu_buffer->last_overrun) {
3313 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3314 cpu_buffer->last_overrun = overwrite;
3315 }
3316
d769041f
SR
3317 goto again;
3318
3319 out:
0199c4e6 3320 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3321 local_irq_restore(flags);
d769041f
SR
3322
3323 return reader;
3324}
3325
3326static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3327{
3328 struct ring_buffer_event *event;
3329 struct buffer_page *reader;
3330 unsigned length;
3331
3332 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3333
d769041f 3334 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3335 if (RB_WARN_ON(cpu_buffer, !reader))
3336 return;
7a8e76a3 3337
d769041f
SR
3338 event = rb_reader_event(cpu_buffer);
3339
a1863c21 3340 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3341 cpu_buffer->read++;
d769041f
SR
3342
3343 rb_update_read_stamp(cpu_buffer, event);
3344
3345 length = rb_event_length(event);
6f807acd 3346 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3347}
3348
3349static void rb_advance_iter(struct ring_buffer_iter *iter)
3350{
7a8e76a3
SR
3351 struct ring_buffer_per_cpu *cpu_buffer;
3352 struct ring_buffer_event *event;
3353 unsigned length;
3354
3355 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3356
3357 /*
3358 * Check if we are at the end of the buffer.
3359 */
bf41a158 3360 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3361 /* discarded commits can make the page empty */
3362 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3363 return;
d769041f 3364 rb_inc_iter(iter);
7a8e76a3
SR
3365 return;
3366 }
3367
3368 event = rb_iter_head_event(iter);
3369
3370 length = rb_event_length(event);
3371
3372 /*
3373 * This should not be called to advance the header if we are
3374 * at the tail of the buffer.
3375 */
3e89c7bb 3376 if (RB_WARN_ON(cpu_buffer,
f536aafc 3377 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3378 (iter->head + length > rb_commit_index(cpu_buffer))))
3379 return;
7a8e76a3
SR
3380
3381 rb_update_iter_read_stamp(iter, event);
3382
3383 iter->head += length;
3384
3385 /* check for end of page padding */
bf41a158
SR
3386 if ((iter->head >= rb_page_size(iter->head_page)) &&
3387 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3388 rb_advance_iter(iter);
3389}
3390
66a8cb95
SR
3391static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3392{
3393 return cpu_buffer->lost_events;
3394}
3395
f83c9d0f 3396static struct ring_buffer_event *
66a8cb95
SR
3397rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3398 unsigned long *lost_events)
7a8e76a3 3399{
7a8e76a3 3400 struct ring_buffer_event *event;
d769041f 3401 struct buffer_page *reader;
818e3dd3 3402 int nr_loops = 0;
7a8e76a3 3403
7a8e76a3 3404 again:
818e3dd3 3405 /*
69d1b839
SR
3406 * We repeat when a time extend is encountered.
3407 * Since the time extend is always attached to a data event,
3408 * we should never loop more than once.
3409 * (We never hit the following condition more than twice).
818e3dd3 3410 */
69d1b839 3411 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3412 return NULL;
818e3dd3 3413
d769041f
SR
3414 reader = rb_get_reader_page(cpu_buffer);
3415 if (!reader)
7a8e76a3
SR
3416 return NULL;
3417
d769041f 3418 event = rb_reader_event(cpu_buffer);
7a8e76a3 3419
334d4169 3420 switch (event->type_len) {
7a8e76a3 3421 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3422 if (rb_null_event(event))
3423 RB_WARN_ON(cpu_buffer, 1);
3424 /*
3425 * Because the writer could be discarding every
3426 * event it creates (which would probably be bad)
3427 * if we were to go back to "again" then we may never
3428 * catch up, and will trigger the warn on, or lock
3429 * the box. Return the padding, and we will release
3430 * the current locks, and try again.
3431 */
2d622719 3432 return event;
7a8e76a3
SR
3433
3434 case RINGBUF_TYPE_TIME_EXTEND:
3435 /* Internal data, OK to advance */
d769041f 3436 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3437 goto again;
3438
3439 case RINGBUF_TYPE_TIME_STAMP:
3440 /* FIXME: not implemented */
d769041f 3441 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3442 goto again;
3443
3444 case RINGBUF_TYPE_DATA:
3445 if (ts) {
3446 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3447 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3448 cpu_buffer->cpu, ts);
7a8e76a3 3449 }
66a8cb95
SR
3450 if (lost_events)
3451 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3452 return event;
3453
3454 default:
3455 BUG();
3456 }
3457
3458 return NULL;
3459}
c4f50183 3460EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3461
f83c9d0f
SR
3462static struct ring_buffer_event *
3463rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3464{
3465 struct ring_buffer *buffer;
3466 struct ring_buffer_per_cpu *cpu_buffer;
3467 struct ring_buffer_event *event;
818e3dd3 3468 int nr_loops = 0;
7a8e76a3 3469
7a8e76a3
SR
3470 cpu_buffer = iter->cpu_buffer;
3471 buffer = cpu_buffer->buffer;
3472
492a74f4
SR
3473 /*
3474 * Check if someone performed a consuming read to
3475 * the buffer. A consuming read invalidates the iterator
3476 * and we need to reset the iterator in this case.
3477 */
3478 if (unlikely(iter->cache_read != cpu_buffer->read ||
3479 iter->cache_reader_page != cpu_buffer->reader_page))
3480 rb_iter_reset(iter);
3481
7a8e76a3 3482 again:
3c05d748
SR
3483 if (ring_buffer_iter_empty(iter))
3484 return NULL;
3485
818e3dd3 3486 /*
69d1b839
SR
3487 * We repeat when a time extend is encountered.
3488 * Since the time extend is always attached to a data event,
3489 * we should never loop more than once.
3490 * (We never hit the following condition more than twice).
818e3dd3 3491 */
69d1b839 3492 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3493 return NULL;
818e3dd3 3494
7a8e76a3
SR
3495 if (rb_per_cpu_empty(cpu_buffer))
3496 return NULL;
3497
3c05d748
SR
3498 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3499 rb_inc_iter(iter);
3500 goto again;
3501 }
3502
7a8e76a3
SR
3503 event = rb_iter_head_event(iter);
3504
334d4169 3505 switch (event->type_len) {
7a8e76a3 3506 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3507 if (rb_null_event(event)) {
3508 rb_inc_iter(iter);
3509 goto again;
3510 }
3511 rb_advance_iter(iter);
3512 return event;
7a8e76a3
SR
3513
3514 case RINGBUF_TYPE_TIME_EXTEND:
3515 /* Internal data, OK to advance */
3516 rb_advance_iter(iter);
3517 goto again;
3518
3519 case RINGBUF_TYPE_TIME_STAMP:
3520 /* FIXME: not implemented */
3521 rb_advance_iter(iter);
3522 goto again;
3523
3524 case RINGBUF_TYPE_DATA:
3525 if (ts) {
3526 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3527 ring_buffer_normalize_time_stamp(buffer,
3528 cpu_buffer->cpu, ts);
7a8e76a3
SR
3529 }
3530 return event;
3531
3532 default:
3533 BUG();
3534 }
3535
3536 return NULL;
3537}
c4f50183 3538EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3539
8d707e8e
SR
3540static inline int rb_ok_to_lock(void)
3541{
3542 /*
3543 * If an NMI die dumps out the content of the ring buffer
3544 * do not grab locks. We also permanently disable the ring
3545 * buffer too. A one time deal is all you get from reading
3546 * the ring buffer from an NMI.
3547 */
464e85eb 3548 if (likely(!in_nmi()))
8d707e8e
SR
3549 return 1;
3550
3551 tracing_off_permanent();
3552 return 0;
3553}
3554
f83c9d0f
SR
3555/**
3556 * ring_buffer_peek - peek at the next event to be read
3557 * @buffer: The ring buffer to read
3558 * @cpu: The cpu to peak at
3559 * @ts: The timestamp counter of this event.
66a8cb95 3560 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3561 *
3562 * This will return the event that will be read next, but does
3563 * not consume the data.
3564 */
3565struct ring_buffer_event *
66a8cb95
SR
3566ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3567 unsigned long *lost_events)
f83c9d0f
SR
3568{
3569 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3570 struct ring_buffer_event *event;
f83c9d0f 3571 unsigned long flags;
8d707e8e 3572 int dolock;
f83c9d0f 3573
554f786e 3574 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3575 return NULL;
554f786e 3576
8d707e8e 3577 dolock = rb_ok_to_lock();
2d622719 3578 again:
8d707e8e
SR
3579 local_irq_save(flags);
3580 if (dolock)
5389f6fa 3581 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3582 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3583 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3584 rb_advance_reader(cpu_buffer);
8d707e8e 3585 if (dolock)
5389f6fa 3586 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3587 local_irq_restore(flags);
f83c9d0f 3588
1b959e18 3589 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3590 goto again;
2d622719 3591
f83c9d0f
SR
3592 return event;
3593}
3594
3595/**
3596 * ring_buffer_iter_peek - peek at the next event to be read
3597 * @iter: The ring buffer iterator
3598 * @ts: The timestamp counter of this event.
3599 *
3600 * This will return the event that will be read next, but does
3601 * not increment the iterator.
3602 */
3603struct ring_buffer_event *
3604ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3605{
3606 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3607 struct ring_buffer_event *event;
3608 unsigned long flags;
3609
2d622719 3610 again:
5389f6fa 3611 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3612 event = rb_iter_peek(iter, ts);
5389f6fa 3613 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3614
1b959e18 3615 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3616 goto again;
2d622719 3617
f83c9d0f
SR
3618 return event;
3619}
3620
7a8e76a3
SR
3621/**
3622 * ring_buffer_consume - return an event and consume it
3623 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3624 * @cpu: the cpu to read the buffer from
3625 * @ts: a variable to store the timestamp (may be NULL)
3626 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3627 *
3628 * Returns the next event in the ring buffer, and that event is consumed.
3629 * Meaning, that sequential reads will keep returning a different event,
3630 * and eventually empty the ring buffer if the producer is slower.
3631 */
3632struct ring_buffer_event *
66a8cb95
SR
3633ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3634 unsigned long *lost_events)
7a8e76a3 3635{
554f786e
SR
3636 struct ring_buffer_per_cpu *cpu_buffer;
3637 struct ring_buffer_event *event = NULL;
f83c9d0f 3638 unsigned long flags;
8d707e8e
SR
3639 int dolock;
3640
3641 dolock = rb_ok_to_lock();
7a8e76a3 3642
2d622719 3643 again:
554f786e
SR
3644 /* might be called in atomic */
3645 preempt_disable();
3646
9e01c1b7 3647 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3648 goto out;
7a8e76a3 3649
554f786e 3650 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3651 local_irq_save(flags);
3652 if (dolock)
5389f6fa 3653 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3654
66a8cb95
SR
3655 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3656 if (event) {
3657 cpu_buffer->lost_events = 0;
469535a5 3658 rb_advance_reader(cpu_buffer);
66a8cb95 3659 }
7a8e76a3 3660
8d707e8e 3661 if (dolock)
5389f6fa 3662 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3663 local_irq_restore(flags);
f83c9d0f 3664
554f786e
SR
3665 out:
3666 preempt_enable();
3667
1b959e18 3668 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3669 goto again;
2d622719 3670
7a8e76a3
SR
3671 return event;
3672}
c4f50183 3673EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3674
3675/**
72c9ddfd 3676 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3677 * @buffer: The ring buffer to read from
3678 * @cpu: The cpu buffer to iterate over
3679 *
72c9ddfd
DM
3680 * This performs the initial preparations necessary to iterate
3681 * through the buffer. Memory is allocated, buffer recording
3682 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3683 *
72c9ddfd
DM
3684 * Disabling buffer recordng prevents the reading from being
3685 * corrupted. This is not a consuming read, so a producer is not
3686 * expected.
3687 *
3688 * After a sequence of ring_buffer_read_prepare calls, the user is
3689 * expected to make at least one call to ring_buffer_prepare_sync.
3690 * Afterwards, ring_buffer_read_start is invoked to get things going
3691 * for real.
3692 *
3693 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3694 */
3695struct ring_buffer_iter *
72c9ddfd 3696ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3697{
3698 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3699 struct ring_buffer_iter *iter;
7a8e76a3 3700
9e01c1b7 3701 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3702 return NULL;
7a8e76a3
SR
3703
3704 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3705 if (!iter)
8aabee57 3706 return NULL;
7a8e76a3
SR
3707
3708 cpu_buffer = buffer->buffers[cpu];
3709
3710 iter->cpu_buffer = cpu_buffer;
3711
83f40318 3712 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3713 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3714
3715 return iter;
3716}
3717EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3718
3719/**
3720 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3721 *
3722 * All previously invoked ring_buffer_read_prepare calls to prepare
3723 * iterators will be synchronized. Afterwards, read_buffer_read_start
3724 * calls on those iterators are allowed.
3725 */
3726void
3727ring_buffer_read_prepare_sync(void)
3728{
7a8e76a3 3729 synchronize_sched();
72c9ddfd
DM
3730}
3731EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3732
3733/**
3734 * ring_buffer_read_start - start a non consuming read of the buffer
3735 * @iter: The iterator returned by ring_buffer_read_prepare
3736 *
3737 * This finalizes the startup of an iteration through the buffer.
3738 * The iterator comes from a call to ring_buffer_read_prepare and
3739 * an intervening ring_buffer_read_prepare_sync must have been
3740 * performed.
3741 *
3742 * Must be paired with ring_buffer_finish.
3743 */
3744void
3745ring_buffer_read_start(struct ring_buffer_iter *iter)
3746{
3747 struct ring_buffer_per_cpu *cpu_buffer;
3748 unsigned long flags;
3749
3750 if (!iter)
3751 return;
3752
3753 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3754
5389f6fa 3755 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3756 arch_spin_lock(&cpu_buffer->lock);
642edba5 3757 rb_iter_reset(iter);
0199c4e6 3758 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 3759 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3760}
c4f50183 3761EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3762
3763/**
3764 * ring_buffer_finish - finish reading the iterator of the buffer
3765 * @iter: The iterator retrieved by ring_buffer_start
3766 *
3767 * This re-enables the recording to the buffer, and frees the
3768 * iterator.
3769 */
3770void
3771ring_buffer_read_finish(struct ring_buffer_iter *iter)
3772{
3773 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3774
659f451f
SR
3775 /*
3776 * Ring buffer is disabled from recording, here's a good place
3777 * to check the integrity of the ring buffer.
3778 */
3779 rb_check_pages(cpu_buffer);
3780
7a8e76a3 3781 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3782 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
3783 kfree(iter);
3784}
c4f50183 3785EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3786
3787/**
3788 * ring_buffer_read - read the next item in the ring buffer by the iterator
3789 * @iter: The ring buffer iterator
3790 * @ts: The time stamp of the event read.
3791 *
3792 * This reads the next event in the ring buffer and increments the iterator.
3793 */
3794struct ring_buffer_event *
3795ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3796{
3797 struct ring_buffer_event *event;
f83c9d0f
SR
3798 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3799 unsigned long flags;
7a8e76a3 3800
5389f6fa 3801 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3802 again:
f83c9d0f 3803 event = rb_iter_peek(iter, ts);
7a8e76a3 3804 if (!event)
f83c9d0f 3805 goto out;
7a8e76a3 3806
7e9391cf
SR
3807 if (event->type_len == RINGBUF_TYPE_PADDING)
3808 goto again;
3809
7a8e76a3 3810 rb_advance_iter(iter);
f83c9d0f 3811 out:
5389f6fa 3812 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3813
3814 return event;
3815}
c4f50183 3816EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3817
3818/**
3819 * ring_buffer_size - return the size of the ring buffer (in bytes)
3820 * @buffer: The ring buffer.
3821 */
438ced17 3822unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 3823{
438ced17
VN
3824 /*
3825 * Earlier, this method returned
3826 * BUF_PAGE_SIZE * buffer->nr_pages
3827 * Since the nr_pages field is now removed, we have converted this to
3828 * return the per cpu buffer value.
3829 */
3830 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3831 return 0;
3832
3833 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 3834}
c4f50183 3835EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3836
3837static void
3838rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3839{
77ae365e
SR
3840 rb_head_page_deactivate(cpu_buffer);
3841
7a8e76a3 3842 cpu_buffer->head_page
3adc54fa 3843 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3844 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3845 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3846 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3847
6f807acd 3848 cpu_buffer->head_page->read = 0;
bf41a158
SR
3849
3850 cpu_buffer->tail_page = cpu_buffer->head_page;
3851 cpu_buffer->commit_page = cpu_buffer->head_page;
3852
3853 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 3854 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 3855 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3856 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3857 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3858 cpu_buffer->reader_page->read = 0;
7a8e76a3 3859
77ae365e 3860 local_set(&cpu_buffer->commit_overrun, 0);
c64e148a 3861 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 3862 local_set(&cpu_buffer->overrun, 0);
e4906eff 3863 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3864 local_set(&cpu_buffer->committing, 0);
3865 local_set(&cpu_buffer->commits, 0);
77ae365e 3866 cpu_buffer->read = 0;
c64e148a 3867 cpu_buffer->read_bytes = 0;
69507c06
SR
3868
3869 cpu_buffer->write_stamp = 0;
3870 cpu_buffer->read_stamp = 0;
77ae365e 3871
66a8cb95
SR
3872 cpu_buffer->lost_events = 0;
3873 cpu_buffer->last_overrun = 0;
3874
77ae365e 3875 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3876}
3877
3878/**
3879 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3880 * @buffer: The ring buffer to reset a per cpu buffer of
3881 * @cpu: The CPU buffer to be reset
3882 */
3883void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3884{
3885 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3886 unsigned long flags;
3887
9e01c1b7 3888 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3889 return;
7a8e76a3 3890
83f40318 3891 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
3892 atomic_inc(&cpu_buffer->record_disabled);
3893
83f40318
VN
3894 /* Make sure all commits have finished */
3895 synchronize_sched();
3896
5389f6fa 3897 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3898
41b6a95d
SR
3899 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3900 goto out;
3901
0199c4e6 3902 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3903
3904 rb_reset_cpu(cpu_buffer);
3905
0199c4e6 3906 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3907
41b6a95d 3908 out:
5389f6fa 3909 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3910
3911 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3912 atomic_dec(&buffer->resize_disabled);
7a8e76a3 3913}
c4f50183 3914EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3915
3916/**
3917 * ring_buffer_reset - reset a ring buffer
3918 * @buffer: The ring buffer to reset all cpu buffers
3919 */
3920void ring_buffer_reset(struct ring_buffer *buffer)
3921{
7a8e76a3
SR
3922 int cpu;
3923
7a8e76a3 3924 for_each_buffer_cpu(buffer, cpu)
d769041f 3925 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3926}
c4f50183 3927EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3928
3929/**
3930 * rind_buffer_empty - is the ring buffer empty?
3931 * @buffer: The ring buffer to test
3932 */
3933int ring_buffer_empty(struct ring_buffer *buffer)
3934{
3935 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3936 unsigned long flags;
8d707e8e 3937 int dolock;
7a8e76a3 3938 int cpu;
d4788207 3939 int ret;
7a8e76a3 3940
8d707e8e 3941 dolock = rb_ok_to_lock();
7a8e76a3
SR
3942
3943 /* yes this is racy, but if you don't like the race, lock the buffer */
3944 for_each_buffer_cpu(buffer, cpu) {
3945 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3946 local_irq_save(flags);
3947 if (dolock)
5389f6fa 3948 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 3949 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3950 if (dolock)
5389f6fa 3951 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
3952 local_irq_restore(flags);
3953
d4788207 3954 if (!ret)
7a8e76a3
SR
3955 return 0;
3956 }
554f786e 3957
7a8e76a3
SR
3958 return 1;
3959}
c4f50183 3960EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3961
3962/**
3963 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3964 * @buffer: The ring buffer
3965 * @cpu: The CPU buffer to test
3966 */
3967int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3968{
3969 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3970 unsigned long flags;
8d707e8e 3971 int dolock;
8aabee57 3972 int ret;
7a8e76a3 3973
9e01c1b7 3974 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3975 return 1;
7a8e76a3 3976
8d707e8e
SR
3977 dolock = rb_ok_to_lock();
3978
7a8e76a3 3979 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3980 local_irq_save(flags);
3981 if (dolock)
5389f6fa 3982 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 3983 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3984 if (dolock)
5389f6fa 3985 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3986 local_irq_restore(flags);
554f786e
SR
3987
3988 return ret;
7a8e76a3 3989}
c4f50183 3990EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3991
85bac32c 3992#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3993/**
3994 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3995 * @buffer_a: One buffer to swap with
3996 * @buffer_b: The other buffer to swap with
3997 *
3998 * This function is useful for tracers that want to take a "snapshot"
3999 * of a CPU buffer and has another back up buffer lying around.
4000 * it is expected that the tracer handles the cpu buffer not being
4001 * used at the moment.
4002 */
4003int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4004 struct ring_buffer *buffer_b, int cpu)
4005{
4006 struct ring_buffer_per_cpu *cpu_buffer_a;
4007 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4008 int ret = -EINVAL;
4009
9e01c1b7
RR
4010 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4011 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4012 goto out;
7a8e76a3 4013
438ced17
VN
4014 cpu_buffer_a = buffer_a->buffers[cpu];
4015 cpu_buffer_b = buffer_b->buffers[cpu];
4016
7a8e76a3 4017 /* At least make sure the two buffers are somewhat the same */
438ced17 4018 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4019 goto out;
4020
4021 ret = -EAGAIN;
7a8e76a3 4022
97b17efe 4023 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4024 goto out;
97b17efe
SR
4025
4026 if (atomic_read(&buffer_a->record_disabled))
554f786e 4027 goto out;
97b17efe
SR
4028
4029 if (atomic_read(&buffer_b->record_disabled))
554f786e 4030 goto out;
97b17efe 4031
97b17efe 4032 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4033 goto out;
97b17efe
SR
4034
4035 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4036 goto out;
97b17efe 4037
7a8e76a3
SR
4038 /*
4039 * We can't do a synchronize_sched here because this
4040 * function can be called in atomic context.
4041 * Normally this will be called from the same CPU as cpu.
4042 * If not it's up to the caller to protect this.
4043 */
4044 atomic_inc(&cpu_buffer_a->record_disabled);
4045 atomic_inc(&cpu_buffer_b->record_disabled);
4046
98277991
SR
4047 ret = -EBUSY;
4048 if (local_read(&cpu_buffer_a->committing))
4049 goto out_dec;
4050 if (local_read(&cpu_buffer_b->committing))
4051 goto out_dec;
4052
7a8e76a3
SR
4053 buffer_a->buffers[cpu] = cpu_buffer_b;
4054 buffer_b->buffers[cpu] = cpu_buffer_a;
4055
4056 cpu_buffer_b->buffer = buffer_a;
4057 cpu_buffer_a->buffer = buffer_b;
4058
98277991
SR
4059 ret = 0;
4060
4061out_dec:
7a8e76a3
SR
4062 atomic_dec(&cpu_buffer_a->record_disabled);
4063 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4064out:
554f786e 4065 return ret;
7a8e76a3 4066}
c4f50183 4067EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4068#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4069
8789a9e7
SR
4070/**
4071 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4072 * @buffer: the buffer to allocate for.
4073 *
4074 * This function is used in conjunction with ring_buffer_read_page.
4075 * When reading a full page from the ring buffer, these functions
4076 * can be used to speed up the process. The calling function should
4077 * allocate a few pages first with this function. Then when it
4078 * needs to get pages from the ring buffer, it passes the result
4079 * of this function into ring_buffer_read_page, which will swap
4080 * the page that was allocated, with the read page of the buffer.
4081 *
4082 * Returns:
4083 * The page allocated, or NULL on error.
4084 */
7ea59064 4085void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4086{
044fa782 4087 struct buffer_data_page *bpage;
7ea59064 4088 struct page *page;
8789a9e7 4089
d7ec4bfe
VN
4090 page = alloc_pages_node(cpu_to_node(cpu),
4091 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4092 if (!page)
8789a9e7
SR
4093 return NULL;
4094
7ea59064 4095 bpage = page_address(page);
8789a9e7 4096
ef7a4a16
SR
4097 rb_init_page(bpage);
4098
044fa782 4099 return bpage;
8789a9e7 4100}
d6ce96da 4101EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4102
4103/**
4104 * ring_buffer_free_read_page - free an allocated read page
4105 * @buffer: the buffer the page was allocate for
4106 * @data: the page to free
4107 *
4108 * Free a page allocated from ring_buffer_alloc_read_page.
4109 */
4110void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4111{
4112 free_page((unsigned long)data);
4113}
d6ce96da 4114EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4115
4116/**
4117 * ring_buffer_read_page - extract a page from the ring buffer
4118 * @buffer: buffer to extract from
4119 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4120 * @len: amount to extract
8789a9e7
SR
4121 * @cpu: the cpu of the buffer to extract
4122 * @full: should the extraction only happen when the page is full.
4123 *
4124 * This function will pull out a page from the ring buffer and consume it.
4125 * @data_page must be the address of the variable that was returned
4126 * from ring_buffer_alloc_read_page. This is because the page might be used
4127 * to swap with a page in the ring buffer.
4128 *
4129 * for example:
b85fa01e 4130 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4131 * if (!rpage)
4132 * return error;
ef7a4a16 4133 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4134 * if (ret >= 0)
4135 * process_page(rpage, ret);
8789a9e7
SR
4136 *
4137 * When @full is set, the function will not return true unless
4138 * the writer is off the reader page.
4139 *
4140 * Note: it is up to the calling functions to handle sleeps and wakeups.
4141 * The ring buffer can be used anywhere in the kernel and can not
4142 * blindly call wake_up. The layer that uses the ring buffer must be
4143 * responsible for that.
4144 *
4145 * Returns:
667d2412
LJ
4146 * >=0 if data has been transferred, returns the offset of consumed data.
4147 * <0 if no data has been transferred.
8789a9e7
SR
4148 */
4149int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4150 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4151{
4152 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4153 struct ring_buffer_event *event;
044fa782 4154 struct buffer_data_page *bpage;
ef7a4a16 4155 struct buffer_page *reader;
ff0ff84a 4156 unsigned long missed_events;
8789a9e7 4157 unsigned long flags;
ef7a4a16 4158 unsigned int commit;
667d2412 4159 unsigned int read;
4f3640f8 4160 u64 save_timestamp;
667d2412 4161 int ret = -1;
8789a9e7 4162
554f786e
SR
4163 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4164 goto out;
4165
474d32b6
SR
4166 /*
4167 * If len is not big enough to hold the page header, then
4168 * we can not copy anything.
4169 */
4170 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4171 goto out;
474d32b6
SR
4172
4173 len -= BUF_PAGE_HDR_SIZE;
4174
8789a9e7 4175 if (!data_page)
554f786e 4176 goto out;
8789a9e7 4177
044fa782
SR
4178 bpage = *data_page;
4179 if (!bpage)
554f786e 4180 goto out;
8789a9e7 4181
5389f6fa 4182 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4183
ef7a4a16
SR
4184 reader = rb_get_reader_page(cpu_buffer);
4185 if (!reader)
554f786e 4186 goto out_unlock;
8789a9e7 4187
ef7a4a16
SR
4188 event = rb_reader_event(cpu_buffer);
4189
4190 read = reader->read;
4191 commit = rb_page_commit(reader);
667d2412 4192
66a8cb95 4193 /* Check if any events were dropped */
ff0ff84a 4194 missed_events = cpu_buffer->lost_events;
66a8cb95 4195
8789a9e7 4196 /*
474d32b6
SR
4197 * If this page has been partially read or
4198 * if len is not big enough to read the rest of the page or
4199 * a writer is still on the page, then
4200 * we must copy the data from the page to the buffer.
4201 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4202 */
474d32b6 4203 if (read || (len < (commit - read)) ||
ef7a4a16 4204 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4205 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4206 unsigned int rpos = read;
4207 unsigned int pos = 0;
ef7a4a16 4208 unsigned int size;
8789a9e7
SR
4209
4210 if (full)
554f786e 4211 goto out_unlock;
8789a9e7 4212
ef7a4a16
SR
4213 if (len > (commit - read))
4214 len = (commit - read);
4215
69d1b839
SR
4216 /* Always keep the time extend and data together */
4217 size = rb_event_ts_length(event);
ef7a4a16
SR
4218
4219 if (len < size)
554f786e 4220 goto out_unlock;
ef7a4a16 4221
4f3640f8
SR
4222 /* save the current timestamp, since the user will need it */
4223 save_timestamp = cpu_buffer->read_stamp;
4224
ef7a4a16
SR
4225 /* Need to copy one event at a time */
4226 do {
e1e35927
DS
4227 /* We need the size of one event, because
4228 * rb_advance_reader only advances by one event,
4229 * whereas rb_event_ts_length may include the size of
4230 * one or two events.
4231 * We have already ensured there's enough space if this
4232 * is a time extend. */
4233 size = rb_event_length(event);
474d32b6 4234 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4235
4236 len -= size;
4237
4238 rb_advance_reader(cpu_buffer);
474d32b6
SR
4239 rpos = reader->read;
4240 pos += size;
ef7a4a16 4241
18fab912
HY
4242 if (rpos >= commit)
4243 break;
4244
ef7a4a16 4245 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4246 /* Always keep the time extend and data together */
4247 size = rb_event_ts_length(event);
e1e35927 4248 } while (len >= size);
667d2412
LJ
4249
4250 /* update bpage */
ef7a4a16 4251 local_set(&bpage->commit, pos);
4f3640f8 4252 bpage->time_stamp = save_timestamp;
ef7a4a16 4253
474d32b6
SR
4254 /* we copied everything to the beginning */
4255 read = 0;
8789a9e7 4256 } else {
afbab76a 4257 /* update the entry counter */
77ae365e 4258 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4259 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4260
8789a9e7 4261 /* swap the pages */
044fa782 4262 rb_init_page(bpage);
ef7a4a16
SR
4263 bpage = reader->page;
4264 reader->page = *data_page;
4265 local_set(&reader->write, 0);
778c55d4 4266 local_set(&reader->entries, 0);
ef7a4a16 4267 reader->read = 0;
044fa782 4268 *data_page = bpage;
ff0ff84a
SR
4269
4270 /*
4271 * Use the real_end for the data size,
4272 * This gives us a chance to store the lost events
4273 * on the page.
4274 */
4275 if (reader->real_end)
4276 local_set(&bpage->commit, reader->real_end);
8789a9e7 4277 }
667d2412 4278 ret = read;
8789a9e7 4279
66a8cb95 4280 cpu_buffer->lost_events = 0;
2711ca23
SR
4281
4282 commit = local_read(&bpage->commit);
66a8cb95
SR
4283 /*
4284 * Set a flag in the commit field if we lost events
4285 */
ff0ff84a 4286 if (missed_events) {
ff0ff84a
SR
4287 /* If there is room at the end of the page to save the
4288 * missed events, then record it there.
4289 */
4290 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4291 memcpy(&bpage->data[commit], &missed_events,
4292 sizeof(missed_events));
4293 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4294 commit += sizeof(missed_events);
ff0ff84a 4295 }
66a8cb95 4296 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4297 }
66a8cb95 4298
2711ca23
SR
4299 /*
4300 * This page may be off to user land. Zero it out here.
4301 */
4302 if (commit < BUF_PAGE_SIZE)
4303 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4304
554f786e 4305 out_unlock:
5389f6fa 4306 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4307
554f786e 4308 out:
8789a9e7
SR
4309 return ret;
4310}
d6ce96da 4311EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4312
59222efe 4313#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4314static int rb_cpu_notify(struct notifier_block *self,
4315 unsigned long action, void *hcpu)
554f786e
SR
4316{
4317 struct ring_buffer *buffer =
4318 container_of(self, struct ring_buffer, cpu_notify);
4319 long cpu = (long)hcpu;
438ced17
VN
4320 int cpu_i, nr_pages_same;
4321 unsigned int nr_pages;
554f786e
SR
4322
4323 switch (action) {
4324 case CPU_UP_PREPARE:
4325 case CPU_UP_PREPARE_FROZEN:
3f237a79 4326 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4327 return NOTIFY_OK;
4328
438ced17
VN
4329 nr_pages = 0;
4330 nr_pages_same = 1;
4331 /* check if all cpu sizes are same */
4332 for_each_buffer_cpu(buffer, cpu_i) {
4333 /* fill in the size from first enabled cpu */
4334 if (nr_pages == 0)
4335 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4336 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4337 nr_pages_same = 0;
4338 break;
4339 }
4340 }
4341 /* allocate minimum pages, user can later expand it */
4342 if (!nr_pages_same)
4343 nr_pages = 2;
554f786e 4344 buffer->buffers[cpu] =
438ced17 4345 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4346 if (!buffer->buffers[cpu]) {
4347 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4348 cpu);
4349 return NOTIFY_OK;
4350 }
4351 smp_wmb();
3f237a79 4352 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4353 break;
4354 case CPU_DOWN_PREPARE:
4355 case CPU_DOWN_PREPARE_FROZEN:
4356 /*
4357 * Do nothing.
4358 * If we were to free the buffer, then the user would
4359 * lose any trace that was in the buffer.
4360 */
4361 break;
4362 default:
4363 break;
4364 }
4365 return NOTIFY_OK;
4366}
4367#endif