tracing: Remove function_trace_stop and HAVE_FUNCTION_TRACE_MCOUNT_TEST
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3
SR
12#include <linux/debugfs.h>
13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
6c43e554 15#include <linux/kthread.h> /* for self test */
1744a21d 16#include <linux/kmemcheck.h>
7a8e76a3
SR
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
6c43e554 20#include <linux/delay.h>
5a0e3ad6 21#include <linux/slab.h>
7a8e76a3
SR
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
554f786e 25#include <linux/cpu.h>
7a8e76a3
SR
26#include <linux/fs.h>
27
79615760 28#include <asm/local.h>
182e9f5f 29
83f40318
VN
30static void update_pages_handler(struct work_struct *work);
31
d1b182a8
SR
32/*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35int ring_buffer_print_entry_header(struct trace_seq *s)
36{
37 int ret;
38
146c3442
J
39 ret = trace_seq_puts(s, "# compressed entry header\n");
40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_puts(s, "\tarray : 32 bits\n");
43 ret = trace_seq_putc(s, '\n');
d1b182a8
SR
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
50
51 return ret;
52}
53
5cc98548
SR
54/*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
033601a3
SR
122/*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140/*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154};
155
156enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159};
160
5e39841c 161static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 162
499e5470
SR
163/* Used for individual buffers (after the counter) */
164#define RB_BUFFER_OFF (1 << 20)
a3583244 165
499e5470 166#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
167
168/**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
c3706f00 172 * permanently.
033601a3
SR
173 */
174void tracing_off_permanent(void)
175{
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
177}
178
e3d6bf0a 179#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 180#define RB_ALIGNMENT 4U
334d4169 181#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 182#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 183
649508f6 184#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
185# define RB_FORCE_8BYTE_ALIGNMENT 0
186# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187#else
188# define RB_FORCE_8BYTE_ALIGNMENT 1
189# define RB_ARCH_ALIGNMENT 8U
190#endif
191
649508f6
JH
192#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
334d4169
LJ
194/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
196
197enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200};
201
69d1b839
SR
202#define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
2d622719
TZ
205static inline int rb_null_event(struct ring_buffer_event *event)
206{
a1863c21 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
208}
209
210static void rb_event_set_padding(struct ring_buffer_event *event)
211{
a1863c21 212 /* padding has a NULL time_delta */
334d4169 213 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
214 event->time_delta = 0;
215}
216
34a148bf 217static unsigned
2d622719 218rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
219{
220 unsigned length;
221
334d4169
LJ
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227}
228
69d1b839
SR
229/*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234static inline unsigned
2d622719
TZ
235rb_event_length(struct ring_buffer_event *event)
236{
334d4169 237 switch (event->type_len) {
7a8e76a3 238 case RINGBUF_TYPE_PADDING:
2d622719
TZ
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
334d4169 242 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
2d622719 251 return rb_event_data_length(event);
7a8e76a3
SR
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257}
258
69d1b839
SR
259/*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263static inline unsigned
264rb_event_ts_length(struct ring_buffer_event *event)
265{
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274}
275
7a8e76a3
SR
276/**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
69d1b839
SR
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
7a8e76a3
SR
285 */
286unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287{
69d1b839
SR
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
334d4169 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
7a8e76a3 300}
c4f50183 301EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
302
303/* inline for ring buffer fast paths */
34a148bf 304static void *
7a8e76a3
SR
305rb_event_data(struct ring_buffer_event *event)
306{
69d1b839
SR
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
334d4169 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 310 /* If length is in len field, then array[0] has the data */
334d4169 311 if (event->type_len)
7a8e76a3
SR
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315}
316
317/**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
321void *ring_buffer_event_data(struct ring_buffer_event *event)
322{
323 return rb_event_data(event);
324}
c4f50183 325EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
326
327#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 328 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
329
330#define TS_SHIFT 27
331#define TS_MASK ((1ULL << TS_SHIFT) - 1)
332#define TS_DELTA_TEST (~TS_MASK)
333
66a8cb95
SR
334/* Flag when events were overwritten */
335#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
336/* Missed count stored at end */
337#define RB_MISSED_STORED (1 << 30)
66a8cb95 338
abc9b56d 339struct buffer_data_page {
e4c2ce82 340 u64 time_stamp; /* page time stamp */
c3706f00 341 local_t commit; /* write committed index */
649508f6 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
343};
344
77ae365e
SR
345/*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
abc9b56d 353struct buffer_page {
778c55d4 354 struct list_head list; /* list of buffer pages */
abc9b56d 355 local_t write; /* index for next write */
6f807acd 356 unsigned read; /* index for next read */
778c55d4 357 local_t entries; /* entries on this page */
ff0ff84a 358 unsigned long real_end; /* real end of data */
abc9b56d 359 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
360};
361
77ae365e
SR
362/*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374#define RB_WRITE_MASK 0xfffff
375#define RB_WRITE_INTCNT (1 << 20)
376
044fa782 377static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 378{
044fa782 379 local_set(&bpage->commit, 0);
abc9b56d
SR
380}
381
474d32b6
SR
382/**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
ef7a4a16
SR
388size_t ring_buffer_page_len(void *page)
389{
474d32b6
SR
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
392}
393
ed56829c
SR
394/*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
34a148bf 398static void free_buffer_page(struct buffer_page *bpage)
ed56829c 399{
34a148bf 400 free_page((unsigned long)bpage->page);
e4c2ce82 401 kfree(bpage);
ed56829c
SR
402}
403
7a8e76a3
SR
404/*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
407static inline int test_time_stamp(u64 delta)
408{
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412}
413
474d32b6 414#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 415
be957c44
SR
416/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
d1b182a8
SR
419int ring_buffer_print_page_header(struct trace_seq *s)
420{
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
d1b182a8
SR
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 431 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
d1b182a8 434
66a8cb95
SR
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
d1b182a8 441 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 443 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
d1b182a8
SR
446
447 return ret;
448}
449
15693458
SRRH
450struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454};
455
7a8e76a3
SR
456/*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459struct ring_buffer_per_cpu {
460 int cpu;
985023de 461 atomic_t record_disabled;
7a8e76a3 462 struct ring_buffer *buffer;
5389f6fa 463 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 464 arch_spinlock_t lock;
7a8e76a3 465 struct lock_class_key lock_key;
438ced17 466 unsigned int nr_pages;
3adc54fa 467 struct list_head *pages;
6f807acd
SR
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
c3706f00 470 struct buffer_page *commit_page; /* committed pages */
d769041f 471 struct buffer_page *reader_page;
66a8cb95
SR
472 unsigned long lost_events;
473 unsigned long last_overrun;
c64e148a 474 local_t entries_bytes;
e4906eff 475 local_t entries;
884bfe89
SP
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
fa743953
SR
479 local_t committing;
480 local_t commits;
77ae365e 481 unsigned long read;
c64e148a 482 unsigned long read_bytes;
7a8e76a3
SR
483 u64 write_stamp;
484 u64 read_stamp;
438ced17
VN
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
83f40318 488 struct work_struct update_pages_work;
05fdd70d 489 struct completion update_done;
15693458
SRRH
490
491 struct rb_irq_work irq_work;
7a8e76a3
SR
492};
493
494struct ring_buffer {
7a8e76a3
SR
495 unsigned flags;
496 int cpus;
7a8e76a3 497 atomic_t record_disabled;
83f40318 498 atomic_t resize_disabled;
00f62f61 499 cpumask_var_t cpumask;
7a8e76a3 500
1f8a6a10
PZ
501 struct lock_class_key *reader_lock_key;
502
7a8e76a3
SR
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
554f786e 506
59222efe 507#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
508 struct notifier_block cpu_notify;
509#endif
37886f6a 510 u64 (*clock)(void);
15693458
SRRH
511
512 struct rb_irq_work irq_work;
7a8e76a3
SR
513};
514
515struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
492a74f4
SR
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
7a8e76a3
SR
521 u64 read_stamp;
522};
523
15693458
SRRH
524/*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
530static void rb_wake_up_waiters(struct irq_work *work)
531{
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535}
536
537/**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 *
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
545 */
8b8b3683 546int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
15693458
SRRH
547{
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
551
552 /*
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
556 */
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
8b8b3683
SRRH
560 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 return -ENODEV;
15693458
SRRH
562 cpu_buffer = buffer->buffers[cpu];
563 work = &cpu_buffer->irq_work;
564 }
565
566
567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569 /*
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
574 * using irq_work.
575 *
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
581 * an empty queue.
582 *
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
588 */
589 work->waiters_pending = true;
590
591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 schedule();
594
595 finish_wait(&work->waiters, &wait);
8b8b3683 596 return 0;
15693458
SRRH
597}
598
599/**
600 * ring_buffer_poll_wait - poll on buffer input
601 * @buffer: buffer to wait on
602 * @cpu: the cpu buffer to wait on
603 * @filp: the file descriptor
604 * @poll_table: The poll descriptor
605 *
606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607 * as data is added to any of the @buffer's cpu buffers. Otherwise
608 * it will wait for data to be added to a specific cpu buffer.
609 *
610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611 * zero otherwise.
612 */
613int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 struct file *filp, poll_table *poll_table)
615{
616 struct ring_buffer_per_cpu *cpu_buffer;
617 struct rb_irq_work *work;
618
619 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
620 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
621 return POLLIN | POLLRDNORM;
622
623 if (cpu == RING_BUFFER_ALL_CPUS)
624 work = &buffer->irq_work;
625 else {
6721cb60
SRRH
626 if (!cpumask_test_cpu(cpu, buffer->cpumask))
627 return -EINVAL;
628
15693458
SRRH
629 cpu_buffer = buffer->buffers[cpu];
630 work = &cpu_buffer->irq_work;
631 }
632
633 work->waiters_pending = true;
634 poll_wait(filp, &work->waiters, poll_table);
635
636 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
637 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
638 return POLLIN | POLLRDNORM;
639 return 0;
640}
641
f536aafc 642/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
643#define RB_WARN_ON(b, cond) \
644 ({ \
645 int _____ret = unlikely(cond); \
646 if (_____ret) { \
647 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
648 struct ring_buffer_per_cpu *__b = \
649 (void *)b; \
650 atomic_inc(&__b->buffer->record_disabled); \
651 } else \
652 atomic_inc(&b->record_disabled); \
653 WARN_ON(1); \
654 } \
655 _____ret; \
3e89c7bb 656 })
f536aafc 657
37886f6a
SR
658/* Up this if you want to test the TIME_EXTENTS and normalization */
659#define DEBUG_SHIFT 0
660
6d3f1e12 661static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
662{
663 /* shift to debug/test normalization and TIME_EXTENTS */
664 return buffer->clock() << DEBUG_SHIFT;
665}
666
37886f6a
SR
667u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
668{
669 u64 time;
670
671 preempt_disable_notrace();
6d3f1e12 672 time = rb_time_stamp(buffer);
37886f6a
SR
673 preempt_enable_no_resched_notrace();
674
675 return time;
676}
677EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
678
679void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
680 int cpu, u64 *ts)
681{
682 /* Just stupid testing the normalize function and deltas */
683 *ts >>= DEBUG_SHIFT;
684}
685EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
686
77ae365e
SR
687/*
688 * Making the ring buffer lockless makes things tricky.
689 * Although writes only happen on the CPU that they are on,
690 * and they only need to worry about interrupts. Reads can
691 * happen on any CPU.
692 *
693 * The reader page is always off the ring buffer, but when the
694 * reader finishes with a page, it needs to swap its page with
695 * a new one from the buffer. The reader needs to take from
696 * the head (writes go to the tail). But if a writer is in overwrite
697 * mode and wraps, it must push the head page forward.
698 *
699 * Here lies the problem.
700 *
701 * The reader must be careful to replace only the head page, and
702 * not another one. As described at the top of the file in the
703 * ASCII art, the reader sets its old page to point to the next
704 * page after head. It then sets the page after head to point to
705 * the old reader page. But if the writer moves the head page
706 * during this operation, the reader could end up with the tail.
707 *
708 * We use cmpxchg to help prevent this race. We also do something
709 * special with the page before head. We set the LSB to 1.
710 *
711 * When the writer must push the page forward, it will clear the
712 * bit that points to the head page, move the head, and then set
713 * the bit that points to the new head page.
714 *
715 * We also don't want an interrupt coming in and moving the head
716 * page on another writer. Thus we use the second LSB to catch
717 * that too. Thus:
718 *
719 * head->list->prev->next bit 1 bit 0
720 * ------- -------
721 * Normal page 0 0
722 * Points to head page 0 1
723 * New head page 1 0
724 *
725 * Note we can not trust the prev pointer of the head page, because:
726 *
727 * +----+ +-----+ +-----+
728 * | |------>| T |---X--->| N |
729 * | |<------| | | |
730 * +----+ +-----+ +-----+
731 * ^ ^ |
732 * | +-----+ | |
733 * +----------| R |----------+ |
734 * | |<-----------+
735 * +-----+
736 *
737 * Key: ---X--> HEAD flag set in pointer
738 * T Tail page
739 * R Reader page
740 * N Next page
741 *
742 * (see __rb_reserve_next() to see where this happens)
743 *
744 * What the above shows is that the reader just swapped out
745 * the reader page with a page in the buffer, but before it
746 * could make the new header point back to the new page added
747 * it was preempted by a writer. The writer moved forward onto
748 * the new page added by the reader and is about to move forward
749 * again.
750 *
751 * You can see, it is legitimate for the previous pointer of
752 * the head (or any page) not to point back to itself. But only
753 * temporarially.
754 */
755
756#define RB_PAGE_NORMAL 0UL
757#define RB_PAGE_HEAD 1UL
758#define RB_PAGE_UPDATE 2UL
759
760
761#define RB_FLAG_MASK 3UL
762
763/* PAGE_MOVED is not part of the mask */
764#define RB_PAGE_MOVED 4UL
765
766/*
767 * rb_list_head - remove any bit
768 */
769static struct list_head *rb_list_head(struct list_head *list)
770{
771 unsigned long val = (unsigned long)list;
772
773 return (struct list_head *)(val & ~RB_FLAG_MASK);
774}
775
776/*
6d3f1e12 777 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
778 *
779 * Because the reader may move the head_page pointer, we can
780 * not trust what the head page is (it may be pointing to
781 * the reader page). But if the next page is a header page,
782 * its flags will be non zero.
783 */
42b16b3f 784static inline int
77ae365e
SR
785rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
786 struct buffer_page *page, struct list_head *list)
787{
788 unsigned long val;
789
790 val = (unsigned long)list->next;
791
792 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
793 return RB_PAGE_MOVED;
794
795 return val & RB_FLAG_MASK;
796}
797
798/*
799 * rb_is_reader_page
800 *
801 * The unique thing about the reader page, is that, if the
802 * writer is ever on it, the previous pointer never points
803 * back to the reader page.
804 */
805static int rb_is_reader_page(struct buffer_page *page)
806{
807 struct list_head *list = page->list.prev;
808
809 return rb_list_head(list->next) != &page->list;
810}
811
812/*
813 * rb_set_list_to_head - set a list_head to be pointing to head.
814 */
815static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
816 struct list_head *list)
817{
818 unsigned long *ptr;
819
820 ptr = (unsigned long *)&list->next;
821 *ptr |= RB_PAGE_HEAD;
822 *ptr &= ~RB_PAGE_UPDATE;
823}
824
825/*
826 * rb_head_page_activate - sets up head page
827 */
828static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
829{
830 struct buffer_page *head;
831
832 head = cpu_buffer->head_page;
833 if (!head)
834 return;
835
836 /*
837 * Set the previous list pointer to have the HEAD flag.
838 */
839 rb_set_list_to_head(cpu_buffer, head->list.prev);
840}
841
842static void rb_list_head_clear(struct list_head *list)
843{
844 unsigned long *ptr = (unsigned long *)&list->next;
845
846 *ptr &= ~RB_FLAG_MASK;
847}
848
849/*
850 * rb_head_page_dactivate - clears head page ptr (for free list)
851 */
852static void
853rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
854{
855 struct list_head *hd;
856
857 /* Go through the whole list and clear any pointers found. */
858 rb_list_head_clear(cpu_buffer->pages);
859
860 list_for_each(hd, cpu_buffer->pages)
861 rb_list_head_clear(hd);
862}
863
864static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
865 struct buffer_page *head,
866 struct buffer_page *prev,
867 int old_flag, int new_flag)
868{
869 struct list_head *list;
870 unsigned long val = (unsigned long)&head->list;
871 unsigned long ret;
872
873 list = &prev->list;
874
875 val &= ~RB_FLAG_MASK;
876
08a40816
SR
877 ret = cmpxchg((unsigned long *)&list->next,
878 val | old_flag, val | new_flag);
77ae365e
SR
879
880 /* check if the reader took the page */
881 if ((ret & ~RB_FLAG_MASK) != val)
882 return RB_PAGE_MOVED;
883
884 return ret & RB_FLAG_MASK;
885}
886
887static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
888 struct buffer_page *head,
889 struct buffer_page *prev,
890 int old_flag)
891{
892 return rb_head_page_set(cpu_buffer, head, prev,
893 old_flag, RB_PAGE_UPDATE);
894}
895
896static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
897 struct buffer_page *head,
898 struct buffer_page *prev,
899 int old_flag)
900{
901 return rb_head_page_set(cpu_buffer, head, prev,
902 old_flag, RB_PAGE_HEAD);
903}
904
905static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
906 struct buffer_page *head,
907 struct buffer_page *prev,
908 int old_flag)
909{
910 return rb_head_page_set(cpu_buffer, head, prev,
911 old_flag, RB_PAGE_NORMAL);
912}
913
914static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page **bpage)
916{
917 struct list_head *p = rb_list_head((*bpage)->list.next);
918
919 *bpage = list_entry(p, struct buffer_page, list);
920}
921
922static struct buffer_page *
923rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
924{
925 struct buffer_page *head;
926 struct buffer_page *page;
927 struct list_head *list;
928 int i;
929
930 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
931 return NULL;
932
933 /* sanity check */
934 list = cpu_buffer->pages;
935 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
936 return NULL;
937
938 page = head = cpu_buffer->head_page;
939 /*
940 * It is possible that the writer moves the header behind
941 * where we started, and we miss in one loop.
942 * A second loop should grab the header, but we'll do
943 * three loops just because I'm paranoid.
944 */
945 for (i = 0; i < 3; i++) {
946 do {
947 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
948 cpu_buffer->head_page = page;
949 return page;
950 }
951 rb_inc_page(cpu_buffer, &page);
952 } while (page != head);
953 }
954
955 RB_WARN_ON(cpu_buffer, 1);
956
957 return NULL;
958}
959
960static int rb_head_page_replace(struct buffer_page *old,
961 struct buffer_page *new)
962{
963 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
964 unsigned long val;
965 unsigned long ret;
966
967 val = *ptr & ~RB_FLAG_MASK;
968 val |= RB_PAGE_HEAD;
969
08a40816 970 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
971
972 return ret == val;
973}
974
975/*
976 * rb_tail_page_update - move the tail page forward
977 *
978 * Returns 1 if moved tail page, 0 if someone else did.
979 */
980static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
981 struct buffer_page *tail_page,
982 struct buffer_page *next_page)
983{
984 struct buffer_page *old_tail;
985 unsigned long old_entries;
986 unsigned long old_write;
987 int ret = 0;
988
989 /*
990 * The tail page now needs to be moved forward.
991 *
992 * We need to reset the tail page, but without messing
993 * with possible erasing of data brought in by interrupts
994 * that have moved the tail page and are currently on it.
995 *
996 * We add a counter to the write field to denote this.
997 */
998 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
999 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1000
1001 /*
1002 * Just make sure we have seen our old_write and synchronize
1003 * with any interrupts that come in.
1004 */
1005 barrier();
1006
1007 /*
1008 * If the tail page is still the same as what we think
1009 * it is, then it is up to us to update the tail
1010 * pointer.
1011 */
1012 if (tail_page == cpu_buffer->tail_page) {
1013 /* Zero the write counter */
1014 unsigned long val = old_write & ~RB_WRITE_MASK;
1015 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1016
1017 /*
1018 * This will only succeed if an interrupt did
1019 * not come in and change it. In which case, we
1020 * do not want to modify it.
da706d8b
LJ
1021 *
1022 * We add (void) to let the compiler know that we do not care
1023 * about the return value of these functions. We use the
1024 * cmpxchg to only update if an interrupt did not already
1025 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1026 */
da706d8b
LJ
1027 (void)local_cmpxchg(&next_page->write, old_write, val);
1028 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1029
1030 /*
1031 * No need to worry about races with clearing out the commit.
1032 * it only can increment when a commit takes place. But that
1033 * only happens in the outer most nested commit.
1034 */
1035 local_set(&next_page->page->commit, 0);
1036
1037 old_tail = cmpxchg(&cpu_buffer->tail_page,
1038 tail_page, next_page);
1039
1040 if (old_tail == tail_page)
1041 ret = 1;
1042 }
1043
1044 return ret;
1045}
1046
1047static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1048 struct buffer_page *bpage)
1049{
1050 unsigned long val = (unsigned long)bpage;
1051
1052 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1053 return 1;
1054
1055 return 0;
1056}
1057
1058/**
1059 * rb_check_list - make sure a pointer to a list has the last bits zero
1060 */
1061static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1062 struct list_head *list)
1063{
1064 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1065 return 1;
1066 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1067 return 1;
1068 return 0;
1069}
1070
7a8e76a3 1071/**
d611851b 1072 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1073 * @cpu_buffer: CPU buffer with pages to test
1074 *
c3706f00 1075 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1076 * been corrupted.
1077 */
1078static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1079{
3adc54fa 1080 struct list_head *head = cpu_buffer->pages;
044fa782 1081 struct buffer_page *bpage, *tmp;
7a8e76a3 1082
308f7eeb
SR
1083 /* Reset the head page if it exists */
1084 if (cpu_buffer->head_page)
1085 rb_set_head_page(cpu_buffer);
1086
77ae365e
SR
1087 rb_head_page_deactivate(cpu_buffer);
1088
3e89c7bb
SR
1089 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1090 return -1;
1091 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1092 return -1;
7a8e76a3 1093
77ae365e
SR
1094 if (rb_check_list(cpu_buffer, head))
1095 return -1;
1096
044fa782 1097 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1098 if (RB_WARN_ON(cpu_buffer,
044fa782 1099 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1100 return -1;
1101 if (RB_WARN_ON(cpu_buffer,
044fa782 1102 bpage->list.prev->next != &bpage->list))
3e89c7bb 1103 return -1;
77ae365e
SR
1104 if (rb_check_list(cpu_buffer, &bpage->list))
1105 return -1;
7a8e76a3
SR
1106 }
1107
77ae365e
SR
1108 rb_head_page_activate(cpu_buffer);
1109
7a8e76a3
SR
1110 return 0;
1111}
1112
438ced17 1113static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1114{
438ced17 1115 int i;
044fa782 1116 struct buffer_page *bpage, *tmp;
3adc54fa 1117
7a8e76a3 1118 for (i = 0; i < nr_pages; i++) {
7ea59064 1119 struct page *page;
d7ec4bfe
VN
1120 /*
1121 * __GFP_NORETRY flag makes sure that the allocation fails
1122 * gracefully without invoking oom-killer and the system is
1123 * not destabilized.
1124 */
044fa782 1125 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1126 GFP_KERNEL | __GFP_NORETRY,
438ced17 1127 cpu_to_node(cpu));
044fa782 1128 if (!bpage)
e4c2ce82 1129 goto free_pages;
77ae365e 1130
438ced17 1131 list_add(&bpage->list, pages);
77ae365e 1132
438ced17 1133 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1134 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1135 if (!page)
7a8e76a3 1136 goto free_pages;
7ea59064 1137 bpage->page = page_address(page);
044fa782 1138 rb_init_page(bpage->page);
7a8e76a3
SR
1139 }
1140
438ced17
VN
1141 return 0;
1142
1143free_pages:
1144 list_for_each_entry_safe(bpage, tmp, pages, list) {
1145 list_del_init(&bpage->list);
1146 free_buffer_page(bpage);
1147 }
1148
1149 return -ENOMEM;
1150}
1151
1152static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1153 unsigned nr_pages)
1154{
1155 LIST_HEAD(pages);
1156
1157 WARN_ON(!nr_pages);
1158
1159 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1160 return -ENOMEM;
1161
3adc54fa
SR
1162 /*
1163 * The ring buffer page list is a circular list that does not
1164 * start and end with a list head. All page list items point to
1165 * other pages.
1166 */
1167 cpu_buffer->pages = pages.next;
1168 list_del(&pages);
7a8e76a3 1169
438ced17
VN
1170 cpu_buffer->nr_pages = nr_pages;
1171
7a8e76a3
SR
1172 rb_check_pages(cpu_buffer);
1173
1174 return 0;
7a8e76a3
SR
1175}
1176
1177static struct ring_buffer_per_cpu *
438ced17 1178rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1179{
1180 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1181 struct buffer_page *bpage;
7ea59064 1182 struct page *page;
7a8e76a3
SR
1183 int ret;
1184
1185 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1186 GFP_KERNEL, cpu_to_node(cpu));
1187 if (!cpu_buffer)
1188 return NULL;
1189
1190 cpu_buffer->cpu = cpu;
1191 cpu_buffer->buffer = buffer;
5389f6fa 1192 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1193 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1194 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1195 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1196 init_completion(&cpu_buffer->update_done);
15693458 1197 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1198 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
7a8e76a3 1199
044fa782 1200 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1201 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1202 if (!bpage)
e4c2ce82
SR
1203 goto fail_free_buffer;
1204
77ae365e
SR
1205 rb_check_bpage(cpu_buffer, bpage);
1206
044fa782 1207 cpu_buffer->reader_page = bpage;
7ea59064
VN
1208 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1209 if (!page)
e4c2ce82 1210 goto fail_free_reader;
7ea59064 1211 bpage->page = page_address(page);
044fa782 1212 rb_init_page(bpage->page);
e4c2ce82 1213
d769041f 1214 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1215 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1216
438ced17 1217 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1218 if (ret < 0)
d769041f 1219 goto fail_free_reader;
7a8e76a3
SR
1220
1221 cpu_buffer->head_page
3adc54fa 1222 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1223 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1224
77ae365e
SR
1225 rb_head_page_activate(cpu_buffer);
1226
7a8e76a3
SR
1227 return cpu_buffer;
1228
d769041f
SR
1229 fail_free_reader:
1230 free_buffer_page(cpu_buffer->reader_page);
1231
7a8e76a3
SR
1232 fail_free_buffer:
1233 kfree(cpu_buffer);
1234 return NULL;
1235}
1236
1237static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1238{
3adc54fa 1239 struct list_head *head = cpu_buffer->pages;
044fa782 1240 struct buffer_page *bpage, *tmp;
7a8e76a3 1241
d769041f
SR
1242 free_buffer_page(cpu_buffer->reader_page);
1243
77ae365e
SR
1244 rb_head_page_deactivate(cpu_buffer);
1245
3adc54fa
SR
1246 if (head) {
1247 list_for_each_entry_safe(bpage, tmp, head, list) {
1248 list_del_init(&bpage->list);
1249 free_buffer_page(bpage);
1250 }
1251 bpage = list_entry(head, struct buffer_page, list);
044fa782 1252 free_buffer_page(bpage);
7a8e76a3 1253 }
3adc54fa 1254
7a8e76a3
SR
1255 kfree(cpu_buffer);
1256}
1257
59222efe 1258#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1259static int rb_cpu_notify(struct notifier_block *self,
1260 unsigned long action, void *hcpu);
554f786e
SR
1261#endif
1262
7a8e76a3 1263/**
d611851b 1264 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1265 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1266 * @flags: attributes to set for the ring buffer.
1267 *
1268 * Currently the only flag that is available is the RB_FL_OVERWRITE
1269 * flag. This flag means that the buffer will overwrite old data
1270 * when the buffer wraps. If this flag is not set, the buffer will
1271 * drop data when the tail hits the head.
1272 */
1f8a6a10
PZ
1273struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1274 struct lock_class_key *key)
7a8e76a3
SR
1275{
1276 struct ring_buffer *buffer;
1277 int bsize;
438ced17 1278 int cpu, nr_pages;
7a8e76a3
SR
1279
1280 /* keep it in its own cache line */
1281 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1282 GFP_KERNEL);
1283 if (!buffer)
1284 return NULL;
1285
9e01c1b7
RR
1286 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1287 goto fail_free_buffer;
1288
438ced17 1289 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1290 buffer->flags = flags;
37886f6a 1291 buffer->clock = trace_clock_local;
1f8a6a10 1292 buffer->reader_lock_key = key;
7a8e76a3 1293
15693458 1294 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1295 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1296
7a8e76a3 1297 /* need at least two pages */
438ced17
VN
1298 if (nr_pages < 2)
1299 nr_pages = 2;
7a8e76a3 1300
3bf832ce
FW
1301 /*
1302 * In case of non-hotplug cpu, if the ring-buffer is allocated
1303 * in early initcall, it will not be notified of secondary cpus.
1304 * In that off case, we need to allocate for all possible cpus.
1305 */
1306#ifdef CONFIG_HOTPLUG_CPU
d39ad278 1307 cpu_notifier_register_begin();
554f786e 1308 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1309#else
1310 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1311#endif
7a8e76a3
SR
1312 buffer->cpus = nr_cpu_ids;
1313
1314 bsize = sizeof(void *) * nr_cpu_ids;
1315 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1316 GFP_KERNEL);
1317 if (!buffer->buffers)
9e01c1b7 1318 goto fail_free_cpumask;
7a8e76a3
SR
1319
1320 for_each_buffer_cpu(buffer, cpu) {
1321 buffer->buffers[cpu] =
438ced17 1322 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1323 if (!buffer->buffers[cpu])
1324 goto fail_free_buffers;
1325 }
1326
59222efe 1327#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1328 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1329 buffer->cpu_notify.priority = 0;
d39ad278
SB
1330 __register_cpu_notifier(&buffer->cpu_notify);
1331 cpu_notifier_register_done();
554f786e
SR
1332#endif
1333
7a8e76a3
SR
1334 mutex_init(&buffer->mutex);
1335
1336 return buffer;
1337
1338 fail_free_buffers:
1339 for_each_buffer_cpu(buffer, cpu) {
1340 if (buffer->buffers[cpu])
1341 rb_free_cpu_buffer(buffer->buffers[cpu]);
1342 }
1343 kfree(buffer->buffers);
1344
9e01c1b7
RR
1345 fail_free_cpumask:
1346 free_cpumask_var(buffer->cpumask);
d39ad278
SB
1347#ifdef CONFIG_HOTPLUG_CPU
1348 cpu_notifier_register_done();
1349#endif
9e01c1b7 1350
7a8e76a3
SR
1351 fail_free_buffer:
1352 kfree(buffer);
1353 return NULL;
1354}
1f8a6a10 1355EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1356
1357/**
1358 * ring_buffer_free - free a ring buffer.
1359 * @buffer: the buffer to free.
1360 */
1361void
1362ring_buffer_free(struct ring_buffer *buffer)
1363{
1364 int cpu;
1365
59222efe 1366#ifdef CONFIG_HOTPLUG_CPU
d39ad278
SB
1367 cpu_notifier_register_begin();
1368 __unregister_cpu_notifier(&buffer->cpu_notify);
554f786e
SR
1369#endif
1370
7a8e76a3
SR
1371 for_each_buffer_cpu(buffer, cpu)
1372 rb_free_cpu_buffer(buffer->buffers[cpu]);
1373
d39ad278
SB
1374#ifdef CONFIG_HOTPLUG_CPU
1375 cpu_notifier_register_done();
1376#endif
554f786e 1377
bd3f0221 1378 kfree(buffer->buffers);
9e01c1b7
RR
1379 free_cpumask_var(buffer->cpumask);
1380
7a8e76a3
SR
1381 kfree(buffer);
1382}
c4f50183 1383EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1384
37886f6a
SR
1385void ring_buffer_set_clock(struct ring_buffer *buffer,
1386 u64 (*clock)(void))
1387{
1388 buffer->clock = clock;
1389}
1390
7a8e76a3
SR
1391static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1392
83f40318
VN
1393static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1394{
1395 return local_read(&bpage->entries) & RB_WRITE_MASK;
1396}
1397
1398static inline unsigned long rb_page_write(struct buffer_page *bpage)
1399{
1400 return local_read(&bpage->write) & RB_WRITE_MASK;
1401}
1402
5040b4b7 1403static int
83f40318 1404rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1405{
83f40318
VN
1406 struct list_head *tail_page, *to_remove, *next_page;
1407 struct buffer_page *to_remove_page, *tmp_iter_page;
1408 struct buffer_page *last_page, *first_page;
1409 unsigned int nr_removed;
1410 unsigned long head_bit;
1411 int page_entries;
1412
1413 head_bit = 0;
7a8e76a3 1414
5389f6fa 1415 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1416 atomic_inc(&cpu_buffer->record_disabled);
1417 /*
1418 * We don't race with the readers since we have acquired the reader
1419 * lock. We also don't race with writers after disabling recording.
1420 * This makes it easy to figure out the first and the last page to be
1421 * removed from the list. We unlink all the pages in between including
1422 * the first and last pages. This is done in a busy loop so that we
1423 * lose the least number of traces.
1424 * The pages are freed after we restart recording and unlock readers.
1425 */
1426 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1427
83f40318
VN
1428 /*
1429 * tail page might be on reader page, we remove the next page
1430 * from the ring buffer
1431 */
1432 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1433 tail_page = rb_list_head(tail_page->next);
1434 to_remove = tail_page;
1435
1436 /* start of pages to remove */
1437 first_page = list_entry(rb_list_head(to_remove->next),
1438 struct buffer_page, list);
1439
1440 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1441 to_remove = rb_list_head(to_remove)->next;
1442 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1443 }
7a8e76a3 1444
83f40318 1445 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1446
83f40318
VN
1447 /*
1448 * Now we remove all pages between tail_page and next_page.
1449 * Make sure that we have head_bit value preserved for the
1450 * next page
1451 */
1452 tail_page->next = (struct list_head *)((unsigned long)next_page |
1453 head_bit);
1454 next_page = rb_list_head(next_page);
1455 next_page->prev = tail_page;
1456
1457 /* make sure pages points to a valid page in the ring buffer */
1458 cpu_buffer->pages = next_page;
1459
1460 /* update head page */
1461 if (head_bit)
1462 cpu_buffer->head_page = list_entry(next_page,
1463 struct buffer_page, list);
1464
1465 /*
1466 * change read pointer to make sure any read iterators reset
1467 * themselves
1468 */
1469 cpu_buffer->read = 0;
1470
1471 /* pages are removed, resume tracing and then free the pages */
1472 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1473 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1474
1475 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1476
1477 /* last buffer page to remove */
1478 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1479 list);
1480 tmp_iter_page = first_page;
1481
1482 do {
1483 to_remove_page = tmp_iter_page;
1484 rb_inc_page(cpu_buffer, &tmp_iter_page);
1485
1486 /* update the counters */
1487 page_entries = rb_page_entries(to_remove_page);
1488 if (page_entries) {
1489 /*
1490 * If something was added to this page, it was full
1491 * since it is not the tail page. So we deduct the
1492 * bytes consumed in ring buffer from here.
48fdc72f 1493 * Increment overrun to account for the lost events.
83f40318 1494 */
48fdc72f 1495 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1496 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1497 }
1498
1499 /*
1500 * We have already removed references to this list item, just
1501 * free up the buffer_page and its page
1502 */
1503 free_buffer_page(to_remove_page);
1504 nr_removed--;
1505
1506 } while (to_remove_page != last_page);
1507
1508 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1509
1510 return nr_removed == 0;
7a8e76a3
SR
1511}
1512
5040b4b7
VN
1513static int
1514rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1515{
5040b4b7
VN
1516 struct list_head *pages = &cpu_buffer->new_pages;
1517 int retries, success;
7a8e76a3 1518
5389f6fa 1519 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1520 /*
1521 * We are holding the reader lock, so the reader page won't be swapped
1522 * in the ring buffer. Now we are racing with the writer trying to
1523 * move head page and the tail page.
1524 * We are going to adapt the reader page update process where:
1525 * 1. We first splice the start and end of list of new pages between
1526 * the head page and its previous page.
1527 * 2. We cmpxchg the prev_page->next to point from head page to the
1528 * start of new pages list.
1529 * 3. Finally, we update the head->prev to the end of new list.
1530 *
1531 * We will try this process 10 times, to make sure that we don't keep
1532 * spinning.
1533 */
1534 retries = 10;
1535 success = 0;
1536 while (retries--) {
1537 struct list_head *head_page, *prev_page, *r;
1538 struct list_head *last_page, *first_page;
1539 struct list_head *head_page_with_bit;
77ae365e 1540
5040b4b7 1541 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1542 if (!head_page)
1543 break;
5040b4b7
VN
1544 prev_page = head_page->prev;
1545
1546 first_page = pages->next;
1547 last_page = pages->prev;
1548
1549 head_page_with_bit = (struct list_head *)
1550 ((unsigned long)head_page | RB_PAGE_HEAD);
1551
1552 last_page->next = head_page_with_bit;
1553 first_page->prev = prev_page;
1554
1555 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1556
1557 if (r == head_page_with_bit) {
1558 /*
1559 * yay, we replaced the page pointer to our new list,
1560 * now, we just have to update to head page's prev
1561 * pointer to point to end of list
1562 */
1563 head_page->prev = last_page;
1564 success = 1;
1565 break;
1566 }
7a8e76a3 1567 }
7a8e76a3 1568
5040b4b7
VN
1569 if (success)
1570 INIT_LIST_HEAD(pages);
1571 /*
1572 * If we weren't successful in adding in new pages, warn and stop
1573 * tracing
1574 */
1575 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1576 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1577
1578 /* free pages if they weren't inserted */
1579 if (!success) {
1580 struct buffer_page *bpage, *tmp;
1581 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1582 list) {
1583 list_del_init(&bpage->list);
1584 free_buffer_page(bpage);
1585 }
1586 }
1587 return success;
7a8e76a3
SR
1588}
1589
83f40318 1590static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1591{
5040b4b7
VN
1592 int success;
1593
438ced17 1594 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1595 success = rb_insert_pages(cpu_buffer);
438ced17 1596 else
5040b4b7
VN
1597 success = rb_remove_pages(cpu_buffer,
1598 -cpu_buffer->nr_pages_to_update);
83f40318 1599
5040b4b7
VN
1600 if (success)
1601 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1602}
1603
1604static void update_pages_handler(struct work_struct *work)
1605{
1606 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1607 struct ring_buffer_per_cpu, update_pages_work);
1608 rb_update_pages(cpu_buffer);
05fdd70d 1609 complete(&cpu_buffer->update_done);
438ced17
VN
1610}
1611
7a8e76a3
SR
1612/**
1613 * ring_buffer_resize - resize the ring buffer
1614 * @buffer: the buffer to resize.
1615 * @size: the new size.
d611851b 1616 * @cpu_id: the cpu buffer to resize
7a8e76a3 1617 *
7a8e76a3
SR
1618 * Minimum size is 2 * BUF_PAGE_SIZE.
1619 *
83f40318 1620 * Returns 0 on success and < 0 on failure.
7a8e76a3 1621 */
438ced17
VN
1622int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1623 int cpu_id)
7a8e76a3
SR
1624{
1625 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1626 unsigned nr_pages;
83f40318 1627 int cpu, err = 0;
7a8e76a3 1628
ee51a1de
IM
1629 /*
1630 * Always succeed at resizing a non-existent buffer:
1631 */
1632 if (!buffer)
1633 return size;
1634
6a31e1f1
SR
1635 /* Make sure the requested buffer exists */
1636 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1637 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1638 return size;
1639
7a8e76a3
SR
1640 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1641 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1642
1643 /* we need a minimum of two pages */
1644 if (size < BUF_PAGE_SIZE * 2)
1645 size = BUF_PAGE_SIZE * 2;
1646
83f40318 1647 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1648
83f40318
VN
1649 /*
1650 * Don't succeed if resizing is disabled, as a reader might be
1651 * manipulating the ring buffer and is expecting a sane state while
1652 * this is true.
1653 */
1654 if (atomic_read(&buffer->resize_disabled))
1655 return -EBUSY;
18421015 1656
83f40318 1657 /* prevent another thread from changing buffer sizes */
7a8e76a3 1658 mutex_lock(&buffer->mutex);
7a8e76a3 1659
438ced17
VN
1660 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1661 /* calculate the pages to update */
7a8e76a3
SR
1662 for_each_buffer_cpu(buffer, cpu) {
1663 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1664
438ced17
VN
1665 cpu_buffer->nr_pages_to_update = nr_pages -
1666 cpu_buffer->nr_pages;
438ced17
VN
1667 /*
1668 * nothing more to do for removing pages or no update
1669 */
1670 if (cpu_buffer->nr_pages_to_update <= 0)
1671 continue;
d7ec4bfe 1672 /*
438ced17
VN
1673 * to add pages, make sure all new pages can be
1674 * allocated without receiving ENOMEM
d7ec4bfe 1675 */
438ced17
VN
1676 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1677 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1678 &cpu_buffer->new_pages, cpu)) {
438ced17 1679 /* not enough memory for new pages */
83f40318
VN
1680 err = -ENOMEM;
1681 goto out_err;
1682 }
1683 }
1684
1685 get_online_cpus();
1686 /*
1687 * Fire off all the required work handlers
05fdd70d 1688 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1689 * since we can change their buffer sizes without any race.
1690 */
1691 for_each_buffer_cpu(buffer, cpu) {
1692 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1693 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1694 continue;
1695
f5eb5588
SRRH
1696 /* The update must run on the CPU that is being updated. */
1697 preempt_disable();
1698 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1699 rb_update_pages(cpu_buffer);
1700 cpu_buffer->nr_pages_to_update = 0;
1701 } else {
1702 /*
1703 * Can not disable preemption for schedule_work_on()
1704 * on PREEMPT_RT.
1705 */
1706 preempt_enable();
05fdd70d
VN
1707 schedule_work_on(cpu,
1708 &cpu_buffer->update_pages_work);
f5eb5588
SRRH
1709 preempt_disable();
1710 }
1711 preempt_enable();
7a8e76a3 1712 }
7a8e76a3 1713
438ced17
VN
1714 /* wait for all the updates to complete */
1715 for_each_buffer_cpu(buffer, cpu) {
1716 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1717 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1718 continue;
1719
05fdd70d
VN
1720 if (cpu_online(cpu))
1721 wait_for_completion(&cpu_buffer->update_done);
83f40318 1722 cpu_buffer->nr_pages_to_update = 0;
438ced17 1723 }
83f40318
VN
1724
1725 put_online_cpus();
438ced17 1726 } else {
8e49f418
VN
1727 /* Make sure this CPU has been intitialized */
1728 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1729 goto out;
1730
438ced17 1731 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1732
438ced17
VN
1733 if (nr_pages == cpu_buffer->nr_pages)
1734 goto out;
7a8e76a3 1735
438ced17
VN
1736 cpu_buffer->nr_pages_to_update = nr_pages -
1737 cpu_buffer->nr_pages;
1738
1739 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1740 if (cpu_buffer->nr_pages_to_update > 0 &&
1741 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1742 &cpu_buffer->new_pages, cpu_id)) {
1743 err = -ENOMEM;
1744 goto out_err;
1745 }
438ced17 1746
83f40318
VN
1747 get_online_cpus();
1748
f5eb5588
SRRH
1749 preempt_disable();
1750 /* The update must run on the CPU that is being updated. */
1751 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1752 rb_update_pages(cpu_buffer);
1753 else {
1754 /*
1755 * Can not disable preemption for schedule_work_on()
1756 * on PREEMPT_RT.
1757 */
1758 preempt_enable();
83f40318
VN
1759 schedule_work_on(cpu_id,
1760 &cpu_buffer->update_pages_work);
05fdd70d 1761 wait_for_completion(&cpu_buffer->update_done);
f5eb5588
SRRH
1762 preempt_disable();
1763 }
1764 preempt_enable();
83f40318 1765
83f40318 1766 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1767 put_online_cpus();
438ced17 1768 }
7a8e76a3
SR
1769
1770 out:
659f451f
SR
1771 /*
1772 * The ring buffer resize can happen with the ring buffer
1773 * enabled, so that the update disturbs the tracing as little
1774 * as possible. But if the buffer is disabled, we do not need
1775 * to worry about that, and we can take the time to verify
1776 * that the buffer is not corrupt.
1777 */
1778 if (atomic_read(&buffer->record_disabled)) {
1779 atomic_inc(&buffer->record_disabled);
1780 /*
1781 * Even though the buffer was disabled, we must make sure
1782 * that it is truly disabled before calling rb_check_pages.
1783 * There could have been a race between checking
1784 * record_disable and incrementing it.
1785 */
1786 synchronize_sched();
1787 for_each_buffer_cpu(buffer, cpu) {
1788 cpu_buffer = buffer->buffers[cpu];
1789 rb_check_pages(cpu_buffer);
1790 }
1791 atomic_dec(&buffer->record_disabled);
1792 }
1793
7a8e76a3 1794 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1795 return size;
1796
83f40318 1797 out_err:
438ced17
VN
1798 for_each_buffer_cpu(buffer, cpu) {
1799 struct buffer_page *bpage, *tmp;
83f40318 1800
438ced17 1801 cpu_buffer = buffer->buffers[cpu];
438ced17 1802 cpu_buffer->nr_pages_to_update = 0;
83f40318 1803
438ced17
VN
1804 if (list_empty(&cpu_buffer->new_pages))
1805 continue;
83f40318 1806
438ced17
VN
1807 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1808 list) {
1809 list_del_init(&bpage->list);
1810 free_buffer_page(bpage);
1811 }
7a8e76a3 1812 }
641d2f63 1813 mutex_unlock(&buffer->mutex);
83f40318 1814 return err;
7a8e76a3 1815}
c4f50183 1816EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1817
750912fa
DS
1818void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1819{
1820 mutex_lock(&buffer->mutex);
1821 if (val)
1822 buffer->flags |= RB_FL_OVERWRITE;
1823 else
1824 buffer->flags &= ~RB_FL_OVERWRITE;
1825 mutex_unlock(&buffer->mutex);
1826}
1827EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1828
8789a9e7 1829static inline void *
044fa782 1830__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1831{
044fa782 1832 return bpage->data + index;
8789a9e7
SR
1833}
1834
044fa782 1835static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1836{
044fa782 1837 return bpage->page->data + index;
7a8e76a3
SR
1838}
1839
1840static inline struct ring_buffer_event *
d769041f 1841rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1842{
6f807acd
SR
1843 return __rb_page_index(cpu_buffer->reader_page,
1844 cpu_buffer->reader_page->read);
1845}
1846
7a8e76a3
SR
1847static inline struct ring_buffer_event *
1848rb_iter_head_event(struct ring_buffer_iter *iter)
1849{
6f807acd 1850 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1851}
1852
bf41a158
SR
1853static inline unsigned rb_page_commit(struct buffer_page *bpage)
1854{
abc9b56d 1855 return local_read(&bpage->page->commit);
bf41a158
SR
1856}
1857
25985edc 1858/* Size is determined by what has been committed */
bf41a158
SR
1859static inline unsigned rb_page_size(struct buffer_page *bpage)
1860{
1861 return rb_page_commit(bpage);
1862}
1863
1864static inline unsigned
1865rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1866{
1867 return rb_page_commit(cpu_buffer->commit_page);
1868}
1869
bf41a158
SR
1870static inline unsigned
1871rb_event_index(struct ring_buffer_event *event)
1872{
1873 unsigned long addr = (unsigned long)event;
1874
22f470f8 1875 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1876}
1877
0f0c85fc 1878static inline int
fa743953
SR
1879rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1880 struct ring_buffer_event *event)
bf41a158
SR
1881{
1882 unsigned long addr = (unsigned long)event;
1883 unsigned long index;
1884
1885 index = rb_event_index(event);
1886 addr &= PAGE_MASK;
1887
1888 return cpu_buffer->commit_page->page == (void *)addr &&
1889 rb_commit_index(cpu_buffer) == index;
1890}
1891
34a148bf 1892static void
bf41a158 1893rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1894{
77ae365e
SR
1895 unsigned long max_count;
1896
bf41a158
SR
1897 /*
1898 * We only race with interrupts and NMIs on this CPU.
1899 * If we own the commit event, then we can commit
1900 * all others that interrupted us, since the interruptions
1901 * are in stack format (they finish before they come
1902 * back to us). This allows us to do a simple loop to
1903 * assign the commit to the tail.
1904 */
a8ccf1d6 1905 again:
438ced17 1906 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1907
bf41a158 1908 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1909 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1910 return;
1911 if (RB_WARN_ON(cpu_buffer,
1912 rb_is_reader_page(cpu_buffer->tail_page)))
1913 return;
1914 local_set(&cpu_buffer->commit_page->page->commit,
1915 rb_page_write(cpu_buffer->commit_page));
bf41a158 1916 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1917 cpu_buffer->write_stamp =
1918 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1919 /* add barrier to keep gcc from optimizing too much */
1920 barrier();
1921 }
1922 while (rb_commit_index(cpu_buffer) !=
1923 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1924
1925 local_set(&cpu_buffer->commit_page->page->commit,
1926 rb_page_write(cpu_buffer->commit_page));
1927 RB_WARN_ON(cpu_buffer,
1928 local_read(&cpu_buffer->commit_page->page->commit) &
1929 ~RB_WRITE_MASK);
bf41a158
SR
1930 barrier();
1931 }
a8ccf1d6
SR
1932
1933 /* again, keep gcc from optimizing */
1934 barrier();
1935
1936 /*
1937 * If an interrupt came in just after the first while loop
1938 * and pushed the tail page forward, we will be left with
1939 * a dangling commit that will never go forward.
1940 */
1941 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1942 goto again;
7a8e76a3
SR
1943}
1944
d769041f 1945static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1946{
abc9b56d 1947 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1948 cpu_buffer->reader_page->read = 0;
d769041f
SR
1949}
1950
34a148bf 1951static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1952{
1953 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1954
1955 /*
1956 * The iterator could be on the reader page (it starts there).
1957 * But the head could have moved, since the reader was
1958 * found. Check for this case and assign the iterator
1959 * to the head page instead of next.
1960 */
1961 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1962 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1963 else
1964 rb_inc_page(cpu_buffer, &iter->head_page);
1965
abc9b56d 1966 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1967 iter->head = 0;
1968}
1969
69d1b839
SR
1970/* Slow path, do not inline */
1971static noinline struct ring_buffer_event *
1972rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1973{
1974 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1975
1976 /* Not the first event on the page? */
1977 if (rb_event_index(event)) {
1978 event->time_delta = delta & TS_MASK;
1979 event->array[0] = delta >> TS_SHIFT;
1980 } else {
1981 /* nope, just zero it */
1982 event->time_delta = 0;
1983 event->array[0] = 0;
1984 }
1985
1986 return skip_time_extend(event);
1987}
1988
7a8e76a3 1989/**
01e3e710 1990 * rb_update_event - update event type and data
7a8e76a3
SR
1991 * @event: the even to update
1992 * @type: the type of event
1993 * @length: the size of the event field in the ring buffer
1994 *
1995 * Update the type and data fields of the event. The length
1996 * is the actual size that is written to the ring buffer,
1997 * and with this, we can determine what to place into the
1998 * data field.
1999 */
34a148bf 2000static void
69d1b839
SR
2001rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2002 struct ring_buffer_event *event, unsigned length,
2003 int add_timestamp, u64 delta)
7a8e76a3 2004{
69d1b839
SR
2005 /* Only a commit updates the timestamp */
2006 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2007 delta = 0;
7a8e76a3 2008
69d1b839
SR
2009 /*
2010 * If we need to add a timestamp, then we
2011 * add it to the start of the resevered space.
2012 */
2013 if (unlikely(add_timestamp)) {
2014 event = rb_add_time_stamp(event, delta);
2015 length -= RB_LEN_TIME_EXTEND;
2016 delta = 0;
7a8e76a3 2017 }
69d1b839
SR
2018
2019 event->time_delta = delta;
2020 length -= RB_EVNT_HDR_SIZE;
2021 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2022 event->type_len = 0;
2023 event->array[0] = length;
2024 } else
2025 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
2026}
2027
77ae365e
SR
2028/*
2029 * rb_handle_head_page - writer hit the head page
2030 *
2031 * Returns: +1 to retry page
2032 * 0 to continue
2033 * -1 on error
2034 */
2035static int
2036rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2037 struct buffer_page *tail_page,
2038 struct buffer_page *next_page)
2039{
2040 struct buffer_page *new_head;
2041 int entries;
2042 int type;
2043 int ret;
2044
2045 entries = rb_page_entries(next_page);
2046
2047 /*
2048 * The hard part is here. We need to move the head
2049 * forward, and protect against both readers on
2050 * other CPUs and writers coming in via interrupts.
2051 */
2052 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2053 RB_PAGE_HEAD);
2054
2055 /*
2056 * type can be one of four:
2057 * NORMAL - an interrupt already moved it for us
2058 * HEAD - we are the first to get here.
2059 * UPDATE - we are the interrupt interrupting
2060 * a current move.
2061 * MOVED - a reader on another CPU moved the next
2062 * pointer to its reader page. Give up
2063 * and try again.
2064 */
2065
2066 switch (type) {
2067 case RB_PAGE_HEAD:
2068 /*
2069 * We changed the head to UPDATE, thus
2070 * it is our responsibility to update
2071 * the counters.
2072 */
2073 local_add(entries, &cpu_buffer->overrun);
c64e148a 2074 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2075
2076 /*
2077 * The entries will be zeroed out when we move the
2078 * tail page.
2079 */
2080
2081 /* still more to do */
2082 break;
2083
2084 case RB_PAGE_UPDATE:
2085 /*
2086 * This is an interrupt that interrupt the
2087 * previous update. Still more to do.
2088 */
2089 break;
2090 case RB_PAGE_NORMAL:
2091 /*
2092 * An interrupt came in before the update
2093 * and processed this for us.
2094 * Nothing left to do.
2095 */
2096 return 1;
2097 case RB_PAGE_MOVED:
2098 /*
2099 * The reader is on another CPU and just did
2100 * a swap with our next_page.
2101 * Try again.
2102 */
2103 return 1;
2104 default:
2105 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2106 return -1;
2107 }
2108
2109 /*
2110 * Now that we are here, the old head pointer is
2111 * set to UPDATE. This will keep the reader from
2112 * swapping the head page with the reader page.
2113 * The reader (on another CPU) will spin till
2114 * we are finished.
2115 *
2116 * We just need to protect against interrupts
2117 * doing the job. We will set the next pointer
2118 * to HEAD. After that, we set the old pointer
2119 * to NORMAL, but only if it was HEAD before.
2120 * otherwise we are an interrupt, and only
2121 * want the outer most commit to reset it.
2122 */
2123 new_head = next_page;
2124 rb_inc_page(cpu_buffer, &new_head);
2125
2126 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2127 RB_PAGE_NORMAL);
2128
2129 /*
2130 * Valid returns are:
2131 * HEAD - an interrupt came in and already set it.
2132 * NORMAL - One of two things:
2133 * 1) We really set it.
2134 * 2) A bunch of interrupts came in and moved
2135 * the page forward again.
2136 */
2137 switch (ret) {
2138 case RB_PAGE_HEAD:
2139 case RB_PAGE_NORMAL:
2140 /* OK */
2141 break;
2142 default:
2143 RB_WARN_ON(cpu_buffer, 1);
2144 return -1;
2145 }
2146
2147 /*
2148 * It is possible that an interrupt came in,
2149 * set the head up, then more interrupts came in
2150 * and moved it again. When we get back here,
2151 * the page would have been set to NORMAL but we
2152 * just set it back to HEAD.
2153 *
2154 * How do you detect this? Well, if that happened
2155 * the tail page would have moved.
2156 */
2157 if (ret == RB_PAGE_NORMAL) {
2158 /*
2159 * If the tail had moved passed next, then we need
2160 * to reset the pointer.
2161 */
2162 if (cpu_buffer->tail_page != tail_page &&
2163 cpu_buffer->tail_page != next_page)
2164 rb_head_page_set_normal(cpu_buffer, new_head,
2165 next_page,
2166 RB_PAGE_HEAD);
2167 }
2168
2169 /*
2170 * If this was the outer most commit (the one that
2171 * changed the original pointer from HEAD to UPDATE),
2172 * then it is up to us to reset it to NORMAL.
2173 */
2174 if (type == RB_PAGE_HEAD) {
2175 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2176 tail_page,
2177 RB_PAGE_UPDATE);
2178 if (RB_WARN_ON(cpu_buffer,
2179 ret != RB_PAGE_UPDATE))
2180 return -1;
2181 }
2182
2183 return 0;
2184}
2185
34a148bf 2186static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2187{
2188 struct ring_buffer_event event; /* Used only for sizeof array */
2189
2190 /* zero length can cause confusions */
2191 if (!length)
2192 length = 1;
2193
2271048d 2194 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2195 length += sizeof(event.array[0]);
2196
2197 length += RB_EVNT_HDR_SIZE;
2271048d 2198 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2199
2200 return length;
2201}
2202
c7b09308
SR
2203static inline void
2204rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2205 struct buffer_page *tail_page,
2206 unsigned long tail, unsigned long length)
2207{
2208 struct ring_buffer_event *event;
2209
2210 /*
2211 * Only the event that crossed the page boundary
2212 * must fill the old tail_page with padding.
2213 */
2214 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2215 /*
2216 * If the page was filled, then we still need
2217 * to update the real_end. Reset it to zero
2218 * and the reader will ignore it.
2219 */
2220 if (tail == BUF_PAGE_SIZE)
2221 tail_page->real_end = 0;
2222
c7b09308
SR
2223 local_sub(length, &tail_page->write);
2224 return;
2225 }
2226
2227 event = __rb_page_index(tail_page, tail);
b0b7065b 2228 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2229
c64e148a
VN
2230 /* account for padding bytes */
2231 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2232
ff0ff84a
SR
2233 /*
2234 * Save the original length to the meta data.
2235 * This will be used by the reader to add lost event
2236 * counter.
2237 */
2238 tail_page->real_end = tail;
2239
c7b09308
SR
2240 /*
2241 * If this event is bigger than the minimum size, then
2242 * we need to be careful that we don't subtract the
2243 * write counter enough to allow another writer to slip
2244 * in on this page.
2245 * We put in a discarded commit instead, to make sure
2246 * that this space is not used again.
2247 *
2248 * If we are less than the minimum size, we don't need to
2249 * worry about it.
2250 */
2251 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2252 /* No room for any events */
2253
2254 /* Mark the rest of the page with padding */
2255 rb_event_set_padding(event);
2256
2257 /* Set the write back to the previous setting */
2258 local_sub(length, &tail_page->write);
2259 return;
2260 }
2261
2262 /* Put in a discarded event */
2263 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2264 event->type_len = RINGBUF_TYPE_PADDING;
2265 /* time delta must be non zero */
2266 event->time_delta = 1;
c7b09308
SR
2267
2268 /* Set write to end of buffer */
2269 length = (tail + length) - BUF_PAGE_SIZE;
2270 local_sub(length, &tail_page->write);
2271}
6634ff26 2272
747e94ae
SR
2273/*
2274 * This is the slow path, force gcc not to inline it.
2275 */
2276static noinline struct ring_buffer_event *
6634ff26
SR
2277rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2278 unsigned long length, unsigned long tail,
e8bc43e8 2279 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2280{
5a50e33c 2281 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2282 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2283 struct buffer_page *next_page;
2284 int ret;
aa20ae84
SR
2285
2286 next_page = tail_page;
2287
aa20ae84
SR
2288 rb_inc_page(cpu_buffer, &next_page);
2289
aa20ae84
SR
2290 /*
2291 * If for some reason, we had an interrupt storm that made
2292 * it all the way around the buffer, bail, and warn
2293 * about it.
2294 */
2295 if (unlikely(next_page == commit_page)) {
77ae365e 2296 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2297 goto out_reset;
2298 }
2299
77ae365e
SR
2300 /*
2301 * This is where the fun begins!
2302 *
2303 * We are fighting against races between a reader that
2304 * could be on another CPU trying to swap its reader
2305 * page with the buffer head.
2306 *
2307 * We are also fighting against interrupts coming in and
2308 * moving the head or tail on us as well.
2309 *
2310 * If the next page is the head page then we have filled
2311 * the buffer, unless the commit page is still on the
2312 * reader page.
2313 */
2314 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2315
77ae365e
SR
2316 /*
2317 * If the commit is not on the reader page, then
2318 * move the header page.
2319 */
2320 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2321 /*
2322 * If we are not in overwrite mode,
2323 * this is easy, just stop here.
2324 */
884bfe89
SP
2325 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2326 local_inc(&cpu_buffer->dropped_events);
77ae365e 2327 goto out_reset;
884bfe89 2328 }
77ae365e
SR
2329
2330 ret = rb_handle_head_page(cpu_buffer,
2331 tail_page,
2332 next_page);
2333 if (ret < 0)
2334 goto out_reset;
2335 if (ret)
2336 goto out_again;
2337 } else {
2338 /*
2339 * We need to be careful here too. The
2340 * commit page could still be on the reader
2341 * page. We could have a small buffer, and
2342 * have filled up the buffer with events
2343 * from interrupts and such, and wrapped.
2344 *
2345 * Note, if the tail page is also the on the
2346 * reader_page, we let it move out.
2347 */
2348 if (unlikely((cpu_buffer->commit_page !=
2349 cpu_buffer->tail_page) &&
2350 (cpu_buffer->commit_page ==
2351 cpu_buffer->reader_page))) {
2352 local_inc(&cpu_buffer->commit_overrun);
2353 goto out_reset;
2354 }
aa20ae84
SR
2355 }
2356 }
2357
77ae365e
SR
2358 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2359 if (ret) {
2360 /*
2361 * Nested commits always have zero deltas, so
2362 * just reread the time stamp
2363 */
e8bc43e8
SR
2364 ts = rb_time_stamp(buffer);
2365 next_page->page->time_stamp = ts;
aa20ae84
SR
2366 }
2367
77ae365e 2368 out_again:
aa20ae84 2369
77ae365e 2370 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2371
2372 /* fail and let the caller try again */
2373 return ERR_PTR(-EAGAIN);
2374
45141d46 2375 out_reset:
6f3b3440 2376 /* reset write */
c7b09308 2377 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2378
bf41a158 2379 return NULL;
7a8e76a3
SR
2380}
2381
6634ff26
SR
2382static struct ring_buffer_event *
2383__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2384 unsigned long length, u64 ts,
2385 u64 delta, int add_timestamp)
6634ff26 2386{
5a50e33c 2387 struct buffer_page *tail_page;
6634ff26
SR
2388 struct ring_buffer_event *event;
2389 unsigned long tail, write;
2390
69d1b839
SR
2391 /*
2392 * If the time delta since the last event is too big to
2393 * hold in the time field of the event, then we append a
2394 * TIME EXTEND event ahead of the data event.
2395 */
2396 if (unlikely(add_timestamp))
2397 length += RB_LEN_TIME_EXTEND;
2398
6634ff26
SR
2399 tail_page = cpu_buffer->tail_page;
2400 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2401
2402 /* set write to only the index of the write */
2403 write &= RB_WRITE_MASK;
6634ff26
SR
2404 tail = write - length;
2405
d651aa1d
SRRH
2406 /*
2407 * If this is the first commit on the page, then it has the same
2408 * timestamp as the page itself.
2409 */
2410 if (!tail)
2411 delta = 0;
2412
6634ff26 2413 /* See if we shot pass the end of this buffer page */
747e94ae 2414 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2415 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2416 tail_page, ts);
6634ff26
SR
2417
2418 /* We reserved something on the buffer */
2419
6634ff26 2420 event = __rb_page_index(tail_page, tail);
1744a21d 2421 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2422 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2423
69d1b839 2424 local_inc(&tail_page->entries);
6634ff26
SR
2425
2426 /*
fa743953
SR
2427 * If this is the first commit on the page, then update
2428 * its timestamp.
6634ff26 2429 */
fa743953 2430 if (!tail)
e8bc43e8 2431 tail_page->page->time_stamp = ts;
6634ff26 2432
c64e148a
VN
2433 /* account for these added bytes */
2434 local_add(length, &cpu_buffer->entries_bytes);
2435
6634ff26
SR
2436 return event;
2437}
2438
edd813bf
SR
2439static inline int
2440rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2441 struct ring_buffer_event *event)
2442{
2443 unsigned long new_index, old_index;
2444 struct buffer_page *bpage;
2445 unsigned long index;
2446 unsigned long addr;
2447
2448 new_index = rb_event_index(event);
69d1b839 2449 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2450 addr = (unsigned long)event;
2451 addr &= PAGE_MASK;
2452
2453 bpage = cpu_buffer->tail_page;
2454
2455 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2456 unsigned long write_mask =
2457 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2458 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2459 /*
2460 * This is on the tail page. It is possible that
2461 * a write could come in and move the tail page
2462 * and write to the next page. That is fine
2463 * because we just shorten what is on this page.
2464 */
77ae365e
SR
2465 old_index += write_mask;
2466 new_index += write_mask;
edd813bf 2467 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2468 if (index == old_index) {
2469 /* update counters */
2470 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2471 return 1;
c64e148a 2472 }
edd813bf
SR
2473 }
2474
2475 /* could not discard */
2476 return 0;
2477}
2478
fa743953
SR
2479static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2480{
2481 local_inc(&cpu_buffer->committing);
2482 local_inc(&cpu_buffer->commits);
2483}
2484
d9abde21 2485static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2486{
2487 unsigned long commits;
2488
2489 if (RB_WARN_ON(cpu_buffer,
2490 !local_read(&cpu_buffer->committing)))
2491 return;
2492
2493 again:
2494 commits = local_read(&cpu_buffer->commits);
2495 /* synchronize with interrupts */
2496 barrier();
2497 if (local_read(&cpu_buffer->committing) == 1)
2498 rb_set_commit_to_write(cpu_buffer);
2499
2500 local_dec(&cpu_buffer->committing);
2501
2502 /* synchronize with interrupts */
2503 barrier();
2504
2505 /*
2506 * Need to account for interrupts coming in between the
2507 * updating of the commit page and the clearing of the
2508 * committing counter.
2509 */
2510 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2511 !local_read(&cpu_buffer->committing)) {
2512 local_inc(&cpu_buffer->committing);
2513 goto again;
2514 }
2515}
2516
7a8e76a3 2517static struct ring_buffer_event *
62f0b3eb
SR
2518rb_reserve_next_event(struct ring_buffer *buffer,
2519 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2520 unsigned long length)
7a8e76a3
SR
2521{
2522 struct ring_buffer_event *event;
69d1b839 2523 u64 ts, delta;
818e3dd3 2524 int nr_loops = 0;
69d1b839 2525 int add_timestamp;
140ff891 2526 u64 diff;
7a8e76a3 2527
fa743953
SR
2528 rb_start_commit(cpu_buffer);
2529
85bac32c 2530#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2531 /*
2532 * Due to the ability to swap a cpu buffer from a buffer
2533 * it is possible it was swapped before we committed.
2534 * (committing stops a swap). We check for it here and
2535 * if it happened, we have to fail the write.
2536 */
2537 barrier();
2538 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2539 local_dec(&cpu_buffer->committing);
2540 local_dec(&cpu_buffer->commits);
2541 return NULL;
2542 }
85bac32c 2543#endif
62f0b3eb 2544
be957c44 2545 length = rb_calculate_event_length(length);
bf41a158 2546 again:
69d1b839
SR
2547 add_timestamp = 0;
2548 delta = 0;
2549
818e3dd3
SR
2550 /*
2551 * We allow for interrupts to reenter here and do a trace.
2552 * If one does, it will cause this original code to loop
2553 * back here. Even with heavy interrupts happening, this
2554 * should only happen a few times in a row. If this happens
2555 * 1000 times in a row, there must be either an interrupt
2556 * storm or we have something buggy.
2557 * Bail!
2558 */
3e89c7bb 2559 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2560 goto out_fail;
818e3dd3 2561
6d3f1e12 2562 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2563 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2564
140ff891
SR
2565 /* make sure this diff is calculated here */
2566 barrier();
bf41a158 2567
140ff891
SR
2568 /* Did the write stamp get updated already? */
2569 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2570 delta = diff;
2571 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2572 int local_clock_stable = 1;
2573#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
35af99e6 2574 local_clock_stable = sched_clock_stable();
31274d72 2575#endif
69d1b839 2576 WARN_ONCE(delta > (1ULL << 59),
31274d72 2577 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2578 (unsigned long long)delta,
2579 (unsigned long long)ts,
31274d72
JO
2580 (unsigned long long)cpu_buffer->write_stamp,
2581 local_clock_stable ? "" :
2582 "If you just came from a suspend/resume,\n"
2583 "please switch to the trace global clock:\n"
2584 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2585 add_timestamp = 1;
7a8e76a3 2586 }
168b6b1d 2587 }
7a8e76a3 2588
69d1b839
SR
2589 event = __rb_reserve_next(cpu_buffer, length, ts,
2590 delta, add_timestamp);
168b6b1d 2591 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2592 goto again;
2593
fa743953
SR
2594 if (!event)
2595 goto out_fail;
7a8e76a3 2596
7a8e76a3 2597 return event;
fa743953
SR
2598
2599 out_fail:
2600 rb_end_commit(cpu_buffer);
2601 return NULL;
7a8e76a3
SR
2602}
2603
1155de47
PM
2604#ifdef CONFIG_TRACING
2605
567cd4da
SR
2606/*
2607 * The lock and unlock are done within a preempt disable section.
2608 * The current_context per_cpu variable can only be modified
2609 * by the current task between lock and unlock. But it can
2610 * be modified more than once via an interrupt. To pass this
2611 * information from the lock to the unlock without having to
2612 * access the 'in_interrupt()' functions again (which do show
2613 * a bit of overhead in something as critical as function tracing,
2614 * we use a bitmask trick.
2615 *
2616 * bit 0 = NMI context
2617 * bit 1 = IRQ context
2618 * bit 2 = SoftIRQ context
2619 * bit 3 = normal context.
2620 *
2621 * This works because this is the order of contexts that can
2622 * preempt other contexts. A SoftIRQ never preempts an IRQ
2623 * context.
2624 *
2625 * When the context is determined, the corresponding bit is
2626 * checked and set (if it was set, then a recursion of that context
2627 * happened).
2628 *
2629 * On unlock, we need to clear this bit. To do so, just subtract
2630 * 1 from the current_context and AND it to itself.
2631 *
2632 * (binary)
2633 * 101 - 1 = 100
2634 * 101 & 100 = 100 (clearing bit zero)
2635 *
2636 * 1010 - 1 = 1001
2637 * 1010 & 1001 = 1000 (clearing bit 1)
2638 *
2639 * The least significant bit can be cleared this way, and it
2640 * just so happens that it is the same bit corresponding to
2641 * the current context.
2642 */
2643static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2644
567cd4da 2645static __always_inline int trace_recursive_lock(void)
261842b7 2646{
567cd4da
SR
2647 unsigned int val = this_cpu_read(current_context);
2648 int bit;
d9abde21 2649
567cd4da
SR
2650 if (in_interrupt()) {
2651 if (in_nmi())
2652 bit = 0;
2653 else if (in_irq())
2654 bit = 1;
2655 else
2656 bit = 2;
2657 } else
2658 bit = 3;
d9abde21 2659
567cd4da
SR
2660 if (unlikely(val & (1 << bit)))
2661 return 1;
d9abde21 2662
567cd4da
SR
2663 val |= (1 << bit);
2664 this_cpu_write(current_context, val);
d9abde21 2665
567cd4da 2666 return 0;
261842b7
SR
2667}
2668
567cd4da 2669static __always_inline void trace_recursive_unlock(void)
261842b7 2670{
567cd4da 2671 unsigned int val = this_cpu_read(current_context);
261842b7 2672
567cd4da
SR
2673 val--;
2674 val &= this_cpu_read(current_context);
2675 this_cpu_write(current_context, val);
261842b7
SR
2676}
2677
1155de47
PM
2678#else
2679
2680#define trace_recursive_lock() (0)
2681#define trace_recursive_unlock() do { } while (0)
2682
2683#endif
2684
7a8e76a3
SR
2685/**
2686 * ring_buffer_lock_reserve - reserve a part of the buffer
2687 * @buffer: the ring buffer to reserve from
2688 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2689 *
2690 * Returns a reseverd event on the ring buffer to copy directly to.
2691 * The user of this interface will need to get the body to write into
2692 * and can use the ring_buffer_event_data() interface.
2693 *
2694 * The length is the length of the data needed, not the event length
2695 * which also includes the event header.
2696 *
2697 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2698 * If NULL is returned, then nothing has been allocated or locked.
2699 */
2700struct ring_buffer_event *
0a987751 2701ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2702{
2703 struct ring_buffer_per_cpu *cpu_buffer;
2704 struct ring_buffer_event *event;
5168ae50 2705 int cpu;
7a8e76a3 2706
033601a3 2707 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2708 return NULL;
2709
bf41a158 2710 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2711 preempt_disable_notrace();
bf41a158 2712
52fbe9cd
LJ
2713 if (atomic_read(&buffer->record_disabled))
2714 goto out_nocheck;
2715
261842b7
SR
2716 if (trace_recursive_lock())
2717 goto out_nocheck;
2718
7a8e76a3
SR
2719 cpu = raw_smp_processor_id();
2720
9e01c1b7 2721 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2722 goto out;
7a8e76a3
SR
2723
2724 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2725
2726 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2727 goto out;
7a8e76a3 2728
be957c44 2729 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2730 goto out;
7a8e76a3 2731
62f0b3eb 2732 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2733 if (!event)
d769041f 2734 goto out;
7a8e76a3
SR
2735
2736 return event;
2737
d769041f 2738 out:
261842b7
SR
2739 trace_recursive_unlock();
2740
2741 out_nocheck:
5168ae50 2742 preempt_enable_notrace();
7a8e76a3
SR
2743 return NULL;
2744}
c4f50183 2745EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2746
a1863c21
SR
2747static void
2748rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2749 struct ring_buffer_event *event)
2750{
69d1b839
SR
2751 u64 delta;
2752
fa743953
SR
2753 /*
2754 * The event first in the commit queue updates the
2755 * time stamp.
2756 */
69d1b839
SR
2757 if (rb_event_is_commit(cpu_buffer, event)) {
2758 /*
2759 * A commit event that is first on a page
2760 * updates the write timestamp with the page stamp
2761 */
2762 if (!rb_event_index(event))
2763 cpu_buffer->write_stamp =
2764 cpu_buffer->commit_page->page->time_stamp;
2765 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2766 delta = event->array[0];
2767 delta <<= TS_SHIFT;
2768 delta += event->time_delta;
2769 cpu_buffer->write_stamp += delta;
2770 } else
2771 cpu_buffer->write_stamp += event->time_delta;
2772 }
a1863c21 2773}
bf41a158 2774
a1863c21
SR
2775static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2776 struct ring_buffer_event *event)
2777{
2778 local_inc(&cpu_buffer->entries);
2779 rb_update_write_stamp(cpu_buffer, event);
fa743953 2780 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2781}
2782
15693458
SRRH
2783static __always_inline void
2784rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2785{
2786 if (buffer->irq_work.waiters_pending) {
2787 buffer->irq_work.waiters_pending = false;
2788 /* irq_work_queue() supplies it's own memory barriers */
2789 irq_work_queue(&buffer->irq_work.work);
2790 }
2791
2792 if (cpu_buffer->irq_work.waiters_pending) {
2793 cpu_buffer->irq_work.waiters_pending = false;
2794 /* irq_work_queue() supplies it's own memory barriers */
2795 irq_work_queue(&cpu_buffer->irq_work.work);
2796 }
2797}
2798
7a8e76a3
SR
2799/**
2800 * ring_buffer_unlock_commit - commit a reserved
2801 * @buffer: The buffer to commit to
2802 * @event: The event pointer to commit.
7a8e76a3
SR
2803 *
2804 * This commits the data to the ring buffer, and releases any locks held.
2805 *
2806 * Must be paired with ring_buffer_lock_reserve.
2807 */
2808int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2809 struct ring_buffer_event *event)
7a8e76a3
SR
2810{
2811 struct ring_buffer_per_cpu *cpu_buffer;
2812 int cpu = raw_smp_processor_id();
2813
2814 cpu_buffer = buffer->buffers[cpu];
2815
7a8e76a3
SR
2816 rb_commit(cpu_buffer, event);
2817
15693458
SRRH
2818 rb_wakeups(buffer, cpu_buffer);
2819
261842b7
SR
2820 trace_recursive_unlock();
2821
5168ae50 2822 preempt_enable_notrace();
7a8e76a3
SR
2823
2824 return 0;
2825}
c4f50183 2826EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2827
f3b9aae1
FW
2828static inline void rb_event_discard(struct ring_buffer_event *event)
2829{
69d1b839
SR
2830 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2831 event = skip_time_extend(event);
2832
334d4169
LJ
2833 /* array[0] holds the actual length for the discarded event */
2834 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2835 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2836 /* time delta must be non zero */
2837 if (!event->time_delta)
2838 event->time_delta = 1;
2839}
2840
a1863c21
SR
2841/*
2842 * Decrement the entries to the page that an event is on.
2843 * The event does not even need to exist, only the pointer
2844 * to the page it is on. This may only be called before the commit
2845 * takes place.
2846 */
2847static inline void
2848rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2849 struct ring_buffer_event *event)
2850{
2851 unsigned long addr = (unsigned long)event;
2852 struct buffer_page *bpage = cpu_buffer->commit_page;
2853 struct buffer_page *start;
2854
2855 addr &= PAGE_MASK;
2856
2857 /* Do the likely case first */
2858 if (likely(bpage->page == (void *)addr)) {
2859 local_dec(&bpage->entries);
2860 return;
2861 }
2862
2863 /*
2864 * Because the commit page may be on the reader page we
2865 * start with the next page and check the end loop there.
2866 */
2867 rb_inc_page(cpu_buffer, &bpage);
2868 start = bpage;
2869 do {
2870 if (bpage->page == (void *)addr) {
2871 local_dec(&bpage->entries);
2872 return;
2873 }
2874 rb_inc_page(cpu_buffer, &bpage);
2875 } while (bpage != start);
2876
2877 /* commit not part of this buffer?? */
2878 RB_WARN_ON(cpu_buffer, 1);
2879}
2880
fa1b47dd
SR
2881/**
2882 * ring_buffer_commit_discard - discard an event that has not been committed
2883 * @buffer: the ring buffer
2884 * @event: non committed event to discard
2885 *
dc892f73
SR
2886 * Sometimes an event that is in the ring buffer needs to be ignored.
2887 * This function lets the user discard an event in the ring buffer
2888 * and then that event will not be read later.
2889 *
2890 * This function only works if it is called before the the item has been
2891 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2892 * if another event has not been added behind it.
2893 *
2894 * If another event has been added behind it, it will set the event
2895 * up as discarded, and perform the commit.
2896 *
2897 * If this function is called, do not call ring_buffer_unlock_commit on
2898 * the event.
2899 */
2900void ring_buffer_discard_commit(struct ring_buffer *buffer,
2901 struct ring_buffer_event *event)
2902{
2903 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2904 int cpu;
2905
2906 /* The event is discarded regardless */
f3b9aae1 2907 rb_event_discard(event);
fa1b47dd 2908
fa743953
SR
2909 cpu = smp_processor_id();
2910 cpu_buffer = buffer->buffers[cpu];
2911
fa1b47dd
SR
2912 /*
2913 * This must only be called if the event has not been
2914 * committed yet. Thus we can assume that preemption
2915 * is still disabled.
2916 */
fa743953 2917 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2918
a1863c21 2919 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2920 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2921 goto out;
fa1b47dd
SR
2922
2923 /*
2924 * The commit is still visible by the reader, so we
a1863c21 2925 * must still update the timestamp.
fa1b47dd 2926 */
a1863c21 2927 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2928 out:
fa743953 2929 rb_end_commit(cpu_buffer);
fa1b47dd 2930
f3b9aae1
FW
2931 trace_recursive_unlock();
2932
5168ae50 2933 preempt_enable_notrace();
fa1b47dd
SR
2934
2935}
2936EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2937
7a8e76a3
SR
2938/**
2939 * ring_buffer_write - write data to the buffer without reserving
2940 * @buffer: The ring buffer to write to.
2941 * @length: The length of the data being written (excluding the event header)
2942 * @data: The data to write to the buffer.
2943 *
2944 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2945 * one function. If you already have the data to write to the buffer, it
2946 * may be easier to simply call this function.
2947 *
2948 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2949 * and not the length of the event which would hold the header.
2950 */
2951int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2952 unsigned long length,
2953 void *data)
7a8e76a3
SR
2954{
2955 struct ring_buffer_per_cpu *cpu_buffer;
2956 struct ring_buffer_event *event;
7a8e76a3
SR
2957 void *body;
2958 int ret = -EBUSY;
5168ae50 2959 int cpu;
7a8e76a3 2960
033601a3 2961 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2962 return -EBUSY;
2963
5168ae50 2964 preempt_disable_notrace();
bf41a158 2965
52fbe9cd
LJ
2966 if (atomic_read(&buffer->record_disabled))
2967 goto out;
2968
7a8e76a3
SR
2969 cpu = raw_smp_processor_id();
2970
9e01c1b7 2971 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2972 goto out;
7a8e76a3
SR
2973
2974 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2975
2976 if (atomic_read(&cpu_buffer->record_disabled))
2977 goto out;
2978
be957c44
SR
2979 if (length > BUF_MAX_DATA_SIZE)
2980 goto out;
2981
62f0b3eb 2982 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2983 if (!event)
2984 goto out;
2985
2986 body = rb_event_data(event);
2987
2988 memcpy(body, data, length);
2989
2990 rb_commit(cpu_buffer, event);
2991
15693458
SRRH
2992 rb_wakeups(buffer, cpu_buffer);
2993
7a8e76a3
SR
2994 ret = 0;
2995 out:
5168ae50 2996 preempt_enable_notrace();
7a8e76a3
SR
2997
2998 return ret;
2999}
c4f50183 3000EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3001
34a148bf 3002static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3003{
3004 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3005 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3006 struct buffer_page *commit = cpu_buffer->commit_page;
3007
77ae365e
SR
3008 /* In case of error, head will be NULL */
3009 if (unlikely(!head))
3010 return 1;
3011
bf41a158
SR
3012 return reader->read == rb_page_commit(reader) &&
3013 (commit == reader ||
3014 (commit == head &&
3015 head->read == rb_page_commit(commit)));
3016}
3017
7a8e76a3
SR
3018/**
3019 * ring_buffer_record_disable - stop all writes into the buffer
3020 * @buffer: The ring buffer to stop writes to.
3021 *
3022 * This prevents all writes to the buffer. Any attempt to write
3023 * to the buffer after this will fail and return NULL.
3024 *
3025 * The caller should call synchronize_sched() after this.
3026 */
3027void ring_buffer_record_disable(struct ring_buffer *buffer)
3028{
3029 atomic_inc(&buffer->record_disabled);
3030}
c4f50183 3031EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3032
3033/**
3034 * ring_buffer_record_enable - enable writes to the buffer
3035 * @buffer: The ring buffer to enable writes
3036 *
3037 * Note, multiple disables will need the same number of enables
c41b20e7 3038 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3039 */
3040void ring_buffer_record_enable(struct ring_buffer *buffer)
3041{
3042 atomic_dec(&buffer->record_disabled);
3043}
c4f50183 3044EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3045
499e5470
SR
3046/**
3047 * ring_buffer_record_off - stop all writes into the buffer
3048 * @buffer: The ring buffer to stop writes to.
3049 *
3050 * This prevents all writes to the buffer. Any attempt to write
3051 * to the buffer after this will fail and return NULL.
3052 *
3053 * This is different than ring_buffer_record_disable() as
87abb3b1 3054 * it works like an on/off switch, where as the disable() version
499e5470
SR
3055 * must be paired with a enable().
3056 */
3057void ring_buffer_record_off(struct ring_buffer *buffer)
3058{
3059 unsigned int rd;
3060 unsigned int new_rd;
3061
3062 do {
3063 rd = atomic_read(&buffer->record_disabled);
3064 new_rd = rd | RB_BUFFER_OFF;
3065 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3066}
3067EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3068
3069/**
3070 * ring_buffer_record_on - restart writes into the buffer
3071 * @buffer: The ring buffer to start writes to.
3072 *
3073 * This enables all writes to the buffer that was disabled by
3074 * ring_buffer_record_off().
3075 *
3076 * This is different than ring_buffer_record_enable() as
87abb3b1 3077 * it works like an on/off switch, where as the enable() version
499e5470
SR
3078 * must be paired with a disable().
3079 */
3080void ring_buffer_record_on(struct ring_buffer *buffer)
3081{
3082 unsigned int rd;
3083 unsigned int new_rd;
3084
3085 do {
3086 rd = atomic_read(&buffer->record_disabled);
3087 new_rd = rd & ~RB_BUFFER_OFF;
3088 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3089}
3090EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3091
3092/**
3093 * ring_buffer_record_is_on - return true if the ring buffer can write
3094 * @buffer: The ring buffer to see if write is enabled
3095 *
3096 * Returns true if the ring buffer is in a state that it accepts writes.
3097 */
3098int ring_buffer_record_is_on(struct ring_buffer *buffer)
3099{
3100 return !atomic_read(&buffer->record_disabled);
3101}
3102
7a8e76a3
SR
3103/**
3104 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3105 * @buffer: The ring buffer to stop writes to.
3106 * @cpu: The CPU buffer to stop
3107 *
3108 * This prevents all writes to the buffer. Any attempt to write
3109 * to the buffer after this will fail and return NULL.
3110 *
3111 * The caller should call synchronize_sched() after this.
3112 */
3113void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3114{
3115 struct ring_buffer_per_cpu *cpu_buffer;
3116
9e01c1b7 3117 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3118 return;
7a8e76a3
SR
3119
3120 cpu_buffer = buffer->buffers[cpu];
3121 atomic_inc(&cpu_buffer->record_disabled);
3122}
c4f50183 3123EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3124
3125/**
3126 * ring_buffer_record_enable_cpu - enable writes to the buffer
3127 * @buffer: The ring buffer to enable writes
3128 * @cpu: The CPU to enable.
3129 *
3130 * Note, multiple disables will need the same number of enables
c41b20e7 3131 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3132 */
3133void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3134{
3135 struct ring_buffer_per_cpu *cpu_buffer;
3136
9e01c1b7 3137 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3138 return;
7a8e76a3
SR
3139
3140 cpu_buffer = buffer->buffers[cpu];
3141 atomic_dec(&cpu_buffer->record_disabled);
3142}
c4f50183 3143EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3144
f6195aa0
SR
3145/*
3146 * The total entries in the ring buffer is the running counter
3147 * of entries entered into the ring buffer, minus the sum of
3148 * the entries read from the ring buffer and the number of
3149 * entries that were overwritten.
3150 */
3151static inline unsigned long
3152rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3153{
3154 return local_read(&cpu_buffer->entries) -
3155 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3156}
3157
c64e148a
VN
3158/**
3159 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3160 * @buffer: The ring buffer
3161 * @cpu: The per CPU buffer to read from.
3162 */
50ecf2c3 3163u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3164{
3165 unsigned long flags;
3166 struct ring_buffer_per_cpu *cpu_buffer;
3167 struct buffer_page *bpage;
da830e58 3168 u64 ret = 0;
c64e148a
VN
3169
3170 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3171 return 0;
3172
3173 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3174 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3175 /*
3176 * if the tail is on reader_page, oldest time stamp is on the reader
3177 * page
3178 */
3179 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3180 bpage = cpu_buffer->reader_page;
3181 else
3182 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3183 if (bpage)
3184 ret = bpage->page->time_stamp;
7115e3fc 3185 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3186
3187 return ret;
3188}
3189EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3190
3191/**
3192 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3193 * @buffer: The ring buffer
3194 * @cpu: The per CPU buffer to read from.
3195 */
3196unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3197{
3198 struct ring_buffer_per_cpu *cpu_buffer;
3199 unsigned long ret;
3200
3201 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3202 return 0;
3203
3204 cpu_buffer = buffer->buffers[cpu];
3205 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3206
3207 return ret;
3208}
3209EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3210
7a8e76a3
SR
3211/**
3212 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3213 * @buffer: The ring buffer
3214 * @cpu: The per CPU buffer to get the entries from.
3215 */
3216unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3217{
3218 struct ring_buffer_per_cpu *cpu_buffer;
3219
9e01c1b7 3220 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3221 return 0;
7a8e76a3
SR
3222
3223 cpu_buffer = buffer->buffers[cpu];
554f786e 3224
f6195aa0 3225 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3226}
c4f50183 3227EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3228
3229/**
884bfe89
SP
3230 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3231 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3232 * @buffer: The ring buffer
3233 * @cpu: The per CPU buffer to get the number of overruns from
3234 */
3235unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3236{
3237 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3238 unsigned long ret;
7a8e76a3 3239
9e01c1b7 3240 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3241 return 0;
7a8e76a3
SR
3242
3243 cpu_buffer = buffer->buffers[cpu];
77ae365e 3244 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3245
3246 return ret;
7a8e76a3 3247}
c4f50183 3248EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3249
f0d2c681 3250/**
884bfe89
SP
3251 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3252 * commits failing due to the buffer wrapping around while there are uncommitted
3253 * events, such as during an interrupt storm.
f0d2c681
SR
3254 * @buffer: The ring buffer
3255 * @cpu: The per CPU buffer to get the number of overruns from
3256 */
3257unsigned long
3258ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3259{
3260 struct ring_buffer_per_cpu *cpu_buffer;
3261 unsigned long ret;
3262
3263 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3264 return 0;
3265
3266 cpu_buffer = buffer->buffers[cpu];
77ae365e 3267 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3268
3269 return ret;
3270}
3271EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3272
884bfe89
SP
3273/**
3274 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3275 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3276 * @buffer: The ring buffer
3277 * @cpu: The per CPU buffer to get the number of overruns from
3278 */
3279unsigned long
3280ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3281{
3282 struct ring_buffer_per_cpu *cpu_buffer;
3283 unsigned long ret;
3284
3285 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3286 return 0;
3287
3288 cpu_buffer = buffer->buffers[cpu];
3289 ret = local_read(&cpu_buffer->dropped_events);
3290
3291 return ret;
3292}
3293EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3294
ad964704
SRRH
3295/**
3296 * ring_buffer_read_events_cpu - get the number of events successfully read
3297 * @buffer: The ring buffer
3298 * @cpu: The per CPU buffer to get the number of events read
3299 */
3300unsigned long
3301ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3302{
3303 struct ring_buffer_per_cpu *cpu_buffer;
3304
3305 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3306 return 0;
3307
3308 cpu_buffer = buffer->buffers[cpu];
3309 return cpu_buffer->read;
3310}
3311EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3312
7a8e76a3
SR
3313/**
3314 * ring_buffer_entries - get the number of entries in a buffer
3315 * @buffer: The ring buffer
3316 *
3317 * Returns the total number of entries in the ring buffer
3318 * (all CPU entries)
3319 */
3320unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3321{
3322 struct ring_buffer_per_cpu *cpu_buffer;
3323 unsigned long entries = 0;
3324 int cpu;
3325
3326 /* if you care about this being correct, lock the buffer */
3327 for_each_buffer_cpu(buffer, cpu) {
3328 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3329 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3330 }
3331
3332 return entries;
3333}
c4f50183 3334EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3335
3336/**
67b394f7 3337 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3338 * @buffer: The ring buffer
3339 *
3340 * Returns the total number of overruns in the ring buffer
3341 * (all CPU entries)
3342 */
3343unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3344{
3345 struct ring_buffer_per_cpu *cpu_buffer;
3346 unsigned long overruns = 0;
3347 int cpu;
3348
3349 /* if you care about this being correct, lock the buffer */
3350 for_each_buffer_cpu(buffer, cpu) {
3351 cpu_buffer = buffer->buffers[cpu];
77ae365e 3352 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3353 }
3354
3355 return overruns;
3356}
c4f50183 3357EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3358
642edba5 3359static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3360{
3361 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3362
d769041f
SR
3363 /* Iterator usage is expected to have record disabled */
3364 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3365 iter->head_page = rb_set_head_page(cpu_buffer);
3366 if (unlikely(!iter->head_page))
3367 return;
3368 iter->head = iter->head_page->read;
d769041f
SR
3369 } else {
3370 iter->head_page = cpu_buffer->reader_page;
6f807acd 3371 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3372 }
3373 if (iter->head)
3374 iter->read_stamp = cpu_buffer->read_stamp;
3375 else
abc9b56d 3376 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3377 iter->cache_reader_page = cpu_buffer->reader_page;
3378 iter->cache_read = cpu_buffer->read;
642edba5 3379}
f83c9d0f 3380
642edba5
SR
3381/**
3382 * ring_buffer_iter_reset - reset an iterator
3383 * @iter: The iterator to reset
3384 *
3385 * Resets the iterator, so that it will start from the beginning
3386 * again.
3387 */
3388void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3389{
554f786e 3390 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3391 unsigned long flags;
3392
554f786e
SR
3393 if (!iter)
3394 return;
3395
3396 cpu_buffer = iter->cpu_buffer;
3397
5389f6fa 3398 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3399 rb_iter_reset(iter);
5389f6fa 3400 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3401}
c4f50183 3402EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3403
3404/**
3405 * ring_buffer_iter_empty - check if an iterator has no more to read
3406 * @iter: The iterator to check
3407 */
3408int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3409{
3410 struct ring_buffer_per_cpu *cpu_buffer;
3411
3412 cpu_buffer = iter->cpu_buffer;
3413
bf41a158
SR
3414 return iter->head_page == cpu_buffer->commit_page &&
3415 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3416}
c4f50183 3417EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3418
3419static void
3420rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3421 struct ring_buffer_event *event)
3422{
3423 u64 delta;
3424
334d4169 3425 switch (event->type_len) {
7a8e76a3
SR
3426 case RINGBUF_TYPE_PADDING:
3427 return;
3428
3429 case RINGBUF_TYPE_TIME_EXTEND:
3430 delta = event->array[0];
3431 delta <<= TS_SHIFT;
3432 delta += event->time_delta;
3433 cpu_buffer->read_stamp += delta;
3434 return;
3435
3436 case RINGBUF_TYPE_TIME_STAMP:
3437 /* FIXME: not implemented */
3438 return;
3439
3440 case RINGBUF_TYPE_DATA:
3441 cpu_buffer->read_stamp += event->time_delta;
3442 return;
3443
3444 default:
3445 BUG();
3446 }
3447 return;
3448}
3449
3450static void
3451rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3452 struct ring_buffer_event *event)
3453{
3454 u64 delta;
3455
334d4169 3456 switch (event->type_len) {
7a8e76a3
SR
3457 case RINGBUF_TYPE_PADDING:
3458 return;
3459
3460 case RINGBUF_TYPE_TIME_EXTEND:
3461 delta = event->array[0];
3462 delta <<= TS_SHIFT;
3463 delta += event->time_delta;
3464 iter->read_stamp += delta;
3465 return;
3466
3467 case RINGBUF_TYPE_TIME_STAMP:
3468 /* FIXME: not implemented */
3469 return;
3470
3471 case RINGBUF_TYPE_DATA:
3472 iter->read_stamp += event->time_delta;
3473 return;
3474
3475 default:
3476 BUG();
3477 }
3478 return;
3479}
3480
d769041f
SR
3481static struct buffer_page *
3482rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3483{
d769041f 3484 struct buffer_page *reader = NULL;
66a8cb95 3485 unsigned long overwrite;
d769041f 3486 unsigned long flags;
818e3dd3 3487 int nr_loops = 0;
77ae365e 3488 int ret;
d769041f 3489
3e03fb7f 3490 local_irq_save(flags);
0199c4e6 3491 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3492
3493 again:
818e3dd3
SR
3494 /*
3495 * This should normally only loop twice. But because the
3496 * start of the reader inserts an empty page, it causes
3497 * a case where we will loop three times. There should be no
3498 * reason to loop four times (that I know of).
3499 */
3e89c7bb 3500 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3501 reader = NULL;
3502 goto out;
3503 }
3504
d769041f
SR
3505 reader = cpu_buffer->reader_page;
3506
3507 /* If there's more to read, return this page */
bf41a158 3508 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3509 goto out;
3510
3511 /* Never should we have an index greater than the size */
3e89c7bb
SR
3512 if (RB_WARN_ON(cpu_buffer,
3513 cpu_buffer->reader_page->read > rb_page_size(reader)))
3514 goto out;
d769041f
SR
3515
3516 /* check if we caught up to the tail */
3517 reader = NULL;
bf41a158 3518 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3519 goto out;
7a8e76a3 3520
a5fb8331
SR
3521 /* Don't bother swapping if the ring buffer is empty */
3522 if (rb_num_of_entries(cpu_buffer) == 0)
3523 goto out;
3524
7a8e76a3 3525 /*
d769041f 3526 * Reset the reader page to size zero.
7a8e76a3 3527 */
77ae365e
SR
3528 local_set(&cpu_buffer->reader_page->write, 0);
3529 local_set(&cpu_buffer->reader_page->entries, 0);
3530 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3531 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3532
77ae365e
SR
3533 spin:
3534 /*
3535 * Splice the empty reader page into the list around the head.
3536 */
3537 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3538 if (!reader)
3539 goto out;
0e1ff5d7 3540 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3541 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3542
3adc54fa
SR
3543 /*
3544 * cpu_buffer->pages just needs to point to the buffer, it
3545 * has no specific buffer page to point to. Lets move it out
25985edc 3546 * of our way so we don't accidentally swap it.
3adc54fa
SR
3547 */
3548 cpu_buffer->pages = reader->list.prev;
3549
77ae365e
SR
3550 /* The reader page will be pointing to the new head */
3551 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3552
66a8cb95
SR
3553 /*
3554 * We want to make sure we read the overruns after we set up our
3555 * pointers to the next object. The writer side does a
3556 * cmpxchg to cross pages which acts as the mb on the writer
3557 * side. Note, the reader will constantly fail the swap
3558 * while the writer is updating the pointers, so this
3559 * guarantees that the overwrite recorded here is the one we
3560 * want to compare with the last_overrun.
3561 */
3562 smp_mb();
3563 overwrite = local_read(&(cpu_buffer->overrun));
3564
77ae365e
SR
3565 /*
3566 * Here's the tricky part.
3567 *
3568 * We need to move the pointer past the header page.
3569 * But we can only do that if a writer is not currently
3570 * moving it. The page before the header page has the
3571 * flag bit '1' set if it is pointing to the page we want.
3572 * but if the writer is in the process of moving it
3573 * than it will be '2' or already moved '0'.
3574 */
3575
3576 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3577
3578 /*
77ae365e 3579 * If we did not convert it, then we must try again.
7a8e76a3 3580 */
77ae365e
SR
3581 if (!ret)
3582 goto spin;
7a8e76a3 3583
77ae365e
SR
3584 /*
3585 * Yeah! We succeeded in replacing the page.
3586 *
3587 * Now make the new head point back to the reader page.
3588 */
5ded3dc6 3589 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3590 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3591
3592 /* Finally update the reader page to the new head */
3593 cpu_buffer->reader_page = reader;
3594 rb_reset_reader_page(cpu_buffer);
3595
66a8cb95
SR
3596 if (overwrite != cpu_buffer->last_overrun) {
3597 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3598 cpu_buffer->last_overrun = overwrite;
3599 }
3600
d769041f
SR
3601 goto again;
3602
3603 out:
0199c4e6 3604 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3605 local_irq_restore(flags);
d769041f
SR
3606
3607 return reader;
3608}
3609
3610static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3611{
3612 struct ring_buffer_event *event;
3613 struct buffer_page *reader;
3614 unsigned length;
3615
3616 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3617
d769041f 3618 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3619 if (RB_WARN_ON(cpu_buffer, !reader))
3620 return;
7a8e76a3 3621
d769041f
SR
3622 event = rb_reader_event(cpu_buffer);
3623
a1863c21 3624 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3625 cpu_buffer->read++;
d769041f
SR
3626
3627 rb_update_read_stamp(cpu_buffer, event);
3628
3629 length = rb_event_length(event);
6f807acd 3630 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3631}
3632
3633static void rb_advance_iter(struct ring_buffer_iter *iter)
3634{
7a8e76a3
SR
3635 struct ring_buffer_per_cpu *cpu_buffer;
3636 struct ring_buffer_event *event;
3637 unsigned length;
3638
3639 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3640
3641 /*
3642 * Check if we are at the end of the buffer.
3643 */
bf41a158 3644 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3645 /* discarded commits can make the page empty */
3646 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3647 return;
d769041f 3648 rb_inc_iter(iter);
7a8e76a3
SR
3649 return;
3650 }
3651
3652 event = rb_iter_head_event(iter);
3653
3654 length = rb_event_length(event);
3655
3656 /*
3657 * This should not be called to advance the header if we are
3658 * at the tail of the buffer.
3659 */
3e89c7bb 3660 if (RB_WARN_ON(cpu_buffer,
f536aafc 3661 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3662 (iter->head + length > rb_commit_index(cpu_buffer))))
3663 return;
7a8e76a3
SR
3664
3665 rb_update_iter_read_stamp(iter, event);
3666
3667 iter->head += length;
3668
3669 /* check for end of page padding */
bf41a158
SR
3670 if ((iter->head >= rb_page_size(iter->head_page)) &&
3671 (iter->head_page != cpu_buffer->commit_page))
771e0384 3672 rb_inc_iter(iter);
7a8e76a3
SR
3673}
3674
66a8cb95
SR
3675static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3676{
3677 return cpu_buffer->lost_events;
3678}
3679
f83c9d0f 3680static struct ring_buffer_event *
66a8cb95
SR
3681rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3682 unsigned long *lost_events)
7a8e76a3 3683{
7a8e76a3 3684 struct ring_buffer_event *event;
d769041f 3685 struct buffer_page *reader;
818e3dd3 3686 int nr_loops = 0;
7a8e76a3 3687
7a8e76a3 3688 again:
818e3dd3 3689 /*
69d1b839
SR
3690 * We repeat when a time extend is encountered.
3691 * Since the time extend is always attached to a data event,
3692 * we should never loop more than once.
3693 * (We never hit the following condition more than twice).
818e3dd3 3694 */
69d1b839 3695 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3696 return NULL;
818e3dd3 3697
d769041f
SR
3698 reader = rb_get_reader_page(cpu_buffer);
3699 if (!reader)
7a8e76a3
SR
3700 return NULL;
3701
d769041f 3702 event = rb_reader_event(cpu_buffer);
7a8e76a3 3703
334d4169 3704 switch (event->type_len) {
7a8e76a3 3705 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3706 if (rb_null_event(event))
3707 RB_WARN_ON(cpu_buffer, 1);
3708 /*
3709 * Because the writer could be discarding every
3710 * event it creates (which would probably be bad)
3711 * if we were to go back to "again" then we may never
3712 * catch up, and will trigger the warn on, or lock
3713 * the box. Return the padding, and we will release
3714 * the current locks, and try again.
3715 */
2d622719 3716 return event;
7a8e76a3
SR
3717
3718 case RINGBUF_TYPE_TIME_EXTEND:
3719 /* Internal data, OK to advance */
d769041f 3720 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3721 goto again;
3722
3723 case RINGBUF_TYPE_TIME_STAMP:
3724 /* FIXME: not implemented */
d769041f 3725 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3726 goto again;
3727
3728 case RINGBUF_TYPE_DATA:
3729 if (ts) {
3730 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3731 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3732 cpu_buffer->cpu, ts);
7a8e76a3 3733 }
66a8cb95
SR
3734 if (lost_events)
3735 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3736 return event;
3737
3738 default:
3739 BUG();
3740 }
3741
3742 return NULL;
3743}
c4f50183 3744EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3745
f83c9d0f
SR
3746static struct ring_buffer_event *
3747rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3748{
3749 struct ring_buffer *buffer;
3750 struct ring_buffer_per_cpu *cpu_buffer;
3751 struct ring_buffer_event *event;
818e3dd3 3752 int nr_loops = 0;
7a8e76a3 3753
7a8e76a3
SR
3754 cpu_buffer = iter->cpu_buffer;
3755 buffer = cpu_buffer->buffer;
3756
492a74f4
SR
3757 /*
3758 * Check if someone performed a consuming read to
3759 * the buffer. A consuming read invalidates the iterator
3760 * and we need to reset the iterator in this case.
3761 */
3762 if (unlikely(iter->cache_read != cpu_buffer->read ||
3763 iter->cache_reader_page != cpu_buffer->reader_page))
3764 rb_iter_reset(iter);
3765
7a8e76a3 3766 again:
3c05d748
SR
3767 if (ring_buffer_iter_empty(iter))
3768 return NULL;
3769
818e3dd3 3770 /*
69d1b839
SR
3771 * We repeat when a time extend is encountered.
3772 * Since the time extend is always attached to a data event,
3773 * we should never loop more than once.
3774 * (We never hit the following condition more than twice).
818e3dd3 3775 */
69d1b839 3776 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3777 return NULL;
818e3dd3 3778
7a8e76a3
SR
3779 if (rb_per_cpu_empty(cpu_buffer))
3780 return NULL;
3781
3c05d748
SR
3782 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3783 rb_inc_iter(iter);
3784 goto again;
3785 }
3786
7a8e76a3
SR
3787 event = rb_iter_head_event(iter);
3788
334d4169 3789 switch (event->type_len) {
7a8e76a3 3790 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3791 if (rb_null_event(event)) {
3792 rb_inc_iter(iter);
3793 goto again;
3794 }
3795 rb_advance_iter(iter);
3796 return event;
7a8e76a3
SR
3797
3798 case RINGBUF_TYPE_TIME_EXTEND:
3799 /* Internal data, OK to advance */
3800 rb_advance_iter(iter);
3801 goto again;
3802
3803 case RINGBUF_TYPE_TIME_STAMP:
3804 /* FIXME: not implemented */
3805 rb_advance_iter(iter);
3806 goto again;
3807
3808 case RINGBUF_TYPE_DATA:
3809 if (ts) {
3810 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3811 ring_buffer_normalize_time_stamp(buffer,
3812 cpu_buffer->cpu, ts);
7a8e76a3
SR
3813 }
3814 return event;
3815
3816 default:
3817 BUG();
3818 }
3819
3820 return NULL;
3821}
c4f50183 3822EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3823
8d707e8e
SR
3824static inline int rb_ok_to_lock(void)
3825{
3826 /*
3827 * If an NMI die dumps out the content of the ring buffer
3828 * do not grab locks. We also permanently disable the ring
3829 * buffer too. A one time deal is all you get from reading
3830 * the ring buffer from an NMI.
3831 */
464e85eb 3832 if (likely(!in_nmi()))
8d707e8e
SR
3833 return 1;
3834
3835 tracing_off_permanent();
3836 return 0;
3837}
3838
f83c9d0f
SR
3839/**
3840 * ring_buffer_peek - peek at the next event to be read
3841 * @buffer: The ring buffer to read
3842 * @cpu: The cpu to peak at
3843 * @ts: The timestamp counter of this event.
66a8cb95 3844 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3845 *
3846 * This will return the event that will be read next, but does
3847 * not consume the data.
3848 */
3849struct ring_buffer_event *
66a8cb95
SR
3850ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3851 unsigned long *lost_events)
f83c9d0f
SR
3852{
3853 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3854 struct ring_buffer_event *event;
f83c9d0f 3855 unsigned long flags;
8d707e8e 3856 int dolock;
f83c9d0f 3857
554f786e 3858 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3859 return NULL;
554f786e 3860
8d707e8e 3861 dolock = rb_ok_to_lock();
2d622719 3862 again:
8d707e8e
SR
3863 local_irq_save(flags);
3864 if (dolock)
5389f6fa 3865 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3866 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3867 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3868 rb_advance_reader(cpu_buffer);
8d707e8e 3869 if (dolock)
5389f6fa 3870 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3871 local_irq_restore(flags);
f83c9d0f 3872
1b959e18 3873 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3874 goto again;
2d622719 3875
f83c9d0f
SR
3876 return event;
3877}
3878
3879/**
3880 * ring_buffer_iter_peek - peek at the next event to be read
3881 * @iter: The ring buffer iterator
3882 * @ts: The timestamp counter of this event.
3883 *
3884 * This will return the event that will be read next, but does
3885 * not increment the iterator.
3886 */
3887struct ring_buffer_event *
3888ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3889{
3890 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3891 struct ring_buffer_event *event;
3892 unsigned long flags;
3893
2d622719 3894 again:
5389f6fa 3895 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3896 event = rb_iter_peek(iter, ts);
5389f6fa 3897 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3898
1b959e18 3899 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3900 goto again;
2d622719 3901
f83c9d0f
SR
3902 return event;
3903}
3904
7a8e76a3
SR
3905/**
3906 * ring_buffer_consume - return an event and consume it
3907 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3908 * @cpu: the cpu to read the buffer from
3909 * @ts: a variable to store the timestamp (may be NULL)
3910 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3911 *
3912 * Returns the next event in the ring buffer, and that event is consumed.
3913 * Meaning, that sequential reads will keep returning a different event,
3914 * and eventually empty the ring buffer if the producer is slower.
3915 */
3916struct ring_buffer_event *
66a8cb95
SR
3917ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3918 unsigned long *lost_events)
7a8e76a3 3919{
554f786e
SR
3920 struct ring_buffer_per_cpu *cpu_buffer;
3921 struct ring_buffer_event *event = NULL;
f83c9d0f 3922 unsigned long flags;
8d707e8e
SR
3923 int dolock;
3924
3925 dolock = rb_ok_to_lock();
7a8e76a3 3926
2d622719 3927 again:
554f786e
SR
3928 /* might be called in atomic */
3929 preempt_disable();
3930
9e01c1b7 3931 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3932 goto out;
7a8e76a3 3933
554f786e 3934 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3935 local_irq_save(flags);
3936 if (dolock)
5389f6fa 3937 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3938
66a8cb95
SR
3939 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3940 if (event) {
3941 cpu_buffer->lost_events = 0;
469535a5 3942 rb_advance_reader(cpu_buffer);
66a8cb95 3943 }
7a8e76a3 3944
8d707e8e 3945 if (dolock)
5389f6fa 3946 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3947 local_irq_restore(flags);
f83c9d0f 3948
554f786e
SR
3949 out:
3950 preempt_enable();
3951
1b959e18 3952 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3953 goto again;
2d622719 3954
7a8e76a3
SR
3955 return event;
3956}
c4f50183 3957EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3958
3959/**
72c9ddfd 3960 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3961 * @buffer: The ring buffer to read from
3962 * @cpu: The cpu buffer to iterate over
3963 *
72c9ddfd
DM
3964 * This performs the initial preparations necessary to iterate
3965 * through the buffer. Memory is allocated, buffer recording
3966 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3967 *
72c9ddfd
DM
3968 * Disabling buffer recordng prevents the reading from being
3969 * corrupted. This is not a consuming read, so a producer is not
3970 * expected.
3971 *
3972 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 3973 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
3974 * Afterwards, ring_buffer_read_start is invoked to get things going
3975 * for real.
3976 *
d611851b 3977 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
3978 */
3979struct ring_buffer_iter *
72c9ddfd 3980ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3981{
3982 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3983 struct ring_buffer_iter *iter;
7a8e76a3 3984
9e01c1b7 3985 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3986 return NULL;
7a8e76a3
SR
3987
3988 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3989 if (!iter)
8aabee57 3990 return NULL;
7a8e76a3
SR
3991
3992 cpu_buffer = buffer->buffers[cpu];
3993
3994 iter->cpu_buffer = cpu_buffer;
3995
83f40318 3996 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3997 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3998
3999 return iter;
4000}
4001EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4002
4003/**
4004 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4005 *
4006 * All previously invoked ring_buffer_read_prepare calls to prepare
4007 * iterators will be synchronized. Afterwards, read_buffer_read_start
4008 * calls on those iterators are allowed.
4009 */
4010void
4011ring_buffer_read_prepare_sync(void)
4012{
7a8e76a3 4013 synchronize_sched();
72c9ddfd
DM
4014}
4015EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4016
4017/**
4018 * ring_buffer_read_start - start a non consuming read of the buffer
4019 * @iter: The iterator returned by ring_buffer_read_prepare
4020 *
4021 * This finalizes the startup of an iteration through the buffer.
4022 * The iterator comes from a call to ring_buffer_read_prepare and
4023 * an intervening ring_buffer_read_prepare_sync must have been
4024 * performed.
4025 *
d611851b 4026 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4027 */
4028void
4029ring_buffer_read_start(struct ring_buffer_iter *iter)
4030{
4031 struct ring_buffer_per_cpu *cpu_buffer;
4032 unsigned long flags;
4033
4034 if (!iter)
4035 return;
4036
4037 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4038
5389f6fa 4039 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4040 arch_spin_lock(&cpu_buffer->lock);
642edba5 4041 rb_iter_reset(iter);
0199c4e6 4042 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4043 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4044}
c4f50183 4045EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4046
4047/**
d611851b 4048 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4049 * @iter: The iterator retrieved by ring_buffer_start
4050 *
4051 * This re-enables the recording to the buffer, and frees the
4052 * iterator.
4053 */
4054void
4055ring_buffer_read_finish(struct ring_buffer_iter *iter)
4056{
4057 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4058 unsigned long flags;
7a8e76a3 4059
659f451f
SR
4060 /*
4061 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4062 * to check the integrity of the ring buffer.
4063 * Must prevent readers from trying to read, as the check
4064 * clears the HEAD page and readers require it.
659f451f 4065 */
9366c1ba 4066 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4067 rb_check_pages(cpu_buffer);
9366c1ba 4068 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4069
7a8e76a3 4070 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4071 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4072 kfree(iter);
4073}
c4f50183 4074EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4075
4076/**
4077 * ring_buffer_read - read the next item in the ring buffer by the iterator
4078 * @iter: The ring buffer iterator
4079 * @ts: The time stamp of the event read.
4080 *
4081 * This reads the next event in the ring buffer and increments the iterator.
4082 */
4083struct ring_buffer_event *
4084ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4085{
4086 struct ring_buffer_event *event;
f83c9d0f
SR
4087 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4088 unsigned long flags;
7a8e76a3 4089
5389f6fa 4090 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4091 again:
f83c9d0f 4092 event = rb_iter_peek(iter, ts);
7a8e76a3 4093 if (!event)
f83c9d0f 4094 goto out;
7a8e76a3 4095
7e9391cf
SR
4096 if (event->type_len == RINGBUF_TYPE_PADDING)
4097 goto again;
4098
7a8e76a3 4099 rb_advance_iter(iter);
f83c9d0f 4100 out:
5389f6fa 4101 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4102
4103 return event;
4104}
c4f50183 4105EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4106
4107/**
4108 * ring_buffer_size - return the size of the ring buffer (in bytes)
4109 * @buffer: The ring buffer.
4110 */
438ced17 4111unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4112{
438ced17
VN
4113 /*
4114 * Earlier, this method returned
4115 * BUF_PAGE_SIZE * buffer->nr_pages
4116 * Since the nr_pages field is now removed, we have converted this to
4117 * return the per cpu buffer value.
4118 */
4119 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4120 return 0;
4121
4122 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4123}
c4f50183 4124EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4125
4126static void
4127rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4128{
77ae365e
SR
4129 rb_head_page_deactivate(cpu_buffer);
4130
7a8e76a3 4131 cpu_buffer->head_page
3adc54fa 4132 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4133 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4134 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4135 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4136
6f807acd 4137 cpu_buffer->head_page->read = 0;
bf41a158
SR
4138
4139 cpu_buffer->tail_page = cpu_buffer->head_page;
4140 cpu_buffer->commit_page = cpu_buffer->head_page;
4141
4142 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4143 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4144 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4145 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4146 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4147 cpu_buffer->reader_page->read = 0;
7a8e76a3 4148
c64e148a 4149 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4150 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4151 local_set(&cpu_buffer->commit_overrun, 0);
4152 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4153 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4154 local_set(&cpu_buffer->committing, 0);
4155 local_set(&cpu_buffer->commits, 0);
77ae365e 4156 cpu_buffer->read = 0;
c64e148a 4157 cpu_buffer->read_bytes = 0;
69507c06
SR
4158
4159 cpu_buffer->write_stamp = 0;
4160 cpu_buffer->read_stamp = 0;
77ae365e 4161
66a8cb95
SR
4162 cpu_buffer->lost_events = 0;
4163 cpu_buffer->last_overrun = 0;
4164
77ae365e 4165 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4166}
4167
4168/**
4169 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4170 * @buffer: The ring buffer to reset a per cpu buffer of
4171 * @cpu: The CPU buffer to be reset
4172 */
4173void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4174{
4175 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4176 unsigned long flags;
4177
9e01c1b7 4178 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4179 return;
7a8e76a3 4180
83f40318 4181 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4182 atomic_inc(&cpu_buffer->record_disabled);
4183
83f40318
VN
4184 /* Make sure all commits have finished */
4185 synchronize_sched();
4186
5389f6fa 4187 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4188
41b6a95d
SR
4189 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4190 goto out;
4191
0199c4e6 4192 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4193
4194 rb_reset_cpu(cpu_buffer);
4195
0199c4e6 4196 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4197
41b6a95d 4198 out:
5389f6fa 4199 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4200
4201 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4202 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4203}
c4f50183 4204EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4205
4206/**
4207 * ring_buffer_reset - reset a ring buffer
4208 * @buffer: The ring buffer to reset all cpu buffers
4209 */
4210void ring_buffer_reset(struct ring_buffer *buffer)
4211{
7a8e76a3
SR
4212 int cpu;
4213
7a8e76a3 4214 for_each_buffer_cpu(buffer, cpu)
d769041f 4215 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4216}
c4f50183 4217EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4218
4219/**
4220 * rind_buffer_empty - is the ring buffer empty?
4221 * @buffer: The ring buffer to test
4222 */
4223int ring_buffer_empty(struct ring_buffer *buffer)
4224{
4225 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4226 unsigned long flags;
8d707e8e 4227 int dolock;
7a8e76a3 4228 int cpu;
d4788207 4229 int ret;
7a8e76a3 4230
8d707e8e 4231 dolock = rb_ok_to_lock();
7a8e76a3
SR
4232
4233 /* yes this is racy, but if you don't like the race, lock the buffer */
4234 for_each_buffer_cpu(buffer, cpu) {
4235 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4236 local_irq_save(flags);
4237 if (dolock)
5389f6fa 4238 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4239 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4240 if (dolock)
5389f6fa 4241 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4242 local_irq_restore(flags);
4243
d4788207 4244 if (!ret)
7a8e76a3
SR
4245 return 0;
4246 }
554f786e 4247
7a8e76a3
SR
4248 return 1;
4249}
c4f50183 4250EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4251
4252/**
4253 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4254 * @buffer: The ring buffer
4255 * @cpu: The CPU buffer to test
4256 */
4257int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4258{
4259 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4260 unsigned long flags;
8d707e8e 4261 int dolock;
8aabee57 4262 int ret;
7a8e76a3 4263
9e01c1b7 4264 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4265 return 1;
7a8e76a3 4266
8d707e8e
SR
4267 dolock = rb_ok_to_lock();
4268
7a8e76a3 4269 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4270 local_irq_save(flags);
4271 if (dolock)
5389f6fa 4272 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4273 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4274 if (dolock)
5389f6fa 4275 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4276 local_irq_restore(flags);
554f786e
SR
4277
4278 return ret;
7a8e76a3 4279}
c4f50183 4280EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4281
85bac32c 4282#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4283/**
4284 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4285 * @buffer_a: One buffer to swap with
4286 * @buffer_b: The other buffer to swap with
4287 *
4288 * This function is useful for tracers that want to take a "snapshot"
4289 * of a CPU buffer and has another back up buffer lying around.
4290 * it is expected that the tracer handles the cpu buffer not being
4291 * used at the moment.
4292 */
4293int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4294 struct ring_buffer *buffer_b, int cpu)
4295{
4296 struct ring_buffer_per_cpu *cpu_buffer_a;
4297 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4298 int ret = -EINVAL;
4299
9e01c1b7
RR
4300 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4301 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4302 goto out;
7a8e76a3 4303
438ced17
VN
4304 cpu_buffer_a = buffer_a->buffers[cpu];
4305 cpu_buffer_b = buffer_b->buffers[cpu];
4306
7a8e76a3 4307 /* At least make sure the two buffers are somewhat the same */
438ced17 4308 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4309 goto out;
4310
4311 ret = -EAGAIN;
7a8e76a3 4312
97b17efe 4313 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4314 goto out;
97b17efe
SR
4315
4316 if (atomic_read(&buffer_a->record_disabled))
554f786e 4317 goto out;
97b17efe
SR
4318
4319 if (atomic_read(&buffer_b->record_disabled))
554f786e 4320 goto out;
97b17efe 4321
97b17efe 4322 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4323 goto out;
97b17efe
SR
4324
4325 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4326 goto out;
97b17efe 4327
7a8e76a3
SR
4328 /*
4329 * We can't do a synchronize_sched here because this
4330 * function can be called in atomic context.
4331 * Normally this will be called from the same CPU as cpu.
4332 * If not it's up to the caller to protect this.
4333 */
4334 atomic_inc(&cpu_buffer_a->record_disabled);
4335 atomic_inc(&cpu_buffer_b->record_disabled);
4336
98277991
SR
4337 ret = -EBUSY;
4338 if (local_read(&cpu_buffer_a->committing))
4339 goto out_dec;
4340 if (local_read(&cpu_buffer_b->committing))
4341 goto out_dec;
4342
7a8e76a3
SR
4343 buffer_a->buffers[cpu] = cpu_buffer_b;
4344 buffer_b->buffers[cpu] = cpu_buffer_a;
4345
4346 cpu_buffer_b->buffer = buffer_a;
4347 cpu_buffer_a->buffer = buffer_b;
4348
98277991
SR
4349 ret = 0;
4350
4351out_dec:
7a8e76a3
SR
4352 atomic_dec(&cpu_buffer_a->record_disabled);
4353 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4354out:
554f786e 4355 return ret;
7a8e76a3 4356}
c4f50183 4357EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4358#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4359
8789a9e7
SR
4360/**
4361 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4362 * @buffer: the buffer to allocate for.
d611851b 4363 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4364 *
4365 * This function is used in conjunction with ring_buffer_read_page.
4366 * When reading a full page from the ring buffer, these functions
4367 * can be used to speed up the process. The calling function should
4368 * allocate a few pages first with this function. Then when it
4369 * needs to get pages from the ring buffer, it passes the result
4370 * of this function into ring_buffer_read_page, which will swap
4371 * the page that was allocated, with the read page of the buffer.
4372 *
4373 * Returns:
4374 * The page allocated, or NULL on error.
4375 */
7ea59064 4376void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4377{
044fa782 4378 struct buffer_data_page *bpage;
7ea59064 4379 struct page *page;
8789a9e7 4380
d7ec4bfe
VN
4381 page = alloc_pages_node(cpu_to_node(cpu),
4382 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4383 if (!page)
8789a9e7
SR
4384 return NULL;
4385
7ea59064 4386 bpage = page_address(page);
8789a9e7 4387
ef7a4a16
SR
4388 rb_init_page(bpage);
4389
044fa782 4390 return bpage;
8789a9e7 4391}
d6ce96da 4392EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4393
4394/**
4395 * ring_buffer_free_read_page - free an allocated read page
4396 * @buffer: the buffer the page was allocate for
4397 * @data: the page to free
4398 *
4399 * Free a page allocated from ring_buffer_alloc_read_page.
4400 */
4401void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4402{
4403 free_page((unsigned long)data);
4404}
d6ce96da 4405EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4406
4407/**
4408 * ring_buffer_read_page - extract a page from the ring buffer
4409 * @buffer: buffer to extract from
4410 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4411 * @len: amount to extract
8789a9e7
SR
4412 * @cpu: the cpu of the buffer to extract
4413 * @full: should the extraction only happen when the page is full.
4414 *
4415 * This function will pull out a page from the ring buffer and consume it.
4416 * @data_page must be the address of the variable that was returned
4417 * from ring_buffer_alloc_read_page. This is because the page might be used
4418 * to swap with a page in the ring buffer.
4419 *
4420 * for example:
d611851b 4421 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4422 * if (!rpage)
4423 * return error;
ef7a4a16 4424 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4425 * if (ret >= 0)
4426 * process_page(rpage, ret);
8789a9e7
SR
4427 *
4428 * When @full is set, the function will not return true unless
4429 * the writer is off the reader page.
4430 *
4431 * Note: it is up to the calling functions to handle sleeps and wakeups.
4432 * The ring buffer can be used anywhere in the kernel and can not
4433 * blindly call wake_up. The layer that uses the ring buffer must be
4434 * responsible for that.
4435 *
4436 * Returns:
667d2412
LJ
4437 * >=0 if data has been transferred, returns the offset of consumed data.
4438 * <0 if no data has been transferred.
8789a9e7
SR
4439 */
4440int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4441 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4442{
4443 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4444 struct ring_buffer_event *event;
044fa782 4445 struct buffer_data_page *bpage;
ef7a4a16 4446 struct buffer_page *reader;
ff0ff84a 4447 unsigned long missed_events;
8789a9e7 4448 unsigned long flags;
ef7a4a16 4449 unsigned int commit;
667d2412 4450 unsigned int read;
4f3640f8 4451 u64 save_timestamp;
667d2412 4452 int ret = -1;
8789a9e7 4453
554f786e
SR
4454 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4455 goto out;
4456
474d32b6
SR
4457 /*
4458 * If len is not big enough to hold the page header, then
4459 * we can not copy anything.
4460 */
4461 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4462 goto out;
474d32b6
SR
4463
4464 len -= BUF_PAGE_HDR_SIZE;
4465
8789a9e7 4466 if (!data_page)
554f786e 4467 goto out;
8789a9e7 4468
044fa782
SR
4469 bpage = *data_page;
4470 if (!bpage)
554f786e 4471 goto out;
8789a9e7 4472
5389f6fa 4473 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4474
ef7a4a16
SR
4475 reader = rb_get_reader_page(cpu_buffer);
4476 if (!reader)
554f786e 4477 goto out_unlock;
8789a9e7 4478
ef7a4a16
SR
4479 event = rb_reader_event(cpu_buffer);
4480
4481 read = reader->read;
4482 commit = rb_page_commit(reader);
667d2412 4483
66a8cb95 4484 /* Check if any events were dropped */
ff0ff84a 4485 missed_events = cpu_buffer->lost_events;
66a8cb95 4486
8789a9e7 4487 /*
474d32b6
SR
4488 * If this page has been partially read or
4489 * if len is not big enough to read the rest of the page or
4490 * a writer is still on the page, then
4491 * we must copy the data from the page to the buffer.
4492 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4493 */
474d32b6 4494 if (read || (len < (commit - read)) ||
ef7a4a16 4495 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4496 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4497 unsigned int rpos = read;
4498 unsigned int pos = 0;
ef7a4a16 4499 unsigned int size;
8789a9e7
SR
4500
4501 if (full)
554f786e 4502 goto out_unlock;
8789a9e7 4503
ef7a4a16
SR
4504 if (len > (commit - read))
4505 len = (commit - read);
4506
69d1b839
SR
4507 /* Always keep the time extend and data together */
4508 size = rb_event_ts_length(event);
ef7a4a16
SR
4509
4510 if (len < size)
554f786e 4511 goto out_unlock;
ef7a4a16 4512
4f3640f8
SR
4513 /* save the current timestamp, since the user will need it */
4514 save_timestamp = cpu_buffer->read_stamp;
4515
ef7a4a16
SR
4516 /* Need to copy one event at a time */
4517 do {
e1e35927
DS
4518 /* We need the size of one event, because
4519 * rb_advance_reader only advances by one event,
4520 * whereas rb_event_ts_length may include the size of
4521 * one or two events.
4522 * We have already ensured there's enough space if this
4523 * is a time extend. */
4524 size = rb_event_length(event);
474d32b6 4525 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4526
4527 len -= size;
4528
4529 rb_advance_reader(cpu_buffer);
474d32b6
SR
4530 rpos = reader->read;
4531 pos += size;
ef7a4a16 4532
18fab912
HY
4533 if (rpos >= commit)
4534 break;
4535
ef7a4a16 4536 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4537 /* Always keep the time extend and data together */
4538 size = rb_event_ts_length(event);
e1e35927 4539 } while (len >= size);
667d2412
LJ
4540
4541 /* update bpage */
ef7a4a16 4542 local_set(&bpage->commit, pos);
4f3640f8 4543 bpage->time_stamp = save_timestamp;
ef7a4a16 4544
474d32b6
SR
4545 /* we copied everything to the beginning */
4546 read = 0;
8789a9e7 4547 } else {
afbab76a 4548 /* update the entry counter */
77ae365e 4549 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4550 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4551
8789a9e7 4552 /* swap the pages */
044fa782 4553 rb_init_page(bpage);
ef7a4a16
SR
4554 bpage = reader->page;
4555 reader->page = *data_page;
4556 local_set(&reader->write, 0);
778c55d4 4557 local_set(&reader->entries, 0);
ef7a4a16 4558 reader->read = 0;
044fa782 4559 *data_page = bpage;
ff0ff84a
SR
4560
4561 /*
4562 * Use the real_end for the data size,
4563 * This gives us a chance to store the lost events
4564 * on the page.
4565 */
4566 if (reader->real_end)
4567 local_set(&bpage->commit, reader->real_end);
8789a9e7 4568 }
667d2412 4569 ret = read;
8789a9e7 4570
66a8cb95 4571 cpu_buffer->lost_events = 0;
2711ca23
SR
4572
4573 commit = local_read(&bpage->commit);
66a8cb95
SR
4574 /*
4575 * Set a flag in the commit field if we lost events
4576 */
ff0ff84a 4577 if (missed_events) {
ff0ff84a
SR
4578 /* If there is room at the end of the page to save the
4579 * missed events, then record it there.
4580 */
4581 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4582 memcpy(&bpage->data[commit], &missed_events,
4583 sizeof(missed_events));
4584 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4585 commit += sizeof(missed_events);
ff0ff84a 4586 }
66a8cb95 4587 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4588 }
66a8cb95 4589
2711ca23
SR
4590 /*
4591 * This page may be off to user land. Zero it out here.
4592 */
4593 if (commit < BUF_PAGE_SIZE)
4594 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4595
554f786e 4596 out_unlock:
5389f6fa 4597 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4598
554f786e 4599 out:
8789a9e7
SR
4600 return ret;
4601}
d6ce96da 4602EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4603
59222efe 4604#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4605static int rb_cpu_notify(struct notifier_block *self,
4606 unsigned long action, void *hcpu)
554f786e
SR
4607{
4608 struct ring_buffer *buffer =
4609 container_of(self, struct ring_buffer, cpu_notify);
4610 long cpu = (long)hcpu;
438ced17
VN
4611 int cpu_i, nr_pages_same;
4612 unsigned int nr_pages;
554f786e
SR
4613
4614 switch (action) {
4615 case CPU_UP_PREPARE:
4616 case CPU_UP_PREPARE_FROZEN:
3f237a79 4617 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4618 return NOTIFY_OK;
4619
438ced17
VN
4620 nr_pages = 0;
4621 nr_pages_same = 1;
4622 /* check if all cpu sizes are same */
4623 for_each_buffer_cpu(buffer, cpu_i) {
4624 /* fill in the size from first enabled cpu */
4625 if (nr_pages == 0)
4626 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4627 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4628 nr_pages_same = 0;
4629 break;
4630 }
4631 }
4632 /* allocate minimum pages, user can later expand it */
4633 if (!nr_pages_same)
4634 nr_pages = 2;
554f786e 4635 buffer->buffers[cpu] =
438ced17 4636 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4637 if (!buffer->buffers[cpu]) {
4638 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4639 cpu);
4640 return NOTIFY_OK;
4641 }
4642 smp_wmb();
3f237a79 4643 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4644 break;
4645 case CPU_DOWN_PREPARE:
4646 case CPU_DOWN_PREPARE_FROZEN:
4647 /*
4648 * Do nothing.
4649 * If we were to free the buffer, then the user would
4650 * lose any trace that was in the buffer.
4651 */
4652 break;
4653 default:
4654 break;
4655 }
4656 return NOTIFY_OK;
4657}
4658#endif
6c43e554
SRRH
4659
4660#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4661/*
4662 * This is a basic integrity check of the ring buffer.
4663 * Late in the boot cycle this test will run when configured in.
4664 * It will kick off a thread per CPU that will go into a loop
4665 * writing to the per cpu ring buffer various sizes of data.
4666 * Some of the data will be large items, some small.
4667 *
4668 * Another thread is created that goes into a spin, sending out
4669 * IPIs to the other CPUs to also write into the ring buffer.
4670 * this is to test the nesting ability of the buffer.
4671 *
4672 * Basic stats are recorded and reported. If something in the
4673 * ring buffer should happen that's not expected, a big warning
4674 * is displayed and all ring buffers are disabled.
4675 */
4676static struct task_struct *rb_threads[NR_CPUS] __initdata;
4677
4678struct rb_test_data {
4679 struct ring_buffer *buffer;
4680 unsigned long events;
4681 unsigned long bytes_written;
4682 unsigned long bytes_alloc;
4683 unsigned long bytes_dropped;
4684 unsigned long events_nested;
4685 unsigned long bytes_written_nested;
4686 unsigned long bytes_alloc_nested;
4687 unsigned long bytes_dropped_nested;
4688 int min_size_nested;
4689 int max_size_nested;
4690 int max_size;
4691 int min_size;
4692 int cpu;
4693 int cnt;
4694};
4695
4696static struct rb_test_data rb_data[NR_CPUS] __initdata;
4697
4698/* 1 meg per cpu */
4699#define RB_TEST_BUFFER_SIZE 1048576
4700
4701static char rb_string[] __initdata =
4702 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4703 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4704 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4705
4706static bool rb_test_started __initdata;
4707
4708struct rb_item {
4709 int size;
4710 char str[];
4711};
4712
4713static __init int rb_write_something(struct rb_test_data *data, bool nested)
4714{
4715 struct ring_buffer_event *event;
4716 struct rb_item *item;
4717 bool started;
4718 int event_len;
4719 int size;
4720 int len;
4721 int cnt;
4722
4723 /* Have nested writes different that what is written */
4724 cnt = data->cnt + (nested ? 27 : 0);
4725
4726 /* Multiply cnt by ~e, to make some unique increment */
4727 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4728
4729 len = size + sizeof(struct rb_item);
4730
4731 started = rb_test_started;
4732 /* read rb_test_started before checking buffer enabled */
4733 smp_rmb();
4734
4735 event = ring_buffer_lock_reserve(data->buffer, len);
4736 if (!event) {
4737 /* Ignore dropped events before test starts. */
4738 if (started) {
4739 if (nested)
4740 data->bytes_dropped += len;
4741 else
4742 data->bytes_dropped_nested += len;
4743 }
4744 return len;
4745 }
4746
4747 event_len = ring_buffer_event_length(event);
4748
4749 if (RB_WARN_ON(data->buffer, event_len < len))
4750 goto out;
4751
4752 item = ring_buffer_event_data(event);
4753 item->size = size;
4754 memcpy(item->str, rb_string, size);
4755
4756 if (nested) {
4757 data->bytes_alloc_nested += event_len;
4758 data->bytes_written_nested += len;
4759 data->events_nested++;
4760 if (!data->min_size_nested || len < data->min_size_nested)
4761 data->min_size_nested = len;
4762 if (len > data->max_size_nested)
4763 data->max_size_nested = len;
4764 } else {
4765 data->bytes_alloc += event_len;
4766 data->bytes_written += len;
4767 data->events++;
4768 if (!data->min_size || len < data->min_size)
4769 data->max_size = len;
4770 if (len > data->max_size)
4771 data->max_size = len;
4772 }
4773
4774 out:
4775 ring_buffer_unlock_commit(data->buffer, event);
4776
4777 return 0;
4778}
4779
4780static __init int rb_test(void *arg)
4781{
4782 struct rb_test_data *data = arg;
4783
4784 while (!kthread_should_stop()) {
4785 rb_write_something(data, false);
4786 data->cnt++;
4787
4788 set_current_state(TASK_INTERRUPTIBLE);
4789 /* Now sleep between a min of 100-300us and a max of 1ms */
4790 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4791 }
4792
4793 return 0;
4794}
4795
4796static __init void rb_ipi(void *ignore)
4797{
4798 struct rb_test_data *data;
4799 int cpu = smp_processor_id();
4800
4801 data = &rb_data[cpu];
4802 rb_write_something(data, true);
4803}
4804
4805static __init int rb_hammer_test(void *arg)
4806{
4807 while (!kthread_should_stop()) {
4808
4809 /* Send an IPI to all cpus to write data! */
4810 smp_call_function(rb_ipi, NULL, 1);
4811 /* No sleep, but for non preempt, let others run */
4812 schedule();
4813 }
4814
4815 return 0;
4816}
4817
4818static __init int test_ringbuffer(void)
4819{
4820 struct task_struct *rb_hammer;
4821 struct ring_buffer *buffer;
4822 int cpu;
4823 int ret = 0;
4824
4825 pr_info("Running ring buffer tests...\n");
4826
4827 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4828 if (WARN_ON(!buffer))
4829 return 0;
4830
4831 /* Disable buffer so that threads can't write to it yet */
4832 ring_buffer_record_off(buffer);
4833
4834 for_each_online_cpu(cpu) {
4835 rb_data[cpu].buffer = buffer;
4836 rb_data[cpu].cpu = cpu;
4837 rb_data[cpu].cnt = cpu;
4838 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4839 "rbtester/%d", cpu);
4840 if (WARN_ON(!rb_threads[cpu])) {
4841 pr_cont("FAILED\n");
4842 ret = -1;
4843 goto out_free;
4844 }
4845
4846 kthread_bind(rb_threads[cpu], cpu);
4847 wake_up_process(rb_threads[cpu]);
4848 }
4849
4850 /* Now create the rb hammer! */
4851 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4852 if (WARN_ON(!rb_hammer)) {
4853 pr_cont("FAILED\n");
4854 ret = -1;
4855 goto out_free;
4856 }
4857
4858 ring_buffer_record_on(buffer);
4859 /*
4860 * Show buffer is enabled before setting rb_test_started.
4861 * Yes there's a small race window where events could be
4862 * dropped and the thread wont catch it. But when a ring
4863 * buffer gets enabled, there will always be some kind of
4864 * delay before other CPUs see it. Thus, we don't care about
4865 * those dropped events. We care about events dropped after
4866 * the threads see that the buffer is active.
4867 */
4868 smp_wmb();
4869 rb_test_started = true;
4870
4871 set_current_state(TASK_INTERRUPTIBLE);
4872 /* Just run for 10 seconds */;
4873 schedule_timeout(10 * HZ);
4874
4875 kthread_stop(rb_hammer);
4876
4877 out_free:
4878 for_each_online_cpu(cpu) {
4879 if (!rb_threads[cpu])
4880 break;
4881 kthread_stop(rb_threads[cpu]);
4882 }
4883 if (ret) {
4884 ring_buffer_free(buffer);
4885 return ret;
4886 }
4887
4888 /* Report! */
4889 pr_info("finished\n");
4890 for_each_online_cpu(cpu) {
4891 struct ring_buffer_event *event;
4892 struct rb_test_data *data = &rb_data[cpu];
4893 struct rb_item *item;
4894 unsigned long total_events;
4895 unsigned long total_dropped;
4896 unsigned long total_written;
4897 unsigned long total_alloc;
4898 unsigned long total_read = 0;
4899 unsigned long total_size = 0;
4900 unsigned long total_len = 0;
4901 unsigned long total_lost = 0;
4902 unsigned long lost;
4903 int big_event_size;
4904 int small_event_size;
4905
4906 ret = -1;
4907
4908 total_events = data->events + data->events_nested;
4909 total_written = data->bytes_written + data->bytes_written_nested;
4910 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4911 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4912
4913 big_event_size = data->max_size + data->max_size_nested;
4914 small_event_size = data->min_size + data->min_size_nested;
4915
4916 pr_info("CPU %d:\n", cpu);
4917 pr_info(" events: %ld\n", total_events);
4918 pr_info(" dropped bytes: %ld\n", total_dropped);
4919 pr_info(" alloced bytes: %ld\n", total_alloc);
4920 pr_info(" written bytes: %ld\n", total_written);
4921 pr_info(" biggest event: %d\n", big_event_size);
4922 pr_info(" smallest event: %d\n", small_event_size);
4923
4924 if (RB_WARN_ON(buffer, total_dropped))
4925 break;
4926
4927 ret = 0;
4928
4929 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4930 total_lost += lost;
4931 item = ring_buffer_event_data(event);
4932 total_len += ring_buffer_event_length(event);
4933 total_size += item->size + sizeof(struct rb_item);
4934 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4935 pr_info("FAILED!\n");
4936 pr_info("buffer had: %.*s\n", item->size, item->str);
4937 pr_info("expected: %.*s\n", item->size, rb_string);
4938 RB_WARN_ON(buffer, 1);
4939 ret = -1;
4940 break;
4941 }
4942 total_read++;
4943 }
4944 if (ret)
4945 break;
4946
4947 ret = -1;
4948
4949 pr_info(" read events: %ld\n", total_read);
4950 pr_info(" lost events: %ld\n", total_lost);
4951 pr_info(" total events: %ld\n", total_lost + total_read);
4952 pr_info(" recorded len bytes: %ld\n", total_len);
4953 pr_info(" recorded size bytes: %ld\n", total_size);
4954 if (total_lost)
4955 pr_info(" With dropped events, record len and size may not match\n"
4956 " alloced and written from above\n");
4957 if (!total_lost) {
4958 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4959 total_size != total_written))
4960 break;
4961 }
4962 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4963 break;
4964
4965 ret = 0;
4966 }
4967 if (!ret)
4968 pr_info("Ring buffer PASSED!\n");
4969
4970 ring_buffer_free(buffer);
4971 return 0;
4972}
4973
4974late_initcall(test_ringbuffer);
4975#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */