Merge branch 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
1744a21d 13#include <linux/kmemcheck.h>
7a8e76a3
SR
14#include <linux/module.h>
15#include <linux/percpu.h>
16#include <linux/mutex.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
182e9f5f
SR
23#include "trace.h"
24
d1b182a8
SR
25/*
26 * The ring buffer header is special. We must manually up keep it.
27 */
28int ring_buffer_print_entry_header(struct trace_seq *s)
29{
30 int ret;
31
334d4169
LJ
32 ret = trace_seq_printf(s, "# compressed entry header\n");
33 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
34 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
35 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
36 ret = trace_seq_printf(s, "\n");
37 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
38 RINGBUF_TYPE_PADDING);
39 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
41 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
43
44 return ret;
45}
46
5cc98548
SR
47/*
48 * The ring buffer is made up of a list of pages. A separate list of pages is
49 * allocated for each CPU. A writer may only write to a buffer that is
50 * associated with the CPU it is currently executing on. A reader may read
51 * from any per cpu buffer.
52 *
53 * The reader is special. For each per cpu buffer, the reader has its own
54 * reader page. When a reader has read the entire reader page, this reader
55 * page is swapped with another page in the ring buffer.
56 *
57 * Now, as long as the writer is off the reader page, the reader can do what
58 * ever it wants with that page. The writer will never write to that page
59 * again (as long as it is out of the ring buffer).
60 *
61 * Here's some silly ASCII art.
62 *
63 * +------+
64 * |reader| RING BUFFER
65 * |page |
66 * +------+ +---+ +---+ +---+
67 * | |-->| |-->| |
68 * +---+ +---+ +---+
69 * ^ |
70 * | |
71 * +---------------+
72 *
73 *
74 * +------+
75 * |reader| RING BUFFER
76 * |page |------------------v
77 * +------+ +---+ +---+ +---+
78 * | |-->| |-->| |
79 * +---+ +---+ +---+
80 * ^ |
81 * | |
82 * +---------------+
83 *
84 *
85 * +------+
86 * |reader| RING BUFFER
87 * |page |------------------v
88 * +------+ +---+ +---+ +---+
89 * ^ | |-->| |-->| |
90 * | +---+ +---+ +---+
91 * | |
92 * | |
93 * +------------------------------+
94 *
95 *
96 * +------+
97 * |buffer| RING BUFFER
98 * |page |------------------v
99 * +------+ +---+ +---+ +---+
100 * ^ | | | |-->| |
101 * | New +---+ +---+ +---+
102 * | Reader------^ |
103 * | page |
104 * +------------------------------+
105 *
106 *
107 * After we make this swap, the reader can hand this page off to the splice
108 * code and be done with it. It can even allocate a new page if it needs to
109 * and swap that into the ring buffer.
110 *
111 * We will be using cmpxchg soon to make all this lockless.
112 *
113 */
114
033601a3
SR
115/*
116 * A fast way to enable or disable all ring buffers is to
117 * call tracing_on or tracing_off. Turning off the ring buffers
118 * prevents all ring buffers from being recorded to.
119 * Turning this switch on, makes it OK to write to the
120 * ring buffer, if the ring buffer is enabled itself.
121 *
122 * There's three layers that must be on in order to write
123 * to the ring buffer.
124 *
125 * 1) This global flag must be set.
126 * 2) The ring buffer must be enabled for recording.
127 * 3) The per cpu buffer must be enabled for recording.
128 *
129 * In case of an anomaly, this global flag has a bit set that
130 * will permantly disable all ring buffers.
131 */
132
133/*
134 * Global flag to disable all recording to ring buffers
135 * This has two bits: ON, DISABLED
136 *
137 * ON DISABLED
138 * ---- ----------
139 * 0 0 : ring buffers are off
140 * 1 0 : ring buffers are on
141 * X 1 : ring buffers are permanently disabled
142 */
143
144enum {
145 RB_BUFFERS_ON_BIT = 0,
146 RB_BUFFERS_DISABLED_BIT = 1,
147};
148
149enum {
150 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
151 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
152};
153
5e39841c 154static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 155
474d32b6
SR
156#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
a3583244
SR
158/**
159 * tracing_on - enable all tracing buffers
160 *
161 * This function enables all tracing buffers that may have been
162 * disabled with tracing_off.
163 */
164void tracing_on(void)
165{
033601a3 166 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 167}
c4f50183 168EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
169
170/**
171 * tracing_off - turn off all tracing buffers
172 *
173 * This function stops all tracing buffers from recording data.
174 * It does not disable any overhead the tracers themselves may
175 * be causing. This function simply causes all recording to
176 * the ring buffers to fail.
177 */
178void tracing_off(void)
179{
033601a3
SR
180 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181}
c4f50183 182EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
183
184/**
185 * tracing_off_permanent - permanently disable ring buffers
186 *
187 * This function, once called, will disable all ring buffers
c3706f00 188 * permanently.
033601a3
SR
189 */
190void tracing_off_permanent(void)
191{
192 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
193}
194
988ae9d6
SR
195/**
196 * tracing_is_on - show state of ring buffers enabled
197 */
198int tracing_is_on(void)
199{
200 return ring_buffer_flags == RB_BUFFERS_ON;
201}
202EXPORT_SYMBOL_GPL(tracing_is_on);
203
d06bbd66
IM
204#include "trace.h"
205
e3d6bf0a 206#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 207#define RB_ALIGNMENT 4U
334d4169
LJ
208#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209
210/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
211#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
212
213enum {
214 RB_LEN_TIME_EXTEND = 8,
215 RB_LEN_TIME_STAMP = 16,
216};
217
2d622719
TZ
218static inline int rb_null_event(struct ring_buffer_event *event)
219{
334d4169
LJ
220 return event->type_len == RINGBUF_TYPE_PADDING
221 && event->time_delta == 0;
2d622719
TZ
222}
223
224static inline int rb_discarded_event(struct ring_buffer_event *event)
225{
334d4169 226 return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
2d622719
TZ
227}
228
229static void rb_event_set_padding(struct ring_buffer_event *event)
230{
334d4169 231 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
232 event->time_delta = 0;
233}
234
34a148bf 235static unsigned
2d622719 236rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
237{
238 unsigned length;
239
334d4169
LJ
240 if (event->type_len)
241 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
242 else
243 length = event->array[0];
244 return length + RB_EVNT_HDR_SIZE;
245}
246
247/* inline for ring buffer fast paths */
248static unsigned
249rb_event_length(struct ring_buffer_event *event)
250{
334d4169 251 switch (event->type_len) {
7a8e76a3 252 case RINGBUF_TYPE_PADDING:
2d622719
TZ
253 if (rb_null_event(event))
254 /* undefined */
255 return -1;
334d4169 256 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
257
258 case RINGBUF_TYPE_TIME_EXTEND:
259 return RB_LEN_TIME_EXTEND;
260
261 case RINGBUF_TYPE_TIME_STAMP:
262 return RB_LEN_TIME_STAMP;
263
264 case RINGBUF_TYPE_DATA:
2d622719 265 return rb_event_data_length(event);
7a8e76a3
SR
266 default:
267 BUG();
268 }
269 /* not hit */
270 return 0;
271}
272
273/**
274 * ring_buffer_event_length - return the length of the event
275 * @event: the event to get the length of
276 */
277unsigned ring_buffer_event_length(struct ring_buffer_event *event)
278{
465634ad 279 unsigned length = rb_event_length(event);
334d4169 280 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
281 return length;
282 length -= RB_EVNT_HDR_SIZE;
283 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
284 length -= sizeof(event->array[0]);
285 return length;
7a8e76a3 286}
c4f50183 287EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
288
289/* inline for ring buffer fast paths */
34a148bf 290static void *
7a8e76a3
SR
291rb_event_data(struct ring_buffer_event *event)
292{
334d4169 293 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 294 /* If length is in len field, then array[0] has the data */
334d4169 295 if (event->type_len)
7a8e76a3
SR
296 return (void *)&event->array[0];
297 /* Otherwise length is in array[0] and array[1] has the data */
298 return (void *)&event->array[1];
299}
300
301/**
302 * ring_buffer_event_data - return the data of the event
303 * @event: the event to get the data from
304 */
305void *ring_buffer_event_data(struct ring_buffer_event *event)
306{
307 return rb_event_data(event);
308}
c4f50183 309EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
310
311#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 312 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
313
314#define TS_SHIFT 27
315#define TS_MASK ((1ULL << TS_SHIFT) - 1)
316#define TS_DELTA_TEST (~TS_MASK)
317
abc9b56d 318struct buffer_data_page {
e4c2ce82 319 u64 time_stamp; /* page time stamp */
c3706f00 320 local_t commit; /* write committed index */
abc9b56d
SR
321 unsigned char data[]; /* data of buffer page */
322};
323
324struct buffer_page {
778c55d4 325 struct list_head list; /* list of buffer pages */
abc9b56d 326 local_t write; /* index for next write */
6f807acd 327 unsigned read; /* index for next read */
778c55d4 328 local_t entries; /* entries on this page */
abc9b56d 329 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
330};
331
044fa782 332static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 333{
044fa782 334 local_set(&bpage->commit, 0);
abc9b56d
SR
335}
336
474d32b6
SR
337/**
338 * ring_buffer_page_len - the size of data on the page.
339 * @page: The page to read
340 *
341 * Returns the amount of data on the page, including buffer page header.
342 */
ef7a4a16
SR
343size_t ring_buffer_page_len(void *page)
344{
474d32b6
SR
345 return local_read(&((struct buffer_data_page *)page)->commit)
346 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
347}
348
ed56829c
SR
349/*
350 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351 * this issue out.
352 */
34a148bf 353static void free_buffer_page(struct buffer_page *bpage)
ed56829c 354{
34a148bf 355 free_page((unsigned long)bpage->page);
e4c2ce82 356 kfree(bpage);
ed56829c
SR
357}
358
7a8e76a3
SR
359/*
360 * We need to fit the time_stamp delta into 27 bits.
361 */
362static inline int test_time_stamp(u64 delta)
363{
364 if (delta & TS_DELTA_TEST)
365 return 1;
366 return 0;
367}
368
474d32b6 369#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 370
be957c44
SR
371/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373
ea05b57c
SR
374/* Max number of timestamps that can fit on a page */
375#define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
376
d1b182a8
SR
377int ring_buffer_print_page_header(struct trace_seq *s)
378{
379 struct buffer_data_page field;
380 int ret;
381
382 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
383 "offset:0;\tsize:%u;\n",
384 (unsigned int)sizeof(field.time_stamp));
385
386 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
387 "offset:%u;\tsize:%u;\n",
388 (unsigned int)offsetof(typeof(field), commit),
389 (unsigned int)sizeof(field.commit));
390
391 ret = trace_seq_printf(s, "\tfield: char data;\t"
392 "offset:%u;\tsize:%u;\n",
393 (unsigned int)offsetof(typeof(field), data),
394 (unsigned int)BUF_PAGE_SIZE);
395
396 return ret;
397}
398
7a8e76a3
SR
399/*
400 * head_page == tail_page && head == tail then buffer is empty.
401 */
402struct ring_buffer_per_cpu {
403 int cpu;
404 struct ring_buffer *buffer;
f83c9d0f 405 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 406 raw_spinlock_t lock;
7a8e76a3
SR
407 struct lock_class_key lock_key;
408 struct list_head pages;
6f807acd
SR
409 struct buffer_page *head_page; /* read from head */
410 struct buffer_page *tail_page; /* write to tail */
c3706f00 411 struct buffer_page *commit_page; /* committed pages */
d769041f 412 struct buffer_page *reader_page;
f0d2c681
SR
413 unsigned long nmi_dropped;
414 unsigned long commit_overrun;
7a8e76a3 415 unsigned long overrun;
e4906eff
SR
416 unsigned long read;
417 local_t entries;
7a8e76a3
SR
418 u64 write_stamp;
419 u64 read_stamp;
420 atomic_t record_disabled;
421};
422
423struct ring_buffer {
7a8e76a3
SR
424 unsigned pages;
425 unsigned flags;
426 int cpus;
7a8e76a3 427 atomic_t record_disabled;
00f62f61 428 cpumask_var_t cpumask;
7a8e76a3 429
1f8a6a10
PZ
430 struct lock_class_key *reader_lock_key;
431
7a8e76a3
SR
432 struct mutex mutex;
433
434 struct ring_buffer_per_cpu **buffers;
554f786e 435
59222efe 436#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
437 struct notifier_block cpu_notify;
438#endif
37886f6a 439 u64 (*clock)(void);
7a8e76a3
SR
440};
441
442struct ring_buffer_iter {
443 struct ring_buffer_per_cpu *cpu_buffer;
444 unsigned long head;
445 struct buffer_page *head_page;
446 u64 read_stamp;
447};
448
f536aafc 449/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 450#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
451 ({ \
452 int _____ret = unlikely(cond); \
453 if (_____ret) { \
bf41a158
SR
454 atomic_inc(&buffer->record_disabled); \
455 WARN_ON(1); \
456 } \
3e89c7bb
SR
457 _____ret; \
458 })
f536aafc 459
37886f6a
SR
460/* Up this if you want to test the TIME_EXTENTS and normalization */
461#define DEBUG_SHIFT 0
462
88eb0125
SR
463static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
464{
465 /* shift to debug/test normalization and TIME_EXTENTS */
466 return buffer->clock() << DEBUG_SHIFT;
467}
468
37886f6a
SR
469u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
470{
471 u64 time;
472
473 preempt_disable_notrace();
88eb0125 474 time = rb_time_stamp(buffer, cpu);
37886f6a
SR
475 preempt_enable_no_resched_notrace();
476
477 return time;
478}
479EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
480
481void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
482 int cpu, u64 *ts)
483{
484 /* Just stupid testing the normalize function and deltas */
485 *ts >>= DEBUG_SHIFT;
486}
487EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
488
7a8e76a3
SR
489/**
490 * check_pages - integrity check of buffer pages
491 * @cpu_buffer: CPU buffer with pages to test
492 *
c3706f00 493 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
494 * been corrupted.
495 */
496static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
497{
498 struct list_head *head = &cpu_buffer->pages;
044fa782 499 struct buffer_page *bpage, *tmp;
7a8e76a3 500
3e89c7bb
SR
501 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
502 return -1;
503 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
504 return -1;
7a8e76a3 505
044fa782 506 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 507 if (RB_WARN_ON(cpu_buffer,
044fa782 508 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
509 return -1;
510 if (RB_WARN_ON(cpu_buffer,
044fa782 511 bpage->list.prev->next != &bpage->list))
3e89c7bb 512 return -1;
7a8e76a3
SR
513 }
514
515 return 0;
516}
517
7a8e76a3
SR
518static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
519 unsigned nr_pages)
520{
521 struct list_head *head = &cpu_buffer->pages;
044fa782 522 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
523 unsigned long addr;
524 LIST_HEAD(pages);
525 unsigned i;
526
527 for (i = 0; i < nr_pages; i++) {
044fa782 528 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 529 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 530 if (!bpage)
e4c2ce82 531 goto free_pages;
044fa782 532 list_add(&bpage->list, &pages);
e4c2ce82 533
7a8e76a3
SR
534 addr = __get_free_page(GFP_KERNEL);
535 if (!addr)
536 goto free_pages;
044fa782
SR
537 bpage->page = (void *)addr;
538 rb_init_page(bpage->page);
7a8e76a3
SR
539 }
540
541 list_splice(&pages, head);
542
543 rb_check_pages(cpu_buffer);
544
545 return 0;
546
547 free_pages:
044fa782
SR
548 list_for_each_entry_safe(bpage, tmp, &pages, list) {
549 list_del_init(&bpage->list);
550 free_buffer_page(bpage);
7a8e76a3
SR
551 }
552 return -ENOMEM;
553}
554
555static struct ring_buffer_per_cpu *
556rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
557{
558 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 559 struct buffer_page *bpage;
d769041f 560 unsigned long addr;
7a8e76a3
SR
561 int ret;
562
563 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
564 GFP_KERNEL, cpu_to_node(cpu));
565 if (!cpu_buffer)
566 return NULL;
567
568 cpu_buffer->cpu = cpu;
569 cpu_buffer->buffer = buffer;
f83c9d0f 570 spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 571 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
3e03fb7f 572 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
573 INIT_LIST_HEAD(&cpu_buffer->pages);
574
044fa782 575 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 576 GFP_KERNEL, cpu_to_node(cpu));
044fa782 577 if (!bpage)
e4c2ce82
SR
578 goto fail_free_buffer;
579
044fa782 580 cpu_buffer->reader_page = bpage;
d769041f
SR
581 addr = __get_free_page(GFP_KERNEL);
582 if (!addr)
e4c2ce82 583 goto fail_free_reader;
044fa782
SR
584 bpage->page = (void *)addr;
585 rb_init_page(bpage->page);
e4c2ce82 586
d769041f 587 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 588
7a8e76a3
SR
589 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
590 if (ret < 0)
d769041f 591 goto fail_free_reader;
7a8e76a3
SR
592
593 cpu_buffer->head_page
594 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 595 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
596
597 return cpu_buffer;
598
d769041f
SR
599 fail_free_reader:
600 free_buffer_page(cpu_buffer->reader_page);
601
7a8e76a3
SR
602 fail_free_buffer:
603 kfree(cpu_buffer);
604 return NULL;
605}
606
607static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
608{
609 struct list_head *head = &cpu_buffer->pages;
044fa782 610 struct buffer_page *bpage, *tmp;
7a8e76a3 611
d769041f
SR
612 free_buffer_page(cpu_buffer->reader_page);
613
044fa782
SR
614 list_for_each_entry_safe(bpage, tmp, head, list) {
615 list_del_init(&bpage->list);
616 free_buffer_page(bpage);
7a8e76a3
SR
617 }
618 kfree(cpu_buffer);
619}
620
a7b13743
SR
621/*
622 * Causes compile errors if the struct buffer_page gets bigger
623 * than the struct page.
624 */
625extern int ring_buffer_page_too_big(void);
626
59222efe 627#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
628static int rb_cpu_notify(struct notifier_block *self,
629 unsigned long action, void *hcpu);
554f786e
SR
630#endif
631
7a8e76a3
SR
632/**
633 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 634 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
635 * @flags: attributes to set for the ring buffer.
636 *
637 * Currently the only flag that is available is the RB_FL_OVERWRITE
638 * flag. This flag means that the buffer will overwrite old data
639 * when the buffer wraps. If this flag is not set, the buffer will
640 * drop data when the tail hits the head.
641 */
1f8a6a10
PZ
642struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
643 struct lock_class_key *key)
7a8e76a3
SR
644{
645 struct ring_buffer *buffer;
646 int bsize;
647 int cpu;
648
a7b13743
SR
649 /* Paranoid! Optimizes out when all is well */
650 if (sizeof(struct buffer_page) > sizeof(struct page))
651 ring_buffer_page_too_big();
652
653
7a8e76a3
SR
654 /* keep it in its own cache line */
655 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
656 GFP_KERNEL);
657 if (!buffer)
658 return NULL;
659
9e01c1b7
RR
660 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
661 goto fail_free_buffer;
662
7a8e76a3
SR
663 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
664 buffer->flags = flags;
37886f6a 665 buffer->clock = trace_clock_local;
1f8a6a10 666 buffer->reader_lock_key = key;
7a8e76a3
SR
667
668 /* need at least two pages */
669 if (buffer->pages == 1)
670 buffer->pages++;
671
3bf832ce
FW
672 /*
673 * In case of non-hotplug cpu, if the ring-buffer is allocated
674 * in early initcall, it will not be notified of secondary cpus.
675 * In that off case, we need to allocate for all possible cpus.
676 */
677#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
678 get_online_cpus();
679 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
680#else
681 cpumask_copy(buffer->cpumask, cpu_possible_mask);
682#endif
7a8e76a3
SR
683 buffer->cpus = nr_cpu_ids;
684
685 bsize = sizeof(void *) * nr_cpu_ids;
686 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
687 GFP_KERNEL);
688 if (!buffer->buffers)
9e01c1b7 689 goto fail_free_cpumask;
7a8e76a3
SR
690
691 for_each_buffer_cpu(buffer, cpu) {
692 buffer->buffers[cpu] =
693 rb_allocate_cpu_buffer(buffer, cpu);
694 if (!buffer->buffers[cpu])
695 goto fail_free_buffers;
696 }
697
59222efe 698#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
699 buffer->cpu_notify.notifier_call = rb_cpu_notify;
700 buffer->cpu_notify.priority = 0;
701 register_cpu_notifier(&buffer->cpu_notify);
702#endif
703
704 put_online_cpus();
7a8e76a3
SR
705 mutex_init(&buffer->mutex);
706
707 return buffer;
708
709 fail_free_buffers:
710 for_each_buffer_cpu(buffer, cpu) {
711 if (buffer->buffers[cpu])
712 rb_free_cpu_buffer(buffer->buffers[cpu]);
713 }
714 kfree(buffer->buffers);
715
9e01c1b7
RR
716 fail_free_cpumask:
717 free_cpumask_var(buffer->cpumask);
554f786e 718 put_online_cpus();
9e01c1b7 719
7a8e76a3
SR
720 fail_free_buffer:
721 kfree(buffer);
722 return NULL;
723}
1f8a6a10 724EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
725
726/**
727 * ring_buffer_free - free a ring buffer.
728 * @buffer: the buffer to free.
729 */
730void
731ring_buffer_free(struct ring_buffer *buffer)
732{
733 int cpu;
734
554f786e
SR
735 get_online_cpus();
736
59222efe 737#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
738 unregister_cpu_notifier(&buffer->cpu_notify);
739#endif
740
7a8e76a3
SR
741 for_each_buffer_cpu(buffer, cpu)
742 rb_free_cpu_buffer(buffer->buffers[cpu]);
743
554f786e
SR
744 put_online_cpus();
745
9e01c1b7
RR
746 free_cpumask_var(buffer->cpumask);
747
7a8e76a3
SR
748 kfree(buffer);
749}
c4f50183 750EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 751
37886f6a
SR
752void ring_buffer_set_clock(struct ring_buffer *buffer,
753 u64 (*clock)(void))
754{
755 buffer->clock = clock;
756}
757
7a8e76a3
SR
758static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
759
760static void
761rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
762{
044fa782 763 struct buffer_page *bpage;
7a8e76a3
SR
764 struct list_head *p;
765 unsigned i;
766
767 atomic_inc(&cpu_buffer->record_disabled);
768 synchronize_sched();
769
770 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
771 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
772 return;
7a8e76a3 773 p = cpu_buffer->pages.next;
044fa782
SR
774 bpage = list_entry(p, struct buffer_page, list);
775 list_del_init(&bpage->list);
776 free_buffer_page(bpage);
7a8e76a3 777 }
3e89c7bb
SR
778 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
779 return;
7a8e76a3
SR
780
781 rb_reset_cpu(cpu_buffer);
782
783 rb_check_pages(cpu_buffer);
784
785 atomic_dec(&cpu_buffer->record_disabled);
786
787}
788
789static void
790rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
791 struct list_head *pages, unsigned nr_pages)
792{
044fa782 793 struct buffer_page *bpage;
7a8e76a3
SR
794 struct list_head *p;
795 unsigned i;
796
797 atomic_inc(&cpu_buffer->record_disabled);
798 synchronize_sched();
799
800 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
801 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
802 return;
7a8e76a3 803 p = pages->next;
044fa782
SR
804 bpage = list_entry(p, struct buffer_page, list);
805 list_del_init(&bpage->list);
806 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
807 }
808 rb_reset_cpu(cpu_buffer);
809
810 rb_check_pages(cpu_buffer);
811
812 atomic_dec(&cpu_buffer->record_disabled);
813}
814
815/**
816 * ring_buffer_resize - resize the ring buffer
817 * @buffer: the buffer to resize.
818 * @size: the new size.
819 *
820 * The tracer is responsible for making sure that the buffer is
821 * not being used while changing the size.
822 * Note: We may be able to change the above requirement by using
823 * RCU synchronizations.
824 *
825 * Minimum size is 2 * BUF_PAGE_SIZE.
826 *
827 * Returns -1 on failure.
828 */
829int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
830{
831 struct ring_buffer_per_cpu *cpu_buffer;
832 unsigned nr_pages, rm_pages, new_pages;
044fa782 833 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
834 unsigned long buffer_size;
835 unsigned long addr;
836 LIST_HEAD(pages);
837 int i, cpu;
838
ee51a1de
IM
839 /*
840 * Always succeed at resizing a non-existent buffer:
841 */
842 if (!buffer)
843 return size;
844
7a8e76a3
SR
845 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
846 size *= BUF_PAGE_SIZE;
847 buffer_size = buffer->pages * BUF_PAGE_SIZE;
848
849 /* we need a minimum of two pages */
850 if (size < BUF_PAGE_SIZE * 2)
851 size = BUF_PAGE_SIZE * 2;
852
853 if (size == buffer_size)
854 return size;
855
856 mutex_lock(&buffer->mutex);
554f786e 857 get_online_cpus();
7a8e76a3
SR
858
859 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
860
861 if (size < buffer_size) {
862
863 /* easy case, just free pages */
554f786e
SR
864 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
865 goto out_fail;
7a8e76a3
SR
866
867 rm_pages = buffer->pages - nr_pages;
868
869 for_each_buffer_cpu(buffer, cpu) {
870 cpu_buffer = buffer->buffers[cpu];
871 rb_remove_pages(cpu_buffer, rm_pages);
872 }
873 goto out;
874 }
875
876 /*
877 * This is a bit more difficult. We only want to add pages
878 * when we can allocate enough for all CPUs. We do this
879 * by allocating all the pages and storing them on a local
880 * link list. If we succeed in our allocation, then we
881 * add these pages to the cpu_buffers. Otherwise we just free
882 * them all and return -ENOMEM;
883 */
554f786e
SR
884 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
885 goto out_fail;
f536aafc 886
7a8e76a3
SR
887 new_pages = nr_pages - buffer->pages;
888
889 for_each_buffer_cpu(buffer, cpu) {
890 for (i = 0; i < new_pages; i++) {
044fa782 891 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
892 cache_line_size()),
893 GFP_KERNEL, cpu_to_node(cpu));
044fa782 894 if (!bpage)
e4c2ce82 895 goto free_pages;
044fa782 896 list_add(&bpage->list, &pages);
7a8e76a3
SR
897 addr = __get_free_page(GFP_KERNEL);
898 if (!addr)
899 goto free_pages;
044fa782
SR
900 bpage->page = (void *)addr;
901 rb_init_page(bpage->page);
7a8e76a3
SR
902 }
903 }
904
905 for_each_buffer_cpu(buffer, cpu) {
906 cpu_buffer = buffer->buffers[cpu];
907 rb_insert_pages(cpu_buffer, &pages, new_pages);
908 }
909
554f786e
SR
910 if (RB_WARN_ON(buffer, !list_empty(&pages)))
911 goto out_fail;
7a8e76a3
SR
912
913 out:
914 buffer->pages = nr_pages;
554f786e 915 put_online_cpus();
7a8e76a3
SR
916 mutex_unlock(&buffer->mutex);
917
918 return size;
919
920 free_pages:
044fa782
SR
921 list_for_each_entry_safe(bpage, tmp, &pages, list) {
922 list_del_init(&bpage->list);
923 free_buffer_page(bpage);
7a8e76a3 924 }
554f786e 925 put_online_cpus();
641d2f63 926 mutex_unlock(&buffer->mutex);
7a8e76a3 927 return -ENOMEM;
554f786e
SR
928
929 /*
930 * Something went totally wrong, and we are too paranoid
931 * to even clean up the mess.
932 */
933 out_fail:
934 put_online_cpus();
935 mutex_unlock(&buffer->mutex);
936 return -1;
7a8e76a3 937}
c4f50183 938EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 939
8789a9e7 940static inline void *
044fa782 941__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 942{
044fa782 943 return bpage->data + index;
8789a9e7
SR
944}
945
044fa782 946static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 947{
044fa782 948 return bpage->page->data + index;
7a8e76a3
SR
949}
950
951static inline struct ring_buffer_event *
d769041f 952rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 953{
6f807acd
SR
954 return __rb_page_index(cpu_buffer->reader_page,
955 cpu_buffer->reader_page->read);
956}
957
958static inline struct ring_buffer_event *
959rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
960{
961 return __rb_page_index(cpu_buffer->head_page,
962 cpu_buffer->head_page->read);
7a8e76a3
SR
963}
964
965static inline struct ring_buffer_event *
966rb_iter_head_event(struct ring_buffer_iter *iter)
967{
6f807acd 968 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
969}
970
bf41a158
SR
971static inline unsigned rb_page_write(struct buffer_page *bpage)
972{
973 return local_read(&bpage->write);
974}
975
976static inline unsigned rb_page_commit(struct buffer_page *bpage)
977{
abc9b56d 978 return local_read(&bpage->page->commit);
bf41a158
SR
979}
980
981/* Size is determined by what has been commited */
982static inline unsigned rb_page_size(struct buffer_page *bpage)
983{
984 return rb_page_commit(bpage);
985}
986
987static inline unsigned
988rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
989{
990 return rb_page_commit(cpu_buffer->commit_page);
991}
992
993static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
994{
995 return rb_page_commit(cpu_buffer->head_page);
996}
997
7a8e76a3 998static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 999 struct buffer_page **bpage)
7a8e76a3 1000{
044fa782 1001 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
1002
1003 if (p == &cpu_buffer->pages)
1004 p = p->next;
1005
044fa782 1006 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
1007}
1008
bf41a158
SR
1009static inline unsigned
1010rb_event_index(struct ring_buffer_event *event)
1011{
1012 unsigned long addr = (unsigned long)event;
1013
1014 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1015}
1016
0f0c85fc 1017static inline int
bf41a158
SR
1018rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1019 struct ring_buffer_event *event)
1020{
1021 unsigned long addr = (unsigned long)event;
1022 unsigned long index;
1023
1024 index = rb_event_index(event);
1025 addr &= PAGE_MASK;
1026
1027 return cpu_buffer->commit_page->page == (void *)addr &&
1028 rb_commit_index(cpu_buffer) == index;
1029}
1030
34a148bf 1031static void
bf41a158
SR
1032rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1033 struct ring_buffer_event *event)
7a8e76a3 1034{
bf41a158
SR
1035 unsigned long addr = (unsigned long)event;
1036 unsigned long index;
1037
1038 index = rb_event_index(event);
1039 addr &= PAGE_MASK;
1040
1041 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
1042 if (RB_WARN_ON(cpu_buffer,
1043 cpu_buffer->commit_page == cpu_buffer->tail_page))
1044 return;
abc9b56d 1045 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1046 cpu_buffer->commit_page->write;
1047 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1048 cpu_buffer->write_stamp =
1049 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1050 }
1051
1052 /* Now set the commit to the event's index */
abc9b56d 1053 local_set(&cpu_buffer->commit_page->page->commit, index);
7a8e76a3
SR
1054}
1055
34a148bf 1056static void
bf41a158 1057rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1058{
bf41a158
SR
1059 /*
1060 * We only race with interrupts and NMIs on this CPU.
1061 * If we own the commit event, then we can commit
1062 * all others that interrupted us, since the interruptions
1063 * are in stack format (they finish before they come
1064 * back to us). This allows us to do a simple loop to
1065 * assign the commit to the tail.
1066 */
a8ccf1d6 1067 again:
bf41a158 1068 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 1069 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1070 cpu_buffer->commit_page->write;
1071 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1072 cpu_buffer->write_stamp =
1073 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1074 /* add barrier to keep gcc from optimizing too much */
1075 barrier();
1076 }
1077 while (rb_commit_index(cpu_buffer) !=
1078 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 1079 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1080 cpu_buffer->commit_page->write;
1081 barrier();
1082 }
a8ccf1d6
SR
1083
1084 /* again, keep gcc from optimizing */
1085 barrier();
1086
1087 /*
1088 * If an interrupt came in just after the first while loop
1089 * and pushed the tail page forward, we will be left with
1090 * a dangling commit that will never go forward.
1091 */
1092 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1093 goto again;
7a8e76a3
SR
1094}
1095
d769041f 1096static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1097{
abc9b56d 1098 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1099 cpu_buffer->reader_page->read = 0;
d769041f
SR
1100}
1101
34a148bf 1102static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1103{
1104 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1105
1106 /*
1107 * The iterator could be on the reader page (it starts there).
1108 * But the head could have moved, since the reader was
1109 * found. Check for this case and assign the iterator
1110 * to the head page instead of next.
1111 */
1112 if (iter->head_page == cpu_buffer->reader_page)
1113 iter->head_page = cpu_buffer->head_page;
1114 else
1115 rb_inc_page(cpu_buffer, &iter->head_page);
1116
abc9b56d 1117 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1118 iter->head = 0;
1119}
1120
1121/**
1122 * ring_buffer_update_event - update event type and data
1123 * @event: the even to update
1124 * @type: the type of event
1125 * @length: the size of the event field in the ring buffer
1126 *
1127 * Update the type and data fields of the event. The length
1128 * is the actual size that is written to the ring buffer,
1129 * and with this, we can determine what to place into the
1130 * data field.
1131 */
34a148bf 1132static void
7a8e76a3
SR
1133rb_update_event(struct ring_buffer_event *event,
1134 unsigned type, unsigned length)
1135{
334d4169 1136 event->type_len = type;
7a8e76a3
SR
1137
1138 switch (type) {
1139
1140 case RINGBUF_TYPE_PADDING:
7a8e76a3 1141 case RINGBUF_TYPE_TIME_EXTEND:
7a8e76a3 1142 case RINGBUF_TYPE_TIME_STAMP:
7a8e76a3
SR
1143 break;
1144
334d4169 1145 case 0:
7a8e76a3 1146 length -= RB_EVNT_HDR_SIZE;
334d4169 1147 if (length > RB_MAX_SMALL_DATA)
7a8e76a3 1148 event->array[0] = length;
334d4169
LJ
1149 else
1150 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1151 break;
1152 default:
1153 BUG();
1154 }
1155}
1156
34a148bf 1157static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1158{
1159 struct ring_buffer_event event; /* Used only for sizeof array */
1160
1161 /* zero length can cause confusions */
1162 if (!length)
1163 length = 1;
1164
1165 if (length > RB_MAX_SMALL_DATA)
1166 length += sizeof(event.array[0]);
1167
1168 length += RB_EVNT_HDR_SIZE;
1169 length = ALIGN(length, RB_ALIGNMENT);
1170
1171 return length;
1172}
1173
6634ff26 1174
7a8e76a3 1175static struct ring_buffer_event *
6634ff26
SR
1176rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1177 unsigned long length, unsigned long tail,
1178 struct buffer_page *commit_page,
1179 struct buffer_page *tail_page, u64 *ts)
7a8e76a3 1180{
6634ff26 1181 struct buffer_page *next_page, *head_page, *reader_page;
7a8e76a3
SR
1182 struct ring_buffer *buffer = cpu_buffer->buffer;
1183 struct ring_buffer_event *event;
78d904b4 1184 bool lock_taken = false;
6634ff26 1185 unsigned long flags;
aa20ae84
SR
1186
1187 next_page = tail_page;
1188
1189 local_irq_save(flags);
1190 /*
1191 * Since the write to the buffer is still not
1192 * fully lockless, we must be careful with NMIs.
1193 * The locks in the writers are taken when a write
1194 * crosses to a new page. The locks protect against
1195 * races with the readers (this will soon be fixed
1196 * with a lockless solution).
1197 *
1198 * Because we can not protect against NMIs, and we
1199 * want to keep traces reentrant, we need to manage
1200 * what happens when we are in an NMI.
1201 *
1202 * NMIs can happen after we take the lock.
1203 * If we are in an NMI, only take the lock
1204 * if it is not already taken. Otherwise
1205 * simply fail.
1206 */
1207 if (unlikely(in_nmi())) {
1208 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1209 cpu_buffer->nmi_dropped++;
1210 goto out_reset;
1211 }
1212 } else
1213 __raw_spin_lock(&cpu_buffer->lock);
1214
1215 lock_taken = true;
1216
1217 rb_inc_page(cpu_buffer, &next_page);
1218
1219 head_page = cpu_buffer->head_page;
1220 reader_page = cpu_buffer->reader_page;
1221
1222 /* we grabbed the lock before incrementing */
1223 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1224 goto out_reset;
1225
1226 /*
1227 * If for some reason, we had an interrupt storm that made
1228 * it all the way around the buffer, bail, and warn
1229 * about it.
1230 */
1231 if (unlikely(next_page == commit_page)) {
1232 cpu_buffer->commit_overrun++;
1233 goto out_reset;
1234 }
1235
1236 if (next_page == head_page) {
1237 if (!(buffer->flags & RB_FL_OVERWRITE))
1238 goto out_reset;
1239
1240 /* tail_page has not moved yet? */
1241 if (tail_page == cpu_buffer->tail_page) {
1242 /* count overflows */
1243 cpu_buffer->overrun +=
1244 local_read(&head_page->entries);
1245
1246 rb_inc_page(cpu_buffer, &head_page);
1247 cpu_buffer->head_page = head_page;
1248 cpu_buffer->head_page->read = 0;
1249 }
1250 }
1251
1252 /*
1253 * If the tail page is still the same as what we think
1254 * it is, then it is up to us to update the tail
1255 * pointer.
1256 */
1257 if (tail_page == cpu_buffer->tail_page) {
1258 local_set(&next_page->write, 0);
1259 local_set(&next_page->entries, 0);
1260 local_set(&next_page->page->commit, 0);
1261 cpu_buffer->tail_page = next_page;
1262
1263 /* reread the time stamp */
88eb0125 1264 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
aa20ae84
SR
1265 cpu_buffer->tail_page->page->time_stamp = *ts;
1266 }
1267
1268 /*
1269 * The actual tail page has moved forward.
1270 */
1271 if (tail < BUF_PAGE_SIZE) {
1272 /* Mark the rest of the page with padding */
1273 event = __rb_page_index(tail_page, tail);
1744a21d 1274 kmemcheck_annotate_bitfield(event, bitfield);
aa20ae84
SR
1275 rb_event_set_padding(event);
1276 }
1277
8e7abf1c
SR
1278 /* Set the write back to the previous setting */
1279 local_sub(length, &tail_page->write);
aa20ae84
SR
1280
1281 /*
1282 * If this was a commit entry that failed,
1283 * increment that too
1284 */
1285 if (tail_page == cpu_buffer->commit_page &&
1286 tail == rb_commit_index(cpu_buffer)) {
1287 rb_set_commit_to_write(cpu_buffer);
1288 }
1289
1290 __raw_spin_unlock(&cpu_buffer->lock);
1291 local_irq_restore(flags);
1292
1293 /* fail and let the caller try again */
1294 return ERR_PTR(-EAGAIN);
1295
45141d46 1296 out_reset:
6f3b3440 1297 /* reset write */
8e7abf1c 1298 local_sub(length, &tail_page->write);
6f3b3440 1299
78d904b4
SR
1300 if (likely(lock_taken))
1301 __raw_spin_unlock(&cpu_buffer->lock);
3e03fb7f 1302 local_irq_restore(flags);
bf41a158 1303 return NULL;
7a8e76a3
SR
1304}
1305
6634ff26
SR
1306static struct ring_buffer_event *
1307__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1308 unsigned type, unsigned long length, u64 *ts)
1309{
1310 struct buffer_page *tail_page, *commit_page;
1311 struct ring_buffer_event *event;
1312 unsigned long tail, write;
1313
1314 commit_page = cpu_buffer->commit_page;
1315 /* we just need to protect against interrupts */
1316 barrier();
1317 tail_page = cpu_buffer->tail_page;
1318 write = local_add_return(length, &tail_page->write);
1319 tail = write - length;
1320
1321 /* See if we shot pass the end of this buffer page */
1322 if (write > BUF_PAGE_SIZE)
1323 return rb_move_tail(cpu_buffer, length, tail,
1324 commit_page, tail_page, ts);
1325
1326 /* We reserved something on the buffer */
1327
1328 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1329 return NULL;
1330
1331 event = __rb_page_index(tail_page, tail);
1744a21d 1332 kmemcheck_annotate_bitfield(event, bitfield);
6634ff26
SR
1333 rb_update_event(event, type, length);
1334
1335 /* The passed in type is zero for DATA */
1336 if (likely(!type))
1337 local_inc(&tail_page->entries);
1338
1339 /*
1340 * If this is a commit and the tail is zero, then update
1341 * this page's time stamp.
1342 */
1343 if (!tail && rb_is_commit(cpu_buffer, event))
1344 cpu_buffer->commit_page->page->time_stamp = *ts;
1345
1346 return event;
1347}
1348
edd813bf
SR
1349static inline int
1350rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1351 struct ring_buffer_event *event)
1352{
1353 unsigned long new_index, old_index;
1354 struct buffer_page *bpage;
1355 unsigned long index;
1356 unsigned long addr;
1357
1358 new_index = rb_event_index(event);
1359 old_index = new_index + rb_event_length(event);
1360 addr = (unsigned long)event;
1361 addr &= PAGE_MASK;
1362
1363 bpage = cpu_buffer->tail_page;
1364
1365 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1366 /*
1367 * This is on the tail page. It is possible that
1368 * a write could come in and move the tail page
1369 * and write to the next page. That is fine
1370 * because we just shorten what is on this page.
1371 */
1372 index = local_cmpxchg(&bpage->write, old_index, new_index);
1373 if (index == old_index)
1374 return 1;
1375 }
1376
1377 /* could not discard */
1378 return 0;
1379}
1380
7a8e76a3
SR
1381static int
1382rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1383 u64 *ts, u64 *delta)
1384{
1385 struct ring_buffer_event *event;
1386 static int once;
bf41a158 1387 int ret;
7a8e76a3
SR
1388
1389 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1390 printk(KERN_WARNING "Delta way too big! %llu"
1391 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1392 (unsigned long long)*delta,
1393 (unsigned long long)*ts,
1394 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1395 WARN_ON(1);
1396 }
1397
1398 /*
1399 * The delta is too big, we to add a
1400 * new timestamp.
1401 */
1402 event = __rb_reserve_next(cpu_buffer,
1403 RINGBUF_TYPE_TIME_EXTEND,
1404 RB_LEN_TIME_EXTEND,
1405 ts);
1406 if (!event)
bf41a158 1407 return -EBUSY;
7a8e76a3 1408
bf41a158
SR
1409 if (PTR_ERR(event) == -EAGAIN)
1410 return -EAGAIN;
1411
1412 /* Only a commited time event can update the write stamp */
1413 if (rb_is_commit(cpu_buffer, event)) {
1414 /*
1415 * If this is the first on the page, then we need to
1416 * update the page itself, and just put in a zero.
1417 */
1418 if (rb_event_index(event)) {
1419 event->time_delta = *delta & TS_MASK;
1420 event->array[0] = *delta >> TS_SHIFT;
1421 } else {
abc9b56d 1422 cpu_buffer->commit_page->page->time_stamp = *ts;
ea05b57c
SR
1423 /* try to discard, since we do not need this */
1424 if (!rb_try_to_discard(cpu_buffer, event)) {
1425 /* nope, just zero it */
1426 event->time_delta = 0;
1427 event->array[0] = 0;
1428 }
bf41a158 1429 }
7a8e76a3 1430 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1431 /* let the caller know this was the commit */
1432 ret = 1;
1433 } else {
edd813bf
SR
1434 /* Try to discard the event */
1435 if (!rb_try_to_discard(cpu_buffer, event)) {
1436 /* Darn, this is just wasted space */
1437 event->time_delta = 0;
1438 event->array[0] = 0;
edd813bf 1439 }
f57a8a19 1440 ret = 0;
7a8e76a3
SR
1441 }
1442
bf41a158
SR
1443 *delta = 0;
1444
1445 return ret;
7a8e76a3
SR
1446}
1447
1448static struct ring_buffer_event *
1449rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 1450 unsigned long length)
7a8e76a3
SR
1451{
1452 struct ring_buffer_event *event;
168b6b1d 1453 u64 ts, delta = 0;
bf41a158 1454 int commit = 0;
818e3dd3 1455 int nr_loops = 0;
7a8e76a3 1456
be957c44 1457 length = rb_calculate_event_length(length);
bf41a158 1458 again:
818e3dd3
SR
1459 /*
1460 * We allow for interrupts to reenter here and do a trace.
1461 * If one does, it will cause this original code to loop
1462 * back here. Even with heavy interrupts happening, this
1463 * should only happen a few times in a row. If this happens
1464 * 1000 times in a row, there must be either an interrupt
1465 * storm or we have something buggy.
1466 * Bail!
1467 */
3e89c7bb 1468 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1469 return NULL;
818e3dd3 1470
88eb0125 1471 ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
7a8e76a3 1472
bf41a158
SR
1473 /*
1474 * Only the first commit can update the timestamp.
1475 * Yes there is a race here. If an interrupt comes in
1476 * just after the conditional and it traces too, then it
1477 * will also check the deltas. More than one timestamp may
1478 * also be made. But only the entry that did the actual
1479 * commit will be something other than zero.
1480 */
0f0c85fc
SR
1481 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1482 rb_page_write(cpu_buffer->tail_page) ==
1483 rb_commit_index(cpu_buffer))) {
168b6b1d 1484 u64 diff;
bf41a158 1485
168b6b1d 1486 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 1487
168b6b1d 1488 /* make sure this diff is calculated here */
bf41a158
SR
1489 barrier();
1490
1491 /* Did the write stamp get updated already? */
1492 if (unlikely(ts < cpu_buffer->write_stamp))
168b6b1d 1493 goto get_event;
bf41a158 1494
168b6b1d
SR
1495 delta = diff;
1496 if (unlikely(test_time_stamp(delta))) {
7a8e76a3 1497
bf41a158 1498 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
bf41a158 1499 if (commit == -EBUSY)
7a8e76a3 1500 return NULL;
bf41a158
SR
1501
1502 if (commit == -EAGAIN)
1503 goto again;
1504
1505 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1506 }
168b6b1d 1507 }
7a8e76a3 1508
168b6b1d 1509 get_event:
1cd8d735 1510 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
168b6b1d 1511 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
1512 goto again;
1513
1514 if (!event) {
1515 if (unlikely(commit))
1516 /*
1517 * Ouch! We needed a timestamp and it was commited. But
1518 * we didn't get our event reserved.
1519 */
1520 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1521 return NULL;
bf41a158 1522 }
7a8e76a3 1523
bf41a158
SR
1524 /*
1525 * If the timestamp was commited, make the commit our entry
1526 * now so that we will update it when needed.
1527 */
0f0c85fc 1528 if (unlikely(commit))
bf41a158
SR
1529 rb_set_commit_event(cpu_buffer, event);
1530 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1531 delta = 0;
1532
1533 event->time_delta = delta;
1534
1535 return event;
1536}
1537
aa18efb2 1538#define TRACE_RECURSIVE_DEPTH 16
261842b7
SR
1539
1540static int trace_recursive_lock(void)
1541{
aa18efb2 1542 current->trace_recursion++;
261842b7 1543
aa18efb2
SR
1544 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1545 return 0;
e057a5e5 1546
aa18efb2
SR
1547 /* Disable all tracing before we do anything else */
1548 tracing_off_permanent();
261842b7 1549
7d7d2b80 1550 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
1551 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1552 current->trace_recursion,
1553 hardirq_count() >> HARDIRQ_SHIFT,
1554 softirq_count() >> SOFTIRQ_SHIFT,
1555 in_nmi());
261842b7 1556
aa18efb2
SR
1557 WARN_ON_ONCE(1);
1558 return -1;
261842b7
SR
1559}
1560
1561static void trace_recursive_unlock(void)
1562{
aa18efb2 1563 WARN_ON_ONCE(!current->trace_recursion);
261842b7 1564
aa18efb2 1565 current->trace_recursion--;
261842b7
SR
1566}
1567
bf41a158
SR
1568static DEFINE_PER_CPU(int, rb_need_resched);
1569
7a8e76a3
SR
1570/**
1571 * ring_buffer_lock_reserve - reserve a part of the buffer
1572 * @buffer: the ring buffer to reserve from
1573 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
1574 *
1575 * Returns a reseverd event on the ring buffer to copy directly to.
1576 * The user of this interface will need to get the body to write into
1577 * and can use the ring_buffer_event_data() interface.
1578 *
1579 * The length is the length of the data needed, not the event length
1580 * which also includes the event header.
1581 *
1582 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1583 * If NULL is returned, then nothing has been allocated or locked.
1584 */
1585struct ring_buffer_event *
0a987751 1586ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
1587{
1588 struct ring_buffer_per_cpu *cpu_buffer;
1589 struct ring_buffer_event *event;
bf41a158 1590 int cpu, resched;
7a8e76a3 1591
033601a3 1592 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1593 return NULL;
1594
7a8e76a3
SR
1595 if (atomic_read(&buffer->record_disabled))
1596 return NULL;
1597
bf41a158 1598 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1599 resched = ftrace_preempt_disable();
bf41a158 1600
261842b7
SR
1601 if (trace_recursive_lock())
1602 goto out_nocheck;
1603
7a8e76a3
SR
1604 cpu = raw_smp_processor_id();
1605
9e01c1b7 1606 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1607 goto out;
7a8e76a3
SR
1608
1609 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1610
1611 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1612 goto out;
7a8e76a3 1613
be957c44 1614 if (length > BUF_MAX_DATA_SIZE)
bf41a158 1615 goto out;
7a8e76a3 1616
1cd8d735 1617 event = rb_reserve_next_event(cpu_buffer, length);
7a8e76a3 1618 if (!event)
d769041f 1619 goto out;
7a8e76a3 1620
bf41a158
SR
1621 /*
1622 * Need to store resched state on this cpu.
1623 * Only the first needs to.
1624 */
1625
1626 if (preempt_count() == 1)
1627 per_cpu(rb_need_resched, cpu) = resched;
1628
7a8e76a3
SR
1629 return event;
1630
d769041f 1631 out:
261842b7
SR
1632 trace_recursive_unlock();
1633
1634 out_nocheck:
182e9f5f 1635 ftrace_preempt_enable(resched);
7a8e76a3
SR
1636 return NULL;
1637}
c4f50183 1638EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
1639
1640static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1641 struct ring_buffer_event *event)
1642{
e4906eff 1643 local_inc(&cpu_buffer->entries);
bf41a158
SR
1644
1645 /* Only process further if we own the commit */
1646 if (!rb_is_commit(cpu_buffer, event))
1647 return;
1648
1649 cpu_buffer->write_stamp += event->time_delta;
1650
1651 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1652}
1653
1654/**
1655 * ring_buffer_unlock_commit - commit a reserved
1656 * @buffer: The buffer to commit to
1657 * @event: The event pointer to commit.
7a8e76a3
SR
1658 *
1659 * This commits the data to the ring buffer, and releases any locks held.
1660 *
1661 * Must be paired with ring_buffer_lock_reserve.
1662 */
1663int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 1664 struct ring_buffer_event *event)
7a8e76a3
SR
1665{
1666 struct ring_buffer_per_cpu *cpu_buffer;
1667 int cpu = raw_smp_processor_id();
1668
1669 cpu_buffer = buffer->buffers[cpu];
1670
7a8e76a3
SR
1671 rb_commit(cpu_buffer, event);
1672
261842b7
SR
1673 trace_recursive_unlock();
1674
bf41a158
SR
1675 /*
1676 * Only the last preempt count needs to restore preemption.
1677 */
182e9f5f
SR
1678 if (preempt_count() == 1)
1679 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1680 else
bf41a158 1681 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1682
1683 return 0;
1684}
c4f50183 1685EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 1686
f3b9aae1
FW
1687static inline void rb_event_discard(struct ring_buffer_event *event)
1688{
334d4169
LJ
1689 /* array[0] holds the actual length for the discarded event */
1690 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1691 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
1692 /* time delta must be non zero */
1693 if (!event->time_delta)
1694 event->time_delta = 1;
1695}
1696
fa1b47dd
SR
1697/**
1698 * ring_buffer_event_discard - discard any event in the ring buffer
1699 * @event: the event to discard
1700 *
1701 * Sometimes a event that is in the ring buffer needs to be ignored.
1702 * This function lets the user discard an event in the ring buffer
1703 * and then that event will not be read later.
1704 *
1705 * Note, it is up to the user to be careful with this, and protect
1706 * against races. If the user discards an event that has been consumed
1707 * it is possible that it could corrupt the ring buffer.
1708 */
1709void ring_buffer_event_discard(struct ring_buffer_event *event)
1710{
f3b9aae1 1711 rb_event_discard(event);
fa1b47dd
SR
1712}
1713EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1714
1715/**
1716 * ring_buffer_commit_discard - discard an event that has not been committed
1717 * @buffer: the ring buffer
1718 * @event: non committed event to discard
1719 *
1720 * This is similar to ring_buffer_event_discard but must only be
1721 * performed on an event that has not been committed yet. The difference
1722 * is that this will also try to free the event from the ring buffer
1723 * if another event has not been added behind it.
1724 *
1725 * If another event has been added behind it, it will set the event
1726 * up as discarded, and perform the commit.
1727 *
1728 * If this function is called, do not call ring_buffer_unlock_commit on
1729 * the event.
1730 */
1731void ring_buffer_discard_commit(struct ring_buffer *buffer,
1732 struct ring_buffer_event *event)
1733{
1734 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
1735 int cpu;
1736
1737 /* The event is discarded regardless */
f3b9aae1 1738 rb_event_discard(event);
fa1b47dd
SR
1739
1740 /*
1741 * This must only be called if the event has not been
1742 * committed yet. Thus we can assume that preemption
1743 * is still disabled.
1744 */
74f4fd21 1745 RB_WARN_ON(buffer, preemptible());
fa1b47dd
SR
1746
1747 cpu = smp_processor_id();
1748 cpu_buffer = buffer->buffers[cpu];
1749
edd813bf
SR
1750 if (!rb_try_to_discard(cpu_buffer, event))
1751 goto out;
fa1b47dd
SR
1752
1753 /*
1754 * The commit is still visible by the reader, so we
1755 * must increment entries.
1756 */
e4906eff 1757 local_inc(&cpu_buffer->entries);
fa1b47dd
SR
1758 out:
1759 /*
1760 * If a write came in and pushed the tail page
1761 * we still need to update the commit pointer
1762 * if we were the commit.
1763 */
1764 if (rb_is_commit(cpu_buffer, event))
1765 rb_set_commit_to_write(cpu_buffer);
1766
f3b9aae1
FW
1767 trace_recursive_unlock();
1768
fa1b47dd
SR
1769 /*
1770 * Only the last preempt count needs to restore preemption.
1771 */
1772 if (preempt_count() == 1)
1773 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1774 else
1775 preempt_enable_no_resched_notrace();
1776
1777}
1778EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1779
7a8e76a3
SR
1780/**
1781 * ring_buffer_write - write data to the buffer without reserving
1782 * @buffer: The ring buffer to write to.
1783 * @length: The length of the data being written (excluding the event header)
1784 * @data: The data to write to the buffer.
1785 *
1786 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1787 * one function. If you already have the data to write to the buffer, it
1788 * may be easier to simply call this function.
1789 *
1790 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1791 * and not the length of the event which would hold the header.
1792 */
1793int ring_buffer_write(struct ring_buffer *buffer,
1794 unsigned long length,
1795 void *data)
1796{
1797 struct ring_buffer_per_cpu *cpu_buffer;
1798 struct ring_buffer_event *event;
7a8e76a3
SR
1799 void *body;
1800 int ret = -EBUSY;
bf41a158 1801 int cpu, resched;
7a8e76a3 1802
033601a3 1803 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1804 return -EBUSY;
1805
7a8e76a3
SR
1806 if (atomic_read(&buffer->record_disabled))
1807 return -EBUSY;
1808
182e9f5f 1809 resched = ftrace_preempt_disable();
bf41a158 1810
7a8e76a3
SR
1811 cpu = raw_smp_processor_id();
1812
9e01c1b7 1813 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1814 goto out;
7a8e76a3
SR
1815
1816 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1817
1818 if (atomic_read(&cpu_buffer->record_disabled))
1819 goto out;
1820
be957c44
SR
1821 if (length > BUF_MAX_DATA_SIZE)
1822 goto out;
1823
1824 event = rb_reserve_next_event(cpu_buffer, length);
7a8e76a3
SR
1825 if (!event)
1826 goto out;
1827
1828 body = rb_event_data(event);
1829
1830 memcpy(body, data, length);
1831
1832 rb_commit(cpu_buffer, event);
1833
1834 ret = 0;
1835 out:
182e9f5f 1836 ftrace_preempt_enable(resched);
7a8e76a3
SR
1837
1838 return ret;
1839}
c4f50183 1840EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 1841
34a148bf 1842static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
1843{
1844 struct buffer_page *reader = cpu_buffer->reader_page;
1845 struct buffer_page *head = cpu_buffer->head_page;
1846 struct buffer_page *commit = cpu_buffer->commit_page;
1847
1848 return reader->read == rb_page_commit(reader) &&
1849 (commit == reader ||
1850 (commit == head &&
1851 head->read == rb_page_commit(commit)));
1852}
1853
7a8e76a3
SR
1854/**
1855 * ring_buffer_record_disable - stop all writes into the buffer
1856 * @buffer: The ring buffer to stop writes to.
1857 *
1858 * This prevents all writes to the buffer. Any attempt to write
1859 * to the buffer after this will fail and return NULL.
1860 *
1861 * The caller should call synchronize_sched() after this.
1862 */
1863void ring_buffer_record_disable(struct ring_buffer *buffer)
1864{
1865 atomic_inc(&buffer->record_disabled);
1866}
c4f50183 1867EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
1868
1869/**
1870 * ring_buffer_record_enable - enable writes to the buffer
1871 * @buffer: The ring buffer to enable writes
1872 *
1873 * Note, multiple disables will need the same number of enables
1874 * to truely enable the writing (much like preempt_disable).
1875 */
1876void ring_buffer_record_enable(struct ring_buffer *buffer)
1877{
1878 atomic_dec(&buffer->record_disabled);
1879}
c4f50183 1880EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
1881
1882/**
1883 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1884 * @buffer: The ring buffer to stop writes to.
1885 * @cpu: The CPU buffer to stop
1886 *
1887 * This prevents all writes to the buffer. Any attempt to write
1888 * to the buffer after this will fail and return NULL.
1889 *
1890 * The caller should call synchronize_sched() after this.
1891 */
1892void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1893{
1894 struct ring_buffer_per_cpu *cpu_buffer;
1895
9e01c1b7 1896 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1897 return;
7a8e76a3
SR
1898
1899 cpu_buffer = buffer->buffers[cpu];
1900 atomic_inc(&cpu_buffer->record_disabled);
1901}
c4f50183 1902EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
1903
1904/**
1905 * ring_buffer_record_enable_cpu - enable writes to the buffer
1906 * @buffer: The ring buffer to enable writes
1907 * @cpu: The CPU to enable.
1908 *
1909 * Note, multiple disables will need the same number of enables
1910 * to truely enable the writing (much like preempt_disable).
1911 */
1912void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1913{
1914 struct ring_buffer_per_cpu *cpu_buffer;
1915
9e01c1b7 1916 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1917 return;
7a8e76a3
SR
1918
1919 cpu_buffer = buffer->buffers[cpu];
1920 atomic_dec(&cpu_buffer->record_disabled);
1921}
c4f50183 1922EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
1923
1924/**
1925 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1926 * @buffer: The ring buffer
1927 * @cpu: The per CPU buffer to get the entries from.
1928 */
1929unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1930{
1931 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1932 unsigned long ret;
7a8e76a3 1933
9e01c1b7 1934 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1935 return 0;
7a8e76a3
SR
1936
1937 cpu_buffer = buffer->buffers[cpu];
e4906eff
SR
1938 ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1939 - cpu_buffer->read;
554f786e
SR
1940
1941 return ret;
7a8e76a3 1942}
c4f50183 1943EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
1944
1945/**
1946 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1947 * @buffer: The ring buffer
1948 * @cpu: The per CPU buffer to get the number of overruns from
1949 */
1950unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1951{
1952 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1953 unsigned long ret;
7a8e76a3 1954
9e01c1b7 1955 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1956 return 0;
7a8e76a3
SR
1957
1958 cpu_buffer = buffer->buffers[cpu];
554f786e 1959 ret = cpu_buffer->overrun;
554f786e
SR
1960
1961 return ret;
7a8e76a3 1962}
c4f50183 1963EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 1964
f0d2c681
SR
1965/**
1966 * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1967 * @buffer: The ring buffer
1968 * @cpu: The per CPU buffer to get the number of overruns from
1969 */
1970unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1971{
1972 struct ring_buffer_per_cpu *cpu_buffer;
1973 unsigned long ret;
1974
1975 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1976 return 0;
1977
1978 cpu_buffer = buffer->buffers[cpu];
1979 ret = cpu_buffer->nmi_dropped;
1980
1981 return ret;
1982}
1983EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
1984
1985/**
1986 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
1987 * @buffer: The ring buffer
1988 * @cpu: The per CPU buffer to get the number of overruns from
1989 */
1990unsigned long
1991ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
1992{
1993 struct ring_buffer_per_cpu *cpu_buffer;
1994 unsigned long ret;
1995
1996 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1997 return 0;
1998
1999 cpu_buffer = buffer->buffers[cpu];
2000 ret = cpu_buffer->commit_overrun;
2001
2002 return ret;
2003}
2004EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2005
7a8e76a3
SR
2006/**
2007 * ring_buffer_entries - get the number of entries in a buffer
2008 * @buffer: The ring buffer
2009 *
2010 * Returns the total number of entries in the ring buffer
2011 * (all CPU entries)
2012 */
2013unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2014{
2015 struct ring_buffer_per_cpu *cpu_buffer;
2016 unsigned long entries = 0;
2017 int cpu;
2018
2019 /* if you care about this being correct, lock the buffer */
2020 for_each_buffer_cpu(buffer, cpu) {
2021 cpu_buffer = buffer->buffers[cpu];
e4906eff
SR
2022 entries += (local_read(&cpu_buffer->entries) -
2023 cpu_buffer->overrun) - cpu_buffer->read;
7a8e76a3
SR
2024 }
2025
2026 return entries;
2027}
c4f50183 2028EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2029
2030/**
2031 * ring_buffer_overrun_cpu - get the number of overruns in buffer
2032 * @buffer: The ring buffer
2033 *
2034 * Returns the total number of overruns in the ring buffer
2035 * (all CPU entries)
2036 */
2037unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2038{
2039 struct ring_buffer_per_cpu *cpu_buffer;
2040 unsigned long overruns = 0;
2041 int cpu;
2042
2043 /* if you care about this being correct, lock the buffer */
2044 for_each_buffer_cpu(buffer, cpu) {
2045 cpu_buffer = buffer->buffers[cpu];
2046 overruns += cpu_buffer->overrun;
2047 }
2048
2049 return overruns;
2050}
c4f50183 2051EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2052
642edba5 2053static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2054{
2055 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2056
d769041f
SR
2057 /* Iterator usage is expected to have record disabled */
2058 if (list_empty(&cpu_buffer->reader_page->list)) {
2059 iter->head_page = cpu_buffer->head_page;
6f807acd 2060 iter->head = cpu_buffer->head_page->read;
d769041f
SR
2061 } else {
2062 iter->head_page = cpu_buffer->reader_page;
6f807acd 2063 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2064 }
2065 if (iter->head)
2066 iter->read_stamp = cpu_buffer->read_stamp;
2067 else
abc9b56d 2068 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 2069}
f83c9d0f 2070
642edba5
SR
2071/**
2072 * ring_buffer_iter_reset - reset an iterator
2073 * @iter: The iterator to reset
2074 *
2075 * Resets the iterator, so that it will start from the beginning
2076 * again.
2077 */
2078void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2079{
554f786e 2080 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2081 unsigned long flags;
2082
554f786e
SR
2083 if (!iter)
2084 return;
2085
2086 cpu_buffer = iter->cpu_buffer;
2087
642edba5
SR
2088 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2089 rb_iter_reset(iter);
f83c9d0f 2090 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2091}
c4f50183 2092EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2093
2094/**
2095 * ring_buffer_iter_empty - check if an iterator has no more to read
2096 * @iter: The iterator to check
2097 */
2098int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2099{
2100 struct ring_buffer_per_cpu *cpu_buffer;
2101
2102 cpu_buffer = iter->cpu_buffer;
2103
bf41a158
SR
2104 return iter->head_page == cpu_buffer->commit_page &&
2105 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2106}
c4f50183 2107EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2108
2109static void
2110rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2111 struct ring_buffer_event *event)
2112{
2113 u64 delta;
2114
334d4169 2115 switch (event->type_len) {
7a8e76a3
SR
2116 case RINGBUF_TYPE_PADDING:
2117 return;
2118
2119 case RINGBUF_TYPE_TIME_EXTEND:
2120 delta = event->array[0];
2121 delta <<= TS_SHIFT;
2122 delta += event->time_delta;
2123 cpu_buffer->read_stamp += delta;
2124 return;
2125
2126 case RINGBUF_TYPE_TIME_STAMP:
2127 /* FIXME: not implemented */
2128 return;
2129
2130 case RINGBUF_TYPE_DATA:
2131 cpu_buffer->read_stamp += event->time_delta;
2132 return;
2133
2134 default:
2135 BUG();
2136 }
2137 return;
2138}
2139
2140static void
2141rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2142 struct ring_buffer_event *event)
2143{
2144 u64 delta;
2145
334d4169 2146 switch (event->type_len) {
7a8e76a3
SR
2147 case RINGBUF_TYPE_PADDING:
2148 return;
2149
2150 case RINGBUF_TYPE_TIME_EXTEND:
2151 delta = event->array[0];
2152 delta <<= TS_SHIFT;
2153 delta += event->time_delta;
2154 iter->read_stamp += delta;
2155 return;
2156
2157 case RINGBUF_TYPE_TIME_STAMP:
2158 /* FIXME: not implemented */
2159 return;
2160
2161 case RINGBUF_TYPE_DATA:
2162 iter->read_stamp += event->time_delta;
2163 return;
2164
2165 default:
2166 BUG();
2167 }
2168 return;
2169}
2170
d769041f
SR
2171static struct buffer_page *
2172rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2173{
d769041f
SR
2174 struct buffer_page *reader = NULL;
2175 unsigned long flags;
818e3dd3 2176 int nr_loops = 0;
d769041f 2177
3e03fb7f
SR
2178 local_irq_save(flags);
2179 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
2180
2181 again:
818e3dd3
SR
2182 /*
2183 * This should normally only loop twice. But because the
2184 * start of the reader inserts an empty page, it causes
2185 * a case where we will loop three times. There should be no
2186 * reason to loop four times (that I know of).
2187 */
3e89c7bb 2188 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2189 reader = NULL;
2190 goto out;
2191 }
2192
d769041f
SR
2193 reader = cpu_buffer->reader_page;
2194
2195 /* If there's more to read, return this page */
bf41a158 2196 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2197 goto out;
2198
2199 /* Never should we have an index greater than the size */
3e89c7bb
SR
2200 if (RB_WARN_ON(cpu_buffer,
2201 cpu_buffer->reader_page->read > rb_page_size(reader)))
2202 goto out;
d769041f
SR
2203
2204 /* check if we caught up to the tail */
2205 reader = NULL;
bf41a158 2206 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2207 goto out;
7a8e76a3
SR
2208
2209 /*
d769041f
SR
2210 * Splice the empty reader page into the list around the head.
2211 * Reset the reader page to size zero.
7a8e76a3 2212 */
7a8e76a3 2213
d769041f
SR
2214 reader = cpu_buffer->head_page;
2215 cpu_buffer->reader_page->list.next = reader->list.next;
2216 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
2217
2218 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 2219 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 2220 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 2221
d769041f
SR
2222 /* Make the reader page now replace the head */
2223 reader->list.prev->next = &cpu_buffer->reader_page->list;
2224 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
2225
2226 /*
d769041f
SR
2227 * If the tail is on the reader, then we must set the head
2228 * to the inserted page, otherwise we set it one before.
7a8e76a3 2229 */
d769041f 2230 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 2231
bf41a158 2232 if (cpu_buffer->commit_page != reader)
d769041f
SR
2233 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2234
2235 /* Finally update the reader page to the new head */
2236 cpu_buffer->reader_page = reader;
2237 rb_reset_reader_page(cpu_buffer);
2238
2239 goto again;
2240
2241 out:
3e03fb7f
SR
2242 __raw_spin_unlock(&cpu_buffer->lock);
2243 local_irq_restore(flags);
d769041f
SR
2244
2245 return reader;
2246}
2247
2248static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2249{
2250 struct ring_buffer_event *event;
2251 struct buffer_page *reader;
2252 unsigned length;
2253
2254 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2255
d769041f 2256 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2257 if (RB_WARN_ON(cpu_buffer, !reader))
2258 return;
7a8e76a3 2259
d769041f
SR
2260 event = rb_reader_event(cpu_buffer);
2261
334d4169
LJ
2262 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2263 || rb_discarded_event(event))
e4906eff 2264 cpu_buffer->read++;
d769041f
SR
2265
2266 rb_update_read_stamp(cpu_buffer, event);
2267
2268 length = rb_event_length(event);
6f807acd 2269 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2270}
2271
2272static void rb_advance_iter(struct ring_buffer_iter *iter)
2273{
2274 struct ring_buffer *buffer;
2275 struct ring_buffer_per_cpu *cpu_buffer;
2276 struct ring_buffer_event *event;
2277 unsigned length;
2278
2279 cpu_buffer = iter->cpu_buffer;
2280 buffer = cpu_buffer->buffer;
2281
2282 /*
2283 * Check if we are at the end of the buffer.
2284 */
bf41a158 2285 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
2286 /* discarded commits can make the page empty */
2287 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 2288 return;
d769041f 2289 rb_inc_iter(iter);
7a8e76a3
SR
2290 return;
2291 }
2292
2293 event = rb_iter_head_event(iter);
2294
2295 length = rb_event_length(event);
2296
2297 /*
2298 * This should not be called to advance the header if we are
2299 * at the tail of the buffer.
2300 */
3e89c7bb 2301 if (RB_WARN_ON(cpu_buffer,
f536aafc 2302 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
2303 (iter->head + length > rb_commit_index(cpu_buffer))))
2304 return;
7a8e76a3
SR
2305
2306 rb_update_iter_read_stamp(iter, event);
2307
2308 iter->head += length;
2309
2310 /* check for end of page padding */
bf41a158
SR
2311 if ((iter->head >= rb_page_size(iter->head_page)) &&
2312 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
2313 rb_advance_iter(iter);
2314}
2315
f83c9d0f
SR
2316static struct ring_buffer_event *
2317rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
2318{
2319 struct ring_buffer_per_cpu *cpu_buffer;
2320 struct ring_buffer_event *event;
d769041f 2321 struct buffer_page *reader;
818e3dd3 2322 int nr_loops = 0;
7a8e76a3 2323
7a8e76a3
SR
2324 cpu_buffer = buffer->buffers[cpu];
2325
2326 again:
818e3dd3
SR
2327 /*
2328 * We repeat when a timestamp is encountered. It is possible
2329 * to get multiple timestamps from an interrupt entering just
ea05b57c
SR
2330 * as one timestamp is about to be written, or from discarded
2331 * commits. The most that we can have is the number on a single page.
818e3dd3 2332 */
ea05b57c 2333 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 2334 return NULL;
818e3dd3 2335
d769041f
SR
2336 reader = rb_get_reader_page(cpu_buffer);
2337 if (!reader)
7a8e76a3
SR
2338 return NULL;
2339
d769041f 2340 event = rb_reader_event(cpu_buffer);
7a8e76a3 2341
334d4169 2342 switch (event->type_len) {
7a8e76a3 2343 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2344 if (rb_null_event(event))
2345 RB_WARN_ON(cpu_buffer, 1);
2346 /*
2347 * Because the writer could be discarding every
2348 * event it creates (which would probably be bad)
2349 * if we were to go back to "again" then we may never
2350 * catch up, and will trigger the warn on, or lock
2351 * the box. Return the padding, and we will release
2352 * the current locks, and try again.
2353 */
d769041f 2354 rb_advance_reader(cpu_buffer);
2d622719 2355 return event;
7a8e76a3
SR
2356
2357 case RINGBUF_TYPE_TIME_EXTEND:
2358 /* Internal data, OK to advance */
d769041f 2359 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2360 goto again;
2361
2362 case RINGBUF_TYPE_TIME_STAMP:
2363 /* FIXME: not implemented */
d769041f 2364 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2365 goto again;
2366
2367 case RINGBUF_TYPE_DATA:
2368 if (ts) {
2369 *ts = cpu_buffer->read_stamp + event->time_delta;
37886f6a
SR
2370 ring_buffer_normalize_time_stamp(buffer,
2371 cpu_buffer->cpu, ts);
7a8e76a3
SR
2372 }
2373 return event;
2374
2375 default:
2376 BUG();
2377 }
2378
2379 return NULL;
2380}
c4f50183 2381EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 2382
f83c9d0f
SR
2383static struct ring_buffer_event *
2384rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
2385{
2386 struct ring_buffer *buffer;
2387 struct ring_buffer_per_cpu *cpu_buffer;
2388 struct ring_buffer_event *event;
818e3dd3 2389 int nr_loops = 0;
7a8e76a3
SR
2390
2391 if (ring_buffer_iter_empty(iter))
2392 return NULL;
2393
2394 cpu_buffer = iter->cpu_buffer;
2395 buffer = cpu_buffer->buffer;
2396
2397 again:
818e3dd3 2398 /*
ea05b57c
SR
2399 * We repeat when a timestamp is encountered.
2400 * We can get multiple timestamps by nested interrupts or also
2401 * if filtering is on (discarding commits). Since discarding
2402 * commits can be frequent we can get a lot of timestamps.
2403 * But we limit them by not adding timestamps if they begin
2404 * at the start of a page.
818e3dd3 2405 */
ea05b57c 2406 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 2407 return NULL;
818e3dd3 2408
7a8e76a3
SR
2409 if (rb_per_cpu_empty(cpu_buffer))
2410 return NULL;
2411
2412 event = rb_iter_head_event(iter);
2413
334d4169 2414 switch (event->type_len) {
7a8e76a3 2415 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2416 if (rb_null_event(event)) {
2417 rb_inc_iter(iter);
2418 goto again;
2419 }
2420 rb_advance_iter(iter);
2421 return event;
7a8e76a3
SR
2422
2423 case RINGBUF_TYPE_TIME_EXTEND:
2424 /* Internal data, OK to advance */
2425 rb_advance_iter(iter);
2426 goto again;
2427
2428 case RINGBUF_TYPE_TIME_STAMP:
2429 /* FIXME: not implemented */
2430 rb_advance_iter(iter);
2431 goto again;
2432
2433 case RINGBUF_TYPE_DATA:
2434 if (ts) {
2435 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
2436 ring_buffer_normalize_time_stamp(buffer,
2437 cpu_buffer->cpu, ts);
7a8e76a3
SR
2438 }
2439 return event;
2440
2441 default:
2442 BUG();
2443 }
2444
2445 return NULL;
2446}
c4f50183 2447EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 2448
f83c9d0f
SR
2449/**
2450 * ring_buffer_peek - peek at the next event to be read
2451 * @buffer: The ring buffer to read
2452 * @cpu: The cpu to peak at
2453 * @ts: The timestamp counter of this event.
2454 *
2455 * This will return the event that will be read next, but does
2456 * not consume the data.
2457 */
2458struct ring_buffer_event *
2459ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2460{
2461 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 2462 struct ring_buffer_event *event;
f83c9d0f
SR
2463 unsigned long flags;
2464
554f786e 2465 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2466 return NULL;
554f786e 2467
2d622719 2468 again:
f83c9d0f
SR
2469 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2470 event = rb_buffer_peek(buffer, cpu, ts);
2471 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2472
334d4169 2473 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2474 cpu_relax();
2475 goto again;
2476 }
2477
f83c9d0f
SR
2478 return event;
2479}
2480
2481/**
2482 * ring_buffer_iter_peek - peek at the next event to be read
2483 * @iter: The ring buffer iterator
2484 * @ts: The timestamp counter of this event.
2485 *
2486 * This will return the event that will be read next, but does
2487 * not increment the iterator.
2488 */
2489struct ring_buffer_event *
2490ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2491{
2492 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2493 struct ring_buffer_event *event;
2494 unsigned long flags;
2495
2d622719 2496 again:
f83c9d0f
SR
2497 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2498 event = rb_iter_peek(iter, ts);
2499 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2500
334d4169 2501 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2502 cpu_relax();
2503 goto again;
2504 }
2505
f83c9d0f
SR
2506 return event;
2507}
2508
7a8e76a3
SR
2509/**
2510 * ring_buffer_consume - return an event and consume it
2511 * @buffer: The ring buffer to get the next event from
2512 *
2513 * Returns the next event in the ring buffer, and that event is consumed.
2514 * Meaning, that sequential reads will keep returning a different event,
2515 * and eventually empty the ring buffer if the producer is slower.
2516 */
2517struct ring_buffer_event *
2518ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2519{
554f786e
SR
2520 struct ring_buffer_per_cpu *cpu_buffer;
2521 struct ring_buffer_event *event = NULL;
f83c9d0f 2522 unsigned long flags;
7a8e76a3 2523
2d622719 2524 again:
554f786e
SR
2525 /* might be called in atomic */
2526 preempt_disable();
2527
9e01c1b7 2528 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 2529 goto out;
7a8e76a3 2530
554f786e 2531 cpu_buffer = buffer->buffers[cpu];
f83c9d0f
SR
2532 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2533
2534 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 2535 if (!event)
554f786e 2536 goto out_unlock;
7a8e76a3 2537
d769041f 2538 rb_advance_reader(cpu_buffer);
7a8e76a3 2539
554f786e 2540 out_unlock:
f83c9d0f
SR
2541 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2542
554f786e
SR
2543 out:
2544 preempt_enable();
2545
334d4169 2546 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2547 cpu_relax();
2548 goto again;
2549 }
2550
7a8e76a3
SR
2551 return event;
2552}
c4f50183 2553EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
2554
2555/**
2556 * ring_buffer_read_start - start a non consuming read of the buffer
2557 * @buffer: The ring buffer to read from
2558 * @cpu: The cpu buffer to iterate over
2559 *
2560 * This starts up an iteration through the buffer. It also disables
2561 * the recording to the buffer until the reading is finished.
2562 * This prevents the reading from being corrupted. This is not
2563 * a consuming read, so a producer is not expected.
2564 *
2565 * Must be paired with ring_buffer_finish.
2566 */
2567struct ring_buffer_iter *
2568ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2569{
2570 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2571 struct ring_buffer_iter *iter;
d769041f 2572 unsigned long flags;
7a8e76a3 2573
9e01c1b7 2574 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2575 return NULL;
7a8e76a3
SR
2576
2577 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2578 if (!iter)
8aabee57 2579 return NULL;
7a8e76a3
SR
2580
2581 cpu_buffer = buffer->buffers[cpu];
2582
2583 iter->cpu_buffer = cpu_buffer;
2584
2585 atomic_inc(&cpu_buffer->record_disabled);
2586 synchronize_sched();
2587
f83c9d0f 2588 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2589 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2590 rb_iter_reset(iter);
3e03fb7f 2591 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2592 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2593
2594 return iter;
2595}
c4f50183 2596EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
2597
2598/**
2599 * ring_buffer_finish - finish reading the iterator of the buffer
2600 * @iter: The iterator retrieved by ring_buffer_start
2601 *
2602 * This re-enables the recording to the buffer, and frees the
2603 * iterator.
2604 */
2605void
2606ring_buffer_read_finish(struct ring_buffer_iter *iter)
2607{
2608 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2609
2610 atomic_dec(&cpu_buffer->record_disabled);
2611 kfree(iter);
2612}
c4f50183 2613EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
2614
2615/**
2616 * ring_buffer_read - read the next item in the ring buffer by the iterator
2617 * @iter: The ring buffer iterator
2618 * @ts: The time stamp of the event read.
2619 *
2620 * This reads the next event in the ring buffer and increments the iterator.
2621 */
2622struct ring_buffer_event *
2623ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2624{
2625 struct ring_buffer_event *event;
f83c9d0f
SR
2626 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2627 unsigned long flags;
7a8e76a3 2628
2d622719 2629 again:
f83c9d0f
SR
2630 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2631 event = rb_iter_peek(iter, ts);
7a8e76a3 2632 if (!event)
f83c9d0f 2633 goto out;
7a8e76a3
SR
2634
2635 rb_advance_iter(iter);
f83c9d0f
SR
2636 out:
2637 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2638
334d4169 2639 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2640 cpu_relax();
2641 goto again;
2642 }
2643
7a8e76a3
SR
2644 return event;
2645}
c4f50183 2646EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
2647
2648/**
2649 * ring_buffer_size - return the size of the ring buffer (in bytes)
2650 * @buffer: The ring buffer.
2651 */
2652unsigned long ring_buffer_size(struct ring_buffer *buffer)
2653{
2654 return BUF_PAGE_SIZE * buffer->pages;
2655}
c4f50183 2656EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
2657
2658static void
2659rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2660{
2661 cpu_buffer->head_page
2662 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2663 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 2664 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 2665 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2666
6f807acd 2667 cpu_buffer->head_page->read = 0;
bf41a158
SR
2668
2669 cpu_buffer->tail_page = cpu_buffer->head_page;
2670 cpu_buffer->commit_page = cpu_buffer->head_page;
2671
2672 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2673 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 2674 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 2675 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2676 cpu_buffer->reader_page->read = 0;
7a8e76a3 2677
f0d2c681
SR
2678 cpu_buffer->nmi_dropped = 0;
2679 cpu_buffer->commit_overrun = 0;
7a8e76a3 2680 cpu_buffer->overrun = 0;
e4906eff
SR
2681 cpu_buffer->read = 0;
2682 local_set(&cpu_buffer->entries, 0);
69507c06
SR
2683
2684 cpu_buffer->write_stamp = 0;
2685 cpu_buffer->read_stamp = 0;
7a8e76a3
SR
2686}
2687
2688/**
2689 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2690 * @buffer: The ring buffer to reset a per cpu buffer of
2691 * @cpu: The CPU buffer to be reset
2692 */
2693void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2694{
2695 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2696 unsigned long flags;
2697
9e01c1b7 2698 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2699 return;
7a8e76a3 2700
41ede23e
SR
2701 atomic_inc(&cpu_buffer->record_disabled);
2702
f83c9d0f
SR
2703 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2704
3e03fb7f 2705 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2706
2707 rb_reset_cpu(cpu_buffer);
2708
3e03fb7f 2709 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2710
2711 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
2712
2713 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 2714}
c4f50183 2715EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
2716
2717/**
2718 * ring_buffer_reset - reset a ring buffer
2719 * @buffer: The ring buffer to reset all cpu buffers
2720 */
2721void ring_buffer_reset(struct ring_buffer *buffer)
2722{
7a8e76a3
SR
2723 int cpu;
2724
7a8e76a3 2725 for_each_buffer_cpu(buffer, cpu)
d769041f 2726 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 2727}
c4f50183 2728EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
2729
2730/**
2731 * rind_buffer_empty - is the ring buffer empty?
2732 * @buffer: The ring buffer to test
2733 */
2734int ring_buffer_empty(struct ring_buffer *buffer)
2735{
2736 struct ring_buffer_per_cpu *cpu_buffer;
2737 int cpu;
2738
2739 /* yes this is racy, but if you don't like the race, lock the buffer */
2740 for_each_buffer_cpu(buffer, cpu) {
2741 cpu_buffer = buffer->buffers[cpu];
2742 if (!rb_per_cpu_empty(cpu_buffer))
2743 return 0;
2744 }
554f786e 2745
7a8e76a3
SR
2746 return 1;
2747}
c4f50183 2748EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
2749
2750/**
2751 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2752 * @buffer: The ring buffer
2753 * @cpu: The CPU buffer to test
2754 */
2755int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2756{
2757 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2758 int ret;
7a8e76a3 2759
9e01c1b7 2760 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2761 return 1;
7a8e76a3
SR
2762
2763 cpu_buffer = buffer->buffers[cpu];
554f786e
SR
2764 ret = rb_per_cpu_empty(cpu_buffer);
2765
554f786e
SR
2766
2767 return ret;
7a8e76a3 2768}
c4f50183 2769EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
2770
2771/**
2772 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2773 * @buffer_a: One buffer to swap with
2774 * @buffer_b: The other buffer to swap with
2775 *
2776 * This function is useful for tracers that want to take a "snapshot"
2777 * of a CPU buffer and has another back up buffer lying around.
2778 * it is expected that the tracer handles the cpu buffer not being
2779 * used at the moment.
2780 */
2781int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2782 struct ring_buffer *buffer_b, int cpu)
2783{
2784 struct ring_buffer_per_cpu *cpu_buffer_a;
2785 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
2786 int ret = -EINVAL;
2787
9e01c1b7
RR
2788 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2789 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 2790 goto out;
7a8e76a3
SR
2791
2792 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2793 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
2794 goto out;
2795
2796 ret = -EAGAIN;
7a8e76a3 2797
97b17efe 2798 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 2799 goto out;
97b17efe
SR
2800
2801 if (atomic_read(&buffer_a->record_disabled))
554f786e 2802 goto out;
97b17efe
SR
2803
2804 if (atomic_read(&buffer_b->record_disabled))
554f786e 2805 goto out;
97b17efe 2806
7a8e76a3
SR
2807 cpu_buffer_a = buffer_a->buffers[cpu];
2808 cpu_buffer_b = buffer_b->buffers[cpu];
2809
97b17efe 2810 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 2811 goto out;
97b17efe
SR
2812
2813 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 2814 goto out;
97b17efe 2815
7a8e76a3
SR
2816 /*
2817 * We can't do a synchronize_sched here because this
2818 * function can be called in atomic context.
2819 * Normally this will be called from the same CPU as cpu.
2820 * If not it's up to the caller to protect this.
2821 */
2822 atomic_inc(&cpu_buffer_a->record_disabled);
2823 atomic_inc(&cpu_buffer_b->record_disabled);
2824
2825 buffer_a->buffers[cpu] = cpu_buffer_b;
2826 buffer_b->buffers[cpu] = cpu_buffer_a;
2827
2828 cpu_buffer_b->buffer = buffer_a;
2829 cpu_buffer_a->buffer = buffer_b;
2830
2831 atomic_dec(&cpu_buffer_a->record_disabled);
2832 atomic_dec(&cpu_buffer_b->record_disabled);
2833
554f786e
SR
2834 ret = 0;
2835out:
554f786e 2836 return ret;
7a8e76a3 2837}
c4f50183 2838EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 2839
8789a9e7
SR
2840/**
2841 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2842 * @buffer: the buffer to allocate for.
2843 *
2844 * This function is used in conjunction with ring_buffer_read_page.
2845 * When reading a full page from the ring buffer, these functions
2846 * can be used to speed up the process. The calling function should
2847 * allocate a few pages first with this function. Then when it
2848 * needs to get pages from the ring buffer, it passes the result
2849 * of this function into ring_buffer_read_page, which will swap
2850 * the page that was allocated, with the read page of the buffer.
2851 *
2852 * Returns:
2853 * The page allocated, or NULL on error.
2854 */
2855void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2856{
044fa782 2857 struct buffer_data_page *bpage;
ef7a4a16 2858 unsigned long addr;
8789a9e7
SR
2859
2860 addr = __get_free_page(GFP_KERNEL);
2861 if (!addr)
2862 return NULL;
2863
044fa782 2864 bpage = (void *)addr;
8789a9e7 2865
ef7a4a16
SR
2866 rb_init_page(bpage);
2867
044fa782 2868 return bpage;
8789a9e7 2869}
d6ce96da 2870EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
2871
2872/**
2873 * ring_buffer_free_read_page - free an allocated read page
2874 * @buffer: the buffer the page was allocate for
2875 * @data: the page to free
2876 *
2877 * Free a page allocated from ring_buffer_alloc_read_page.
2878 */
2879void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2880{
2881 free_page((unsigned long)data);
2882}
d6ce96da 2883EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
2884
2885/**
2886 * ring_buffer_read_page - extract a page from the ring buffer
2887 * @buffer: buffer to extract from
2888 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 2889 * @len: amount to extract
8789a9e7
SR
2890 * @cpu: the cpu of the buffer to extract
2891 * @full: should the extraction only happen when the page is full.
2892 *
2893 * This function will pull out a page from the ring buffer and consume it.
2894 * @data_page must be the address of the variable that was returned
2895 * from ring_buffer_alloc_read_page. This is because the page might be used
2896 * to swap with a page in the ring buffer.
2897 *
2898 * for example:
b85fa01e 2899 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
2900 * if (!rpage)
2901 * return error;
ef7a4a16 2902 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
2903 * if (ret >= 0)
2904 * process_page(rpage, ret);
8789a9e7
SR
2905 *
2906 * When @full is set, the function will not return true unless
2907 * the writer is off the reader page.
2908 *
2909 * Note: it is up to the calling functions to handle sleeps and wakeups.
2910 * The ring buffer can be used anywhere in the kernel and can not
2911 * blindly call wake_up. The layer that uses the ring buffer must be
2912 * responsible for that.
2913 *
2914 * Returns:
667d2412
LJ
2915 * >=0 if data has been transferred, returns the offset of consumed data.
2916 * <0 if no data has been transferred.
8789a9e7
SR
2917 */
2918int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 2919 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
2920{
2921 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2922 struct ring_buffer_event *event;
044fa782 2923 struct buffer_data_page *bpage;
ef7a4a16 2924 struct buffer_page *reader;
8789a9e7 2925 unsigned long flags;
ef7a4a16 2926 unsigned int commit;
667d2412 2927 unsigned int read;
4f3640f8 2928 u64 save_timestamp;
667d2412 2929 int ret = -1;
8789a9e7 2930
554f786e
SR
2931 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2932 goto out;
2933
474d32b6
SR
2934 /*
2935 * If len is not big enough to hold the page header, then
2936 * we can not copy anything.
2937 */
2938 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 2939 goto out;
474d32b6
SR
2940
2941 len -= BUF_PAGE_HDR_SIZE;
2942
8789a9e7 2943 if (!data_page)
554f786e 2944 goto out;
8789a9e7 2945
044fa782
SR
2946 bpage = *data_page;
2947 if (!bpage)
554f786e 2948 goto out;
8789a9e7
SR
2949
2950 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2951
ef7a4a16
SR
2952 reader = rb_get_reader_page(cpu_buffer);
2953 if (!reader)
554f786e 2954 goto out_unlock;
8789a9e7 2955
ef7a4a16
SR
2956 event = rb_reader_event(cpu_buffer);
2957
2958 read = reader->read;
2959 commit = rb_page_commit(reader);
667d2412 2960
8789a9e7 2961 /*
474d32b6
SR
2962 * If this page has been partially read or
2963 * if len is not big enough to read the rest of the page or
2964 * a writer is still on the page, then
2965 * we must copy the data from the page to the buffer.
2966 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 2967 */
474d32b6 2968 if (read || (len < (commit - read)) ||
ef7a4a16 2969 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 2970 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
2971 unsigned int rpos = read;
2972 unsigned int pos = 0;
ef7a4a16 2973 unsigned int size;
8789a9e7
SR
2974
2975 if (full)
554f786e 2976 goto out_unlock;
8789a9e7 2977
ef7a4a16
SR
2978 if (len > (commit - read))
2979 len = (commit - read);
2980
2981 size = rb_event_length(event);
2982
2983 if (len < size)
554f786e 2984 goto out_unlock;
ef7a4a16 2985
4f3640f8
SR
2986 /* save the current timestamp, since the user will need it */
2987 save_timestamp = cpu_buffer->read_stamp;
2988
ef7a4a16
SR
2989 /* Need to copy one event at a time */
2990 do {
474d32b6 2991 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
2992
2993 len -= size;
2994
2995 rb_advance_reader(cpu_buffer);
474d32b6
SR
2996 rpos = reader->read;
2997 pos += size;
ef7a4a16
SR
2998
2999 event = rb_reader_event(cpu_buffer);
3000 size = rb_event_length(event);
3001 } while (len > size);
667d2412
LJ
3002
3003 /* update bpage */
ef7a4a16 3004 local_set(&bpage->commit, pos);
4f3640f8 3005 bpage->time_stamp = save_timestamp;
ef7a4a16 3006
474d32b6
SR
3007 /* we copied everything to the beginning */
3008 read = 0;
8789a9e7 3009 } else {
afbab76a
SR
3010 /* update the entry counter */
3011 cpu_buffer->read += local_read(&reader->entries);
3012
8789a9e7 3013 /* swap the pages */
044fa782 3014 rb_init_page(bpage);
ef7a4a16
SR
3015 bpage = reader->page;
3016 reader->page = *data_page;
3017 local_set(&reader->write, 0);
778c55d4 3018 local_set(&reader->entries, 0);
ef7a4a16 3019 reader->read = 0;
044fa782 3020 *data_page = bpage;
8789a9e7 3021 }
667d2412 3022 ret = read;
8789a9e7 3023
554f786e 3024 out_unlock:
8789a9e7
SR
3025 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3026
554f786e 3027 out:
8789a9e7
SR
3028 return ret;
3029}
d6ce96da 3030EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 3031
a3583244
SR
3032static ssize_t
3033rb_simple_read(struct file *filp, char __user *ubuf,
3034 size_t cnt, loff_t *ppos)
3035{
5e39841c 3036 unsigned long *p = filp->private_data;
a3583244
SR
3037 char buf[64];
3038 int r;
3039
033601a3
SR
3040 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3041 r = sprintf(buf, "permanently disabled\n");
3042 else
3043 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3044
3045 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3046}
3047
3048static ssize_t
3049rb_simple_write(struct file *filp, const char __user *ubuf,
3050 size_t cnt, loff_t *ppos)
3051{
5e39841c 3052 unsigned long *p = filp->private_data;
a3583244 3053 char buf[64];
5e39841c 3054 unsigned long val;
a3583244
SR
3055 int ret;
3056
3057 if (cnt >= sizeof(buf))
3058 return -EINVAL;
3059
3060 if (copy_from_user(&buf, ubuf, cnt))
3061 return -EFAULT;
3062
3063 buf[cnt] = 0;
3064
3065 ret = strict_strtoul(buf, 10, &val);
3066 if (ret < 0)
3067 return ret;
3068
033601a3
SR
3069 if (val)
3070 set_bit(RB_BUFFERS_ON_BIT, p);
3071 else
3072 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3073
3074 (*ppos)++;
3075
3076 return cnt;
3077}
3078
5e2336a0 3079static const struct file_operations rb_simple_fops = {
a3583244
SR
3080 .open = tracing_open_generic,
3081 .read = rb_simple_read,
3082 .write = rb_simple_write,
3083};
3084
3085
3086static __init int rb_init_debugfs(void)
3087{
3088 struct dentry *d_tracer;
a3583244
SR
3089
3090 d_tracer = tracing_init_dentry();
3091
5452af66
FW
3092 trace_create_file("tracing_on", 0644, d_tracer,
3093 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3094
3095 return 0;
3096}
3097
3098fs_initcall(rb_init_debugfs);
554f786e 3099
59222efe 3100#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3101static int rb_cpu_notify(struct notifier_block *self,
3102 unsigned long action, void *hcpu)
554f786e
SR
3103{
3104 struct ring_buffer *buffer =
3105 container_of(self, struct ring_buffer, cpu_notify);
3106 long cpu = (long)hcpu;
3107
3108 switch (action) {
3109 case CPU_UP_PREPARE:
3110 case CPU_UP_PREPARE_FROZEN:
3111 if (cpu_isset(cpu, *buffer->cpumask))
3112 return NOTIFY_OK;
3113
3114 buffer->buffers[cpu] =
3115 rb_allocate_cpu_buffer(buffer, cpu);
3116 if (!buffer->buffers[cpu]) {
3117 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3118 cpu);
3119 return NOTIFY_OK;
3120 }
3121 smp_wmb();
3122 cpu_set(cpu, *buffer->cpumask);
3123 break;
3124 case CPU_DOWN_PREPARE:
3125 case CPU_DOWN_PREPARE_FROZEN:
3126 /*
3127 * Do nothing.
3128 * If we were to free the buffer, then the user would
3129 * lose any trace that was in the buffer.
3130 */
3131 break;
3132 default:
3133 break;
3134 }
3135 return NOTIFY_OK;
3136}
3137#endif