Linux 3.16
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3
SR
12#include <linux/debugfs.h>
13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
6c43e554 15#include <linux/kthread.h> /* for self test */
1744a21d 16#include <linux/kmemcheck.h>
7a8e76a3
SR
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
6c43e554 20#include <linux/delay.h>
5a0e3ad6 21#include <linux/slab.h>
7a8e76a3
SR
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
554f786e 25#include <linux/cpu.h>
7a8e76a3
SR
26#include <linux/fs.h>
27
79615760 28#include <asm/local.h>
182e9f5f 29
83f40318
VN
30static void update_pages_handler(struct work_struct *work);
31
d1b182a8
SR
32/*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35int ring_buffer_print_entry_header(struct trace_seq *s)
36{
37 int ret;
38
146c3442
J
39 ret = trace_seq_puts(s, "# compressed entry header\n");
40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_puts(s, "\tarray : 32 bits\n");
43 ret = trace_seq_putc(s, '\n');
d1b182a8
SR
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
50
51 return ret;
52}
53
5cc98548
SR
54/*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
033601a3
SR
122/*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140/*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154};
155
156enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159};
160
5e39841c 161static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 162
499e5470
SR
163/* Used for individual buffers (after the counter) */
164#define RB_BUFFER_OFF (1 << 20)
a3583244 165
499e5470 166#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
167
168/**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
c3706f00 172 * permanently.
033601a3
SR
173 */
174void tracing_off_permanent(void)
175{
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
177}
178
e3d6bf0a 179#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 180#define RB_ALIGNMENT 4U
334d4169 181#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 182#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 183
649508f6 184#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
185# define RB_FORCE_8BYTE_ALIGNMENT 0
186# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187#else
188# define RB_FORCE_8BYTE_ALIGNMENT 1
189# define RB_ARCH_ALIGNMENT 8U
190#endif
191
649508f6
JH
192#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
334d4169
LJ
194/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
196
197enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200};
201
69d1b839
SR
202#define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
2d622719
TZ
205static inline int rb_null_event(struct ring_buffer_event *event)
206{
a1863c21 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
208}
209
210static void rb_event_set_padding(struct ring_buffer_event *event)
211{
a1863c21 212 /* padding has a NULL time_delta */
334d4169 213 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
214 event->time_delta = 0;
215}
216
34a148bf 217static unsigned
2d622719 218rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
219{
220 unsigned length;
221
334d4169
LJ
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227}
228
69d1b839
SR
229/*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234static inline unsigned
2d622719
TZ
235rb_event_length(struct ring_buffer_event *event)
236{
334d4169 237 switch (event->type_len) {
7a8e76a3 238 case RINGBUF_TYPE_PADDING:
2d622719
TZ
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
334d4169 242 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
2d622719 251 return rb_event_data_length(event);
7a8e76a3
SR
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257}
258
69d1b839
SR
259/*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263static inline unsigned
264rb_event_ts_length(struct ring_buffer_event *event)
265{
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274}
275
7a8e76a3
SR
276/**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
69d1b839
SR
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
7a8e76a3
SR
285 */
286unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287{
69d1b839
SR
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
334d4169 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
7a8e76a3 300}
c4f50183 301EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
302
303/* inline for ring buffer fast paths */
34a148bf 304static void *
7a8e76a3
SR
305rb_event_data(struct ring_buffer_event *event)
306{
69d1b839
SR
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
334d4169 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 310 /* If length is in len field, then array[0] has the data */
334d4169 311 if (event->type_len)
7a8e76a3
SR
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315}
316
317/**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
321void *ring_buffer_event_data(struct ring_buffer_event *event)
322{
323 return rb_event_data(event);
324}
c4f50183 325EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
326
327#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 328 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
329
330#define TS_SHIFT 27
331#define TS_MASK ((1ULL << TS_SHIFT) - 1)
332#define TS_DELTA_TEST (~TS_MASK)
333
66a8cb95
SR
334/* Flag when events were overwritten */
335#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
336/* Missed count stored at end */
337#define RB_MISSED_STORED (1 << 30)
66a8cb95 338
abc9b56d 339struct buffer_data_page {
e4c2ce82 340 u64 time_stamp; /* page time stamp */
c3706f00 341 local_t commit; /* write committed index */
649508f6 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
343};
344
77ae365e
SR
345/*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
abc9b56d 353struct buffer_page {
778c55d4 354 struct list_head list; /* list of buffer pages */
abc9b56d 355 local_t write; /* index for next write */
6f807acd 356 unsigned read; /* index for next read */
778c55d4 357 local_t entries; /* entries on this page */
ff0ff84a 358 unsigned long real_end; /* real end of data */
abc9b56d 359 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
360};
361
77ae365e
SR
362/*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374#define RB_WRITE_MASK 0xfffff
375#define RB_WRITE_INTCNT (1 << 20)
376
044fa782 377static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 378{
044fa782 379 local_set(&bpage->commit, 0);
abc9b56d
SR
380}
381
474d32b6
SR
382/**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
ef7a4a16
SR
388size_t ring_buffer_page_len(void *page)
389{
474d32b6
SR
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
392}
393
ed56829c
SR
394/*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
34a148bf 398static void free_buffer_page(struct buffer_page *bpage)
ed56829c 399{
34a148bf 400 free_page((unsigned long)bpage->page);
e4c2ce82 401 kfree(bpage);
ed56829c
SR
402}
403
7a8e76a3
SR
404/*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
407static inline int test_time_stamp(u64 delta)
408{
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412}
413
474d32b6 414#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 415
be957c44
SR
416/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
d1b182a8
SR
419int ring_buffer_print_page_header(struct trace_seq *s)
420{
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
d1b182a8
SR
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 431 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
d1b182a8 434
66a8cb95
SR
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
d1b182a8 441 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 443 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
d1b182a8
SR
446
447 return ret;
448}
449
15693458
SRRH
450struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454};
455
7a8e76a3
SR
456/*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459struct ring_buffer_per_cpu {
460 int cpu;
985023de 461 atomic_t record_disabled;
7a8e76a3 462 struct ring_buffer *buffer;
5389f6fa 463 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 464 arch_spinlock_t lock;
7a8e76a3 465 struct lock_class_key lock_key;
438ced17 466 unsigned int nr_pages;
3adc54fa 467 struct list_head *pages;
6f807acd
SR
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
c3706f00 470 struct buffer_page *commit_page; /* committed pages */
d769041f 471 struct buffer_page *reader_page;
66a8cb95
SR
472 unsigned long lost_events;
473 unsigned long last_overrun;
c64e148a 474 local_t entries_bytes;
e4906eff 475 local_t entries;
884bfe89
SP
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
fa743953
SR
479 local_t committing;
480 local_t commits;
77ae365e 481 unsigned long read;
c64e148a 482 unsigned long read_bytes;
7a8e76a3
SR
483 u64 write_stamp;
484 u64 read_stamp;
438ced17
VN
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
83f40318 488 struct work_struct update_pages_work;
05fdd70d 489 struct completion update_done;
15693458
SRRH
490
491 struct rb_irq_work irq_work;
7a8e76a3
SR
492};
493
494struct ring_buffer {
7a8e76a3
SR
495 unsigned flags;
496 int cpus;
7a8e76a3 497 atomic_t record_disabled;
83f40318 498 atomic_t resize_disabled;
00f62f61 499 cpumask_var_t cpumask;
7a8e76a3 500
1f8a6a10
PZ
501 struct lock_class_key *reader_lock_key;
502
7a8e76a3
SR
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
554f786e 506
59222efe 507#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
508 struct notifier_block cpu_notify;
509#endif
37886f6a 510 u64 (*clock)(void);
15693458
SRRH
511
512 struct rb_irq_work irq_work;
7a8e76a3
SR
513};
514
515struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
492a74f4
SR
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
7a8e76a3
SR
521 u64 read_stamp;
522};
523
15693458
SRRH
524/*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
530static void rb_wake_up_waiters(struct irq_work *work)
531{
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535}
536
537/**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 *
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
545 */
8b8b3683 546int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
15693458
SRRH
547{
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
551
552 /*
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
556 */
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
8b8b3683
SRRH
560 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 return -ENODEV;
15693458
SRRH
562 cpu_buffer = buffer->buffers[cpu];
563 work = &cpu_buffer->irq_work;
564 }
565
566
567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569 /*
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
574 * using irq_work.
575 *
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
581 * an empty queue.
582 *
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
588 */
589 work->waiters_pending = true;
590
591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 schedule();
594
595 finish_wait(&work->waiters, &wait);
8b8b3683 596 return 0;
15693458
SRRH
597}
598
599/**
600 * ring_buffer_poll_wait - poll on buffer input
601 * @buffer: buffer to wait on
602 * @cpu: the cpu buffer to wait on
603 * @filp: the file descriptor
604 * @poll_table: The poll descriptor
605 *
606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607 * as data is added to any of the @buffer's cpu buffers. Otherwise
608 * it will wait for data to be added to a specific cpu buffer.
609 *
610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611 * zero otherwise.
612 */
613int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 struct file *filp, poll_table *poll_table)
615{
616 struct ring_buffer_per_cpu *cpu_buffer;
617 struct rb_irq_work *work;
618
15693458
SRRH
619 if (cpu == RING_BUFFER_ALL_CPUS)
620 work = &buffer->irq_work;
621 else {
6721cb60
SRRH
622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
623 return -EINVAL;
624
15693458
SRRH
625 cpu_buffer = buffer->buffers[cpu];
626 work = &cpu_buffer->irq_work;
627 }
628
629 work->waiters_pending = true;
630 poll_wait(filp, &work->waiters, poll_table);
631
632 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
633 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
634 return POLLIN | POLLRDNORM;
635 return 0;
636}
637
f536aafc 638/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
639#define RB_WARN_ON(b, cond) \
640 ({ \
641 int _____ret = unlikely(cond); \
642 if (_____ret) { \
643 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
644 struct ring_buffer_per_cpu *__b = \
645 (void *)b; \
646 atomic_inc(&__b->buffer->record_disabled); \
647 } else \
648 atomic_inc(&b->record_disabled); \
649 WARN_ON(1); \
650 } \
651 _____ret; \
3e89c7bb 652 })
f536aafc 653
37886f6a
SR
654/* Up this if you want to test the TIME_EXTENTS and normalization */
655#define DEBUG_SHIFT 0
656
6d3f1e12 657static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
658{
659 /* shift to debug/test normalization and TIME_EXTENTS */
660 return buffer->clock() << DEBUG_SHIFT;
661}
662
37886f6a
SR
663u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
664{
665 u64 time;
666
667 preempt_disable_notrace();
6d3f1e12 668 time = rb_time_stamp(buffer);
37886f6a
SR
669 preempt_enable_no_resched_notrace();
670
671 return time;
672}
673EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
674
675void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
676 int cpu, u64 *ts)
677{
678 /* Just stupid testing the normalize function and deltas */
679 *ts >>= DEBUG_SHIFT;
680}
681EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
682
77ae365e
SR
683/*
684 * Making the ring buffer lockless makes things tricky.
685 * Although writes only happen on the CPU that they are on,
686 * and they only need to worry about interrupts. Reads can
687 * happen on any CPU.
688 *
689 * The reader page is always off the ring buffer, but when the
690 * reader finishes with a page, it needs to swap its page with
691 * a new one from the buffer. The reader needs to take from
692 * the head (writes go to the tail). But if a writer is in overwrite
693 * mode and wraps, it must push the head page forward.
694 *
695 * Here lies the problem.
696 *
697 * The reader must be careful to replace only the head page, and
698 * not another one. As described at the top of the file in the
699 * ASCII art, the reader sets its old page to point to the next
700 * page after head. It then sets the page after head to point to
701 * the old reader page. But if the writer moves the head page
702 * during this operation, the reader could end up with the tail.
703 *
704 * We use cmpxchg to help prevent this race. We also do something
705 * special with the page before head. We set the LSB to 1.
706 *
707 * When the writer must push the page forward, it will clear the
708 * bit that points to the head page, move the head, and then set
709 * the bit that points to the new head page.
710 *
711 * We also don't want an interrupt coming in and moving the head
712 * page on another writer. Thus we use the second LSB to catch
713 * that too. Thus:
714 *
715 * head->list->prev->next bit 1 bit 0
716 * ------- -------
717 * Normal page 0 0
718 * Points to head page 0 1
719 * New head page 1 0
720 *
721 * Note we can not trust the prev pointer of the head page, because:
722 *
723 * +----+ +-----+ +-----+
724 * | |------>| T |---X--->| N |
725 * | |<------| | | |
726 * +----+ +-----+ +-----+
727 * ^ ^ |
728 * | +-----+ | |
729 * +----------| R |----------+ |
730 * | |<-----------+
731 * +-----+
732 *
733 * Key: ---X--> HEAD flag set in pointer
734 * T Tail page
735 * R Reader page
736 * N Next page
737 *
738 * (see __rb_reserve_next() to see where this happens)
739 *
740 * What the above shows is that the reader just swapped out
741 * the reader page with a page in the buffer, but before it
742 * could make the new header point back to the new page added
743 * it was preempted by a writer. The writer moved forward onto
744 * the new page added by the reader and is about to move forward
745 * again.
746 *
747 * You can see, it is legitimate for the previous pointer of
748 * the head (or any page) not to point back to itself. But only
749 * temporarially.
750 */
751
752#define RB_PAGE_NORMAL 0UL
753#define RB_PAGE_HEAD 1UL
754#define RB_PAGE_UPDATE 2UL
755
756
757#define RB_FLAG_MASK 3UL
758
759/* PAGE_MOVED is not part of the mask */
760#define RB_PAGE_MOVED 4UL
761
762/*
763 * rb_list_head - remove any bit
764 */
765static struct list_head *rb_list_head(struct list_head *list)
766{
767 unsigned long val = (unsigned long)list;
768
769 return (struct list_head *)(val & ~RB_FLAG_MASK);
770}
771
772/*
6d3f1e12 773 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
774 *
775 * Because the reader may move the head_page pointer, we can
776 * not trust what the head page is (it may be pointing to
777 * the reader page). But if the next page is a header page,
778 * its flags will be non zero.
779 */
42b16b3f 780static inline int
77ae365e
SR
781rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
782 struct buffer_page *page, struct list_head *list)
783{
784 unsigned long val;
785
786 val = (unsigned long)list->next;
787
788 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
789 return RB_PAGE_MOVED;
790
791 return val & RB_FLAG_MASK;
792}
793
794/*
795 * rb_is_reader_page
796 *
797 * The unique thing about the reader page, is that, if the
798 * writer is ever on it, the previous pointer never points
799 * back to the reader page.
800 */
801static int rb_is_reader_page(struct buffer_page *page)
802{
803 struct list_head *list = page->list.prev;
804
805 return rb_list_head(list->next) != &page->list;
806}
807
808/*
809 * rb_set_list_to_head - set a list_head to be pointing to head.
810 */
811static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
812 struct list_head *list)
813{
814 unsigned long *ptr;
815
816 ptr = (unsigned long *)&list->next;
817 *ptr |= RB_PAGE_HEAD;
818 *ptr &= ~RB_PAGE_UPDATE;
819}
820
821/*
822 * rb_head_page_activate - sets up head page
823 */
824static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
825{
826 struct buffer_page *head;
827
828 head = cpu_buffer->head_page;
829 if (!head)
830 return;
831
832 /*
833 * Set the previous list pointer to have the HEAD flag.
834 */
835 rb_set_list_to_head(cpu_buffer, head->list.prev);
836}
837
838static void rb_list_head_clear(struct list_head *list)
839{
840 unsigned long *ptr = (unsigned long *)&list->next;
841
842 *ptr &= ~RB_FLAG_MASK;
843}
844
845/*
846 * rb_head_page_dactivate - clears head page ptr (for free list)
847 */
848static void
849rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
850{
851 struct list_head *hd;
852
853 /* Go through the whole list and clear any pointers found. */
854 rb_list_head_clear(cpu_buffer->pages);
855
856 list_for_each(hd, cpu_buffer->pages)
857 rb_list_head_clear(hd);
858}
859
860static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
861 struct buffer_page *head,
862 struct buffer_page *prev,
863 int old_flag, int new_flag)
864{
865 struct list_head *list;
866 unsigned long val = (unsigned long)&head->list;
867 unsigned long ret;
868
869 list = &prev->list;
870
871 val &= ~RB_FLAG_MASK;
872
08a40816
SR
873 ret = cmpxchg((unsigned long *)&list->next,
874 val | old_flag, val | new_flag);
77ae365e
SR
875
876 /* check if the reader took the page */
877 if ((ret & ~RB_FLAG_MASK) != val)
878 return RB_PAGE_MOVED;
879
880 return ret & RB_FLAG_MASK;
881}
882
883static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
884 struct buffer_page *head,
885 struct buffer_page *prev,
886 int old_flag)
887{
888 return rb_head_page_set(cpu_buffer, head, prev,
889 old_flag, RB_PAGE_UPDATE);
890}
891
892static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
893 struct buffer_page *head,
894 struct buffer_page *prev,
895 int old_flag)
896{
897 return rb_head_page_set(cpu_buffer, head, prev,
898 old_flag, RB_PAGE_HEAD);
899}
900
901static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
902 struct buffer_page *head,
903 struct buffer_page *prev,
904 int old_flag)
905{
906 return rb_head_page_set(cpu_buffer, head, prev,
907 old_flag, RB_PAGE_NORMAL);
908}
909
910static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
911 struct buffer_page **bpage)
912{
913 struct list_head *p = rb_list_head((*bpage)->list.next);
914
915 *bpage = list_entry(p, struct buffer_page, list);
916}
917
918static struct buffer_page *
919rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
920{
921 struct buffer_page *head;
922 struct buffer_page *page;
923 struct list_head *list;
924 int i;
925
926 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
927 return NULL;
928
929 /* sanity check */
930 list = cpu_buffer->pages;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
932 return NULL;
933
934 page = head = cpu_buffer->head_page;
935 /*
936 * It is possible that the writer moves the header behind
937 * where we started, and we miss in one loop.
938 * A second loop should grab the header, but we'll do
939 * three loops just because I'm paranoid.
940 */
941 for (i = 0; i < 3; i++) {
942 do {
943 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
944 cpu_buffer->head_page = page;
945 return page;
946 }
947 rb_inc_page(cpu_buffer, &page);
948 } while (page != head);
949 }
950
951 RB_WARN_ON(cpu_buffer, 1);
952
953 return NULL;
954}
955
956static int rb_head_page_replace(struct buffer_page *old,
957 struct buffer_page *new)
958{
959 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
960 unsigned long val;
961 unsigned long ret;
962
963 val = *ptr & ~RB_FLAG_MASK;
964 val |= RB_PAGE_HEAD;
965
08a40816 966 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
967
968 return ret == val;
969}
970
971/*
972 * rb_tail_page_update - move the tail page forward
973 *
974 * Returns 1 if moved tail page, 0 if someone else did.
975 */
976static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
977 struct buffer_page *tail_page,
978 struct buffer_page *next_page)
979{
980 struct buffer_page *old_tail;
981 unsigned long old_entries;
982 unsigned long old_write;
983 int ret = 0;
984
985 /*
986 * The tail page now needs to be moved forward.
987 *
988 * We need to reset the tail page, but without messing
989 * with possible erasing of data brought in by interrupts
990 * that have moved the tail page and are currently on it.
991 *
992 * We add a counter to the write field to denote this.
993 */
994 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
995 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
996
997 /*
998 * Just make sure we have seen our old_write and synchronize
999 * with any interrupts that come in.
1000 */
1001 barrier();
1002
1003 /*
1004 * If the tail page is still the same as what we think
1005 * it is, then it is up to us to update the tail
1006 * pointer.
1007 */
1008 if (tail_page == cpu_buffer->tail_page) {
1009 /* Zero the write counter */
1010 unsigned long val = old_write & ~RB_WRITE_MASK;
1011 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1012
1013 /*
1014 * This will only succeed if an interrupt did
1015 * not come in and change it. In which case, we
1016 * do not want to modify it.
da706d8b
LJ
1017 *
1018 * We add (void) to let the compiler know that we do not care
1019 * about the return value of these functions. We use the
1020 * cmpxchg to only update if an interrupt did not already
1021 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1022 */
da706d8b
LJ
1023 (void)local_cmpxchg(&next_page->write, old_write, val);
1024 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1025
1026 /*
1027 * No need to worry about races with clearing out the commit.
1028 * it only can increment when a commit takes place. But that
1029 * only happens in the outer most nested commit.
1030 */
1031 local_set(&next_page->page->commit, 0);
1032
1033 old_tail = cmpxchg(&cpu_buffer->tail_page,
1034 tail_page, next_page);
1035
1036 if (old_tail == tail_page)
1037 ret = 1;
1038 }
1039
1040 return ret;
1041}
1042
1043static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1044 struct buffer_page *bpage)
1045{
1046 unsigned long val = (unsigned long)bpage;
1047
1048 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1049 return 1;
1050
1051 return 0;
1052}
1053
1054/**
1055 * rb_check_list - make sure a pointer to a list has the last bits zero
1056 */
1057static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1058 struct list_head *list)
1059{
1060 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1061 return 1;
1062 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1063 return 1;
1064 return 0;
1065}
1066
7a8e76a3 1067/**
d611851b 1068 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1069 * @cpu_buffer: CPU buffer with pages to test
1070 *
c3706f00 1071 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1072 * been corrupted.
1073 */
1074static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1075{
3adc54fa 1076 struct list_head *head = cpu_buffer->pages;
044fa782 1077 struct buffer_page *bpage, *tmp;
7a8e76a3 1078
308f7eeb
SR
1079 /* Reset the head page if it exists */
1080 if (cpu_buffer->head_page)
1081 rb_set_head_page(cpu_buffer);
1082
77ae365e
SR
1083 rb_head_page_deactivate(cpu_buffer);
1084
3e89c7bb
SR
1085 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1086 return -1;
1087 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1088 return -1;
7a8e76a3 1089
77ae365e
SR
1090 if (rb_check_list(cpu_buffer, head))
1091 return -1;
1092
044fa782 1093 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1094 if (RB_WARN_ON(cpu_buffer,
044fa782 1095 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1096 return -1;
1097 if (RB_WARN_ON(cpu_buffer,
044fa782 1098 bpage->list.prev->next != &bpage->list))
3e89c7bb 1099 return -1;
77ae365e
SR
1100 if (rb_check_list(cpu_buffer, &bpage->list))
1101 return -1;
7a8e76a3
SR
1102 }
1103
77ae365e
SR
1104 rb_head_page_activate(cpu_buffer);
1105
7a8e76a3
SR
1106 return 0;
1107}
1108
438ced17 1109static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1110{
438ced17 1111 int i;
044fa782 1112 struct buffer_page *bpage, *tmp;
3adc54fa 1113
7a8e76a3 1114 for (i = 0; i < nr_pages; i++) {
7ea59064 1115 struct page *page;
d7ec4bfe
VN
1116 /*
1117 * __GFP_NORETRY flag makes sure that the allocation fails
1118 * gracefully without invoking oom-killer and the system is
1119 * not destabilized.
1120 */
044fa782 1121 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1122 GFP_KERNEL | __GFP_NORETRY,
438ced17 1123 cpu_to_node(cpu));
044fa782 1124 if (!bpage)
e4c2ce82 1125 goto free_pages;
77ae365e 1126
438ced17 1127 list_add(&bpage->list, pages);
77ae365e 1128
438ced17 1129 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1130 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1131 if (!page)
7a8e76a3 1132 goto free_pages;
7ea59064 1133 bpage->page = page_address(page);
044fa782 1134 rb_init_page(bpage->page);
7a8e76a3
SR
1135 }
1136
438ced17
VN
1137 return 0;
1138
1139free_pages:
1140 list_for_each_entry_safe(bpage, tmp, pages, list) {
1141 list_del_init(&bpage->list);
1142 free_buffer_page(bpage);
1143 }
1144
1145 return -ENOMEM;
1146}
1147
1148static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1149 unsigned nr_pages)
1150{
1151 LIST_HEAD(pages);
1152
1153 WARN_ON(!nr_pages);
1154
1155 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1156 return -ENOMEM;
1157
3adc54fa
SR
1158 /*
1159 * The ring buffer page list is a circular list that does not
1160 * start and end with a list head. All page list items point to
1161 * other pages.
1162 */
1163 cpu_buffer->pages = pages.next;
1164 list_del(&pages);
7a8e76a3 1165
438ced17
VN
1166 cpu_buffer->nr_pages = nr_pages;
1167
7a8e76a3
SR
1168 rb_check_pages(cpu_buffer);
1169
1170 return 0;
7a8e76a3
SR
1171}
1172
1173static struct ring_buffer_per_cpu *
438ced17 1174rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1175{
1176 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1177 struct buffer_page *bpage;
7ea59064 1178 struct page *page;
7a8e76a3
SR
1179 int ret;
1180
1181 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1182 GFP_KERNEL, cpu_to_node(cpu));
1183 if (!cpu_buffer)
1184 return NULL;
1185
1186 cpu_buffer->cpu = cpu;
1187 cpu_buffer->buffer = buffer;
5389f6fa 1188 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1189 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1190 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1191 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1192 init_completion(&cpu_buffer->update_done);
15693458 1193 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1194 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
7a8e76a3 1195
044fa782 1196 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1197 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1198 if (!bpage)
e4c2ce82
SR
1199 goto fail_free_buffer;
1200
77ae365e
SR
1201 rb_check_bpage(cpu_buffer, bpage);
1202
044fa782 1203 cpu_buffer->reader_page = bpage;
7ea59064
VN
1204 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1205 if (!page)
e4c2ce82 1206 goto fail_free_reader;
7ea59064 1207 bpage->page = page_address(page);
044fa782 1208 rb_init_page(bpage->page);
e4c2ce82 1209
d769041f 1210 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1211 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1212
438ced17 1213 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1214 if (ret < 0)
d769041f 1215 goto fail_free_reader;
7a8e76a3
SR
1216
1217 cpu_buffer->head_page
3adc54fa 1218 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1219 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1220
77ae365e
SR
1221 rb_head_page_activate(cpu_buffer);
1222
7a8e76a3
SR
1223 return cpu_buffer;
1224
d769041f
SR
1225 fail_free_reader:
1226 free_buffer_page(cpu_buffer->reader_page);
1227
7a8e76a3
SR
1228 fail_free_buffer:
1229 kfree(cpu_buffer);
1230 return NULL;
1231}
1232
1233static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1234{
3adc54fa 1235 struct list_head *head = cpu_buffer->pages;
044fa782 1236 struct buffer_page *bpage, *tmp;
7a8e76a3 1237
d769041f
SR
1238 free_buffer_page(cpu_buffer->reader_page);
1239
77ae365e
SR
1240 rb_head_page_deactivate(cpu_buffer);
1241
3adc54fa
SR
1242 if (head) {
1243 list_for_each_entry_safe(bpage, tmp, head, list) {
1244 list_del_init(&bpage->list);
1245 free_buffer_page(bpage);
1246 }
1247 bpage = list_entry(head, struct buffer_page, list);
044fa782 1248 free_buffer_page(bpage);
7a8e76a3 1249 }
3adc54fa 1250
7a8e76a3
SR
1251 kfree(cpu_buffer);
1252}
1253
59222efe 1254#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1255static int rb_cpu_notify(struct notifier_block *self,
1256 unsigned long action, void *hcpu);
554f786e
SR
1257#endif
1258
7a8e76a3 1259/**
d611851b 1260 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1261 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1262 * @flags: attributes to set for the ring buffer.
1263 *
1264 * Currently the only flag that is available is the RB_FL_OVERWRITE
1265 * flag. This flag means that the buffer will overwrite old data
1266 * when the buffer wraps. If this flag is not set, the buffer will
1267 * drop data when the tail hits the head.
1268 */
1f8a6a10
PZ
1269struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1270 struct lock_class_key *key)
7a8e76a3
SR
1271{
1272 struct ring_buffer *buffer;
1273 int bsize;
438ced17 1274 int cpu, nr_pages;
7a8e76a3
SR
1275
1276 /* keep it in its own cache line */
1277 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1278 GFP_KERNEL);
1279 if (!buffer)
1280 return NULL;
1281
9e01c1b7
RR
1282 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1283 goto fail_free_buffer;
1284
438ced17 1285 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1286 buffer->flags = flags;
37886f6a 1287 buffer->clock = trace_clock_local;
1f8a6a10 1288 buffer->reader_lock_key = key;
7a8e76a3 1289
15693458 1290 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1291 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1292
7a8e76a3 1293 /* need at least two pages */
438ced17
VN
1294 if (nr_pages < 2)
1295 nr_pages = 2;
7a8e76a3 1296
3bf832ce
FW
1297 /*
1298 * In case of non-hotplug cpu, if the ring-buffer is allocated
1299 * in early initcall, it will not be notified of secondary cpus.
1300 * In that off case, we need to allocate for all possible cpus.
1301 */
1302#ifdef CONFIG_HOTPLUG_CPU
d39ad278 1303 cpu_notifier_register_begin();
554f786e 1304 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1305#else
1306 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1307#endif
7a8e76a3
SR
1308 buffer->cpus = nr_cpu_ids;
1309
1310 bsize = sizeof(void *) * nr_cpu_ids;
1311 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1312 GFP_KERNEL);
1313 if (!buffer->buffers)
9e01c1b7 1314 goto fail_free_cpumask;
7a8e76a3
SR
1315
1316 for_each_buffer_cpu(buffer, cpu) {
1317 buffer->buffers[cpu] =
438ced17 1318 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1319 if (!buffer->buffers[cpu])
1320 goto fail_free_buffers;
1321 }
1322
59222efe 1323#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1324 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1325 buffer->cpu_notify.priority = 0;
d39ad278
SB
1326 __register_cpu_notifier(&buffer->cpu_notify);
1327 cpu_notifier_register_done();
554f786e
SR
1328#endif
1329
7a8e76a3
SR
1330 mutex_init(&buffer->mutex);
1331
1332 return buffer;
1333
1334 fail_free_buffers:
1335 for_each_buffer_cpu(buffer, cpu) {
1336 if (buffer->buffers[cpu])
1337 rb_free_cpu_buffer(buffer->buffers[cpu]);
1338 }
1339 kfree(buffer->buffers);
1340
9e01c1b7
RR
1341 fail_free_cpumask:
1342 free_cpumask_var(buffer->cpumask);
d39ad278
SB
1343#ifdef CONFIG_HOTPLUG_CPU
1344 cpu_notifier_register_done();
1345#endif
9e01c1b7 1346
7a8e76a3
SR
1347 fail_free_buffer:
1348 kfree(buffer);
1349 return NULL;
1350}
1f8a6a10 1351EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1352
1353/**
1354 * ring_buffer_free - free a ring buffer.
1355 * @buffer: the buffer to free.
1356 */
1357void
1358ring_buffer_free(struct ring_buffer *buffer)
1359{
1360 int cpu;
1361
59222efe 1362#ifdef CONFIG_HOTPLUG_CPU
d39ad278
SB
1363 cpu_notifier_register_begin();
1364 __unregister_cpu_notifier(&buffer->cpu_notify);
554f786e
SR
1365#endif
1366
7a8e76a3
SR
1367 for_each_buffer_cpu(buffer, cpu)
1368 rb_free_cpu_buffer(buffer->buffers[cpu]);
1369
d39ad278
SB
1370#ifdef CONFIG_HOTPLUG_CPU
1371 cpu_notifier_register_done();
1372#endif
554f786e 1373
bd3f0221 1374 kfree(buffer->buffers);
9e01c1b7
RR
1375 free_cpumask_var(buffer->cpumask);
1376
7a8e76a3
SR
1377 kfree(buffer);
1378}
c4f50183 1379EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1380
37886f6a
SR
1381void ring_buffer_set_clock(struct ring_buffer *buffer,
1382 u64 (*clock)(void))
1383{
1384 buffer->clock = clock;
1385}
1386
7a8e76a3
SR
1387static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1388
83f40318
VN
1389static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1390{
1391 return local_read(&bpage->entries) & RB_WRITE_MASK;
1392}
1393
1394static inline unsigned long rb_page_write(struct buffer_page *bpage)
1395{
1396 return local_read(&bpage->write) & RB_WRITE_MASK;
1397}
1398
5040b4b7 1399static int
83f40318 1400rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1401{
83f40318
VN
1402 struct list_head *tail_page, *to_remove, *next_page;
1403 struct buffer_page *to_remove_page, *tmp_iter_page;
1404 struct buffer_page *last_page, *first_page;
1405 unsigned int nr_removed;
1406 unsigned long head_bit;
1407 int page_entries;
1408
1409 head_bit = 0;
7a8e76a3 1410
5389f6fa 1411 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1412 atomic_inc(&cpu_buffer->record_disabled);
1413 /*
1414 * We don't race with the readers since we have acquired the reader
1415 * lock. We also don't race with writers after disabling recording.
1416 * This makes it easy to figure out the first and the last page to be
1417 * removed from the list. We unlink all the pages in between including
1418 * the first and last pages. This is done in a busy loop so that we
1419 * lose the least number of traces.
1420 * The pages are freed after we restart recording and unlock readers.
1421 */
1422 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1423
83f40318
VN
1424 /*
1425 * tail page might be on reader page, we remove the next page
1426 * from the ring buffer
1427 */
1428 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1429 tail_page = rb_list_head(tail_page->next);
1430 to_remove = tail_page;
1431
1432 /* start of pages to remove */
1433 first_page = list_entry(rb_list_head(to_remove->next),
1434 struct buffer_page, list);
1435
1436 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1437 to_remove = rb_list_head(to_remove)->next;
1438 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1439 }
7a8e76a3 1440
83f40318 1441 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1442
83f40318
VN
1443 /*
1444 * Now we remove all pages between tail_page and next_page.
1445 * Make sure that we have head_bit value preserved for the
1446 * next page
1447 */
1448 tail_page->next = (struct list_head *)((unsigned long)next_page |
1449 head_bit);
1450 next_page = rb_list_head(next_page);
1451 next_page->prev = tail_page;
1452
1453 /* make sure pages points to a valid page in the ring buffer */
1454 cpu_buffer->pages = next_page;
1455
1456 /* update head page */
1457 if (head_bit)
1458 cpu_buffer->head_page = list_entry(next_page,
1459 struct buffer_page, list);
1460
1461 /*
1462 * change read pointer to make sure any read iterators reset
1463 * themselves
1464 */
1465 cpu_buffer->read = 0;
1466
1467 /* pages are removed, resume tracing and then free the pages */
1468 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1469 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1470
1471 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1472
1473 /* last buffer page to remove */
1474 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1475 list);
1476 tmp_iter_page = first_page;
1477
1478 do {
1479 to_remove_page = tmp_iter_page;
1480 rb_inc_page(cpu_buffer, &tmp_iter_page);
1481
1482 /* update the counters */
1483 page_entries = rb_page_entries(to_remove_page);
1484 if (page_entries) {
1485 /*
1486 * If something was added to this page, it was full
1487 * since it is not the tail page. So we deduct the
1488 * bytes consumed in ring buffer from here.
48fdc72f 1489 * Increment overrun to account for the lost events.
83f40318 1490 */
48fdc72f 1491 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1492 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1493 }
1494
1495 /*
1496 * We have already removed references to this list item, just
1497 * free up the buffer_page and its page
1498 */
1499 free_buffer_page(to_remove_page);
1500 nr_removed--;
1501
1502 } while (to_remove_page != last_page);
1503
1504 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1505
1506 return nr_removed == 0;
7a8e76a3
SR
1507}
1508
5040b4b7
VN
1509static int
1510rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1511{
5040b4b7
VN
1512 struct list_head *pages = &cpu_buffer->new_pages;
1513 int retries, success;
7a8e76a3 1514
5389f6fa 1515 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1516 /*
1517 * We are holding the reader lock, so the reader page won't be swapped
1518 * in the ring buffer. Now we are racing with the writer trying to
1519 * move head page and the tail page.
1520 * We are going to adapt the reader page update process where:
1521 * 1. We first splice the start and end of list of new pages between
1522 * the head page and its previous page.
1523 * 2. We cmpxchg the prev_page->next to point from head page to the
1524 * start of new pages list.
1525 * 3. Finally, we update the head->prev to the end of new list.
1526 *
1527 * We will try this process 10 times, to make sure that we don't keep
1528 * spinning.
1529 */
1530 retries = 10;
1531 success = 0;
1532 while (retries--) {
1533 struct list_head *head_page, *prev_page, *r;
1534 struct list_head *last_page, *first_page;
1535 struct list_head *head_page_with_bit;
77ae365e 1536
5040b4b7 1537 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1538 if (!head_page)
1539 break;
5040b4b7
VN
1540 prev_page = head_page->prev;
1541
1542 first_page = pages->next;
1543 last_page = pages->prev;
1544
1545 head_page_with_bit = (struct list_head *)
1546 ((unsigned long)head_page | RB_PAGE_HEAD);
1547
1548 last_page->next = head_page_with_bit;
1549 first_page->prev = prev_page;
1550
1551 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1552
1553 if (r == head_page_with_bit) {
1554 /*
1555 * yay, we replaced the page pointer to our new list,
1556 * now, we just have to update to head page's prev
1557 * pointer to point to end of list
1558 */
1559 head_page->prev = last_page;
1560 success = 1;
1561 break;
1562 }
7a8e76a3 1563 }
7a8e76a3 1564
5040b4b7
VN
1565 if (success)
1566 INIT_LIST_HEAD(pages);
1567 /*
1568 * If we weren't successful in adding in new pages, warn and stop
1569 * tracing
1570 */
1571 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1572 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1573
1574 /* free pages if they weren't inserted */
1575 if (!success) {
1576 struct buffer_page *bpage, *tmp;
1577 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1578 list) {
1579 list_del_init(&bpage->list);
1580 free_buffer_page(bpage);
1581 }
1582 }
1583 return success;
7a8e76a3
SR
1584}
1585
83f40318 1586static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1587{
5040b4b7
VN
1588 int success;
1589
438ced17 1590 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1591 success = rb_insert_pages(cpu_buffer);
438ced17 1592 else
5040b4b7
VN
1593 success = rb_remove_pages(cpu_buffer,
1594 -cpu_buffer->nr_pages_to_update);
83f40318 1595
5040b4b7
VN
1596 if (success)
1597 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1598}
1599
1600static void update_pages_handler(struct work_struct *work)
1601{
1602 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1603 struct ring_buffer_per_cpu, update_pages_work);
1604 rb_update_pages(cpu_buffer);
05fdd70d 1605 complete(&cpu_buffer->update_done);
438ced17
VN
1606}
1607
7a8e76a3
SR
1608/**
1609 * ring_buffer_resize - resize the ring buffer
1610 * @buffer: the buffer to resize.
1611 * @size: the new size.
d611851b 1612 * @cpu_id: the cpu buffer to resize
7a8e76a3 1613 *
7a8e76a3
SR
1614 * Minimum size is 2 * BUF_PAGE_SIZE.
1615 *
83f40318 1616 * Returns 0 on success and < 0 on failure.
7a8e76a3 1617 */
438ced17
VN
1618int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1619 int cpu_id)
7a8e76a3
SR
1620{
1621 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1622 unsigned nr_pages;
83f40318 1623 int cpu, err = 0;
7a8e76a3 1624
ee51a1de
IM
1625 /*
1626 * Always succeed at resizing a non-existent buffer:
1627 */
1628 if (!buffer)
1629 return size;
1630
6a31e1f1
SR
1631 /* Make sure the requested buffer exists */
1632 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1633 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1634 return size;
1635
7a8e76a3
SR
1636 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1637 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1638
1639 /* we need a minimum of two pages */
1640 if (size < BUF_PAGE_SIZE * 2)
1641 size = BUF_PAGE_SIZE * 2;
1642
83f40318 1643 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1644
83f40318
VN
1645 /*
1646 * Don't succeed if resizing is disabled, as a reader might be
1647 * manipulating the ring buffer and is expecting a sane state while
1648 * this is true.
1649 */
1650 if (atomic_read(&buffer->resize_disabled))
1651 return -EBUSY;
18421015 1652
83f40318 1653 /* prevent another thread from changing buffer sizes */
7a8e76a3 1654 mutex_lock(&buffer->mutex);
7a8e76a3 1655
438ced17
VN
1656 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1657 /* calculate the pages to update */
7a8e76a3
SR
1658 for_each_buffer_cpu(buffer, cpu) {
1659 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1660
438ced17
VN
1661 cpu_buffer->nr_pages_to_update = nr_pages -
1662 cpu_buffer->nr_pages;
438ced17
VN
1663 /*
1664 * nothing more to do for removing pages or no update
1665 */
1666 if (cpu_buffer->nr_pages_to_update <= 0)
1667 continue;
d7ec4bfe 1668 /*
438ced17
VN
1669 * to add pages, make sure all new pages can be
1670 * allocated without receiving ENOMEM
d7ec4bfe 1671 */
438ced17
VN
1672 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1673 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1674 &cpu_buffer->new_pages, cpu)) {
438ced17 1675 /* not enough memory for new pages */
83f40318
VN
1676 err = -ENOMEM;
1677 goto out_err;
1678 }
1679 }
1680
1681 get_online_cpus();
1682 /*
1683 * Fire off all the required work handlers
05fdd70d 1684 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1685 * since we can change their buffer sizes without any race.
1686 */
1687 for_each_buffer_cpu(buffer, cpu) {
1688 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1689 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1690 continue;
1691
f5eb5588
SRRH
1692 /* The update must run on the CPU that is being updated. */
1693 preempt_disable();
1694 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1695 rb_update_pages(cpu_buffer);
1696 cpu_buffer->nr_pages_to_update = 0;
1697 } else {
1698 /*
1699 * Can not disable preemption for schedule_work_on()
1700 * on PREEMPT_RT.
1701 */
1702 preempt_enable();
05fdd70d
VN
1703 schedule_work_on(cpu,
1704 &cpu_buffer->update_pages_work);
f5eb5588
SRRH
1705 preempt_disable();
1706 }
1707 preempt_enable();
7a8e76a3 1708 }
7a8e76a3 1709
438ced17
VN
1710 /* wait for all the updates to complete */
1711 for_each_buffer_cpu(buffer, cpu) {
1712 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1713 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1714 continue;
1715
05fdd70d
VN
1716 if (cpu_online(cpu))
1717 wait_for_completion(&cpu_buffer->update_done);
83f40318 1718 cpu_buffer->nr_pages_to_update = 0;
438ced17 1719 }
83f40318
VN
1720
1721 put_online_cpus();
438ced17 1722 } else {
8e49f418
VN
1723 /* Make sure this CPU has been intitialized */
1724 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1725 goto out;
1726
438ced17 1727 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1728
438ced17
VN
1729 if (nr_pages == cpu_buffer->nr_pages)
1730 goto out;
7a8e76a3 1731
438ced17
VN
1732 cpu_buffer->nr_pages_to_update = nr_pages -
1733 cpu_buffer->nr_pages;
1734
1735 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1736 if (cpu_buffer->nr_pages_to_update > 0 &&
1737 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1738 &cpu_buffer->new_pages, cpu_id)) {
1739 err = -ENOMEM;
1740 goto out_err;
1741 }
438ced17 1742
83f40318
VN
1743 get_online_cpus();
1744
f5eb5588
SRRH
1745 preempt_disable();
1746 /* The update must run on the CPU that is being updated. */
1747 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1748 rb_update_pages(cpu_buffer);
1749 else {
1750 /*
1751 * Can not disable preemption for schedule_work_on()
1752 * on PREEMPT_RT.
1753 */
1754 preempt_enable();
83f40318
VN
1755 schedule_work_on(cpu_id,
1756 &cpu_buffer->update_pages_work);
05fdd70d 1757 wait_for_completion(&cpu_buffer->update_done);
f5eb5588
SRRH
1758 preempt_disable();
1759 }
1760 preempt_enable();
83f40318 1761
83f40318 1762 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1763 put_online_cpus();
438ced17 1764 }
7a8e76a3
SR
1765
1766 out:
659f451f
SR
1767 /*
1768 * The ring buffer resize can happen with the ring buffer
1769 * enabled, so that the update disturbs the tracing as little
1770 * as possible. But if the buffer is disabled, we do not need
1771 * to worry about that, and we can take the time to verify
1772 * that the buffer is not corrupt.
1773 */
1774 if (atomic_read(&buffer->record_disabled)) {
1775 atomic_inc(&buffer->record_disabled);
1776 /*
1777 * Even though the buffer was disabled, we must make sure
1778 * that it is truly disabled before calling rb_check_pages.
1779 * There could have been a race between checking
1780 * record_disable and incrementing it.
1781 */
1782 synchronize_sched();
1783 for_each_buffer_cpu(buffer, cpu) {
1784 cpu_buffer = buffer->buffers[cpu];
1785 rb_check_pages(cpu_buffer);
1786 }
1787 atomic_dec(&buffer->record_disabled);
1788 }
1789
7a8e76a3 1790 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1791 return size;
1792
83f40318 1793 out_err:
438ced17
VN
1794 for_each_buffer_cpu(buffer, cpu) {
1795 struct buffer_page *bpage, *tmp;
83f40318 1796
438ced17 1797 cpu_buffer = buffer->buffers[cpu];
438ced17 1798 cpu_buffer->nr_pages_to_update = 0;
83f40318 1799
438ced17
VN
1800 if (list_empty(&cpu_buffer->new_pages))
1801 continue;
83f40318 1802
438ced17
VN
1803 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1804 list) {
1805 list_del_init(&bpage->list);
1806 free_buffer_page(bpage);
1807 }
7a8e76a3 1808 }
641d2f63 1809 mutex_unlock(&buffer->mutex);
83f40318 1810 return err;
7a8e76a3 1811}
c4f50183 1812EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1813
750912fa
DS
1814void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1815{
1816 mutex_lock(&buffer->mutex);
1817 if (val)
1818 buffer->flags |= RB_FL_OVERWRITE;
1819 else
1820 buffer->flags &= ~RB_FL_OVERWRITE;
1821 mutex_unlock(&buffer->mutex);
1822}
1823EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1824
8789a9e7 1825static inline void *
044fa782 1826__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1827{
044fa782 1828 return bpage->data + index;
8789a9e7
SR
1829}
1830
044fa782 1831static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1832{
044fa782 1833 return bpage->page->data + index;
7a8e76a3
SR
1834}
1835
1836static inline struct ring_buffer_event *
d769041f 1837rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1838{
6f807acd
SR
1839 return __rb_page_index(cpu_buffer->reader_page,
1840 cpu_buffer->reader_page->read);
1841}
1842
7a8e76a3
SR
1843static inline struct ring_buffer_event *
1844rb_iter_head_event(struct ring_buffer_iter *iter)
1845{
6f807acd 1846 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1847}
1848
bf41a158
SR
1849static inline unsigned rb_page_commit(struct buffer_page *bpage)
1850{
abc9b56d 1851 return local_read(&bpage->page->commit);
bf41a158
SR
1852}
1853
25985edc 1854/* Size is determined by what has been committed */
bf41a158
SR
1855static inline unsigned rb_page_size(struct buffer_page *bpage)
1856{
1857 return rb_page_commit(bpage);
1858}
1859
1860static inline unsigned
1861rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1862{
1863 return rb_page_commit(cpu_buffer->commit_page);
1864}
1865
bf41a158
SR
1866static inline unsigned
1867rb_event_index(struct ring_buffer_event *event)
1868{
1869 unsigned long addr = (unsigned long)event;
1870
22f470f8 1871 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1872}
1873
0f0c85fc 1874static inline int
fa743953
SR
1875rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1876 struct ring_buffer_event *event)
bf41a158
SR
1877{
1878 unsigned long addr = (unsigned long)event;
1879 unsigned long index;
1880
1881 index = rb_event_index(event);
1882 addr &= PAGE_MASK;
1883
1884 return cpu_buffer->commit_page->page == (void *)addr &&
1885 rb_commit_index(cpu_buffer) == index;
1886}
1887
34a148bf 1888static void
bf41a158 1889rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1890{
77ae365e
SR
1891 unsigned long max_count;
1892
bf41a158
SR
1893 /*
1894 * We only race with interrupts and NMIs on this CPU.
1895 * If we own the commit event, then we can commit
1896 * all others that interrupted us, since the interruptions
1897 * are in stack format (they finish before they come
1898 * back to us). This allows us to do a simple loop to
1899 * assign the commit to the tail.
1900 */
a8ccf1d6 1901 again:
438ced17 1902 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1903
bf41a158 1904 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1905 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1906 return;
1907 if (RB_WARN_ON(cpu_buffer,
1908 rb_is_reader_page(cpu_buffer->tail_page)))
1909 return;
1910 local_set(&cpu_buffer->commit_page->page->commit,
1911 rb_page_write(cpu_buffer->commit_page));
bf41a158 1912 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1913 cpu_buffer->write_stamp =
1914 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1915 /* add barrier to keep gcc from optimizing too much */
1916 barrier();
1917 }
1918 while (rb_commit_index(cpu_buffer) !=
1919 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1920
1921 local_set(&cpu_buffer->commit_page->page->commit,
1922 rb_page_write(cpu_buffer->commit_page));
1923 RB_WARN_ON(cpu_buffer,
1924 local_read(&cpu_buffer->commit_page->page->commit) &
1925 ~RB_WRITE_MASK);
bf41a158
SR
1926 barrier();
1927 }
a8ccf1d6
SR
1928
1929 /* again, keep gcc from optimizing */
1930 barrier();
1931
1932 /*
1933 * If an interrupt came in just after the first while loop
1934 * and pushed the tail page forward, we will be left with
1935 * a dangling commit that will never go forward.
1936 */
1937 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1938 goto again;
7a8e76a3
SR
1939}
1940
d769041f 1941static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1942{
abc9b56d 1943 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1944 cpu_buffer->reader_page->read = 0;
d769041f
SR
1945}
1946
34a148bf 1947static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1948{
1949 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950
1951 /*
1952 * The iterator could be on the reader page (it starts there).
1953 * But the head could have moved, since the reader was
1954 * found. Check for this case and assign the iterator
1955 * to the head page instead of next.
1956 */
1957 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1958 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1959 else
1960 rb_inc_page(cpu_buffer, &iter->head_page);
1961
abc9b56d 1962 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1963 iter->head = 0;
1964}
1965
69d1b839
SR
1966/* Slow path, do not inline */
1967static noinline struct ring_buffer_event *
1968rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1969{
1970 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1971
1972 /* Not the first event on the page? */
1973 if (rb_event_index(event)) {
1974 event->time_delta = delta & TS_MASK;
1975 event->array[0] = delta >> TS_SHIFT;
1976 } else {
1977 /* nope, just zero it */
1978 event->time_delta = 0;
1979 event->array[0] = 0;
1980 }
1981
1982 return skip_time_extend(event);
1983}
1984
7a8e76a3 1985/**
01e3e710 1986 * rb_update_event - update event type and data
7a8e76a3
SR
1987 * @event: the even to update
1988 * @type: the type of event
1989 * @length: the size of the event field in the ring buffer
1990 *
1991 * Update the type and data fields of the event. The length
1992 * is the actual size that is written to the ring buffer,
1993 * and with this, we can determine what to place into the
1994 * data field.
1995 */
34a148bf 1996static void
69d1b839
SR
1997rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1998 struct ring_buffer_event *event, unsigned length,
1999 int add_timestamp, u64 delta)
7a8e76a3 2000{
69d1b839
SR
2001 /* Only a commit updates the timestamp */
2002 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2003 delta = 0;
7a8e76a3 2004
69d1b839
SR
2005 /*
2006 * If we need to add a timestamp, then we
2007 * add it to the start of the resevered space.
2008 */
2009 if (unlikely(add_timestamp)) {
2010 event = rb_add_time_stamp(event, delta);
2011 length -= RB_LEN_TIME_EXTEND;
2012 delta = 0;
7a8e76a3 2013 }
69d1b839
SR
2014
2015 event->time_delta = delta;
2016 length -= RB_EVNT_HDR_SIZE;
2017 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2018 event->type_len = 0;
2019 event->array[0] = length;
2020 } else
2021 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
2022}
2023
77ae365e
SR
2024/*
2025 * rb_handle_head_page - writer hit the head page
2026 *
2027 * Returns: +1 to retry page
2028 * 0 to continue
2029 * -1 on error
2030 */
2031static int
2032rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2033 struct buffer_page *tail_page,
2034 struct buffer_page *next_page)
2035{
2036 struct buffer_page *new_head;
2037 int entries;
2038 int type;
2039 int ret;
2040
2041 entries = rb_page_entries(next_page);
2042
2043 /*
2044 * The hard part is here. We need to move the head
2045 * forward, and protect against both readers on
2046 * other CPUs and writers coming in via interrupts.
2047 */
2048 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2049 RB_PAGE_HEAD);
2050
2051 /*
2052 * type can be one of four:
2053 * NORMAL - an interrupt already moved it for us
2054 * HEAD - we are the first to get here.
2055 * UPDATE - we are the interrupt interrupting
2056 * a current move.
2057 * MOVED - a reader on another CPU moved the next
2058 * pointer to its reader page. Give up
2059 * and try again.
2060 */
2061
2062 switch (type) {
2063 case RB_PAGE_HEAD:
2064 /*
2065 * We changed the head to UPDATE, thus
2066 * it is our responsibility to update
2067 * the counters.
2068 */
2069 local_add(entries, &cpu_buffer->overrun);
c64e148a 2070 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2071
2072 /*
2073 * The entries will be zeroed out when we move the
2074 * tail page.
2075 */
2076
2077 /* still more to do */
2078 break;
2079
2080 case RB_PAGE_UPDATE:
2081 /*
2082 * This is an interrupt that interrupt the
2083 * previous update. Still more to do.
2084 */
2085 break;
2086 case RB_PAGE_NORMAL:
2087 /*
2088 * An interrupt came in before the update
2089 * and processed this for us.
2090 * Nothing left to do.
2091 */
2092 return 1;
2093 case RB_PAGE_MOVED:
2094 /*
2095 * The reader is on another CPU and just did
2096 * a swap with our next_page.
2097 * Try again.
2098 */
2099 return 1;
2100 default:
2101 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2102 return -1;
2103 }
2104
2105 /*
2106 * Now that we are here, the old head pointer is
2107 * set to UPDATE. This will keep the reader from
2108 * swapping the head page with the reader page.
2109 * The reader (on another CPU) will spin till
2110 * we are finished.
2111 *
2112 * We just need to protect against interrupts
2113 * doing the job. We will set the next pointer
2114 * to HEAD. After that, we set the old pointer
2115 * to NORMAL, but only if it was HEAD before.
2116 * otherwise we are an interrupt, and only
2117 * want the outer most commit to reset it.
2118 */
2119 new_head = next_page;
2120 rb_inc_page(cpu_buffer, &new_head);
2121
2122 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2123 RB_PAGE_NORMAL);
2124
2125 /*
2126 * Valid returns are:
2127 * HEAD - an interrupt came in and already set it.
2128 * NORMAL - One of two things:
2129 * 1) We really set it.
2130 * 2) A bunch of interrupts came in and moved
2131 * the page forward again.
2132 */
2133 switch (ret) {
2134 case RB_PAGE_HEAD:
2135 case RB_PAGE_NORMAL:
2136 /* OK */
2137 break;
2138 default:
2139 RB_WARN_ON(cpu_buffer, 1);
2140 return -1;
2141 }
2142
2143 /*
2144 * It is possible that an interrupt came in,
2145 * set the head up, then more interrupts came in
2146 * and moved it again. When we get back here,
2147 * the page would have been set to NORMAL but we
2148 * just set it back to HEAD.
2149 *
2150 * How do you detect this? Well, if that happened
2151 * the tail page would have moved.
2152 */
2153 if (ret == RB_PAGE_NORMAL) {
2154 /*
2155 * If the tail had moved passed next, then we need
2156 * to reset the pointer.
2157 */
2158 if (cpu_buffer->tail_page != tail_page &&
2159 cpu_buffer->tail_page != next_page)
2160 rb_head_page_set_normal(cpu_buffer, new_head,
2161 next_page,
2162 RB_PAGE_HEAD);
2163 }
2164
2165 /*
2166 * If this was the outer most commit (the one that
2167 * changed the original pointer from HEAD to UPDATE),
2168 * then it is up to us to reset it to NORMAL.
2169 */
2170 if (type == RB_PAGE_HEAD) {
2171 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2172 tail_page,
2173 RB_PAGE_UPDATE);
2174 if (RB_WARN_ON(cpu_buffer,
2175 ret != RB_PAGE_UPDATE))
2176 return -1;
2177 }
2178
2179 return 0;
2180}
2181
34a148bf 2182static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2183{
2184 struct ring_buffer_event event; /* Used only for sizeof array */
2185
2186 /* zero length can cause confusions */
2187 if (!length)
2188 length = 1;
2189
2271048d 2190 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2191 length += sizeof(event.array[0]);
2192
2193 length += RB_EVNT_HDR_SIZE;
2271048d 2194 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2195
2196 return length;
2197}
2198
c7b09308
SR
2199static inline void
2200rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2201 struct buffer_page *tail_page,
2202 unsigned long tail, unsigned long length)
2203{
2204 struct ring_buffer_event *event;
2205
2206 /*
2207 * Only the event that crossed the page boundary
2208 * must fill the old tail_page with padding.
2209 */
2210 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2211 /*
2212 * If the page was filled, then we still need
2213 * to update the real_end. Reset it to zero
2214 * and the reader will ignore it.
2215 */
2216 if (tail == BUF_PAGE_SIZE)
2217 tail_page->real_end = 0;
2218
c7b09308
SR
2219 local_sub(length, &tail_page->write);
2220 return;
2221 }
2222
2223 event = __rb_page_index(tail_page, tail);
b0b7065b 2224 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2225
c64e148a
VN
2226 /* account for padding bytes */
2227 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2228
ff0ff84a
SR
2229 /*
2230 * Save the original length to the meta data.
2231 * This will be used by the reader to add lost event
2232 * counter.
2233 */
2234 tail_page->real_end = tail;
2235
c7b09308
SR
2236 /*
2237 * If this event is bigger than the minimum size, then
2238 * we need to be careful that we don't subtract the
2239 * write counter enough to allow another writer to slip
2240 * in on this page.
2241 * We put in a discarded commit instead, to make sure
2242 * that this space is not used again.
2243 *
2244 * If we are less than the minimum size, we don't need to
2245 * worry about it.
2246 */
2247 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2248 /* No room for any events */
2249
2250 /* Mark the rest of the page with padding */
2251 rb_event_set_padding(event);
2252
2253 /* Set the write back to the previous setting */
2254 local_sub(length, &tail_page->write);
2255 return;
2256 }
2257
2258 /* Put in a discarded event */
2259 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2260 event->type_len = RINGBUF_TYPE_PADDING;
2261 /* time delta must be non zero */
2262 event->time_delta = 1;
c7b09308
SR
2263
2264 /* Set write to end of buffer */
2265 length = (tail + length) - BUF_PAGE_SIZE;
2266 local_sub(length, &tail_page->write);
2267}
6634ff26 2268
747e94ae
SR
2269/*
2270 * This is the slow path, force gcc not to inline it.
2271 */
2272static noinline struct ring_buffer_event *
6634ff26
SR
2273rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2274 unsigned long length, unsigned long tail,
e8bc43e8 2275 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2276{
5a50e33c 2277 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2278 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2279 struct buffer_page *next_page;
2280 int ret;
aa20ae84
SR
2281
2282 next_page = tail_page;
2283
aa20ae84
SR
2284 rb_inc_page(cpu_buffer, &next_page);
2285
aa20ae84
SR
2286 /*
2287 * If for some reason, we had an interrupt storm that made
2288 * it all the way around the buffer, bail, and warn
2289 * about it.
2290 */
2291 if (unlikely(next_page == commit_page)) {
77ae365e 2292 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2293 goto out_reset;
2294 }
2295
77ae365e
SR
2296 /*
2297 * This is where the fun begins!
2298 *
2299 * We are fighting against races between a reader that
2300 * could be on another CPU trying to swap its reader
2301 * page with the buffer head.
2302 *
2303 * We are also fighting against interrupts coming in and
2304 * moving the head or tail on us as well.
2305 *
2306 * If the next page is the head page then we have filled
2307 * the buffer, unless the commit page is still on the
2308 * reader page.
2309 */
2310 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2311
77ae365e
SR
2312 /*
2313 * If the commit is not on the reader page, then
2314 * move the header page.
2315 */
2316 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2317 /*
2318 * If we are not in overwrite mode,
2319 * this is easy, just stop here.
2320 */
884bfe89
SP
2321 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2322 local_inc(&cpu_buffer->dropped_events);
77ae365e 2323 goto out_reset;
884bfe89 2324 }
77ae365e
SR
2325
2326 ret = rb_handle_head_page(cpu_buffer,
2327 tail_page,
2328 next_page);
2329 if (ret < 0)
2330 goto out_reset;
2331 if (ret)
2332 goto out_again;
2333 } else {
2334 /*
2335 * We need to be careful here too. The
2336 * commit page could still be on the reader
2337 * page. We could have a small buffer, and
2338 * have filled up the buffer with events
2339 * from interrupts and such, and wrapped.
2340 *
2341 * Note, if the tail page is also the on the
2342 * reader_page, we let it move out.
2343 */
2344 if (unlikely((cpu_buffer->commit_page !=
2345 cpu_buffer->tail_page) &&
2346 (cpu_buffer->commit_page ==
2347 cpu_buffer->reader_page))) {
2348 local_inc(&cpu_buffer->commit_overrun);
2349 goto out_reset;
2350 }
aa20ae84
SR
2351 }
2352 }
2353
77ae365e
SR
2354 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2355 if (ret) {
2356 /*
2357 * Nested commits always have zero deltas, so
2358 * just reread the time stamp
2359 */
e8bc43e8
SR
2360 ts = rb_time_stamp(buffer);
2361 next_page->page->time_stamp = ts;
aa20ae84
SR
2362 }
2363
77ae365e 2364 out_again:
aa20ae84 2365
77ae365e 2366 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2367
2368 /* fail and let the caller try again */
2369 return ERR_PTR(-EAGAIN);
2370
45141d46 2371 out_reset:
6f3b3440 2372 /* reset write */
c7b09308 2373 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2374
bf41a158 2375 return NULL;
7a8e76a3
SR
2376}
2377
6634ff26
SR
2378static struct ring_buffer_event *
2379__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2380 unsigned long length, u64 ts,
2381 u64 delta, int add_timestamp)
6634ff26 2382{
5a50e33c 2383 struct buffer_page *tail_page;
6634ff26
SR
2384 struct ring_buffer_event *event;
2385 unsigned long tail, write;
2386
69d1b839
SR
2387 /*
2388 * If the time delta since the last event is too big to
2389 * hold in the time field of the event, then we append a
2390 * TIME EXTEND event ahead of the data event.
2391 */
2392 if (unlikely(add_timestamp))
2393 length += RB_LEN_TIME_EXTEND;
2394
6634ff26
SR
2395 tail_page = cpu_buffer->tail_page;
2396 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2397
2398 /* set write to only the index of the write */
2399 write &= RB_WRITE_MASK;
6634ff26
SR
2400 tail = write - length;
2401
d651aa1d
SRRH
2402 /*
2403 * If this is the first commit on the page, then it has the same
2404 * timestamp as the page itself.
2405 */
2406 if (!tail)
2407 delta = 0;
2408
6634ff26 2409 /* See if we shot pass the end of this buffer page */
747e94ae 2410 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2411 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2412 tail_page, ts);
6634ff26
SR
2413
2414 /* We reserved something on the buffer */
2415
6634ff26 2416 event = __rb_page_index(tail_page, tail);
1744a21d 2417 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2418 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2419
69d1b839 2420 local_inc(&tail_page->entries);
6634ff26
SR
2421
2422 /*
fa743953
SR
2423 * If this is the first commit on the page, then update
2424 * its timestamp.
6634ff26 2425 */
fa743953 2426 if (!tail)
e8bc43e8 2427 tail_page->page->time_stamp = ts;
6634ff26 2428
c64e148a
VN
2429 /* account for these added bytes */
2430 local_add(length, &cpu_buffer->entries_bytes);
2431
6634ff26
SR
2432 return event;
2433}
2434
edd813bf
SR
2435static inline int
2436rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2437 struct ring_buffer_event *event)
2438{
2439 unsigned long new_index, old_index;
2440 struct buffer_page *bpage;
2441 unsigned long index;
2442 unsigned long addr;
2443
2444 new_index = rb_event_index(event);
69d1b839 2445 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2446 addr = (unsigned long)event;
2447 addr &= PAGE_MASK;
2448
2449 bpage = cpu_buffer->tail_page;
2450
2451 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2452 unsigned long write_mask =
2453 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2454 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2455 /*
2456 * This is on the tail page. It is possible that
2457 * a write could come in and move the tail page
2458 * and write to the next page. That is fine
2459 * because we just shorten what is on this page.
2460 */
77ae365e
SR
2461 old_index += write_mask;
2462 new_index += write_mask;
edd813bf 2463 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2464 if (index == old_index) {
2465 /* update counters */
2466 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2467 return 1;
c64e148a 2468 }
edd813bf
SR
2469 }
2470
2471 /* could not discard */
2472 return 0;
2473}
2474
fa743953
SR
2475static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2476{
2477 local_inc(&cpu_buffer->committing);
2478 local_inc(&cpu_buffer->commits);
2479}
2480
d9abde21 2481static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2482{
2483 unsigned long commits;
2484
2485 if (RB_WARN_ON(cpu_buffer,
2486 !local_read(&cpu_buffer->committing)))
2487 return;
2488
2489 again:
2490 commits = local_read(&cpu_buffer->commits);
2491 /* synchronize with interrupts */
2492 barrier();
2493 if (local_read(&cpu_buffer->committing) == 1)
2494 rb_set_commit_to_write(cpu_buffer);
2495
2496 local_dec(&cpu_buffer->committing);
2497
2498 /* synchronize with interrupts */
2499 barrier();
2500
2501 /*
2502 * Need to account for interrupts coming in between the
2503 * updating of the commit page and the clearing of the
2504 * committing counter.
2505 */
2506 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2507 !local_read(&cpu_buffer->committing)) {
2508 local_inc(&cpu_buffer->committing);
2509 goto again;
2510 }
2511}
2512
7a8e76a3 2513static struct ring_buffer_event *
62f0b3eb
SR
2514rb_reserve_next_event(struct ring_buffer *buffer,
2515 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2516 unsigned long length)
7a8e76a3
SR
2517{
2518 struct ring_buffer_event *event;
69d1b839 2519 u64 ts, delta;
818e3dd3 2520 int nr_loops = 0;
69d1b839 2521 int add_timestamp;
140ff891 2522 u64 diff;
7a8e76a3 2523
fa743953
SR
2524 rb_start_commit(cpu_buffer);
2525
85bac32c 2526#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2527 /*
2528 * Due to the ability to swap a cpu buffer from a buffer
2529 * it is possible it was swapped before we committed.
2530 * (committing stops a swap). We check for it here and
2531 * if it happened, we have to fail the write.
2532 */
2533 barrier();
2534 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2535 local_dec(&cpu_buffer->committing);
2536 local_dec(&cpu_buffer->commits);
2537 return NULL;
2538 }
85bac32c 2539#endif
62f0b3eb 2540
be957c44 2541 length = rb_calculate_event_length(length);
bf41a158 2542 again:
69d1b839
SR
2543 add_timestamp = 0;
2544 delta = 0;
2545
818e3dd3
SR
2546 /*
2547 * We allow for interrupts to reenter here and do a trace.
2548 * If one does, it will cause this original code to loop
2549 * back here. Even with heavy interrupts happening, this
2550 * should only happen a few times in a row. If this happens
2551 * 1000 times in a row, there must be either an interrupt
2552 * storm or we have something buggy.
2553 * Bail!
2554 */
3e89c7bb 2555 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2556 goto out_fail;
818e3dd3 2557
6d3f1e12 2558 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2559 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2560
140ff891
SR
2561 /* make sure this diff is calculated here */
2562 barrier();
bf41a158 2563
140ff891
SR
2564 /* Did the write stamp get updated already? */
2565 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2566 delta = diff;
2567 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2568 int local_clock_stable = 1;
2569#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
35af99e6 2570 local_clock_stable = sched_clock_stable();
31274d72 2571#endif
69d1b839 2572 WARN_ONCE(delta > (1ULL << 59),
31274d72 2573 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2574 (unsigned long long)delta,
2575 (unsigned long long)ts,
31274d72
JO
2576 (unsigned long long)cpu_buffer->write_stamp,
2577 local_clock_stable ? "" :
2578 "If you just came from a suspend/resume,\n"
2579 "please switch to the trace global clock:\n"
2580 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2581 add_timestamp = 1;
7a8e76a3 2582 }
168b6b1d 2583 }
7a8e76a3 2584
69d1b839
SR
2585 event = __rb_reserve_next(cpu_buffer, length, ts,
2586 delta, add_timestamp);
168b6b1d 2587 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2588 goto again;
2589
fa743953
SR
2590 if (!event)
2591 goto out_fail;
7a8e76a3 2592
7a8e76a3 2593 return event;
fa743953
SR
2594
2595 out_fail:
2596 rb_end_commit(cpu_buffer);
2597 return NULL;
7a8e76a3
SR
2598}
2599
1155de47
PM
2600#ifdef CONFIG_TRACING
2601
567cd4da
SR
2602/*
2603 * The lock and unlock are done within a preempt disable section.
2604 * The current_context per_cpu variable can only be modified
2605 * by the current task between lock and unlock. But it can
2606 * be modified more than once via an interrupt. To pass this
2607 * information from the lock to the unlock without having to
2608 * access the 'in_interrupt()' functions again (which do show
2609 * a bit of overhead in something as critical as function tracing,
2610 * we use a bitmask trick.
2611 *
2612 * bit 0 = NMI context
2613 * bit 1 = IRQ context
2614 * bit 2 = SoftIRQ context
2615 * bit 3 = normal context.
2616 *
2617 * This works because this is the order of contexts that can
2618 * preempt other contexts. A SoftIRQ never preempts an IRQ
2619 * context.
2620 *
2621 * When the context is determined, the corresponding bit is
2622 * checked and set (if it was set, then a recursion of that context
2623 * happened).
2624 *
2625 * On unlock, we need to clear this bit. To do so, just subtract
2626 * 1 from the current_context and AND it to itself.
2627 *
2628 * (binary)
2629 * 101 - 1 = 100
2630 * 101 & 100 = 100 (clearing bit zero)
2631 *
2632 * 1010 - 1 = 1001
2633 * 1010 & 1001 = 1000 (clearing bit 1)
2634 *
2635 * The least significant bit can be cleared this way, and it
2636 * just so happens that it is the same bit corresponding to
2637 * the current context.
2638 */
2639static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2640
567cd4da 2641static __always_inline int trace_recursive_lock(void)
261842b7 2642{
567cd4da
SR
2643 unsigned int val = this_cpu_read(current_context);
2644 int bit;
d9abde21 2645
567cd4da
SR
2646 if (in_interrupt()) {
2647 if (in_nmi())
2648 bit = 0;
2649 else if (in_irq())
2650 bit = 1;
2651 else
2652 bit = 2;
2653 } else
2654 bit = 3;
d9abde21 2655
567cd4da
SR
2656 if (unlikely(val & (1 << bit)))
2657 return 1;
d9abde21 2658
567cd4da
SR
2659 val |= (1 << bit);
2660 this_cpu_write(current_context, val);
d9abde21 2661
567cd4da 2662 return 0;
261842b7
SR
2663}
2664
567cd4da 2665static __always_inline void trace_recursive_unlock(void)
261842b7 2666{
567cd4da 2667 unsigned int val = this_cpu_read(current_context);
261842b7 2668
567cd4da
SR
2669 val--;
2670 val &= this_cpu_read(current_context);
2671 this_cpu_write(current_context, val);
261842b7
SR
2672}
2673
1155de47
PM
2674#else
2675
2676#define trace_recursive_lock() (0)
2677#define trace_recursive_unlock() do { } while (0)
2678
2679#endif
2680
7a8e76a3
SR
2681/**
2682 * ring_buffer_lock_reserve - reserve a part of the buffer
2683 * @buffer: the ring buffer to reserve from
2684 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2685 *
2686 * Returns a reseverd event on the ring buffer to copy directly to.
2687 * The user of this interface will need to get the body to write into
2688 * and can use the ring_buffer_event_data() interface.
2689 *
2690 * The length is the length of the data needed, not the event length
2691 * which also includes the event header.
2692 *
2693 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2694 * If NULL is returned, then nothing has been allocated or locked.
2695 */
2696struct ring_buffer_event *
0a987751 2697ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2698{
2699 struct ring_buffer_per_cpu *cpu_buffer;
2700 struct ring_buffer_event *event;
5168ae50 2701 int cpu;
7a8e76a3 2702
033601a3 2703 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2704 return NULL;
2705
bf41a158 2706 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2707 preempt_disable_notrace();
bf41a158 2708
52fbe9cd
LJ
2709 if (atomic_read(&buffer->record_disabled))
2710 goto out_nocheck;
2711
261842b7
SR
2712 if (trace_recursive_lock())
2713 goto out_nocheck;
2714
7a8e76a3
SR
2715 cpu = raw_smp_processor_id();
2716
9e01c1b7 2717 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2718 goto out;
7a8e76a3
SR
2719
2720 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2721
2722 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2723 goto out;
7a8e76a3 2724
be957c44 2725 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2726 goto out;
7a8e76a3 2727
62f0b3eb 2728 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2729 if (!event)
d769041f 2730 goto out;
7a8e76a3
SR
2731
2732 return event;
2733
d769041f 2734 out:
261842b7
SR
2735 trace_recursive_unlock();
2736
2737 out_nocheck:
5168ae50 2738 preempt_enable_notrace();
7a8e76a3
SR
2739 return NULL;
2740}
c4f50183 2741EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2742
a1863c21
SR
2743static void
2744rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2745 struct ring_buffer_event *event)
2746{
69d1b839
SR
2747 u64 delta;
2748
fa743953
SR
2749 /*
2750 * The event first in the commit queue updates the
2751 * time stamp.
2752 */
69d1b839
SR
2753 if (rb_event_is_commit(cpu_buffer, event)) {
2754 /*
2755 * A commit event that is first on a page
2756 * updates the write timestamp with the page stamp
2757 */
2758 if (!rb_event_index(event))
2759 cpu_buffer->write_stamp =
2760 cpu_buffer->commit_page->page->time_stamp;
2761 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2762 delta = event->array[0];
2763 delta <<= TS_SHIFT;
2764 delta += event->time_delta;
2765 cpu_buffer->write_stamp += delta;
2766 } else
2767 cpu_buffer->write_stamp += event->time_delta;
2768 }
a1863c21 2769}
bf41a158 2770
a1863c21
SR
2771static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2772 struct ring_buffer_event *event)
2773{
2774 local_inc(&cpu_buffer->entries);
2775 rb_update_write_stamp(cpu_buffer, event);
fa743953 2776 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2777}
2778
15693458
SRRH
2779static __always_inline void
2780rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2781{
2782 if (buffer->irq_work.waiters_pending) {
2783 buffer->irq_work.waiters_pending = false;
2784 /* irq_work_queue() supplies it's own memory barriers */
2785 irq_work_queue(&buffer->irq_work.work);
2786 }
2787
2788 if (cpu_buffer->irq_work.waiters_pending) {
2789 cpu_buffer->irq_work.waiters_pending = false;
2790 /* irq_work_queue() supplies it's own memory barriers */
2791 irq_work_queue(&cpu_buffer->irq_work.work);
2792 }
2793}
2794
7a8e76a3
SR
2795/**
2796 * ring_buffer_unlock_commit - commit a reserved
2797 * @buffer: The buffer to commit to
2798 * @event: The event pointer to commit.
7a8e76a3
SR
2799 *
2800 * This commits the data to the ring buffer, and releases any locks held.
2801 *
2802 * Must be paired with ring_buffer_lock_reserve.
2803 */
2804int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2805 struct ring_buffer_event *event)
7a8e76a3
SR
2806{
2807 struct ring_buffer_per_cpu *cpu_buffer;
2808 int cpu = raw_smp_processor_id();
2809
2810 cpu_buffer = buffer->buffers[cpu];
2811
7a8e76a3
SR
2812 rb_commit(cpu_buffer, event);
2813
15693458
SRRH
2814 rb_wakeups(buffer, cpu_buffer);
2815
261842b7
SR
2816 trace_recursive_unlock();
2817
5168ae50 2818 preempt_enable_notrace();
7a8e76a3
SR
2819
2820 return 0;
2821}
c4f50183 2822EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2823
f3b9aae1
FW
2824static inline void rb_event_discard(struct ring_buffer_event *event)
2825{
69d1b839
SR
2826 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2827 event = skip_time_extend(event);
2828
334d4169
LJ
2829 /* array[0] holds the actual length for the discarded event */
2830 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2831 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2832 /* time delta must be non zero */
2833 if (!event->time_delta)
2834 event->time_delta = 1;
2835}
2836
a1863c21
SR
2837/*
2838 * Decrement the entries to the page that an event is on.
2839 * The event does not even need to exist, only the pointer
2840 * to the page it is on. This may only be called before the commit
2841 * takes place.
2842 */
2843static inline void
2844rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2845 struct ring_buffer_event *event)
2846{
2847 unsigned long addr = (unsigned long)event;
2848 struct buffer_page *bpage = cpu_buffer->commit_page;
2849 struct buffer_page *start;
2850
2851 addr &= PAGE_MASK;
2852
2853 /* Do the likely case first */
2854 if (likely(bpage->page == (void *)addr)) {
2855 local_dec(&bpage->entries);
2856 return;
2857 }
2858
2859 /*
2860 * Because the commit page may be on the reader page we
2861 * start with the next page and check the end loop there.
2862 */
2863 rb_inc_page(cpu_buffer, &bpage);
2864 start = bpage;
2865 do {
2866 if (bpage->page == (void *)addr) {
2867 local_dec(&bpage->entries);
2868 return;
2869 }
2870 rb_inc_page(cpu_buffer, &bpage);
2871 } while (bpage != start);
2872
2873 /* commit not part of this buffer?? */
2874 RB_WARN_ON(cpu_buffer, 1);
2875}
2876
fa1b47dd
SR
2877/**
2878 * ring_buffer_commit_discard - discard an event that has not been committed
2879 * @buffer: the ring buffer
2880 * @event: non committed event to discard
2881 *
dc892f73
SR
2882 * Sometimes an event that is in the ring buffer needs to be ignored.
2883 * This function lets the user discard an event in the ring buffer
2884 * and then that event will not be read later.
2885 *
2886 * This function only works if it is called before the the item has been
2887 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2888 * if another event has not been added behind it.
2889 *
2890 * If another event has been added behind it, it will set the event
2891 * up as discarded, and perform the commit.
2892 *
2893 * If this function is called, do not call ring_buffer_unlock_commit on
2894 * the event.
2895 */
2896void ring_buffer_discard_commit(struct ring_buffer *buffer,
2897 struct ring_buffer_event *event)
2898{
2899 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2900 int cpu;
2901
2902 /* The event is discarded regardless */
f3b9aae1 2903 rb_event_discard(event);
fa1b47dd 2904
fa743953
SR
2905 cpu = smp_processor_id();
2906 cpu_buffer = buffer->buffers[cpu];
2907
fa1b47dd
SR
2908 /*
2909 * This must only be called if the event has not been
2910 * committed yet. Thus we can assume that preemption
2911 * is still disabled.
2912 */
fa743953 2913 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2914
a1863c21 2915 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2916 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2917 goto out;
fa1b47dd
SR
2918
2919 /*
2920 * The commit is still visible by the reader, so we
a1863c21 2921 * must still update the timestamp.
fa1b47dd 2922 */
a1863c21 2923 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2924 out:
fa743953 2925 rb_end_commit(cpu_buffer);
fa1b47dd 2926
f3b9aae1
FW
2927 trace_recursive_unlock();
2928
5168ae50 2929 preempt_enable_notrace();
fa1b47dd
SR
2930
2931}
2932EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2933
7a8e76a3
SR
2934/**
2935 * ring_buffer_write - write data to the buffer without reserving
2936 * @buffer: The ring buffer to write to.
2937 * @length: The length of the data being written (excluding the event header)
2938 * @data: The data to write to the buffer.
2939 *
2940 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2941 * one function. If you already have the data to write to the buffer, it
2942 * may be easier to simply call this function.
2943 *
2944 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2945 * and not the length of the event which would hold the header.
2946 */
2947int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2948 unsigned long length,
2949 void *data)
7a8e76a3
SR
2950{
2951 struct ring_buffer_per_cpu *cpu_buffer;
2952 struct ring_buffer_event *event;
7a8e76a3
SR
2953 void *body;
2954 int ret = -EBUSY;
5168ae50 2955 int cpu;
7a8e76a3 2956
033601a3 2957 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2958 return -EBUSY;
2959
5168ae50 2960 preempt_disable_notrace();
bf41a158 2961
52fbe9cd
LJ
2962 if (atomic_read(&buffer->record_disabled))
2963 goto out;
2964
7a8e76a3
SR
2965 cpu = raw_smp_processor_id();
2966
9e01c1b7 2967 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2968 goto out;
7a8e76a3
SR
2969
2970 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2971
2972 if (atomic_read(&cpu_buffer->record_disabled))
2973 goto out;
2974
be957c44
SR
2975 if (length > BUF_MAX_DATA_SIZE)
2976 goto out;
2977
62f0b3eb 2978 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2979 if (!event)
2980 goto out;
2981
2982 body = rb_event_data(event);
2983
2984 memcpy(body, data, length);
2985
2986 rb_commit(cpu_buffer, event);
2987
15693458
SRRH
2988 rb_wakeups(buffer, cpu_buffer);
2989
7a8e76a3
SR
2990 ret = 0;
2991 out:
5168ae50 2992 preempt_enable_notrace();
7a8e76a3
SR
2993
2994 return ret;
2995}
c4f50183 2996EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2997
34a148bf 2998static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2999{
3000 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3001 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3002 struct buffer_page *commit = cpu_buffer->commit_page;
3003
77ae365e
SR
3004 /* In case of error, head will be NULL */
3005 if (unlikely(!head))
3006 return 1;
3007
bf41a158
SR
3008 return reader->read == rb_page_commit(reader) &&
3009 (commit == reader ||
3010 (commit == head &&
3011 head->read == rb_page_commit(commit)));
3012}
3013
7a8e76a3
SR
3014/**
3015 * ring_buffer_record_disable - stop all writes into the buffer
3016 * @buffer: The ring buffer to stop writes to.
3017 *
3018 * This prevents all writes to the buffer. Any attempt to write
3019 * to the buffer after this will fail and return NULL.
3020 *
3021 * The caller should call synchronize_sched() after this.
3022 */
3023void ring_buffer_record_disable(struct ring_buffer *buffer)
3024{
3025 atomic_inc(&buffer->record_disabled);
3026}
c4f50183 3027EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3028
3029/**
3030 * ring_buffer_record_enable - enable writes to the buffer
3031 * @buffer: The ring buffer to enable writes
3032 *
3033 * Note, multiple disables will need the same number of enables
c41b20e7 3034 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3035 */
3036void ring_buffer_record_enable(struct ring_buffer *buffer)
3037{
3038 atomic_dec(&buffer->record_disabled);
3039}
c4f50183 3040EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3041
499e5470
SR
3042/**
3043 * ring_buffer_record_off - stop all writes into the buffer
3044 * @buffer: The ring buffer to stop writes to.
3045 *
3046 * This prevents all writes to the buffer. Any attempt to write
3047 * to the buffer after this will fail and return NULL.
3048 *
3049 * This is different than ring_buffer_record_disable() as
87abb3b1 3050 * it works like an on/off switch, where as the disable() version
499e5470
SR
3051 * must be paired with a enable().
3052 */
3053void ring_buffer_record_off(struct ring_buffer *buffer)
3054{
3055 unsigned int rd;
3056 unsigned int new_rd;
3057
3058 do {
3059 rd = atomic_read(&buffer->record_disabled);
3060 new_rd = rd | RB_BUFFER_OFF;
3061 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3062}
3063EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3064
3065/**
3066 * ring_buffer_record_on - restart writes into the buffer
3067 * @buffer: The ring buffer to start writes to.
3068 *
3069 * This enables all writes to the buffer that was disabled by
3070 * ring_buffer_record_off().
3071 *
3072 * This is different than ring_buffer_record_enable() as
87abb3b1 3073 * it works like an on/off switch, where as the enable() version
499e5470
SR
3074 * must be paired with a disable().
3075 */
3076void ring_buffer_record_on(struct ring_buffer *buffer)
3077{
3078 unsigned int rd;
3079 unsigned int new_rd;
3080
3081 do {
3082 rd = atomic_read(&buffer->record_disabled);
3083 new_rd = rd & ~RB_BUFFER_OFF;
3084 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3085}
3086EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3087
3088/**
3089 * ring_buffer_record_is_on - return true if the ring buffer can write
3090 * @buffer: The ring buffer to see if write is enabled
3091 *
3092 * Returns true if the ring buffer is in a state that it accepts writes.
3093 */
3094int ring_buffer_record_is_on(struct ring_buffer *buffer)
3095{
3096 return !atomic_read(&buffer->record_disabled);
3097}
3098
7a8e76a3
SR
3099/**
3100 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3101 * @buffer: The ring buffer to stop writes to.
3102 * @cpu: The CPU buffer to stop
3103 *
3104 * This prevents all writes to the buffer. Any attempt to write
3105 * to the buffer after this will fail and return NULL.
3106 *
3107 * The caller should call synchronize_sched() after this.
3108 */
3109void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3110{
3111 struct ring_buffer_per_cpu *cpu_buffer;
3112
9e01c1b7 3113 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3114 return;
7a8e76a3
SR
3115
3116 cpu_buffer = buffer->buffers[cpu];
3117 atomic_inc(&cpu_buffer->record_disabled);
3118}
c4f50183 3119EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3120
3121/**
3122 * ring_buffer_record_enable_cpu - enable writes to the buffer
3123 * @buffer: The ring buffer to enable writes
3124 * @cpu: The CPU to enable.
3125 *
3126 * Note, multiple disables will need the same number of enables
c41b20e7 3127 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3128 */
3129void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3130{
3131 struct ring_buffer_per_cpu *cpu_buffer;
3132
9e01c1b7 3133 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3134 return;
7a8e76a3
SR
3135
3136 cpu_buffer = buffer->buffers[cpu];
3137 atomic_dec(&cpu_buffer->record_disabled);
3138}
c4f50183 3139EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3140
f6195aa0
SR
3141/*
3142 * The total entries in the ring buffer is the running counter
3143 * of entries entered into the ring buffer, minus the sum of
3144 * the entries read from the ring buffer and the number of
3145 * entries that were overwritten.
3146 */
3147static inline unsigned long
3148rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3149{
3150 return local_read(&cpu_buffer->entries) -
3151 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3152}
3153
c64e148a
VN
3154/**
3155 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3156 * @buffer: The ring buffer
3157 * @cpu: The per CPU buffer to read from.
3158 */
50ecf2c3 3159u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3160{
3161 unsigned long flags;
3162 struct ring_buffer_per_cpu *cpu_buffer;
3163 struct buffer_page *bpage;
da830e58 3164 u64 ret = 0;
c64e148a
VN
3165
3166 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3167 return 0;
3168
3169 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3170 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3171 /*
3172 * if the tail is on reader_page, oldest time stamp is on the reader
3173 * page
3174 */
3175 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3176 bpage = cpu_buffer->reader_page;
3177 else
3178 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3179 if (bpage)
3180 ret = bpage->page->time_stamp;
7115e3fc 3181 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3182
3183 return ret;
3184}
3185EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3186
3187/**
3188 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3189 * @buffer: The ring buffer
3190 * @cpu: The per CPU buffer to read from.
3191 */
3192unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3193{
3194 struct ring_buffer_per_cpu *cpu_buffer;
3195 unsigned long ret;
3196
3197 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3198 return 0;
3199
3200 cpu_buffer = buffer->buffers[cpu];
3201 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3202
3203 return ret;
3204}
3205EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3206
7a8e76a3
SR
3207/**
3208 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3209 * @buffer: The ring buffer
3210 * @cpu: The per CPU buffer to get the entries from.
3211 */
3212unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3213{
3214 struct ring_buffer_per_cpu *cpu_buffer;
3215
9e01c1b7 3216 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3217 return 0;
7a8e76a3
SR
3218
3219 cpu_buffer = buffer->buffers[cpu];
554f786e 3220
f6195aa0 3221 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3222}
c4f50183 3223EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3224
3225/**
884bfe89
SP
3226 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3227 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3228 * @buffer: The ring buffer
3229 * @cpu: The per CPU buffer to get the number of overruns from
3230 */
3231unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3232{
3233 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3234 unsigned long ret;
7a8e76a3 3235
9e01c1b7 3236 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3237 return 0;
7a8e76a3
SR
3238
3239 cpu_buffer = buffer->buffers[cpu];
77ae365e 3240 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3241
3242 return ret;
7a8e76a3 3243}
c4f50183 3244EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3245
f0d2c681 3246/**
884bfe89
SP
3247 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3248 * commits failing due to the buffer wrapping around while there are uncommitted
3249 * events, such as during an interrupt storm.
f0d2c681
SR
3250 * @buffer: The ring buffer
3251 * @cpu: The per CPU buffer to get the number of overruns from
3252 */
3253unsigned long
3254ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3255{
3256 struct ring_buffer_per_cpu *cpu_buffer;
3257 unsigned long ret;
3258
3259 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3260 return 0;
3261
3262 cpu_buffer = buffer->buffers[cpu];
77ae365e 3263 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3264
3265 return ret;
3266}
3267EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3268
884bfe89
SP
3269/**
3270 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3271 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3272 * @buffer: The ring buffer
3273 * @cpu: The per CPU buffer to get the number of overruns from
3274 */
3275unsigned long
3276ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3277{
3278 struct ring_buffer_per_cpu *cpu_buffer;
3279 unsigned long ret;
3280
3281 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282 return 0;
3283
3284 cpu_buffer = buffer->buffers[cpu];
3285 ret = local_read(&cpu_buffer->dropped_events);
3286
3287 return ret;
3288}
3289EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3290
ad964704
SRRH
3291/**
3292 * ring_buffer_read_events_cpu - get the number of events successfully read
3293 * @buffer: The ring buffer
3294 * @cpu: The per CPU buffer to get the number of events read
3295 */
3296unsigned long
3297ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3298{
3299 struct ring_buffer_per_cpu *cpu_buffer;
3300
3301 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302 return 0;
3303
3304 cpu_buffer = buffer->buffers[cpu];
3305 return cpu_buffer->read;
3306}
3307EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3308
7a8e76a3
SR
3309/**
3310 * ring_buffer_entries - get the number of entries in a buffer
3311 * @buffer: The ring buffer
3312 *
3313 * Returns the total number of entries in the ring buffer
3314 * (all CPU entries)
3315 */
3316unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3317{
3318 struct ring_buffer_per_cpu *cpu_buffer;
3319 unsigned long entries = 0;
3320 int cpu;
3321
3322 /* if you care about this being correct, lock the buffer */
3323 for_each_buffer_cpu(buffer, cpu) {
3324 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3325 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3326 }
3327
3328 return entries;
3329}
c4f50183 3330EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3331
3332/**
67b394f7 3333 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3334 * @buffer: The ring buffer
3335 *
3336 * Returns the total number of overruns in the ring buffer
3337 * (all CPU entries)
3338 */
3339unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3340{
3341 struct ring_buffer_per_cpu *cpu_buffer;
3342 unsigned long overruns = 0;
3343 int cpu;
3344
3345 /* if you care about this being correct, lock the buffer */
3346 for_each_buffer_cpu(buffer, cpu) {
3347 cpu_buffer = buffer->buffers[cpu];
77ae365e 3348 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3349 }
3350
3351 return overruns;
3352}
c4f50183 3353EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3354
642edba5 3355static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3356{
3357 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3358
d769041f
SR
3359 /* Iterator usage is expected to have record disabled */
3360 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3361 iter->head_page = rb_set_head_page(cpu_buffer);
3362 if (unlikely(!iter->head_page))
3363 return;
3364 iter->head = iter->head_page->read;
d769041f
SR
3365 } else {
3366 iter->head_page = cpu_buffer->reader_page;
6f807acd 3367 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3368 }
3369 if (iter->head)
3370 iter->read_stamp = cpu_buffer->read_stamp;
3371 else
abc9b56d 3372 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3373 iter->cache_reader_page = cpu_buffer->reader_page;
3374 iter->cache_read = cpu_buffer->read;
642edba5 3375}
f83c9d0f 3376
642edba5
SR
3377/**
3378 * ring_buffer_iter_reset - reset an iterator
3379 * @iter: The iterator to reset
3380 *
3381 * Resets the iterator, so that it will start from the beginning
3382 * again.
3383 */
3384void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3385{
554f786e 3386 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3387 unsigned long flags;
3388
554f786e
SR
3389 if (!iter)
3390 return;
3391
3392 cpu_buffer = iter->cpu_buffer;
3393
5389f6fa 3394 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3395 rb_iter_reset(iter);
5389f6fa 3396 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3397}
c4f50183 3398EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3399
3400/**
3401 * ring_buffer_iter_empty - check if an iterator has no more to read
3402 * @iter: The iterator to check
3403 */
3404int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3405{
3406 struct ring_buffer_per_cpu *cpu_buffer;
3407
3408 cpu_buffer = iter->cpu_buffer;
3409
bf41a158
SR
3410 return iter->head_page == cpu_buffer->commit_page &&
3411 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3412}
c4f50183 3413EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3414
3415static void
3416rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3417 struct ring_buffer_event *event)
3418{
3419 u64 delta;
3420
334d4169 3421 switch (event->type_len) {
7a8e76a3
SR
3422 case RINGBUF_TYPE_PADDING:
3423 return;
3424
3425 case RINGBUF_TYPE_TIME_EXTEND:
3426 delta = event->array[0];
3427 delta <<= TS_SHIFT;
3428 delta += event->time_delta;
3429 cpu_buffer->read_stamp += delta;
3430 return;
3431
3432 case RINGBUF_TYPE_TIME_STAMP:
3433 /* FIXME: not implemented */
3434 return;
3435
3436 case RINGBUF_TYPE_DATA:
3437 cpu_buffer->read_stamp += event->time_delta;
3438 return;
3439
3440 default:
3441 BUG();
3442 }
3443 return;
3444}
3445
3446static void
3447rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3448 struct ring_buffer_event *event)
3449{
3450 u64 delta;
3451
334d4169 3452 switch (event->type_len) {
7a8e76a3
SR
3453 case RINGBUF_TYPE_PADDING:
3454 return;
3455
3456 case RINGBUF_TYPE_TIME_EXTEND:
3457 delta = event->array[0];
3458 delta <<= TS_SHIFT;
3459 delta += event->time_delta;
3460 iter->read_stamp += delta;
3461 return;
3462
3463 case RINGBUF_TYPE_TIME_STAMP:
3464 /* FIXME: not implemented */
3465 return;
3466
3467 case RINGBUF_TYPE_DATA:
3468 iter->read_stamp += event->time_delta;
3469 return;
3470
3471 default:
3472 BUG();
3473 }
3474 return;
3475}
3476
d769041f
SR
3477static struct buffer_page *
3478rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3479{
d769041f 3480 struct buffer_page *reader = NULL;
66a8cb95 3481 unsigned long overwrite;
d769041f 3482 unsigned long flags;
818e3dd3 3483 int nr_loops = 0;
77ae365e 3484 int ret;
d769041f 3485
3e03fb7f 3486 local_irq_save(flags);
0199c4e6 3487 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3488
3489 again:
818e3dd3
SR
3490 /*
3491 * This should normally only loop twice. But because the
3492 * start of the reader inserts an empty page, it causes
3493 * a case where we will loop three times. There should be no
3494 * reason to loop four times (that I know of).
3495 */
3e89c7bb 3496 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3497 reader = NULL;
3498 goto out;
3499 }
3500
d769041f
SR
3501 reader = cpu_buffer->reader_page;
3502
3503 /* If there's more to read, return this page */
bf41a158 3504 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3505 goto out;
3506
3507 /* Never should we have an index greater than the size */
3e89c7bb
SR
3508 if (RB_WARN_ON(cpu_buffer,
3509 cpu_buffer->reader_page->read > rb_page_size(reader)))
3510 goto out;
d769041f
SR
3511
3512 /* check if we caught up to the tail */
3513 reader = NULL;
bf41a158 3514 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3515 goto out;
7a8e76a3 3516
a5fb8331
SR
3517 /* Don't bother swapping if the ring buffer is empty */
3518 if (rb_num_of_entries(cpu_buffer) == 0)
3519 goto out;
3520
7a8e76a3 3521 /*
d769041f 3522 * Reset the reader page to size zero.
7a8e76a3 3523 */
77ae365e
SR
3524 local_set(&cpu_buffer->reader_page->write, 0);
3525 local_set(&cpu_buffer->reader_page->entries, 0);
3526 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3527 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3528
77ae365e
SR
3529 spin:
3530 /*
3531 * Splice the empty reader page into the list around the head.
3532 */
3533 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3534 if (!reader)
3535 goto out;
0e1ff5d7 3536 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3537 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3538
3adc54fa
SR
3539 /*
3540 * cpu_buffer->pages just needs to point to the buffer, it
3541 * has no specific buffer page to point to. Lets move it out
25985edc 3542 * of our way so we don't accidentally swap it.
3adc54fa
SR
3543 */
3544 cpu_buffer->pages = reader->list.prev;
3545
77ae365e
SR
3546 /* The reader page will be pointing to the new head */
3547 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3548
66a8cb95
SR
3549 /*
3550 * We want to make sure we read the overruns after we set up our
3551 * pointers to the next object. The writer side does a
3552 * cmpxchg to cross pages which acts as the mb on the writer
3553 * side. Note, the reader will constantly fail the swap
3554 * while the writer is updating the pointers, so this
3555 * guarantees that the overwrite recorded here is the one we
3556 * want to compare with the last_overrun.
3557 */
3558 smp_mb();
3559 overwrite = local_read(&(cpu_buffer->overrun));
3560
77ae365e
SR
3561 /*
3562 * Here's the tricky part.
3563 *
3564 * We need to move the pointer past the header page.
3565 * But we can only do that if a writer is not currently
3566 * moving it. The page before the header page has the
3567 * flag bit '1' set if it is pointing to the page we want.
3568 * but if the writer is in the process of moving it
3569 * than it will be '2' or already moved '0'.
3570 */
3571
3572 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3573
3574 /*
77ae365e 3575 * If we did not convert it, then we must try again.
7a8e76a3 3576 */
77ae365e
SR
3577 if (!ret)
3578 goto spin;
7a8e76a3 3579
77ae365e
SR
3580 /*
3581 * Yeah! We succeeded in replacing the page.
3582 *
3583 * Now make the new head point back to the reader page.
3584 */
5ded3dc6 3585 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3586 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3587
3588 /* Finally update the reader page to the new head */
3589 cpu_buffer->reader_page = reader;
3590 rb_reset_reader_page(cpu_buffer);
3591
66a8cb95
SR
3592 if (overwrite != cpu_buffer->last_overrun) {
3593 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3594 cpu_buffer->last_overrun = overwrite;
3595 }
3596
d769041f
SR
3597 goto again;
3598
3599 out:
0199c4e6 3600 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3601 local_irq_restore(flags);
d769041f
SR
3602
3603 return reader;
3604}
3605
3606static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3607{
3608 struct ring_buffer_event *event;
3609 struct buffer_page *reader;
3610 unsigned length;
3611
3612 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3613
d769041f 3614 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3615 if (RB_WARN_ON(cpu_buffer, !reader))
3616 return;
7a8e76a3 3617
d769041f
SR
3618 event = rb_reader_event(cpu_buffer);
3619
a1863c21 3620 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3621 cpu_buffer->read++;
d769041f
SR
3622
3623 rb_update_read_stamp(cpu_buffer, event);
3624
3625 length = rb_event_length(event);
6f807acd 3626 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3627}
3628
3629static void rb_advance_iter(struct ring_buffer_iter *iter)
3630{
7a8e76a3
SR
3631 struct ring_buffer_per_cpu *cpu_buffer;
3632 struct ring_buffer_event *event;
3633 unsigned length;
3634
3635 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3636
3637 /*
3638 * Check if we are at the end of the buffer.
3639 */
bf41a158 3640 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3641 /* discarded commits can make the page empty */
3642 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3643 return;
d769041f 3644 rb_inc_iter(iter);
7a8e76a3
SR
3645 return;
3646 }
3647
3648 event = rb_iter_head_event(iter);
3649
3650 length = rb_event_length(event);
3651
3652 /*
3653 * This should not be called to advance the header if we are
3654 * at the tail of the buffer.
3655 */
3e89c7bb 3656 if (RB_WARN_ON(cpu_buffer,
f536aafc 3657 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3658 (iter->head + length > rb_commit_index(cpu_buffer))))
3659 return;
7a8e76a3
SR
3660
3661 rb_update_iter_read_stamp(iter, event);
3662
3663 iter->head += length;
3664
3665 /* check for end of page padding */
bf41a158
SR
3666 if ((iter->head >= rb_page_size(iter->head_page)) &&
3667 (iter->head_page != cpu_buffer->commit_page))
771e0384 3668 rb_inc_iter(iter);
7a8e76a3
SR
3669}
3670
66a8cb95
SR
3671static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3672{
3673 return cpu_buffer->lost_events;
3674}
3675
f83c9d0f 3676static struct ring_buffer_event *
66a8cb95
SR
3677rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3678 unsigned long *lost_events)
7a8e76a3 3679{
7a8e76a3 3680 struct ring_buffer_event *event;
d769041f 3681 struct buffer_page *reader;
818e3dd3 3682 int nr_loops = 0;
7a8e76a3 3683
7a8e76a3 3684 again:
818e3dd3 3685 /*
69d1b839
SR
3686 * We repeat when a time extend is encountered.
3687 * Since the time extend is always attached to a data event,
3688 * we should never loop more than once.
3689 * (We never hit the following condition more than twice).
818e3dd3 3690 */
69d1b839 3691 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3692 return NULL;
818e3dd3 3693
d769041f
SR
3694 reader = rb_get_reader_page(cpu_buffer);
3695 if (!reader)
7a8e76a3
SR
3696 return NULL;
3697
d769041f 3698 event = rb_reader_event(cpu_buffer);
7a8e76a3 3699
334d4169 3700 switch (event->type_len) {
7a8e76a3 3701 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3702 if (rb_null_event(event))
3703 RB_WARN_ON(cpu_buffer, 1);
3704 /*
3705 * Because the writer could be discarding every
3706 * event it creates (which would probably be bad)
3707 * if we were to go back to "again" then we may never
3708 * catch up, and will trigger the warn on, or lock
3709 * the box. Return the padding, and we will release
3710 * the current locks, and try again.
3711 */
2d622719 3712 return event;
7a8e76a3
SR
3713
3714 case RINGBUF_TYPE_TIME_EXTEND:
3715 /* Internal data, OK to advance */
d769041f 3716 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3717 goto again;
3718
3719 case RINGBUF_TYPE_TIME_STAMP:
3720 /* FIXME: not implemented */
d769041f 3721 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3722 goto again;
3723
3724 case RINGBUF_TYPE_DATA:
3725 if (ts) {
3726 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3727 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3728 cpu_buffer->cpu, ts);
7a8e76a3 3729 }
66a8cb95
SR
3730 if (lost_events)
3731 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3732 return event;
3733
3734 default:
3735 BUG();
3736 }
3737
3738 return NULL;
3739}
c4f50183 3740EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3741
f83c9d0f
SR
3742static struct ring_buffer_event *
3743rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3744{
3745 struct ring_buffer *buffer;
3746 struct ring_buffer_per_cpu *cpu_buffer;
3747 struct ring_buffer_event *event;
818e3dd3 3748 int nr_loops = 0;
7a8e76a3 3749
7a8e76a3
SR
3750 cpu_buffer = iter->cpu_buffer;
3751 buffer = cpu_buffer->buffer;
3752
492a74f4
SR
3753 /*
3754 * Check if someone performed a consuming read to
3755 * the buffer. A consuming read invalidates the iterator
3756 * and we need to reset the iterator in this case.
3757 */
3758 if (unlikely(iter->cache_read != cpu_buffer->read ||
3759 iter->cache_reader_page != cpu_buffer->reader_page))
3760 rb_iter_reset(iter);
3761
7a8e76a3 3762 again:
3c05d748
SR
3763 if (ring_buffer_iter_empty(iter))
3764 return NULL;
3765
818e3dd3 3766 /*
69d1b839
SR
3767 * We repeat when a time extend is encountered.
3768 * Since the time extend is always attached to a data event,
3769 * we should never loop more than once.
3770 * (We never hit the following condition more than twice).
818e3dd3 3771 */
69d1b839 3772 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3773 return NULL;
818e3dd3 3774
7a8e76a3
SR
3775 if (rb_per_cpu_empty(cpu_buffer))
3776 return NULL;
3777
3c05d748
SR
3778 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3779 rb_inc_iter(iter);
3780 goto again;
3781 }
3782
7a8e76a3
SR
3783 event = rb_iter_head_event(iter);
3784
334d4169 3785 switch (event->type_len) {
7a8e76a3 3786 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3787 if (rb_null_event(event)) {
3788 rb_inc_iter(iter);
3789 goto again;
3790 }
3791 rb_advance_iter(iter);
3792 return event;
7a8e76a3
SR
3793
3794 case RINGBUF_TYPE_TIME_EXTEND:
3795 /* Internal data, OK to advance */
3796 rb_advance_iter(iter);
3797 goto again;
3798
3799 case RINGBUF_TYPE_TIME_STAMP:
3800 /* FIXME: not implemented */
3801 rb_advance_iter(iter);
3802 goto again;
3803
3804 case RINGBUF_TYPE_DATA:
3805 if (ts) {
3806 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3807 ring_buffer_normalize_time_stamp(buffer,
3808 cpu_buffer->cpu, ts);
7a8e76a3
SR
3809 }
3810 return event;
3811
3812 default:
3813 BUG();
3814 }
3815
3816 return NULL;
3817}
c4f50183 3818EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3819
8d707e8e
SR
3820static inline int rb_ok_to_lock(void)
3821{
3822 /*
3823 * If an NMI die dumps out the content of the ring buffer
3824 * do not grab locks. We also permanently disable the ring
3825 * buffer too. A one time deal is all you get from reading
3826 * the ring buffer from an NMI.
3827 */
464e85eb 3828 if (likely(!in_nmi()))
8d707e8e
SR
3829 return 1;
3830
3831 tracing_off_permanent();
3832 return 0;
3833}
3834
f83c9d0f
SR
3835/**
3836 * ring_buffer_peek - peek at the next event to be read
3837 * @buffer: The ring buffer to read
3838 * @cpu: The cpu to peak at
3839 * @ts: The timestamp counter of this event.
66a8cb95 3840 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3841 *
3842 * This will return the event that will be read next, but does
3843 * not consume the data.
3844 */
3845struct ring_buffer_event *
66a8cb95
SR
3846ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3847 unsigned long *lost_events)
f83c9d0f
SR
3848{
3849 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3850 struct ring_buffer_event *event;
f83c9d0f 3851 unsigned long flags;
8d707e8e 3852 int dolock;
f83c9d0f 3853
554f786e 3854 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3855 return NULL;
554f786e 3856
8d707e8e 3857 dolock = rb_ok_to_lock();
2d622719 3858 again:
8d707e8e
SR
3859 local_irq_save(flags);
3860 if (dolock)
5389f6fa 3861 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3862 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3863 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3864 rb_advance_reader(cpu_buffer);
8d707e8e 3865 if (dolock)
5389f6fa 3866 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3867 local_irq_restore(flags);
f83c9d0f 3868
1b959e18 3869 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3870 goto again;
2d622719 3871
f83c9d0f
SR
3872 return event;
3873}
3874
3875/**
3876 * ring_buffer_iter_peek - peek at the next event to be read
3877 * @iter: The ring buffer iterator
3878 * @ts: The timestamp counter of this event.
3879 *
3880 * This will return the event that will be read next, but does
3881 * not increment the iterator.
3882 */
3883struct ring_buffer_event *
3884ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3885{
3886 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3887 struct ring_buffer_event *event;
3888 unsigned long flags;
3889
2d622719 3890 again:
5389f6fa 3891 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3892 event = rb_iter_peek(iter, ts);
5389f6fa 3893 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3894
1b959e18 3895 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3896 goto again;
2d622719 3897
f83c9d0f
SR
3898 return event;
3899}
3900
7a8e76a3
SR
3901/**
3902 * ring_buffer_consume - return an event and consume it
3903 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3904 * @cpu: the cpu to read the buffer from
3905 * @ts: a variable to store the timestamp (may be NULL)
3906 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3907 *
3908 * Returns the next event in the ring buffer, and that event is consumed.
3909 * Meaning, that sequential reads will keep returning a different event,
3910 * and eventually empty the ring buffer if the producer is slower.
3911 */
3912struct ring_buffer_event *
66a8cb95
SR
3913ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3914 unsigned long *lost_events)
7a8e76a3 3915{
554f786e
SR
3916 struct ring_buffer_per_cpu *cpu_buffer;
3917 struct ring_buffer_event *event = NULL;
f83c9d0f 3918 unsigned long flags;
8d707e8e
SR
3919 int dolock;
3920
3921 dolock = rb_ok_to_lock();
7a8e76a3 3922
2d622719 3923 again:
554f786e
SR
3924 /* might be called in atomic */
3925 preempt_disable();
3926
9e01c1b7 3927 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3928 goto out;
7a8e76a3 3929
554f786e 3930 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3931 local_irq_save(flags);
3932 if (dolock)
5389f6fa 3933 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3934
66a8cb95
SR
3935 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3936 if (event) {
3937 cpu_buffer->lost_events = 0;
469535a5 3938 rb_advance_reader(cpu_buffer);
66a8cb95 3939 }
7a8e76a3 3940
8d707e8e 3941 if (dolock)
5389f6fa 3942 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3943 local_irq_restore(flags);
f83c9d0f 3944
554f786e
SR
3945 out:
3946 preempt_enable();
3947
1b959e18 3948 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3949 goto again;
2d622719 3950
7a8e76a3
SR
3951 return event;
3952}
c4f50183 3953EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3954
3955/**
72c9ddfd 3956 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3957 * @buffer: The ring buffer to read from
3958 * @cpu: The cpu buffer to iterate over
3959 *
72c9ddfd
DM
3960 * This performs the initial preparations necessary to iterate
3961 * through the buffer. Memory is allocated, buffer recording
3962 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3963 *
72c9ddfd
DM
3964 * Disabling buffer recordng prevents the reading from being
3965 * corrupted. This is not a consuming read, so a producer is not
3966 * expected.
3967 *
3968 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 3969 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
3970 * Afterwards, ring_buffer_read_start is invoked to get things going
3971 * for real.
3972 *
d611851b 3973 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
3974 */
3975struct ring_buffer_iter *
72c9ddfd 3976ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3977{
3978 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3979 struct ring_buffer_iter *iter;
7a8e76a3 3980
9e01c1b7 3981 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3982 return NULL;
7a8e76a3
SR
3983
3984 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3985 if (!iter)
8aabee57 3986 return NULL;
7a8e76a3
SR
3987
3988 cpu_buffer = buffer->buffers[cpu];
3989
3990 iter->cpu_buffer = cpu_buffer;
3991
83f40318 3992 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3993 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3994
3995 return iter;
3996}
3997EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3998
3999/**
4000 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4001 *
4002 * All previously invoked ring_buffer_read_prepare calls to prepare
4003 * iterators will be synchronized. Afterwards, read_buffer_read_start
4004 * calls on those iterators are allowed.
4005 */
4006void
4007ring_buffer_read_prepare_sync(void)
4008{
7a8e76a3 4009 synchronize_sched();
72c9ddfd
DM
4010}
4011EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4012
4013/**
4014 * ring_buffer_read_start - start a non consuming read of the buffer
4015 * @iter: The iterator returned by ring_buffer_read_prepare
4016 *
4017 * This finalizes the startup of an iteration through the buffer.
4018 * The iterator comes from a call to ring_buffer_read_prepare and
4019 * an intervening ring_buffer_read_prepare_sync must have been
4020 * performed.
4021 *
d611851b 4022 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4023 */
4024void
4025ring_buffer_read_start(struct ring_buffer_iter *iter)
4026{
4027 struct ring_buffer_per_cpu *cpu_buffer;
4028 unsigned long flags;
4029
4030 if (!iter)
4031 return;
4032
4033 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4034
5389f6fa 4035 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4036 arch_spin_lock(&cpu_buffer->lock);
642edba5 4037 rb_iter_reset(iter);
0199c4e6 4038 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4039 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4040}
c4f50183 4041EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4042
4043/**
d611851b 4044 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4045 * @iter: The iterator retrieved by ring_buffer_start
4046 *
4047 * This re-enables the recording to the buffer, and frees the
4048 * iterator.
4049 */
4050void
4051ring_buffer_read_finish(struct ring_buffer_iter *iter)
4052{
4053 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4054 unsigned long flags;
7a8e76a3 4055
659f451f
SR
4056 /*
4057 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4058 * to check the integrity of the ring buffer.
4059 * Must prevent readers from trying to read, as the check
4060 * clears the HEAD page and readers require it.
659f451f 4061 */
9366c1ba 4062 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4063 rb_check_pages(cpu_buffer);
9366c1ba 4064 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4065
7a8e76a3 4066 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4067 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4068 kfree(iter);
4069}
c4f50183 4070EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4071
4072/**
4073 * ring_buffer_read - read the next item in the ring buffer by the iterator
4074 * @iter: The ring buffer iterator
4075 * @ts: The time stamp of the event read.
4076 *
4077 * This reads the next event in the ring buffer and increments the iterator.
4078 */
4079struct ring_buffer_event *
4080ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4081{
4082 struct ring_buffer_event *event;
f83c9d0f
SR
4083 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4084 unsigned long flags;
7a8e76a3 4085
5389f6fa 4086 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4087 again:
f83c9d0f 4088 event = rb_iter_peek(iter, ts);
7a8e76a3 4089 if (!event)
f83c9d0f 4090 goto out;
7a8e76a3 4091
7e9391cf
SR
4092 if (event->type_len == RINGBUF_TYPE_PADDING)
4093 goto again;
4094
7a8e76a3 4095 rb_advance_iter(iter);
f83c9d0f 4096 out:
5389f6fa 4097 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4098
4099 return event;
4100}
c4f50183 4101EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4102
4103/**
4104 * ring_buffer_size - return the size of the ring buffer (in bytes)
4105 * @buffer: The ring buffer.
4106 */
438ced17 4107unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4108{
438ced17
VN
4109 /*
4110 * Earlier, this method returned
4111 * BUF_PAGE_SIZE * buffer->nr_pages
4112 * Since the nr_pages field is now removed, we have converted this to
4113 * return the per cpu buffer value.
4114 */
4115 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4116 return 0;
4117
4118 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4119}
c4f50183 4120EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4121
4122static void
4123rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4124{
77ae365e
SR
4125 rb_head_page_deactivate(cpu_buffer);
4126
7a8e76a3 4127 cpu_buffer->head_page
3adc54fa 4128 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4129 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4130 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4131 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4132
6f807acd 4133 cpu_buffer->head_page->read = 0;
bf41a158
SR
4134
4135 cpu_buffer->tail_page = cpu_buffer->head_page;
4136 cpu_buffer->commit_page = cpu_buffer->head_page;
4137
4138 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4139 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4140 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4141 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4142 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4143 cpu_buffer->reader_page->read = 0;
7a8e76a3 4144
c64e148a 4145 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4146 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4147 local_set(&cpu_buffer->commit_overrun, 0);
4148 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4149 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4150 local_set(&cpu_buffer->committing, 0);
4151 local_set(&cpu_buffer->commits, 0);
77ae365e 4152 cpu_buffer->read = 0;
c64e148a 4153 cpu_buffer->read_bytes = 0;
69507c06
SR
4154
4155 cpu_buffer->write_stamp = 0;
4156 cpu_buffer->read_stamp = 0;
77ae365e 4157
66a8cb95
SR
4158 cpu_buffer->lost_events = 0;
4159 cpu_buffer->last_overrun = 0;
4160
77ae365e 4161 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4162}
4163
4164/**
4165 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4166 * @buffer: The ring buffer to reset a per cpu buffer of
4167 * @cpu: The CPU buffer to be reset
4168 */
4169void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4170{
4171 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4172 unsigned long flags;
4173
9e01c1b7 4174 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4175 return;
7a8e76a3 4176
83f40318 4177 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4178 atomic_inc(&cpu_buffer->record_disabled);
4179
83f40318
VN
4180 /* Make sure all commits have finished */
4181 synchronize_sched();
4182
5389f6fa 4183 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4184
41b6a95d
SR
4185 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4186 goto out;
4187
0199c4e6 4188 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4189
4190 rb_reset_cpu(cpu_buffer);
4191
0199c4e6 4192 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4193
41b6a95d 4194 out:
5389f6fa 4195 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4196
4197 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4198 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4199}
c4f50183 4200EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4201
4202/**
4203 * ring_buffer_reset - reset a ring buffer
4204 * @buffer: The ring buffer to reset all cpu buffers
4205 */
4206void ring_buffer_reset(struct ring_buffer *buffer)
4207{
7a8e76a3
SR
4208 int cpu;
4209
7a8e76a3 4210 for_each_buffer_cpu(buffer, cpu)
d769041f 4211 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4212}
c4f50183 4213EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4214
4215/**
4216 * rind_buffer_empty - is the ring buffer empty?
4217 * @buffer: The ring buffer to test
4218 */
4219int ring_buffer_empty(struct ring_buffer *buffer)
4220{
4221 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4222 unsigned long flags;
8d707e8e 4223 int dolock;
7a8e76a3 4224 int cpu;
d4788207 4225 int ret;
7a8e76a3 4226
8d707e8e 4227 dolock = rb_ok_to_lock();
7a8e76a3
SR
4228
4229 /* yes this is racy, but if you don't like the race, lock the buffer */
4230 for_each_buffer_cpu(buffer, cpu) {
4231 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4232 local_irq_save(flags);
4233 if (dolock)
5389f6fa 4234 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4235 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4236 if (dolock)
5389f6fa 4237 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4238 local_irq_restore(flags);
4239
d4788207 4240 if (!ret)
7a8e76a3
SR
4241 return 0;
4242 }
554f786e 4243
7a8e76a3
SR
4244 return 1;
4245}
c4f50183 4246EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4247
4248/**
4249 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4250 * @buffer: The ring buffer
4251 * @cpu: The CPU buffer to test
4252 */
4253int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4254{
4255 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4256 unsigned long flags;
8d707e8e 4257 int dolock;
8aabee57 4258 int ret;
7a8e76a3 4259
9e01c1b7 4260 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4261 return 1;
7a8e76a3 4262
8d707e8e
SR
4263 dolock = rb_ok_to_lock();
4264
7a8e76a3 4265 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4266 local_irq_save(flags);
4267 if (dolock)
5389f6fa 4268 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4269 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4270 if (dolock)
5389f6fa 4271 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4272 local_irq_restore(flags);
554f786e
SR
4273
4274 return ret;
7a8e76a3 4275}
c4f50183 4276EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4277
85bac32c 4278#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4279/**
4280 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4281 * @buffer_a: One buffer to swap with
4282 * @buffer_b: The other buffer to swap with
4283 *
4284 * This function is useful for tracers that want to take a "snapshot"
4285 * of a CPU buffer and has another back up buffer lying around.
4286 * it is expected that the tracer handles the cpu buffer not being
4287 * used at the moment.
4288 */
4289int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4290 struct ring_buffer *buffer_b, int cpu)
4291{
4292 struct ring_buffer_per_cpu *cpu_buffer_a;
4293 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4294 int ret = -EINVAL;
4295
9e01c1b7
RR
4296 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4297 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4298 goto out;
7a8e76a3 4299
438ced17
VN
4300 cpu_buffer_a = buffer_a->buffers[cpu];
4301 cpu_buffer_b = buffer_b->buffers[cpu];
4302
7a8e76a3 4303 /* At least make sure the two buffers are somewhat the same */
438ced17 4304 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4305 goto out;
4306
4307 ret = -EAGAIN;
7a8e76a3 4308
97b17efe 4309 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4310 goto out;
97b17efe
SR
4311
4312 if (atomic_read(&buffer_a->record_disabled))
554f786e 4313 goto out;
97b17efe
SR
4314
4315 if (atomic_read(&buffer_b->record_disabled))
554f786e 4316 goto out;
97b17efe 4317
97b17efe 4318 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4319 goto out;
97b17efe
SR
4320
4321 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4322 goto out;
97b17efe 4323
7a8e76a3
SR
4324 /*
4325 * We can't do a synchronize_sched here because this
4326 * function can be called in atomic context.
4327 * Normally this will be called from the same CPU as cpu.
4328 * If not it's up to the caller to protect this.
4329 */
4330 atomic_inc(&cpu_buffer_a->record_disabled);
4331 atomic_inc(&cpu_buffer_b->record_disabled);
4332
98277991
SR
4333 ret = -EBUSY;
4334 if (local_read(&cpu_buffer_a->committing))
4335 goto out_dec;
4336 if (local_read(&cpu_buffer_b->committing))
4337 goto out_dec;
4338
7a8e76a3
SR
4339 buffer_a->buffers[cpu] = cpu_buffer_b;
4340 buffer_b->buffers[cpu] = cpu_buffer_a;
4341
4342 cpu_buffer_b->buffer = buffer_a;
4343 cpu_buffer_a->buffer = buffer_b;
4344
98277991
SR
4345 ret = 0;
4346
4347out_dec:
7a8e76a3
SR
4348 atomic_dec(&cpu_buffer_a->record_disabled);
4349 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4350out:
554f786e 4351 return ret;
7a8e76a3 4352}
c4f50183 4353EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4354#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4355
8789a9e7
SR
4356/**
4357 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4358 * @buffer: the buffer to allocate for.
d611851b 4359 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4360 *
4361 * This function is used in conjunction with ring_buffer_read_page.
4362 * When reading a full page from the ring buffer, these functions
4363 * can be used to speed up the process. The calling function should
4364 * allocate a few pages first with this function. Then when it
4365 * needs to get pages from the ring buffer, it passes the result
4366 * of this function into ring_buffer_read_page, which will swap
4367 * the page that was allocated, with the read page of the buffer.
4368 *
4369 * Returns:
4370 * The page allocated, or NULL on error.
4371 */
7ea59064 4372void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4373{
044fa782 4374 struct buffer_data_page *bpage;
7ea59064 4375 struct page *page;
8789a9e7 4376
d7ec4bfe
VN
4377 page = alloc_pages_node(cpu_to_node(cpu),
4378 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4379 if (!page)
8789a9e7
SR
4380 return NULL;
4381
7ea59064 4382 bpage = page_address(page);
8789a9e7 4383
ef7a4a16
SR
4384 rb_init_page(bpage);
4385
044fa782 4386 return bpage;
8789a9e7 4387}
d6ce96da 4388EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4389
4390/**
4391 * ring_buffer_free_read_page - free an allocated read page
4392 * @buffer: the buffer the page was allocate for
4393 * @data: the page to free
4394 *
4395 * Free a page allocated from ring_buffer_alloc_read_page.
4396 */
4397void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4398{
4399 free_page((unsigned long)data);
4400}
d6ce96da 4401EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4402
4403/**
4404 * ring_buffer_read_page - extract a page from the ring buffer
4405 * @buffer: buffer to extract from
4406 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4407 * @len: amount to extract
8789a9e7
SR
4408 * @cpu: the cpu of the buffer to extract
4409 * @full: should the extraction only happen when the page is full.
4410 *
4411 * This function will pull out a page from the ring buffer and consume it.
4412 * @data_page must be the address of the variable that was returned
4413 * from ring_buffer_alloc_read_page. This is because the page might be used
4414 * to swap with a page in the ring buffer.
4415 *
4416 * for example:
d611851b 4417 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4418 * if (!rpage)
4419 * return error;
ef7a4a16 4420 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4421 * if (ret >= 0)
4422 * process_page(rpage, ret);
8789a9e7
SR
4423 *
4424 * When @full is set, the function will not return true unless
4425 * the writer is off the reader page.
4426 *
4427 * Note: it is up to the calling functions to handle sleeps and wakeups.
4428 * The ring buffer can be used anywhere in the kernel and can not
4429 * blindly call wake_up. The layer that uses the ring buffer must be
4430 * responsible for that.
4431 *
4432 * Returns:
667d2412
LJ
4433 * >=0 if data has been transferred, returns the offset of consumed data.
4434 * <0 if no data has been transferred.
8789a9e7
SR
4435 */
4436int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4437 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4438{
4439 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4440 struct ring_buffer_event *event;
044fa782 4441 struct buffer_data_page *bpage;
ef7a4a16 4442 struct buffer_page *reader;
ff0ff84a 4443 unsigned long missed_events;
8789a9e7 4444 unsigned long flags;
ef7a4a16 4445 unsigned int commit;
667d2412 4446 unsigned int read;
4f3640f8 4447 u64 save_timestamp;
667d2412 4448 int ret = -1;
8789a9e7 4449
554f786e
SR
4450 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4451 goto out;
4452
474d32b6
SR
4453 /*
4454 * If len is not big enough to hold the page header, then
4455 * we can not copy anything.
4456 */
4457 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4458 goto out;
474d32b6
SR
4459
4460 len -= BUF_PAGE_HDR_SIZE;
4461
8789a9e7 4462 if (!data_page)
554f786e 4463 goto out;
8789a9e7 4464
044fa782
SR
4465 bpage = *data_page;
4466 if (!bpage)
554f786e 4467 goto out;
8789a9e7 4468
5389f6fa 4469 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4470
ef7a4a16
SR
4471 reader = rb_get_reader_page(cpu_buffer);
4472 if (!reader)
554f786e 4473 goto out_unlock;
8789a9e7 4474
ef7a4a16
SR
4475 event = rb_reader_event(cpu_buffer);
4476
4477 read = reader->read;
4478 commit = rb_page_commit(reader);
667d2412 4479
66a8cb95 4480 /* Check if any events were dropped */
ff0ff84a 4481 missed_events = cpu_buffer->lost_events;
66a8cb95 4482
8789a9e7 4483 /*
474d32b6
SR
4484 * If this page has been partially read or
4485 * if len is not big enough to read the rest of the page or
4486 * a writer is still on the page, then
4487 * we must copy the data from the page to the buffer.
4488 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4489 */
474d32b6 4490 if (read || (len < (commit - read)) ||
ef7a4a16 4491 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4492 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4493 unsigned int rpos = read;
4494 unsigned int pos = 0;
ef7a4a16 4495 unsigned int size;
8789a9e7
SR
4496
4497 if (full)
554f786e 4498 goto out_unlock;
8789a9e7 4499
ef7a4a16
SR
4500 if (len > (commit - read))
4501 len = (commit - read);
4502
69d1b839
SR
4503 /* Always keep the time extend and data together */
4504 size = rb_event_ts_length(event);
ef7a4a16
SR
4505
4506 if (len < size)
554f786e 4507 goto out_unlock;
ef7a4a16 4508
4f3640f8
SR
4509 /* save the current timestamp, since the user will need it */
4510 save_timestamp = cpu_buffer->read_stamp;
4511
ef7a4a16
SR
4512 /* Need to copy one event at a time */
4513 do {
e1e35927
DS
4514 /* We need the size of one event, because
4515 * rb_advance_reader only advances by one event,
4516 * whereas rb_event_ts_length may include the size of
4517 * one or two events.
4518 * We have already ensured there's enough space if this
4519 * is a time extend. */
4520 size = rb_event_length(event);
474d32b6 4521 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4522
4523 len -= size;
4524
4525 rb_advance_reader(cpu_buffer);
474d32b6
SR
4526 rpos = reader->read;
4527 pos += size;
ef7a4a16 4528
18fab912
HY
4529 if (rpos >= commit)
4530 break;
4531
ef7a4a16 4532 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4533 /* Always keep the time extend and data together */
4534 size = rb_event_ts_length(event);
e1e35927 4535 } while (len >= size);
667d2412
LJ
4536
4537 /* update bpage */
ef7a4a16 4538 local_set(&bpage->commit, pos);
4f3640f8 4539 bpage->time_stamp = save_timestamp;
ef7a4a16 4540
474d32b6
SR
4541 /* we copied everything to the beginning */
4542 read = 0;
8789a9e7 4543 } else {
afbab76a 4544 /* update the entry counter */
77ae365e 4545 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4546 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4547
8789a9e7 4548 /* swap the pages */
044fa782 4549 rb_init_page(bpage);
ef7a4a16
SR
4550 bpage = reader->page;
4551 reader->page = *data_page;
4552 local_set(&reader->write, 0);
778c55d4 4553 local_set(&reader->entries, 0);
ef7a4a16 4554 reader->read = 0;
044fa782 4555 *data_page = bpage;
ff0ff84a
SR
4556
4557 /*
4558 * Use the real_end for the data size,
4559 * This gives us a chance to store the lost events
4560 * on the page.
4561 */
4562 if (reader->real_end)
4563 local_set(&bpage->commit, reader->real_end);
8789a9e7 4564 }
667d2412 4565 ret = read;
8789a9e7 4566
66a8cb95 4567 cpu_buffer->lost_events = 0;
2711ca23
SR
4568
4569 commit = local_read(&bpage->commit);
66a8cb95
SR
4570 /*
4571 * Set a flag in the commit field if we lost events
4572 */
ff0ff84a 4573 if (missed_events) {
ff0ff84a
SR
4574 /* If there is room at the end of the page to save the
4575 * missed events, then record it there.
4576 */
4577 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4578 memcpy(&bpage->data[commit], &missed_events,
4579 sizeof(missed_events));
4580 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4581 commit += sizeof(missed_events);
ff0ff84a 4582 }
66a8cb95 4583 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4584 }
66a8cb95 4585
2711ca23
SR
4586 /*
4587 * This page may be off to user land. Zero it out here.
4588 */
4589 if (commit < BUF_PAGE_SIZE)
4590 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4591
554f786e 4592 out_unlock:
5389f6fa 4593 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4594
554f786e 4595 out:
8789a9e7
SR
4596 return ret;
4597}
d6ce96da 4598EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4599
59222efe 4600#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4601static int rb_cpu_notify(struct notifier_block *self,
4602 unsigned long action, void *hcpu)
554f786e
SR
4603{
4604 struct ring_buffer *buffer =
4605 container_of(self, struct ring_buffer, cpu_notify);
4606 long cpu = (long)hcpu;
438ced17
VN
4607 int cpu_i, nr_pages_same;
4608 unsigned int nr_pages;
554f786e
SR
4609
4610 switch (action) {
4611 case CPU_UP_PREPARE:
4612 case CPU_UP_PREPARE_FROZEN:
3f237a79 4613 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4614 return NOTIFY_OK;
4615
438ced17
VN
4616 nr_pages = 0;
4617 nr_pages_same = 1;
4618 /* check if all cpu sizes are same */
4619 for_each_buffer_cpu(buffer, cpu_i) {
4620 /* fill in the size from first enabled cpu */
4621 if (nr_pages == 0)
4622 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4623 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4624 nr_pages_same = 0;
4625 break;
4626 }
4627 }
4628 /* allocate minimum pages, user can later expand it */
4629 if (!nr_pages_same)
4630 nr_pages = 2;
554f786e 4631 buffer->buffers[cpu] =
438ced17 4632 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4633 if (!buffer->buffers[cpu]) {
4634 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4635 cpu);
4636 return NOTIFY_OK;
4637 }
4638 smp_wmb();
3f237a79 4639 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4640 break;
4641 case CPU_DOWN_PREPARE:
4642 case CPU_DOWN_PREPARE_FROZEN:
4643 /*
4644 * Do nothing.
4645 * If we were to free the buffer, then the user would
4646 * lose any trace that was in the buffer.
4647 */
4648 break;
4649 default:
4650 break;
4651 }
4652 return NOTIFY_OK;
4653}
4654#endif
6c43e554
SRRH
4655
4656#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4657/*
4658 * This is a basic integrity check of the ring buffer.
4659 * Late in the boot cycle this test will run when configured in.
4660 * It will kick off a thread per CPU that will go into a loop
4661 * writing to the per cpu ring buffer various sizes of data.
4662 * Some of the data will be large items, some small.
4663 *
4664 * Another thread is created that goes into a spin, sending out
4665 * IPIs to the other CPUs to also write into the ring buffer.
4666 * this is to test the nesting ability of the buffer.
4667 *
4668 * Basic stats are recorded and reported. If something in the
4669 * ring buffer should happen that's not expected, a big warning
4670 * is displayed and all ring buffers are disabled.
4671 */
4672static struct task_struct *rb_threads[NR_CPUS] __initdata;
4673
4674struct rb_test_data {
4675 struct ring_buffer *buffer;
4676 unsigned long events;
4677 unsigned long bytes_written;
4678 unsigned long bytes_alloc;
4679 unsigned long bytes_dropped;
4680 unsigned long events_nested;
4681 unsigned long bytes_written_nested;
4682 unsigned long bytes_alloc_nested;
4683 unsigned long bytes_dropped_nested;
4684 int min_size_nested;
4685 int max_size_nested;
4686 int max_size;
4687 int min_size;
4688 int cpu;
4689 int cnt;
4690};
4691
4692static struct rb_test_data rb_data[NR_CPUS] __initdata;
4693
4694/* 1 meg per cpu */
4695#define RB_TEST_BUFFER_SIZE 1048576
4696
4697static char rb_string[] __initdata =
4698 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4699 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4700 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4701
4702static bool rb_test_started __initdata;
4703
4704struct rb_item {
4705 int size;
4706 char str[];
4707};
4708
4709static __init int rb_write_something(struct rb_test_data *data, bool nested)
4710{
4711 struct ring_buffer_event *event;
4712 struct rb_item *item;
4713 bool started;
4714 int event_len;
4715 int size;
4716 int len;
4717 int cnt;
4718
4719 /* Have nested writes different that what is written */
4720 cnt = data->cnt + (nested ? 27 : 0);
4721
4722 /* Multiply cnt by ~e, to make some unique increment */
4723 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4724
4725 len = size + sizeof(struct rb_item);
4726
4727 started = rb_test_started;
4728 /* read rb_test_started before checking buffer enabled */
4729 smp_rmb();
4730
4731 event = ring_buffer_lock_reserve(data->buffer, len);
4732 if (!event) {
4733 /* Ignore dropped events before test starts. */
4734 if (started) {
4735 if (nested)
4736 data->bytes_dropped += len;
4737 else
4738 data->bytes_dropped_nested += len;
4739 }
4740 return len;
4741 }
4742
4743 event_len = ring_buffer_event_length(event);
4744
4745 if (RB_WARN_ON(data->buffer, event_len < len))
4746 goto out;
4747
4748 item = ring_buffer_event_data(event);
4749 item->size = size;
4750 memcpy(item->str, rb_string, size);
4751
4752 if (nested) {
4753 data->bytes_alloc_nested += event_len;
4754 data->bytes_written_nested += len;
4755 data->events_nested++;
4756 if (!data->min_size_nested || len < data->min_size_nested)
4757 data->min_size_nested = len;
4758 if (len > data->max_size_nested)
4759 data->max_size_nested = len;
4760 } else {
4761 data->bytes_alloc += event_len;
4762 data->bytes_written += len;
4763 data->events++;
4764 if (!data->min_size || len < data->min_size)
4765 data->max_size = len;
4766 if (len > data->max_size)
4767 data->max_size = len;
4768 }
4769
4770 out:
4771 ring_buffer_unlock_commit(data->buffer, event);
4772
4773 return 0;
4774}
4775
4776static __init int rb_test(void *arg)
4777{
4778 struct rb_test_data *data = arg;
4779
4780 while (!kthread_should_stop()) {
4781 rb_write_something(data, false);
4782 data->cnt++;
4783
4784 set_current_state(TASK_INTERRUPTIBLE);
4785 /* Now sleep between a min of 100-300us and a max of 1ms */
4786 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4787 }
4788
4789 return 0;
4790}
4791
4792static __init void rb_ipi(void *ignore)
4793{
4794 struct rb_test_data *data;
4795 int cpu = smp_processor_id();
4796
4797 data = &rb_data[cpu];
4798 rb_write_something(data, true);
4799}
4800
4801static __init int rb_hammer_test(void *arg)
4802{
4803 while (!kthread_should_stop()) {
4804
4805 /* Send an IPI to all cpus to write data! */
4806 smp_call_function(rb_ipi, NULL, 1);
4807 /* No sleep, but for non preempt, let others run */
4808 schedule();
4809 }
4810
4811 return 0;
4812}
4813
4814static __init int test_ringbuffer(void)
4815{
4816 struct task_struct *rb_hammer;
4817 struct ring_buffer *buffer;
4818 int cpu;
4819 int ret = 0;
4820
4821 pr_info("Running ring buffer tests...\n");
4822
4823 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4824 if (WARN_ON(!buffer))
4825 return 0;
4826
4827 /* Disable buffer so that threads can't write to it yet */
4828 ring_buffer_record_off(buffer);
4829
4830 for_each_online_cpu(cpu) {
4831 rb_data[cpu].buffer = buffer;
4832 rb_data[cpu].cpu = cpu;
4833 rb_data[cpu].cnt = cpu;
4834 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4835 "rbtester/%d", cpu);
4836 if (WARN_ON(!rb_threads[cpu])) {
4837 pr_cont("FAILED\n");
4838 ret = -1;
4839 goto out_free;
4840 }
4841
4842 kthread_bind(rb_threads[cpu], cpu);
4843 wake_up_process(rb_threads[cpu]);
4844 }
4845
4846 /* Now create the rb hammer! */
4847 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4848 if (WARN_ON(!rb_hammer)) {
4849 pr_cont("FAILED\n");
4850 ret = -1;
4851 goto out_free;
4852 }
4853
4854 ring_buffer_record_on(buffer);
4855 /*
4856 * Show buffer is enabled before setting rb_test_started.
4857 * Yes there's a small race window where events could be
4858 * dropped and the thread wont catch it. But when a ring
4859 * buffer gets enabled, there will always be some kind of
4860 * delay before other CPUs see it. Thus, we don't care about
4861 * those dropped events. We care about events dropped after
4862 * the threads see that the buffer is active.
4863 */
4864 smp_wmb();
4865 rb_test_started = true;
4866
4867 set_current_state(TASK_INTERRUPTIBLE);
4868 /* Just run for 10 seconds */;
4869 schedule_timeout(10 * HZ);
4870
4871 kthread_stop(rb_hammer);
4872
4873 out_free:
4874 for_each_online_cpu(cpu) {
4875 if (!rb_threads[cpu])
4876 break;
4877 kthread_stop(rb_threads[cpu]);
4878 }
4879 if (ret) {
4880 ring_buffer_free(buffer);
4881 return ret;
4882 }
4883
4884 /* Report! */
4885 pr_info("finished\n");
4886 for_each_online_cpu(cpu) {
4887 struct ring_buffer_event *event;
4888 struct rb_test_data *data = &rb_data[cpu];
4889 struct rb_item *item;
4890 unsigned long total_events;
4891 unsigned long total_dropped;
4892 unsigned long total_written;
4893 unsigned long total_alloc;
4894 unsigned long total_read = 0;
4895 unsigned long total_size = 0;
4896 unsigned long total_len = 0;
4897 unsigned long total_lost = 0;
4898 unsigned long lost;
4899 int big_event_size;
4900 int small_event_size;
4901
4902 ret = -1;
4903
4904 total_events = data->events + data->events_nested;
4905 total_written = data->bytes_written + data->bytes_written_nested;
4906 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4907 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4908
4909 big_event_size = data->max_size + data->max_size_nested;
4910 small_event_size = data->min_size + data->min_size_nested;
4911
4912 pr_info("CPU %d:\n", cpu);
4913 pr_info(" events: %ld\n", total_events);
4914 pr_info(" dropped bytes: %ld\n", total_dropped);
4915 pr_info(" alloced bytes: %ld\n", total_alloc);
4916 pr_info(" written bytes: %ld\n", total_written);
4917 pr_info(" biggest event: %d\n", big_event_size);
4918 pr_info(" smallest event: %d\n", small_event_size);
4919
4920 if (RB_WARN_ON(buffer, total_dropped))
4921 break;
4922
4923 ret = 0;
4924
4925 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4926 total_lost += lost;
4927 item = ring_buffer_event_data(event);
4928 total_len += ring_buffer_event_length(event);
4929 total_size += item->size + sizeof(struct rb_item);
4930 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4931 pr_info("FAILED!\n");
4932 pr_info("buffer had: %.*s\n", item->size, item->str);
4933 pr_info("expected: %.*s\n", item->size, rb_string);
4934 RB_WARN_ON(buffer, 1);
4935 ret = -1;
4936 break;
4937 }
4938 total_read++;
4939 }
4940 if (ret)
4941 break;
4942
4943 ret = -1;
4944
4945 pr_info(" read events: %ld\n", total_read);
4946 pr_info(" lost events: %ld\n", total_lost);
4947 pr_info(" total events: %ld\n", total_lost + total_read);
4948 pr_info(" recorded len bytes: %ld\n", total_len);
4949 pr_info(" recorded size bytes: %ld\n", total_size);
4950 if (total_lost)
4951 pr_info(" With dropped events, record len and size may not match\n"
4952 " alloced and written from above\n");
4953 if (!total_lost) {
4954 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4955 total_size != total_written))
4956 break;
4957 }
4958 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4959 break;
4960
4961 ret = 0;
4962 }
4963 if (!ret)
4964 pr_info("Ring buffer PASSED!\n");
4965
4966 ring_buffer_free(buffer);
4967 return 0;
4968}
4969
4970late_initcall(test_ringbuffer);
4971#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */