Merge tag 'nfs-for-4.19-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
bcea3f96 1// SPDX-License-Identifier: GPL-2.0
7a8e76a3
SR
2/*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
af658dca 7#include <linux/trace_events.h>
7a8e76a3 8#include <linux/ring_buffer.h>
14131f2f 9#include <linux/trace_clock.h>
e6017571 10#include <linux/sched/clock.h>
0b07436d 11#include <linux/trace_seq.h>
7a8e76a3 12#include <linux/spinlock.h>
15693458 13#include <linux/irq_work.h>
7a8e76a3 14#include <linux/uaccess.h>
a81bd80a 15#include <linux/hardirq.h>
6c43e554 16#include <linux/kthread.h> /* for self test */
7a8e76a3
SR
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
6c43e554 20#include <linux/delay.h>
5a0e3ad6 21#include <linux/slab.h>
7a8e76a3
SR
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
554f786e 25#include <linux/cpu.h>
927e56db 26#include <linux/oom.h>
7a8e76a3 27
79615760 28#include <asm/local.h>
182e9f5f 29
83f40318
VN
30static void update_pages_handler(struct work_struct *work);
31
d1b182a8
SR
32/*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35int ring_buffer_print_entry_header(struct trace_seq *s)
36{
c0cd93aa
SRRH
37 trace_seq_puts(s, "# compressed entry header\n");
38 trace_seq_puts(s, "\ttype_len : 5 bits\n");
39 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
40 trace_seq_puts(s, "\tarray : 32 bits\n");
41 trace_seq_putc(s, '\n');
42 trace_seq_printf(s, "\tpadding : type == %d\n",
43 RINGBUF_TYPE_PADDING);
44 trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 RINGBUF_TYPE_TIME_EXTEND);
dc4e2801
TZ
46 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
47 RINGBUF_TYPE_TIME_STAMP);
c0cd93aa
SRRH
48 trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51 return !trace_seq_has_overflowed(s);
d1b182a8
SR
52}
53
5cc98548
SR
54/*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
499e5470
SR
122/* Used for individual buffers (after the counter) */
123#define RB_BUFFER_OFF (1 << 20)
a3583244 124
499e5470 125#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 126
e3d6bf0a 127#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 128#define RB_ALIGNMENT 4U
334d4169 129#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 130#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 131
649508f6 132#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
133# define RB_FORCE_8BYTE_ALIGNMENT 0
134# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
135#else
136# define RB_FORCE_8BYTE_ALIGNMENT 1
137# define RB_ARCH_ALIGNMENT 8U
138#endif
139
649508f6
JH
140#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
141
334d4169
LJ
142/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
143#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
144
145enum {
146 RB_LEN_TIME_EXTEND = 8,
dc4e2801 147 RB_LEN_TIME_STAMP = 8,
7a8e76a3
SR
148};
149
69d1b839
SR
150#define skip_time_extend(event) \
151 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
152
dc4e2801
TZ
153#define extended_time(event) \
154 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
155
2d622719
TZ
156static inline int rb_null_event(struct ring_buffer_event *event)
157{
a1863c21 158 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
159}
160
161static void rb_event_set_padding(struct ring_buffer_event *event)
162{
a1863c21 163 /* padding has a NULL time_delta */
334d4169 164 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
165 event->time_delta = 0;
166}
167
34a148bf 168static unsigned
2d622719 169rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
170{
171 unsigned length;
172
334d4169
LJ
173 if (event->type_len)
174 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
175 else
176 length = event->array[0];
177 return length + RB_EVNT_HDR_SIZE;
178}
179
69d1b839
SR
180/*
181 * Return the length of the given event. Will return
182 * the length of the time extend if the event is a
183 * time extend.
184 */
185static inline unsigned
2d622719
TZ
186rb_event_length(struct ring_buffer_event *event)
187{
334d4169 188 switch (event->type_len) {
7a8e76a3 189 case RINGBUF_TYPE_PADDING:
2d622719
TZ
190 if (rb_null_event(event))
191 /* undefined */
192 return -1;
334d4169 193 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
194
195 case RINGBUF_TYPE_TIME_EXTEND:
196 return RB_LEN_TIME_EXTEND;
197
198 case RINGBUF_TYPE_TIME_STAMP:
199 return RB_LEN_TIME_STAMP;
200
201 case RINGBUF_TYPE_DATA:
2d622719 202 return rb_event_data_length(event);
7a8e76a3
SR
203 default:
204 BUG();
205 }
206 /* not hit */
207 return 0;
208}
209
69d1b839
SR
210/*
211 * Return total length of time extend and data,
212 * or just the event length for all other events.
213 */
214static inline unsigned
215rb_event_ts_length(struct ring_buffer_event *event)
216{
217 unsigned len = 0;
218
dc4e2801 219 if (extended_time(event)) {
69d1b839
SR
220 /* time extends include the data event after it */
221 len = RB_LEN_TIME_EXTEND;
222 event = skip_time_extend(event);
223 }
224 return len + rb_event_length(event);
225}
226
7a8e76a3
SR
227/**
228 * ring_buffer_event_length - return the length of the event
229 * @event: the event to get the length of
69d1b839
SR
230 *
231 * Returns the size of the data load of a data event.
232 * If the event is something other than a data event, it
233 * returns the size of the event itself. With the exception
234 * of a TIME EXTEND, where it still returns the size of the
235 * data load of the data event after it.
7a8e76a3
SR
236 */
237unsigned ring_buffer_event_length(struct ring_buffer_event *event)
238{
69d1b839
SR
239 unsigned length;
240
dc4e2801 241 if (extended_time(event))
69d1b839
SR
242 event = skip_time_extend(event);
243
244 length = rb_event_length(event);
334d4169 245 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
246 return length;
247 length -= RB_EVNT_HDR_SIZE;
248 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
249 length -= sizeof(event->array[0]);
250 return length;
7a8e76a3 251}
c4f50183 252EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
253
254/* inline for ring buffer fast paths */
929ddbf3 255static __always_inline void *
7a8e76a3
SR
256rb_event_data(struct ring_buffer_event *event)
257{
dc4e2801 258 if (extended_time(event))
69d1b839 259 event = skip_time_extend(event);
334d4169 260 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 261 /* If length is in len field, then array[0] has the data */
334d4169 262 if (event->type_len)
7a8e76a3
SR
263 return (void *)&event->array[0];
264 /* Otherwise length is in array[0] and array[1] has the data */
265 return (void *)&event->array[1];
266}
267
268/**
269 * ring_buffer_event_data - return the data of the event
270 * @event: the event to get the data from
271 */
272void *ring_buffer_event_data(struct ring_buffer_event *event)
273{
274 return rb_event_data(event);
275}
c4f50183 276EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
277
278#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 279 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
280
281#define TS_SHIFT 27
282#define TS_MASK ((1ULL << TS_SHIFT) - 1)
283#define TS_DELTA_TEST (~TS_MASK)
284
dc4e2801
TZ
285/**
286 * ring_buffer_event_time_stamp - return the event's extended timestamp
287 * @event: the event to get the timestamp of
288 *
289 * Returns the extended timestamp associated with a data event.
290 * An extended time_stamp is a 64-bit timestamp represented
291 * internally in a special way that makes the best use of space
292 * contained within a ring buffer event. This function decodes
293 * it and maps it to a straight u64 value.
294 */
295u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
296{
297 u64 ts;
298
299 ts = event->array[0];
300 ts <<= TS_SHIFT;
301 ts += event->time_delta;
302
303 return ts;
304}
305
66a8cb95
SR
306/* Flag when events were overwritten */
307#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
308/* Missed count stored at end */
309#define RB_MISSED_STORED (1 << 30)
66a8cb95 310
45d8b80c
SRV
311#define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
312
abc9b56d 313struct buffer_data_page {
e4c2ce82 314 u64 time_stamp; /* page time stamp */
c3706f00 315 local_t commit; /* write committed index */
649508f6 316 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
317};
318
77ae365e
SR
319/*
320 * Note, the buffer_page list must be first. The buffer pages
321 * are allocated in cache lines, which means that each buffer
322 * page will be at the beginning of a cache line, and thus
323 * the least significant bits will be zero. We use this to
324 * add flags in the list struct pointers, to make the ring buffer
325 * lockless.
326 */
abc9b56d 327struct buffer_page {
778c55d4 328 struct list_head list; /* list of buffer pages */
abc9b56d 329 local_t write; /* index for next write */
6f807acd 330 unsigned read; /* index for next read */
778c55d4 331 local_t entries; /* entries on this page */
ff0ff84a 332 unsigned long real_end; /* real end of data */
abc9b56d 333 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
334};
335
77ae365e
SR
336/*
337 * The buffer page counters, write and entries, must be reset
338 * atomically when crossing page boundaries. To synchronize this
339 * update, two counters are inserted into the number. One is
340 * the actual counter for the write position or count on the page.
341 *
342 * The other is a counter of updaters. Before an update happens
343 * the update partition of the counter is incremented. This will
344 * allow the updater to update the counter atomically.
345 *
346 * The counter is 20 bits, and the state data is 12.
347 */
348#define RB_WRITE_MASK 0xfffff
349#define RB_WRITE_INTCNT (1 << 20)
350
044fa782 351static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 352{
044fa782 353 local_set(&bpage->commit, 0);
abc9b56d
SR
354}
355
474d32b6
SR
356/**
357 * ring_buffer_page_len - the size of data on the page.
358 * @page: The page to read
359 *
360 * Returns the amount of data on the page, including buffer page header.
361 */
ef7a4a16
SR
362size_t ring_buffer_page_len(void *page)
363{
45d8b80c
SRV
364 struct buffer_data_page *bpage = page;
365
366 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
474d32b6 367 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
368}
369
ed56829c
SR
370/*
371 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
372 * this issue out.
373 */
34a148bf 374static void free_buffer_page(struct buffer_page *bpage)
ed56829c 375{
34a148bf 376 free_page((unsigned long)bpage->page);
e4c2ce82 377 kfree(bpage);
ed56829c
SR
378}
379
7a8e76a3
SR
380/*
381 * We need to fit the time_stamp delta into 27 bits.
382 */
383static inline int test_time_stamp(u64 delta)
384{
385 if (delta & TS_DELTA_TEST)
386 return 1;
387 return 0;
388}
389
474d32b6 390#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 391
be957c44
SR
392/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
393#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
394
d1b182a8
SR
395int ring_buffer_print_page_header(struct trace_seq *s)
396{
397 struct buffer_data_page field;
c0cd93aa
SRRH
398
399 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 "offset:0;\tsize:%u;\tsigned:%u;\n",
401 (unsigned int)sizeof(field.time_stamp),
402 (unsigned int)is_signed_type(u64));
403
404 trace_seq_printf(s, "\tfield: local_t commit;\t"
405 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 (unsigned int)offsetof(typeof(field), commit),
407 (unsigned int)sizeof(field.commit),
408 (unsigned int)is_signed_type(long));
409
410 trace_seq_printf(s, "\tfield: int overwrite;\t"
411 "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 (unsigned int)offsetof(typeof(field), commit),
413 1,
414 (unsigned int)is_signed_type(long));
415
416 trace_seq_printf(s, "\tfield: char data;\t"
417 "offset:%u;\tsize:%u;\tsigned:%u;\n",
418 (unsigned int)offsetof(typeof(field), data),
419 (unsigned int)BUF_PAGE_SIZE,
420 (unsigned int)is_signed_type(char));
421
422 return !trace_seq_has_overflowed(s);
d1b182a8
SR
423}
424
15693458
SRRH
425struct rb_irq_work {
426 struct irq_work work;
427 wait_queue_head_t waiters;
1e0d6714 428 wait_queue_head_t full_waiters;
15693458 429 bool waiters_pending;
1e0d6714
SRRH
430 bool full_waiters_pending;
431 bool wakeup_full;
15693458
SRRH
432};
433
fcc742ea
SRRH
434/*
435 * Structure to hold event state and handle nested events.
436 */
437struct rb_event_info {
438 u64 ts;
439 u64 delta;
440 unsigned long length;
441 struct buffer_page *tail_page;
442 int add_timestamp;
443};
444
a497adb4
SRRH
445/*
446 * Used for which event context the event is in.
447 * NMI = 0
448 * IRQ = 1
449 * SOFTIRQ = 2
450 * NORMAL = 3
451 *
452 * See trace_recursive_lock() comment below for more details.
453 */
454enum {
455 RB_CTX_NMI,
456 RB_CTX_IRQ,
457 RB_CTX_SOFTIRQ,
458 RB_CTX_NORMAL,
459 RB_CTX_MAX
460};
461
7a8e76a3
SR
462/*
463 * head_page == tail_page && head == tail then buffer is empty.
464 */
465struct ring_buffer_per_cpu {
466 int cpu;
985023de 467 atomic_t record_disabled;
7a8e76a3 468 struct ring_buffer *buffer;
5389f6fa 469 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 470 arch_spinlock_t lock;
7a8e76a3 471 struct lock_class_key lock_key;
73a757e6 472 struct buffer_data_page *free_page;
9b94a8fb 473 unsigned long nr_pages;
58a09ec6 474 unsigned int current_context;
3adc54fa 475 struct list_head *pages;
6f807acd
SR
476 struct buffer_page *head_page; /* read from head */
477 struct buffer_page *tail_page; /* write to tail */
c3706f00 478 struct buffer_page *commit_page; /* committed pages */
d769041f 479 struct buffer_page *reader_page;
66a8cb95
SR
480 unsigned long lost_events;
481 unsigned long last_overrun;
8e012066 482 unsigned long nest;
c64e148a 483 local_t entries_bytes;
e4906eff 484 local_t entries;
884bfe89
SP
485 local_t overrun;
486 local_t commit_overrun;
487 local_t dropped_events;
fa743953
SR
488 local_t committing;
489 local_t commits;
77ae365e 490 unsigned long read;
c64e148a 491 unsigned long read_bytes;
7a8e76a3
SR
492 u64 write_stamp;
493 u64 read_stamp;
438ced17 494 /* ring buffer pages to update, > 0 to add, < 0 to remove */
9b94a8fb 495 long nr_pages_to_update;
438ced17 496 struct list_head new_pages; /* new pages to add */
83f40318 497 struct work_struct update_pages_work;
05fdd70d 498 struct completion update_done;
15693458
SRRH
499
500 struct rb_irq_work irq_work;
7a8e76a3
SR
501};
502
503struct ring_buffer {
7a8e76a3
SR
504 unsigned flags;
505 int cpus;
7a8e76a3 506 atomic_t record_disabled;
83f40318 507 atomic_t resize_disabled;
00f62f61 508 cpumask_var_t cpumask;
7a8e76a3 509
1f8a6a10
PZ
510 struct lock_class_key *reader_lock_key;
511
7a8e76a3
SR
512 struct mutex mutex;
513
514 struct ring_buffer_per_cpu **buffers;
554f786e 515
b32614c0 516 struct hlist_node node;
37886f6a 517 u64 (*clock)(void);
15693458
SRRH
518
519 struct rb_irq_work irq_work;
00b41452 520 bool time_stamp_abs;
7a8e76a3
SR
521};
522
523struct ring_buffer_iter {
524 struct ring_buffer_per_cpu *cpu_buffer;
525 unsigned long head;
526 struct buffer_page *head_page;
492a74f4
SR
527 struct buffer_page *cache_reader_page;
528 unsigned long cache_read;
7a8e76a3
SR
529 u64 read_stamp;
530};
531
15693458
SRRH
532/*
533 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
534 *
535 * Schedules a delayed work to wake up any task that is blocked on the
536 * ring buffer waiters queue.
537 */
538static void rb_wake_up_waiters(struct irq_work *work)
539{
540 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
541
542 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
543 if (rbwork->wakeup_full) {
544 rbwork->wakeup_full = false;
545 wake_up_all(&rbwork->full_waiters);
546 }
15693458
SRRH
547}
548
549/**
550 * ring_buffer_wait - wait for input to the ring buffer
551 * @buffer: buffer to wait on
552 * @cpu: the cpu buffer to wait on
e30f53aa 553 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
554 *
555 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
556 * as data is added to any of the @buffer's cpu buffers. Otherwise
557 * it will wait for data to be added to a specific cpu buffer.
558 */
e30f53aa 559int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
15693458 560{
e30f53aa 561 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
562 DEFINE_WAIT(wait);
563 struct rb_irq_work *work;
e30f53aa 564 int ret = 0;
15693458
SRRH
565
566 /*
567 * Depending on what the caller is waiting for, either any
568 * data in any cpu buffer, or a specific buffer, put the
569 * caller on the appropriate wait queue.
570 */
1e0d6714 571 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 572 work = &buffer->irq_work;
1e0d6714
SRRH
573 /* Full only makes sense on per cpu reads */
574 full = false;
575 } else {
8b8b3683
SRRH
576 if (!cpumask_test_cpu(cpu, buffer->cpumask))
577 return -ENODEV;
15693458
SRRH
578 cpu_buffer = buffer->buffers[cpu];
579 work = &cpu_buffer->irq_work;
580 }
581
582
e30f53aa 583 while (true) {
1e0d6714
SRRH
584 if (full)
585 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
586 else
587 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
588
589 /*
590 * The events can happen in critical sections where
591 * checking a work queue can cause deadlocks.
592 * After adding a task to the queue, this flag is set
593 * only to notify events to try to wake up the queue
594 * using irq_work.
595 *
596 * We don't clear it even if the buffer is no longer
597 * empty. The flag only causes the next event to run
598 * irq_work to do the work queue wake up. The worse
599 * that can happen if we race with !trace_empty() is that
600 * an event will cause an irq_work to try to wake up
601 * an empty queue.
602 *
603 * There's no reason to protect this flag either, as
604 * the work queue and irq_work logic will do the necessary
605 * synchronization for the wake ups. The only thing
606 * that is necessary is that the wake up happens after
607 * a task has been queued. It's OK for spurious wake ups.
608 */
1e0d6714
SRRH
609 if (full)
610 work->full_waiters_pending = true;
611 else
612 work->waiters_pending = true;
e30f53aa
RV
613
614 if (signal_pending(current)) {
615 ret = -EINTR;
616 break;
617 }
618
619 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
620 break;
621
622 if (cpu != RING_BUFFER_ALL_CPUS &&
623 !ring_buffer_empty_cpu(buffer, cpu)) {
624 unsigned long flags;
625 bool pagebusy;
626
627 if (!full)
628 break;
629
630 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
631 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
632 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
633
634 if (!pagebusy)
635 break;
636 }
15693458 637
15693458 638 schedule();
e30f53aa 639 }
15693458 640
1e0d6714
SRRH
641 if (full)
642 finish_wait(&work->full_waiters, &wait);
643 else
644 finish_wait(&work->waiters, &wait);
e30f53aa
RV
645
646 return ret;
15693458
SRRH
647}
648
649/**
650 * ring_buffer_poll_wait - poll on buffer input
651 * @buffer: buffer to wait on
652 * @cpu: the cpu buffer to wait on
653 * @filp: the file descriptor
654 * @poll_table: The poll descriptor
655 *
656 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
657 * as data is added to any of the @buffer's cpu buffers. Otherwise
658 * it will wait for data to be added to a specific cpu buffer.
659 *
a9a08845 660 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
15693458
SRRH
661 * zero otherwise.
662 */
ecf92700 663__poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
15693458
SRRH
664 struct file *filp, poll_table *poll_table)
665{
666 struct ring_buffer_per_cpu *cpu_buffer;
667 struct rb_irq_work *work;
668
15693458
SRRH
669 if (cpu == RING_BUFFER_ALL_CPUS)
670 work = &buffer->irq_work;
671 else {
6721cb60
SRRH
672 if (!cpumask_test_cpu(cpu, buffer->cpumask))
673 return -EINVAL;
674
15693458
SRRH
675 cpu_buffer = buffer->buffers[cpu];
676 work = &cpu_buffer->irq_work;
677 }
678
15693458 679 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
680 work->waiters_pending = true;
681 /*
682 * There's a tight race between setting the waiters_pending and
683 * checking if the ring buffer is empty. Once the waiters_pending bit
684 * is set, the next event will wake the task up, but we can get stuck
685 * if there's only a single event in.
686 *
687 * FIXME: Ideally, we need a memory barrier on the writer side as well,
688 * but adding a memory barrier to all events will cause too much of a
689 * performance hit in the fast path. We only need a memory barrier when
690 * the buffer goes from empty to having content. But as this race is
691 * extremely small, and it's not a problem if another event comes in, we
692 * will fix it later.
693 */
694 smp_mb();
15693458
SRRH
695
696 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
697 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
a9a08845 698 return EPOLLIN | EPOLLRDNORM;
15693458
SRRH
699 return 0;
700}
701
f536aafc 702/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
703#define RB_WARN_ON(b, cond) \
704 ({ \
705 int _____ret = unlikely(cond); \
706 if (_____ret) { \
707 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
708 struct ring_buffer_per_cpu *__b = \
709 (void *)b; \
710 atomic_inc(&__b->buffer->record_disabled); \
711 } else \
712 atomic_inc(&b->record_disabled); \
713 WARN_ON(1); \
714 } \
715 _____ret; \
3e89c7bb 716 })
f536aafc 717
37886f6a
SR
718/* Up this if you want to test the TIME_EXTENTS and normalization */
719#define DEBUG_SHIFT 0
720
6d3f1e12 721static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
722{
723 /* shift to debug/test normalization and TIME_EXTENTS */
724 return buffer->clock() << DEBUG_SHIFT;
725}
726
37886f6a
SR
727u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
728{
729 u64 time;
730
731 preempt_disable_notrace();
6d3f1e12 732 time = rb_time_stamp(buffer);
37886f6a
SR
733 preempt_enable_no_resched_notrace();
734
735 return time;
736}
737EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
738
739void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
740 int cpu, u64 *ts)
741{
742 /* Just stupid testing the normalize function and deltas */
743 *ts >>= DEBUG_SHIFT;
744}
745EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
746
77ae365e
SR
747/*
748 * Making the ring buffer lockless makes things tricky.
749 * Although writes only happen on the CPU that they are on,
750 * and they only need to worry about interrupts. Reads can
751 * happen on any CPU.
752 *
753 * The reader page is always off the ring buffer, but when the
754 * reader finishes with a page, it needs to swap its page with
755 * a new one from the buffer. The reader needs to take from
756 * the head (writes go to the tail). But if a writer is in overwrite
757 * mode and wraps, it must push the head page forward.
758 *
759 * Here lies the problem.
760 *
761 * The reader must be careful to replace only the head page, and
762 * not another one. As described at the top of the file in the
763 * ASCII art, the reader sets its old page to point to the next
764 * page after head. It then sets the page after head to point to
765 * the old reader page. But if the writer moves the head page
766 * during this operation, the reader could end up with the tail.
767 *
768 * We use cmpxchg to help prevent this race. We also do something
769 * special with the page before head. We set the LSB to 1.
770 *
771 * When the writer must push the page forward, it will clear the
772 * bit that points to the head page, move the head, and then set
773 * the bit that points to the new head page.
774 *
775 * We also don't want an interrupt coming in and moving the head
776 * page on another writer. Thus we use the second LSB to catch
777 * that too. Thus:
778 *
779 * head->list->prev->next bit 1 bit 0
780 * ------- -------
781 * Normal page 0 0
782 * Points to head page 0 1
783 * New head page 1 0
784 *
785 * Note we can not trust the prev pointer of the head page, because:
786 *
787 * +----+ +-----+ +-----+
788 * | |------>| T |---X--->| N |
789 * | |<------| | | |
790 * +----+ +-----+ +-----+
791 * ^ ^ |
792 * | +-----+ | |
793 * +----------| R |----------+ |
794 * | |<-----------+
795 * +-----+
796 *
797 * Key: ---X--> HEAD flag set in pointer
798 * T Tail page
799 * R Reader page
800 * N Next page
801 *
802 * (see __rb_reserve_next() to see where this happens)
803 *
804 * What the above shows is that the reader just swapped out
805 * the reader page with a page in the buffer, but before it
806 * could make the new header point back to the new page added
807 * it was preempted by a writer. The writer moved forward onto
808 * the new page added by the reader and is about to move forward
809 * again.
810 *
811 * You can see, it is legitimate for the previous pointer of
812 * the head (or any page) not to point back to itself. But only
6167c205 813 * temporarily.
77ae365e
SR
814 */
815
816#define RB_PAGE_NORMAL 0UL
817#define RB_PAGE_HEAD 1UL
818#define RB_PAGE_UPDATE 2UL
819
820
821#define RB_FLAG_MASK 3UL
822
823/* PAGE_MOVED is not part of the mask */
824#define RB_PAGE_MOVED 4UL
825
826/*
827 * rb_list_head - remove any bit
828 */
829static struct list_head *rb_list_head(struct list_head *list)
830{
831 unsigned long val = (unsigned long)list;
832
833 return (struct list_head *)(val & ~RB_FLAG_MASK);
834}
835
836/*
6d3f1e12 837 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
838 *
839 * Because the reader may move the head_page pointer, we can
840 * not trust what the head page is (it may be pointing to
841 * the reader page). But if the next page is a header page,
842 * its flags will be non zero.
843 */
42b16b3f 844static inline int
77ae365e
SR
845rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
846 struct buffer_page *page, struct list_head *list)
847{
848 unsigned long val;
849
850 val = (unsigned long)list->next;
851
852 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
853 return RB_PAGE_MOVED;
854
855 return val & RB_FLAG_MASK;
856}
857
858/*
859 * rb_is_reader_page
860 *
861 * The unique thing about the reader page, is that, if the
862 * writer is ever on it, the previous pointer never points
863 * back to the reader page.
864 */
06ca3209 865static bool rb_is_reader_page(struct buffer_page *page)
77ae365e
SR
866{
867 struct list_head *list = page->list.prev;
868
869 return rb_list_head(list->next) != &page->list;
870}
871
872/*
873 * rb_set_list_to_head - set a list_head to be pointing to head.
874 */
875static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
876 struct list_head *list)
877{
878 unsigned long *ptr;
879
880 ptr = (unsigned long *)&list->next;
881 *ptr |= RB_PAGE_HEAD;
882 *ptr &= ~RB_PAGE_UPDATE;
883}
884
885/*
886 * rb_head_page_activate - sets up head page
887 */
888static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
889{
890 struct buffer_page *head;
891
892 head = cpu_buffer->head_page;
893 if (!head)
894 return;
895
896 /*
897 * Set the previous list pointer to have the HEAD flag.
898 */
899 rb_set_list_to_head(cpu_buffer, head->list.prev);
900}
901
902static void rb_list_head_clear(struct list_head *list)
903{
904 unsigned long *ptr = (unsigned long *)&list->next;
905
906 *ptr &= ~RB_FLAG_MASK;
907}
908
909/*
6167c205 910 * rb_head_page_deactivate - clears head page ptr (for free list)
77ae365e
SR
911 */
912static void
913rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
914{
915 struct list_head *hd;
916
917 /* Go through the whole list and clear any pointers found. */
918 rb_list_head_clear(cpu_buffer->pages);
919
920 list_for_each(hd, cpu_buffer->pages)
921 rb_list_head_clear(hd);
922}
923
924static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
925 struct buffer_page *head,
926 struct buffer_page *prev,
927 int old_flag, int new_flag)
928{
929 struct list_head *list;
930 unsigned long val = (unsigned long)&head->list;
931 unsigned long ret;
932
933 list = &prev->list;
934
935 val &= ~RB_FLAG_MASK;
936
08a40816
SR
937 ret = cmpxchg((unsigned long *)&list->next,
938 val | old_flag, val | new_flag);
77ae365e
SR
939
940 /* check if the reader took the page */
941 if ((ret & ~RB_FLAG_MASK) != val)
942 return RB_PAGE_MOVED;
943
944 return ret & RB_FLAG_MASK;
945}
946
947static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
948 struct buffer_page *head,
949 struct buffer_page *prev,
950 int old_flag)
951{
952 return rb_head_page_set(cpu_buffer, head, prev,
953 old_flag, RB_PAGE_UPDATE);
954}
955
956static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
957 struct buffer_page *head,
958 struct buffer_page *prev,
959 int old_flag)
960{
961 return rb_head_page_set(cpu_buffer, head, prev,
962 old_flag, RB_PAGE_HEAD);
963}
964
965static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
966 struct buffer_page *head,
967 struct buffer_page *prev,
968 int old_flag)
969{
970 return rb_head_page_set(cpu_buffer, head, prev,
971 old_flag, RB_PAGE_NORMAL);
972}
973
974static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
975 struct buffer_page **bpage)
976{
977 struct list_head *p = rb_list_head((*bpage)->list.next);
978
979 *bpage = list_entry(p, struct buffer_page, list);
980}
981
982static struct buffer_page *
983rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
984{
985 struct buffer_page *head;
986 struct buffer_page *page;
987 struct list_head *list;
988 int i;
989
990 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
991 return NULL;
992
993 /* sanity check */
994 list = cpu_buffer->pages;
995 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
996 return NULL;
997
998 page = head = cpu_buffer->head_page;
999 /*
1000 * It is possible that the writer moves the header behind
1001 * where we started, and we miss in one loop.
1002 * A second loop should grab the header, but we'll do
1003 * three loops just because I'm paranoid.
1004 */
1005 for (i = 0; i < 3; i++) {
1006 do {
1007 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1008 cpu_buffer->head_page = page;
1009 return page;
1010 }
1011 rb_inc_page(cpu_buffer, &page);
1012 } while (page != head);
1013 }
1014
1015 RB_WARN_ON(cpu_buffer, 1);
1016
1017 return NULL;
1018}
1019
1020static int rb_head_page_replace(struct buffer_page *old,
1021 struct buffer_page *new)
1022{
1023 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1024 unsigned long val;
1025 unsigned long ret;
1026
1027 val = *ptr & ~RB_FLAG_MASK;
1028 val |= RB_PAGE_HEAD;
1029
08a40816 1030 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
1031
1032 return ret == val;
1033}
1034
1035/*
1036 * rb_tail_page_update - move the tail page forward
77ae365e 1037 */
70004986 1038static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
77ae365e
SR
1039 struct buffer_page *tail_page,
1040 struct buffer_page *next_page)
1041{
77ae365e
SR
1042 unsigned long old_entries;
1043 unsigned long old_write;
77ae365e
SR
1044
1045 /*
1046 * The tail page now needs to be moved forward.
1047 *
1048 * We need to reset the tail page, but without messing
1049 * with possible erasing of data brought in by interrupts
1050 * that have moved the tail page and are currently on it.
1051 *
1052 * We add a counter to the write field to denote this.
1053 */
1054 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1055 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1056
1057 /*
1058 * Just make sure we have seen our old_write and synchronize
1059 * with any interrupts that come in.
1060 */
1061 barrier();
1062
1063 /*
1064 * If the tail page is still the same as what we think
1065 * it is, then it is up to us to update the tail
1066 * pointer.
1067 */
8573636e 1068 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
77ae365e
SR
1069 /* Zero the write counter */
1070 unsigned long val = old_write & ~RB_WRITE_MASK;
1071 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1072
1073 /*
1074 * This will only succeed if an interrupt did
1075 * not come in and change it. In which case, we
1076 * do not want to modify it.
da706d8b
LJ
1077 *
1078 * We add (void) to let the compiler know that we do not care
1079 * about the return value of these functions. We use the
1080 * cmpxchg to only update if an interrupt did not already
1081 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1082 */
da706d8b
LJ
1083 (void)local_cmpxchg(&next_page->write, old_write, val);
1084 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1085
1086 /*
1087 * No need to worry about races with clearing out the commit.
1088 * it only can increment when a commit takes place. But that
1089 * only happens in the outer most nested commit.
1090 */
1091 local_set(&next_page->page->commit, 0);
1092
70004986
SRRH
1093 /* Again, either we update tail_page or an interrupt does */
1094 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
77ae365e 1095 }
77ae365e
SR
1096}
1097
1098static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099 struct buffer_page *bpage)
1100{
1101 unsigned long val = (unsigned long)bpage;
1102
1103 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104 return 1;
1105
1106 return 0;
1107}
1108
1109/**
1110 * rb_check_list - make sure a pointer to a list has the last bits zero
1111 */
1112static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113 struct list_head *list)
1114{
1115 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116 return 1;
1117 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118 return 1;
1119 return 0;
1120}
1121
7a8e76a3 1122/**
d611851b 1123 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1124 * @cpu_buffer: CPU buffer with pages to test
1125 *
c3706f00 1126 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1127 * been corrupted.
1128 */
1129static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130{
3adc54fa 1131 struct list_head *head = cpu_buffer->pages;
044fa782 1132 struct buffer_page *bpage, *tmp;
7a8e76a3 1133
308f7eeb
SR
1134 /* Reset the head page if it exists */
1135 if (cpu_buffer->head_page)
1136 rb_set_head_page(cpu_buffer);
1137
77ae365e
SR
1138 rb_head_page_deactivate(cpu_buffer);
1139
3e89c7bb
SR
1140 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141 return -1;
1142 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143 return -1;
7a8e76a3 1144
77ae365e
SR
1145 if (rb_check_list(cpu_buffer, head))
1146 return -1;
1147
044fa782 1148 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1149 if (RB_WARN_ON(cpu_buffer,
044fa782 1150 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1151 return -1;
1152 if (RB_WARN_ON(cpu_buffer,
044fa782 1153 bpage->list.prev->next != &bpage->list))
3e89c7bb 1154 return -1;
77ae365e
SR
1155 if (rb_check_list(cpu_buffer, &bpage->list))
1156 return -1;
7a8e76a3
SR
1157 }
1158
77ae365e
SR
1159 rb_head_page_activate(cpu_buffer);
1160
7a8e76a3
SR
1161 return 0;
1162}
1163
9b94a8fb 1164static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1165{
044fa782 1166 struct buffer_page *bpage, *tmp;
927e56db
SRV
1167 bool user_thread = current->mm != NULL;
1168 gfp_t mflags;
9b94a8fb 1169 long i;
3adc54fa 1170
927e56db
SRV
1171 /*
1172 * Check if the available memory is there first.
1173 * Note, si_mem_available() only gives us a rough estimate of available
1174 * memory. It may not be accurate. But we don't care, we just want
1175 * to prevent doing any allocation when it is obvious that it is
1176 * not going to succeed.
1177 */
2a872fa4
SRV
1178 i = si_mem_available();
1179 if (i < nr_pages)
1180 return -ENOMEM;
1181
927e56db
SRV
1182 /*
1183 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1184 * gracefully without invoking oom-killer and the system is not
1185 * destabilized.
1186 */
1187 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1188
1189 /*
1190 * If a user thread allocates too much, and si_mem_available()
1191 * reports there's enough memory, even though there is not.
1192 * Make sure the OOM killer kills this thread. This can happen
1193 * even with RETRY_MAYFAIL because another task may be doing
1194 * an allocation after this task has taken all memory.
1195 * This is the task the OOM killer needs to take out during this
1196 * loop, even if it was triggered by an allocation somewhere else.
1197 */
1198 if (user_thread)
1199 set_current_oom_origin();
7a8e76a3 1200 for (i = 0; i < nr_pages; i++) {
7ea59064 1201 struct page *page;
927e56db 1202
044fa782 1203 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
927e56db 1204 mflags, cpu_to_node(cpu));
044fa782 1205 if (!bpage)
e4c2ce82 1206 goto free_pages;
77ae365e 1207
438ced17 1208 list_add(&bpage->list, pages);
77ae365e 1209
927e56db 1210 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
7ea59064 1211 if (!page)
7a8e76a3 1212 goto free_pages;
7ea59064 1213 bpage->page = page_address(page);
044fa782 1214 rb_init_page(bpage->page);
927e56db
SRV
1215
1216 if (user_thread && fatal_signal_pending(current))
1217 goto free_pages;
7a8e76a3 1218 }
927e56db
SRV
1219 if (user_thread)
1220 clear_current_oom_origin();
7a8e76a3 1221
438ced17
VN
1222 return 0;
1223
1224free_pages:
1225 list_for_each_entry_safe(bpage, tmp, pages, list) {
1226 list_del_init(&bpage->list);
1227 free_buffer_page(bpage);
1228 }
927e56db
SRV
1229 if (user_thread)
1230 clear_current_oom_origin();
438ced17
VN
1231
1232 return -ENOMEM;
1233}
1234
1235static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
9b94a8fb 1236 unsigned long nr_pages)
438ced17
VN
1237{
1238 LIST_HEAD(pages);
1239
1240 WARN_ON(!nr_pages);
1241
1242 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1243 return -ENOMEM;
1244
3adc54fa
SR
1245 /*
1246 * The ring buffer page list is a circular list that does not
1247 * start and end with a list head. All page list items point to
1248 * other pages.
1249 */
1250 cpu_buffer->pages = pages.next;
1251 list_del(&pages);
7a8e76a3 1252
438ced17
VN
1253 cpu_buffer->nr_pages = nr_pages;
1254
7a8e76a3
SR
1255 rb_check_pages(cpu_buffer);
1256
1257 return 0;
7a8e76a3
SR
1258}
1259
1260static struct ring_buffer_per_cpu *
9b94a8fb 1261rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
7a8e76a3
SR
1262{
1263 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1264 struct buffer_page *bpage;
7ea59064 1265 struct page *page;
7a8e76a3
SR
1266 int ret;
1267
1268 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1269 GFP_KERNEL, cpu_to_node(cpu));
1270 if (!cpu_buffer)
1271 return NULL;
1272
1273 cpu_buffer->cpu = cpu;
1274 cpu_buffer->buffer = buffer;
5389f6fa 1275 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1276 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1277 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1278 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1279 init_completion(&cpu_buffer->update_done);
15693458 1280 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1281 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1282 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1283
044fa782 1284 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1285 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1286 if (!bpage)
e4c2ce82
SR
1287 goto fail_free_buffer;
1288
77ae365e
SR
1289 rb_check_bpage(cpu_buffer, bpage);
1290
044fa782 1291 cpu_buffer->reader_page = bpage;
7ea59064
VN
1292 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1293 if (!page)
e4c2ce82 1294 goto fail_free_reader;
7ea59064 1295 bpage->page = page_address(page);
044fa782 1296 rb_init_page(bpage->page);
e4c2ce82 1297
d769041f 1298 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1299 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1300
438ced17 1301 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1302 if (ret < 0)
d769041f 1303 goto fail_free_reader;
7a8e76a3
SR
1304
1305 cpu_buffer->head_page
3adc54fa 1306 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1307 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1308
77ae365e
SR
1309 rb_head_page_activate(cpu_buffer);
1310
7a8e76a3
SR
1311 return cpu_buffer;
1312
d769041f
SR
1313 fail_free_reader:
1314 free_buffer_page(cpu_buffer->reader_page);
1315
7a8e76a3
SR
1316 fail_free_buffer:
1317 kfree(cpu_buffer);
1318 return NULL;
1319}
1320
1321static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1322{
3adc54fa 1323 struct list_head *head = cpu_buffer->pages;
044fa782 1324 struct buffer_page *bpage, *tmp;
7a8e76a3 1325
d769041f
SR
1326 free_buffer_page(cpu_buffer->reader_page);
1327
77ae365e
SR
1328 rb_head_page_deactivate(cpu_buffer);
1329
3adc54fa
SR
1330 if (head) {
1331 list_for_each_entry_safe(bpage, tmp, head, list) {
1332 list_del_init(&bpage->list);
1333 free_buffer_page(bpage);
1334 }
1335 bpage = list_entry(head, struct buffer_page, list);
044fa782 1336 free_buffer_page(bpage);
7a8e76a3 1337 }
3adc54fa 1338
7a8e76a3
SR
1339 kfree(cpu_buffer);
1340}
1341
1342/**
d611851b 1343 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1344 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1345 * @flags: attributes to set for the ring buffer.
1346 *
1347 * Currently the only flag that is available is the RB_FL_OVERWRITE
1348 * flag. This flag means that the buffer will overwrite old data
1349 * when the buffer wraps. If this flag is not set, the buffer will
1350 * drop data when the tail hits the head.
1351 */
1f8a6a10
PZ
1352struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1353 struct lock_class_key *key)
7a8e76a3
SR
1354{
1355 struct ring_buffer *buffer;
9b94a8fb 1356 long nr_pages;
7a8e76a3 1357 int bsize;
9b94a8fb 1358 int cpu;
b32614c0 1359 int ret;
7a8e76a3
SR
1360
1361 /* keep it in its own cache line */
1362 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1363 GFP_KERNEL);
1364 if (!buffer)
1365 return NULL;
1366
b18cc3de 1367 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
9e01c1b7
RR
1368 goto fail_free_buffer;
1369
438ced17 1370 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1371 buffer->flags = flags;
37886f6a 1372 buffer->clock = trace_clock_local;
1f8a6a10 1373 buffer->reader_lock_key = key;
7a8e76a3 1374
15693458 1375 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1376 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1377
7a8e76a3 1378 /* need at least two pages */
438ced17
VN
1379 if (nr_pages < 2)
1380 nr_pages = 2;
7a8e76a3 1381
7a8e76a3
SR
1382 buffer->cpus = nr_cpu_ids;
1383
1384 bsize = sizeof(void *) * nr_cpu_ids;
1385 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1386 GFP_KERNEL);
1387 if (!buffer->buffers)
9e01c1b7 1388 goto fail_free_cpumask;
7a8e76a3 1389
b32614c0
SAS
1390 cpu = raw_smp_processor_id();
1391 cpumask_set_cpu(cpu, buffer->cpumask);
1392 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1393 if (!buffer->buffers[cpu])
1394 goto fail_free_buffers;
7a8e76a3 1395
b32614c0
SAS
1396 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1397 if (ret < 0)
1398 goto fail_free_buffers;
554f786e 1399
7a8e76a3
SR
1400 mutex_init(&buffer->mutex);
1401
1402 return buffer;
1403
1404 fail_free_buffers:
1405 for_each_buffer_cpu(buffer, cpu) {
1406 if (buffer->buffers[cpu])
1407 rb_free_cpu_buffer(buffer->buffers[cpu]);
1408 }
1409 kfree(buffer->buffers);
1410
9e01c1b7
RR
1411 fail_free_cpumask:
1412 free_cpumask_var(buffer->cpumask);
1413
7a8e76a3
SR
1414 fail_free_buffer:
1415 kfree(buffer);
1416 return NULL;
1417}
1f8a6a10 1418EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1419
1420/**
1421 * ring_buffer_free - free a ring buffer.
1422 * @buffer: the buffer to free.
1423 */
1424void
1425ring_buffer_free(struct ring_buffer *buffer)
1426{
1427 int cpu;
1428
b32614c0 1429 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
554f786e 1430
7a8e76a3
SR
1431 for_each_buffer_cpu(buffer, cpu)
1432 rb_free_cpu_buffer(buffer->buffers[cpu]);
1433
bd3f0221 1434 kfree(buffer->buffers);
9e01c1b7
RR
1435 free_cpumask_var(buffer->cpumask);
1436
7a8e76a3
SR
1437 kfree(buffer);
1438}
c4f50183 1439EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1440
37886f6a
SR
1441void ring_buffer_set_clock(struct ring_buffer *buffer,
1442 u64 (*clock)(void))
1443{
1444 buffer->clock = clock;
1445}
1446
00b41452
TZ
1447void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1448{
1449 buffer->time_stamp_abs = abs;
1450}
1451
1452bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1453{
1454 return buffer->time_stamp_abs;
1455}
1456
7a8e76a3
SR
1457static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1458
83f40318
VN
1459static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1460{
1461 return local_read(&bpage->entries) & RB_WRITE_MASK;
1462}
1463
1464static inline unsigned long rb_page_write(struct buffer_page *bpage)
1465{
1466 return local_read(&bpage->write) & RB_WRITE_MASK;
1467}
1468
5040b4b7 1469static int
9b94a8fb 1470rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
7a8e76a3 1471{
83f40318
VN
1472 struct list_head *tail_page, *to_remove, *next_page;
1473 struct buffer_page *to_remove_page, *tmp_iter_page;
1474 struct buffer_page *last_page, *first_page;
9b94a8fb 1475 unsigned long nr_removed;
83f40318
VN
1476 unsigned long head_bit;
1477 int page_entries;
1478
1479 head_bit = 0;
7a8e76a3 1480
5389f6fa 1481 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1482 atomic_inc(&cpu_buffer->record_disabled);
1483 /*
1484 * We don't race with the readers since we have acquired the reader
1485 * lock. We also don't race with writers after disabling recording.
1486 * This makes it easy to figure out the first and the last page to be
1487 * removed from the list. We unlink all the pages in between including
1488 * the first and last pages. This is done in a busy loop so that we
1489 * lose the least number of traces.
1490 * The pages are freed after we restart recording and unlock readers.
1491 */
1492 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1493
83f40318
VN
1494 /*
1495 * tail page might be on reader page, we remove the next page
1496 * from the ring buffer
1497 */
1498 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1499 tail_page = rb_list_head(tail_page->next);
1500 to_remove = tail_page;
1501
1502 /* start of pages to remove */
1503 first_page = list_entry(rb_list_head(to_remove->next),
1504 struct buffer_page, list);
1505
1506 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1507 to_remove = rb_list_head(to_remove)->next;
1508 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1509 }
7a8e76a3 1510
83f40318 1511 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1512
83f40318
VN
1513 /*
1514 * Now we remove all pages between tail_page and next_page.
1515 * Make sure that we have head_bit value preserved for the
1516 * next page
1517 */
1518 tail_page->next = (struct list_head *)((unsigned long)next_page |
1519 head_bit);
1520 next_page = rb_list_head(next_page);
1521 next_page->prev = tail_page;
1522
1523 /* make sure pages points to a valid page in the ring buffer */
1524 cpu_buffer->pages = next_page;
1525
1526 /* update head page */
1527 if (head_bit)
1528 cpu_buffer->head_page = list_entry(next_page,
1529 struct buffer_page, list);
1530
1531 /*
1532 * change read pointer to make sure any read iterators reset
1533 * themselves
1534 */
1535 cpu_buffer->read = 0;
1536
1537 /* pages are removed, resume tracing and then free the pages */
1538 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1539 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1540
1541 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1542
1543 /* last buffer page to remove */
1544 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1545 list);
1546 tmp_iter_page = first_page;
1547
1548 do {
1549 to_remove_page = tmp_iter_page;
1550 rb_inc_page(cpu_buffer, &tmp_iter_page);
1551
1552 /* update the counters */
1553 page_entries = rb_page_entries(to_remove_page);
1554 if (page_entries) {
1555 /*
1556 * If something was added to this page, it was full
1557 * since it is not the tail page. So we deduct the
1558 * bytes consumed in ring buffer from here.
48fdc72f 1559 * Increment overrun to account for the lost events.
83f40318 1560 */
48fdc72f 1561 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1562 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1563 }
1564
1565 /*
1566 * We have already removed references to this list item, just
1567 * free up the buffer_page and its page
1568 */
1569 free_buffer_page(to_remove_page);
1570 nr_removed--;
1571
1572 } while (to_remove_page != last_page);
1573
1574 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1575
1576 return nr_removed == 0;
7a8e76a3
SR
1577}
1578
5040b4b7
VN
1579static int
1580rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1581{
5040b4b7
VN
1582 struct list_head *pages = &cpu_buffer->new_pages;
1583 int retries, success;
7a8e76a3 1584
5389f6fa 1585 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1586 /*
1587 * We are holding the reader lock, so the reader page won't be swapped
1588 * in the ring buffer. Now we are racing with the writer trying to
1589 * move head page and the tail page.
1590 * We are going to adapt the reader page update process where:
1591 * 1. We first splice the start and end of list of new pages between
1592 * the head page and its previous page.
1593 * 2. We cmpxchg the prev_page->next to point from head page to the
1594 * start of new pages list.
1595 * 3. Finally, we update the head->prev to the end of new list.
1596 *
1597 * We will try this process 10 times, to make sure that we don't keep
1598 * spinning.
1599 */
1600 retries = 10;
1601 success = 0;
1602 while (retries--) {
1603 struct list_head *head_page, *prev_page, *r;
1604 struct list_head *last_page, *first_page;
1605 struct list_head *head_page_with_bit;
77ae365e 1606
5040b4b7 1607 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1608 if (!head_page)
1609 break;
5040b4b7
VN
1610 prev_page = head_page->prev;
1611
1612 first_page = pages->next;
1613 last_page = pages->prev;
1614
1615 head_page_with_bit = (struct list_head *)
1616 ((unsigned long)head_page | RB_PAGE_HEAD);
1617
1618 last_page->next = head_page_with_bit;
1619 first_page->prev = prev_page;
1620
1621 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1622
1623 if (r == head_page_with_bit) {
1624 /*
1625 * yay, we replaced the page pointer to our new list,
1626 * now, we just have to update to head page's prev
1627 * pointer to point to end of list
1628 */
1629 head_page->prev = last_page;
1630 success = 1;
1631 break;
1632 }
7a8e76a3 1633 }
7a8e76a3 1634
5040b4b7
VN
1635 if (success)
1636 INIT_LIST_HEAD(pages);
1637 /*
1638 * If we weren't successful in adding in new pages, warn and stop
1639 * tracing
1640 */
1641 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1642 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1643
1644 /* free pages if they weren't inserted */
1645 if (!success) {
1646 struct buffer_page *bpage, *tmp;
1647 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1648 list) {
1649 list_del_init(&bpage->list);
1650 free_buffer_page(bpage);
1651 }
1652 }
1653 return success;
7a8e76a3
SR
1654}
1655
83f40318 1656static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1657{
5040b4b7
VN
1658 int success;
1659
438ced17 1660 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1661 success = rb_insert_pages(cpu_buffer);
438ced17 1662 else
5040b4b7
VN
1663 success = rb_remove_pages(cpu_buffer,
1664 -cpu_buffer->nr_pages_to_update);
83f40318 1665
5040b4b7
VN
1666 if (success)
1667 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1668}
1669
1670static void update_pages_handler(struct work_struct *work)
1671{
1672 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1673 struct ring_buffer_per_cpu, update_pages_work);
1674 rb_update_pages(cpu_buffer);
05fdd70d 1675 complete(&cpu_buffer->update_done);
438ced17
VN
1676}
1677
7a8e76a3
SR
1678/**
1679 * ring_buffer_resize - resize the ring buffer
1680 * @buffer: the buffer to resize.
1681 * @size: the new size.
d611851b 1682 * @cpu_id: the cpu buffer to resize
7a8e76a3 1683 *
7a8e76a3
SR
1684 * Minimum size is 2 * BUF_PAGE_SIZE.
1685 *
83f40318 1686 * Returns 0 on success and < 0 on failure.
7a8e76a3 1687 */
438ced17
VN
1688int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1689 int cpu_id)
7a8e76a3
SR
1690{
1691 struct ring_buffer_per_cpu *cpu_buffer;
9b94a8fb 1692 unsigned long nr_pages;
83f40318 1693 int cpu, err = 0;
7a8e76a3 1694
ee51a1de
IM
1695 /*
1696 * Always succeed at resizing a non-existent buffer:
1697 */
1698 if (!buffer)
1699 return size;
1700
6a31e1f1
SR
1701 /* Make sure the requested buffer exists */
1702 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1703 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1704 return size;
1705
59643d15 1706 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3
SR
1707
1708 /* we need a minimum of two pages */
59643d15
SRRH
1709 if (nr_pages < 2)
1710 nr_pages = 2;
7a8e76a3 1711
59643d15 1712 size = nr_pages * BUF_PAGE_SIZE;
18421015 1713
83f40318
VN
1714 /*
1715 * Don't succeed if resizing is disabled, as a reader might be
1716 * manipulating the ring buffer and is expecting a sane state while
1717 * this is true.
1718 */
1719 if (atomic_read(&buffer->resize_disabled))
1720 return -EBUSY;
18421015 1721
83f40318 1722 /* prevent another thread from changing buffer sizes */
7a8e76a3 1723 mutex_lock(&buffer->mutex);
7a8e76a3 1724
438ced17
VN
1725 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1726 /* calculate the pages to update */
7a8e76a3
SR
1727 for_each_buffer_cpu(buffer, cpu) {
1728 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1729
438ced17
VN
1730 cpu_buffer->nr_pages_to_update = nr_pages -
1731 cpu_buffer->nr_pages;
438ced17
VN
1732 /*
1733 * nothing more to do for removing pages or no update
1734 */
1735 if (cpu_buffer->nr_pages_to_update <= 0)
1736 continue;
d7ec4bfe 1737 /*
438ced17
VN
1738 * to add pages, make sure all new pages can be
1739 * allocated without receiving ENOMEM
d7ec4bfe 1740 */
438ced17
VN
1741 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1742 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1743 &cpu_buffer->new_pages, cpu)) {
438ced17 1744 /* not enough memory for new pages */
83f40318
VN
1745 err = -ENOMEM;
1746 goto out_err;
1747 }
1748 }
1749
1750 get_online_cpus();
1751 /*
1752 * Fire off all the required work handlers
05fdd70d 1753 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1754 * since we can change their buffer sizes without any race.
1755 */
1756 for_each_buffer_cpu(buffer, cpu) {
1757 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1758 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1759 continue;
1760
021c5b34
CM
1761 /* Can't run something on an offline CPU. */
1762 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1763 rb_update_pages(cpu_buffer);
1764 cpu_buffer->nr_pages_to_update = 0;
1765 } else {
05fdd70d
VN
1766 schedule_work_on(cpu,
1767 &cpu_buffer->update_pages_work);
f5eb5588 1768 }
7a8e76a3 1769 }
7a8e76a3 1770
438ced17
VN
1771 /* wait for all the updates to complete */
1772 for_each_buffer_cpu(buffer, cpu) {
1773 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1774 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1775 continue;
1776
05fdd70d
VN
1777 if (cpu_online(cpu))
1778 wait_for_completion(&cpu_buffer->update_done);
83f40318 1779 cpu_buffer->nr_pages_to_update = 0;
438ced17 1780 }
83f40318
VN
1781
1782 put_online_cpus();
438ced17 1783 } else {
6167c205 1784 /* Make sure this CPU has been initialized */
8e49f418
VN
1785 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1786 goto out;
1787
438ced17 1788 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1789
438ced17
VN
1790 if (nr_pages == cpu_buffer->nr_pages)
1791 goto out;
7a8e76a3 1792
438ced17
VN
1793 cpu_buffer->nr_pages_to_update = nr_pages -
1794 cpu_buffer->nr_pages;
1795
1796 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1797 if (cpu_buffer->nr_pages_to_update > 0 &&
1798 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1799 &cpu_buffer->new_pages, cpu_id)) {
1800 err = -ENOMEM;
1801 goto out_err;
1802 }
438ced17 1803
83f40318
VN
1804 get_online_cpus();
1805
021c5b34
CM
1806 /* Can't run something on an offline CPU. */
1807 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1808 rb_update_pages(cpu_buffer);
1809 else {
83f40318
VN
1810 schedule_work_on(cpu_id,
1811 &cpu_buffer->update_pages_work);
05fdd70d 1812 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1813 }
83f40318 1814
83f40318 1815 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1816 put_online_cpus();
438ced17 1817 }
7a8e76a3
SR
1818
1819 out:
659f451f
SR
1820 /*
1821 * The ring buffer resize can happen with the ring buffer
1822 * enabled, so that the update disturbs the tracing as little
1823 * as possible. But if the buffer is disabled, we do not need
1824 * to worry about that, and we can take the time to verify
1825 * that the buffer is not corrupt.
1826 */
1827 if (atomic_read(&buffer->record_disabled)) {
1828 atomic_inc(&buffer->record_disabled);
1829 /*
1830 * Even though the buffer was disabled, we must make sure
1831 * that it is truly disabled before calling rb_check_pages.
1832 * There could have been a race between checking
1833 * record_disable and incrementing it.
1834 */
1835 synchronize_sched();
1836 for_each_buffer_cpu(buffer, cpu) {
1837 cpu_buffer = buffer->buffers[cpu];
1838 rb_check_pages(cpu_buffer);
1839 }
1840 atomic_dec(&buffer->record_disabled);
1841 }
1842
7a8e76a3 1843 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1844 return size;
1845
83f40318 1846 out_err:
438ced17
VN
1847 for_each_buffer_cpu(buffer, cpu) {
1848 struct buffer_page *bpage, *tmp;
83f40318 1849
438ced17 1850 cpu_buffer = buffer->buffers[cpu];
438ced17 1851 cpu_buffer->nr_pages_to_update = 0;
83f40318 1852
438ced17
VN
1853 if (list_empty(&cpu_buffer->new_pages))
1854 continue;
83f40318 1855
438ced17
VN
1856 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1857 list) {
1858 list_del_init(&bpage->list);
1859 free_buffer_page(bpage);
1860 }
7a8e76a3 1861 }
641d2f63 1862 mutex_unlock(&buffer->mutex);
83f40318 1863 return err;
7a8e76a3 1864}
c4f50183 1865EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1866
750912fa
DS
1867void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1868{
1869 mutex_lock(&buffer->mutex);
1870 if (val)
1871 buffer->flags |= RB_FL_OVERWRITE;
1872 else
1873 buffer->flags &= ~RB_FL_OVERWRITE;
1874 mutex_unlock(&buffer->mutex);
1875}
1876EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1877
2289d567 1878static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1879{
044fa782 1880 return bpage->page->data + index;
7a8e76a3
SR
1881}
1882
2289d567 1883static __always_inline struct ring_buffer_event *
d769041f 1884rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1885{
6f807acd
SR
1886 return __rb_page_index(cpu_buffer->reader_page,
1887 cpu_buffer->reader_page->read);
1888}
1889
2289d567 1890static __always_inline struct ring_buffer_event *
7a8e76a3
SR
1891rb_iter_head_event(struct ring_buffer_iter *iter)
1892{
6f807acd 1893 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1894}
1895
2289d567 1896static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
bf41a158 1897{
abc9b56d 1898 return local_read(&bpage->page->commit);
bf41a158
SR
1899}
1900
25985edc 1901/* Size is determined by what has been committed */
2289d567 1902static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
bf41a158
SR
1903{
1904 return rb_page_commit(bpage);
1905}
1906
2289d567 1907static __always_inline unsigned
bf41a158
SR
1908rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1909{
1910 return rb_page_commit(cpu_buffer->commit_page);
1911}
1912
2289d567 1913static __always_inline unsigned
bf41a158
SR
1914rb_event_index(struct ring_buffer_event *event)
1915{
1916 unsigned long addr = (unsigned long)event;
1917
22f470f8 1918 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1919}
1920
34a148bf 1921static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1922{
1923 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1924
1925 /*
1926 * The iterator could be on the reader page (it starts there).
1927 * But the head could have moved, since the reader was
1928 * found. Check for this case and assign the iterator
1929 * to the head page instead of next.
1930 */
1931 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1932 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1933 else
1934 rb_inc_page(cpu_buffer, &iter->head_page);
1935
abc9b56d 1936 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1937 iter->head = 0;
1938}
1939
77ae365e
SR
1940/*
1941 * rb_handle_head_page - writer hit the head page
1942 *
1943 * Returns: +1 to retry page
1944 * 0 to continue
1945 * -1 on error
1946 */
1947static int
1948rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1949 struct buffer_page *tail_page,
1950 struct buffer_page *next_page)
1951{
1952 struct buffer_page *new_head;
1953 int entries;
1954 int type;
1955 int ret;
1956
1957 entries = rb_page_entries(next_page);
1958
1959 /*
1960 * The hard part is here. We need to move the head
1961 * forward, and protect against both readers on
1962 * other CPUs and writers coming in via interrupts.
1963 */
1964 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1965 RB_PAGE_HEAD);
1966
1967 /*
1968 * type can be one of four:
1969 * NORMAL - an interrupt already moved it for us
1970 * HEAD - we are the first to get here.
1971 * UPDATE - we are the interrupt interrupting
1972 * a current move.
1973 * MOVED - a reader on another CPU moved the next
1974 * pointer to its reader page. Give up
1975 * and try again.
1976 */
1977
1978 switch (type) {
1979 case RB_PAGE_HEAD:
1980 /*
1981 * We changed the head to UPDATE, thus
1982 * it is our responsibility to update
1983 * the counters.
1984 */
1985 local_add(entries, &cpu_buffer->overrun);
c64e148a 1986 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1987
1988 /*
1989 * The entries will be zeroed out when we move the
1990 * tail page.
1991 */
1992
1993 /* still more to do */
1994 break;
1995
1996 case RB_PAGE_UPDATE:
1997 /*
1998 * This is an interrupt that interrupt the
1999 * previous update. Still more to do.
2000 */
2001 break;
2002 case RB_PAGE_NORMAL:
2003 /*
2004 * An interrupt came in before the update
2005 * and processed this for us.
2006 * Nothing left to do.
2007 */
2008 return 1;
2009 case RB_PAGE_MOVED:
2010 /*
2011 * The reader is on another CPU and just did
2012 * a swap with our next_page.
2013 * Try again.
2014 */
2015 return 1;
2016 default:
2017 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2018 return -1;
2019 }
2020
2021 /*
2022 * Now that we are here, the old head pointer is
2023 * set to UPDATE. This will keep the reader from
2024 * swapping the head page with the reader page.
2025 * The reader (on another CPU) will spin till
2026 * we are finished.
2027 *
2028 * We just need to protect against interrupts
2029 * doing the job. We will set the next pointer
2030 * to HEAD. After that, we set the old pointer
2031 * to NORMAL, but only if it was HEAD before.
2032 * otherwise we are an interrupt, and only
2033 * want the outer most commit to reset it.
2034 */
2035 new_head = next_page;
2036 rb_inc_page(cpu_buffer, &new_head);
2037
2038 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2039 RB_PAGE_NORMAL);
2040
2041 /*
2042 * Valid returns are:
2043 * HEAD - an interrupt came in and already set it.
2044 * NORMAL - One of two things:
2045 * 1) We really set it.
2046 * 2) A bunch of interrupts came in and moved
2047 * the page forward again.
2048 */
2049 switch (ret) {
2050 case RB_PAGE_HEAD:
2051 case RB_PAGE_NORMAL:
2052 /* OK */
2053 break;
2054 default:
2055 RB_WARN_ON(cpu_buffer, 1);
2056 return -1;
2057 }
2058
2059 /*
2060 * It is possible that an interrupt came in,
2061 * set the head up, then more interrupts came in
2062 * and moved it again. When we get back here,
2063 * the page would have been set to NORMAL but we
2064 * just set it back to HEAD.
2065 *
2066 * How do you detect this? Well, if that happened
2067 * the tail page would have moved.
2068 */
2069 if (ret == RB_PAGE_NORMAL) {
8573636e
SRRH
2070 struct buffer_page *buffer_tail_page;
2071
2072 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
77ae365e
SR
2073 /*
2074 * If the tail had moved passed next, then we need
2075 * to reset the pointer.
2076 */
8573636e
SRRH
2077 if (buffer_tail_page != tail_page &&
2078 buffer_tail_page != next_page)
77ae365e
SR
2079 rb_head_page_set_normal(cpu_buffer, new_head,
2080 next_page,
2081 RB_PAGE_HEAD);
2082 }
2083
2084 /*
2085 * If this was the outer most commit (the one that
2086 * changed the original pointer from HEAD to UPDATE),
2087 * then it is up to us to reset it to NORMAL.
2088 */
2089 if (type == RB_PAGE_HEAD) {
2090 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2091 tail_page,
2092 RB_PAGE_UPDATE);
2093 if (RB_WARN_ON(cpu_buffer,
2094 ret != RB_PAGE_UPDATE))
2095 return -1;
2096 }
2097
2098 return 0;
2099}
2100
c7b09308
SR
2101static inline void
2102rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2103 unsigned long tail, struct rb_event_info *info)
c7b09308 2104{
fcc742ea 2105 struct buffer_page *tail_page = info->tail_page;
c7b09308 2106 struct ring_buffer_event *event;
fcc742ea 2107 unsigned long length = info->length;
c7b09308
SR
2108
2109 /*
2110 * Only the event that crossed the page boundary
2111 * must fill the old tail_page with padding.
2112 */
2113 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2114 /*
2115 * If the page was filled, then we still need
2116 * to update the real_end. Reset it to zero
2117 * and the reader will ignore it.
2118 */
2119 if (tail == BUF_PAGE_SIZE)
2120 tail_page->real_end = 0;
2121
c7b09308
SR
2122 local_sub(length, &tail_page->write);
2123 return;
2124 }
2125
2126 event = __rb_page_index(tail_page, tail);
2127
c64e148a
VN
2128 /* account for padding bytes */
2129 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2130
ff0ff84a
SR
2131 /*
2132 * Save the original length to the meta data.
2133 * This will be used by the reader to add lost event
2134 * counter.
2135 */
2136 tail_page->real_end = tail;
2137
c7b09308
SR
2138 /*
2139 * If this event is bigger than the minimum size, then
2140 * we need to be careful that we don't subtract the
2141 * write counter enough to allow another writer to slip
2142 * in on this page.
2143 * We put in a discarded commit instead, to make sure
2144 * that this space is not used again.
2145 *
2146 * If we are less than the minimum size, we don't need to
2147 * worry about it.
2148 */
2149 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2150 /* No room for any events */
2151
2152 /* Mark the rest of the page with padding */
2153 rb_event_set_padding(event);
2154
2155 /* Set the write back to the previous setting */
2156 local_sub(length, &tail_page->write);
2157 return;
2158 }
2159
2160 /* Put in a discarded event */
2161 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2162 event->type_len = RINGBUF_TYPE_PADDING;
2163 /* time delta must be non zero */
2164 event->time_delta = 1;
c7b09308
SR
2165
2166 /* Set write to end of buffer */
2167 length = (tail + length) - BUF_PAGE_SIZE;
2168 local_sub(length, &tail_page->write);
2169}
6634ff26 2170
4239c38f
SRRH
2171static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2172
747e94ae
SR
2173/*
2174 * This is the slow path, force gcc not to inline it.
2175 */
2176static noinline struct ring_buffer_event *
6634ff26 2177rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2178 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2179{
fcc742ea 2180 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2181 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2182 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2183 struct buffer_page *next_page;
2184 int ret;
aa20ae84
SR
2185
2186 next_page = tail_page;
2187
aa20ae84
SR
2188 rb_inc_page(cpu_buffer, &next_page);
2189
aa20ae84
SR
2190 /*
2191 * If for some reason, we had an interrupt storm that made
2192 * it all the way around the buffer, bail, and warn
2193 * about it.
2194 */
2195 if (unlikely(next_page == commit_page)) {
77ae365e 2196 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2197 goto out_reset;
2198 }
2199
77ae365e
SR
2200 /*
2201 * This is where the fun begins!
2202 *
2203 * We are fighting against races between a reader that
2204 * could be on another CPU trying to swap its reader
2205 * page with the buffer head.
2206 *
2207 * We are also fighting against interrupts coming in and
2208 * moving the head or tail on us as well.
2209 *
2210 * If the next page is the head page then we have filled
2211 * the buffer, unless the commit page is still on the
2212 * reader page.
2213 */
2214 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2215
77ae365e
SR
2216 /*
2217 * If the commit is not on the reader page, then
2218 * move the header page.
2219 */
2220 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2221 /*
2222 * If we are not in overwrite mode,
2223 * this is easy, just stop here.
2224 */
884bfe89
SP
2225 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2226 local_inc(&cpu_buffer->dropped_events);
77ae365e 2227 goto out_reset;
884bfe89 2228 }
77ae365e
SR
2229
2230 ret = rb_handle_head_page(cpu_buffer,
2231 tail_page,
2232 next_page);
2233 if (ret < 0)
2234 goto out_reset;
2235 if (ret)
2236 goto out_again;
2237 } else {
2238 /*
2239 * We need to be careful here too. The
2240 * commit page could still be on the reader
2241 * page. We could have a small buffer, and
2242 * have filled up the buffer with events
2243 * from interrupts and such, and wrapped.
2244 *
2245 * Note, if the tail page is also the on the
2246 * reader_page, we let it move out.
2247 */
2248 if (unlikely((cpu_buffer->commit_page !=
2249 cpu_buffer->tail_page) &&
2250 (cpu_buffer->commit_page ==
2251 cpu_buffer->reader_page))) {
2252 local_inc(&cpu_buffer->commit_overrun);
2253 goto out_reset;
2254 }
aa20ae84
SR
2255 }
2256 }
2257
70004986 2258 rb_tail_page_update(cpu_buffer, tail_page, next_page);
aa20ae84 2259
77ae365e 2260 out_again:
aa20ae84 2261
fcc742ea 2262 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84 2263
4239c38f
SRRH
2264 /* Commit what we have for now. */
2265 rb_end_commit(cpu_buffer);
2266 /* rb_end_commit() decs committing */
2267 local_inc(&cpu_buffer->committing);
2268
aa20ae84
SR
2269 /* fail and let the caller try again */
2270 return ERR_PTR(-EAGAIN);
2271
45141d46 2272 out_reset:
6f3b3440 2273 /* reset write */
fcc742ea 2274 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2275
bf41a158 2276 return NULL;
7a8e76a3
SR
2277}
2278
d90fd774
SRRH
2279/* Slow path, do not inline */
2280static noinline struct ring_buffer_event *
dc4e2801 2281rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
9826b273 2282{
dc4e2801
TZ
2283 if (abs)
2284 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2285 else
2286 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2287
dc4e2801
TZ
2288 /* Not the first event on the page, or not delta? */
2289 if (abs || rb_event_index(event)) {
d90fd774
SRRH
2290 event->time_delta = delta & TS_MASK;
2291 event->array[0] = delta >> TS_SHIFT;
2292 } else {
2293 /* nope, just zero it */
2294 event->time_delta = 0;
2295 event->array[0] = 0;
2296 }
a4543a2f 2297
d90fd774
SRRH
2298 return skip_time_extend(event);
2299}
a4543a2f 2300
cdb2a0a9 2301static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
b7dc42fd
SRRH
2302 struct ring_buffer_event *event);
2303
d90fd774
SRRH
2304/**
2305 * rb_update_event - update event type and data
2306 * @event: the event to update
2307 * @type: the type of event
2308 * @length: the size of the event field in the ring buffer
2309 *
2310 * Update the type and data fields of the event. The length
2311 * is the actual size that is written to the ring buffer,
2312 * and with this, we can determine what to place into the
2313 * data field.
2314 */
b7dc42fd 2315static void
d90fd774
SRRH
2316rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2317 struct ring_buffer_event *event,
2318 struct rb_event_info *info)
2319{
2320 unsigned length = info->length;
2321 u64 delta = info->delta;
a4543a2f 2322
b7dc42fd
SRRH
2323 /* Only a commit updates the timestamp */
2324 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2325 delta = 0;
2326
a4543a2f 2327 /*
d90fd774 2328 * If we need to add a timestamp, then we
6167c205 2329 * add it to the start of the reserved space.
a4543a2f 2330 */
d90fd774 2331 if (unlikely(info->add_timestamp)) {
dc4e2801
TZ
2332 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2333
2334 event = rb_add_time_stamp(event, info->delta, abs);
d90fd774
SRRH
2335 length -= RB_LEN_TIME_EXTEND;
2336 delta = 0;
a4543a2f
SRRH
2337 }
2338
d90fd774
SRRH
2339 event->time_delta = delta;
2340 length -= RB_EVNT_HDR_SIZE;
2341 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2342 event->type_len = 0;
2343 event->array[0] = length;
2344 } else
2345 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2346}
2347
2348static unsigned rb_calculate_event_length(unsigned length)
2349{
2350 struct ring_buffer_event event; /* Used only for sizeof array */
2351
2352 /* zero length can cause confusions */
2353 if (!length)
2354 length++;
2355
2356 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2357 length += sizeof(event.array[0]);
2358
2359 length += RB_EVNT_HDR_SIZE;
2360 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2361
2362 /*
2363 * In case the time delta is larger than the 27 bits for it
2364 * in the header, we need to add a timestamp. If another
2365 * event comes in when trying to discard this one to increase
2366 * the length, then the timestamp will be added in the allocated
2367 * space of this event. If length is bigger than the size needed
2368 * for the TIME_EXTEND, then padding has to be used. The events
2369 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2370 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2371 * As length is a multiple of 4, we only need to worry if it
2372 * is 12 (RB_LEN_TIME_EXTEND + 4).
2373 */
2374 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2375 length += RB_ALIGNMENT;
2376
2377 return length;
2378}
2379
2380#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2381static inline bool sched_clock_stable(void)
2382{
2383 return true;
2384}
2385#endif
2386
2387static inline int
2388rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2389 struct ring_buffer_event *event)
2390{
2391 unsigned long new_index, old_index;
2392 struct buffer_page *bpage;
2393 unsigned long index;
2394 unsigned long addr;
2395
2396 new_index = rb_event_index(event);
2397 old_index = new_index + rb_event_ts_length(event);
2398 addr = (unsigned long)event;
2399 addr &= PAGE_MASK;
2400
8573636e 2401 bpage = READ_ONCE(cpu_buffer->tail_page);
d90fd774
SRRH
2402
2403 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2404 unsigned long write_mask =
2405 local_read(&bpage->write) & ~RB_WRITE_MASK;
2406 unsigned long event_length = rb_event_length(event);
2407 /*
2408 * This is on the tail page. It is possible that
2409 * a write could come in and move the tail page
2410 * and write to the next page. That is fine
2411 * because we just shorten what is on this page.
2412 */
2413 old_index += write_mask;
2414 new_index += write_mask;
2415 index = local_cmpxchg(&bpage->write, old_index, new_index);
2416 if (index == old_index) {
2417 /* update counters */
2418 local_sub(event_length, &cpu_buffer->entries_bytes);
2419 return 1;
2420 }
2421 }
2422
2423 /* could not discard */
2424 return 0;
2425}
2426
2427static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2428{
2429 local_inc(&cpu_buffer->committing);
2430 local_inc(&cpu_buffer->commits);
2431}
2432
38e11df1 2433static __always_inline void
d90fd774
SRRH
2434rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2435{
2436 unsigned long max_count;
2437
2438 /*
2439 * We only race with interrupts and NMIs on this CPU.
2440 * If we own the commit event, then we can commit
2441 * all others that interrupted us, since the interruptions
2442 * are in stack format (they finish before they come
2443 * back to us). This allows us to do a simple loop to
2444 * assign the commit to the tail.
2445 */
2446 again:
2447 max_count = cpu_buffer->nr_pages * 100;
2448
8573636e 2449 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
d90fd774
SRRH
2450 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2451 return;
2452 if (RB_WARN_ON(cpu_buffer,
2453 rb_is_reader_page(cpu_buffer->tail_page)))
2454 return;
2455 local_set(&cpu_buffer->commit_page->page->commit,
2456 rb_page_write(cpu_buffer->commit_page));
2457 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
70004986
SRRH
2458 /* Only update the write stamp if the page has an event */
2459 if (rb_page_write(cpu_buffer->commit_page))
2460 cpu_buffer->write_stamp =
2461 cpu_buffer->commit_page->page->time_stamp;
d90fd774
SRRH
2462 /* add barrier to keep gcc from optimizing too much */
2463 barrier();
2464 }
2465 while (rb_commit_index(cpu_buffer) !=
2466 rb_page_write(cpu_buffer->commit_page)) {
2467
2468 local_set(&cpu_buffer->commit_page->page->commit,
2469 rb_page_write(cpu_buffer->commit_page));
2470 RB_WARN_ON(cpu_buffer,
2471 local_read(&cpu_buffer->commit_page->page->commit) &
2472 ~RB_WRITE_MASK);
2473 barrier();
2474 }
2475
2476 /* again, keep gcc from optimizing */
2477 barrier();
2478
2479 /*
2480 * If an interrupt came in just after the first while loop
2481 * and pushed the tail page forward, we will be left with
2482 * a dangling commit that will never go forward.
2483 */
8573636e 2484 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
d90fd774
SRRH
2485 goto again;
2486}
2487
38e11df1 2488static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
d90fd774
SRRH
2489{
2490 unsigned long commits;
2491
2492 if (RB_WARN_ON(cpu_buffer,
2493 !local_read(&cpu_buffer->committing)))
2494 return;
2495
2496 again:
2497 commits = local_read(&cpu_buffer->commits);
2498 /* synchronize with interrupts */
2499 barrier();
2500 if (local_read(&cpu_buffer->committing) == 1)
2501 rb_set_commit_to_write(cpu_buffer);
2502
2503 local_dec(&cpu_buffer->committing);
2504
2505 /* synchronize with interrupts */
2506 barrier();
2507
2508 /*
2509 * Need to account for interrupts coming in between the
2510 * updating of the commit page and the clearing of the
2511 * committing counter.
2512 */
2513 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2514 !local_read(&cpu_buffer->committing)) {
2515 local_inc(&cpu_buffer->committing);
2516 goto again;
2517 }
2518}
2519
2520static inline void rb_event_discard(struct ring_buffer_event *event)
2521{
dc4e2801 2522 if (extended_time(event))
d90fd774
SRRH
2523 event = skip_time_extend(event);
2524
2525 /* array[0] holds the actual length for the discarded event */
2526 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2527 event->type_len = RINGBUF_TYPE_PADDING;
2528 /* time delta must be non zero */
2529 if (!event->time_delta)
2530 event->time_delta = 1;
2531}
2532
babe3fce 2533static __always_inline bool
d90fd774
SRRH
2534rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2535 struct ring_buffer_event *event)
2536{
2537 unsigned long addr = (unsigned long)event;
2538 unsigned long index;
2539
2540 index = rb_event_index(event);
2541 addr &= PAGE_MASK;
2542
2543 return cpu_buffer->commit_page->page == (void *)addr &&
2544 rb_commit_index(cpu_buffer) == index;
2545}
2546
babe3fce 2547static __always_inline void
d90fd774
SRRH
2548rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2549 struct ring_buffer_event *event)
2550{
2551 u64 delta;
2552
2553 /*
2554 * The event first in the commit queue updates the
2555 * time stamp.
2556 */
2557 if (rb_event_is_commit(cpu_buffer, event)) {
2558 /*
2559 * A commit event that is first on a page
2560 * updates the write timestamp with the page stamp
2561 */
2562 if (!rb_event_index(event))
2563 cpu_buffer->write_stamp =
2564 cpu_buffer->commit_page->page->time_stamp;
2565 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
dc4e2801 2566 delta = ring_buffer_event_time_stamp(event);
d90fd774 2567 cpu_buffer->write_stamp += delta;
dc4e2801
TZ
2568 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2569 delta = ring_buffer_event_time_stamp(event);
2570 cpu_buffer->write_stamp = delta;
d90fd774
SRRH
2571 } else
2572 cpu_buffer->write_stamp += event->time_delta;
2573 }
2574}
2575
2576static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2577 struct ring_buffer_event *event)
2578{
2579 local_inc(&cpu_buffer->entries);
2580 rb_update_write_stamp(cpu_buffer, event);
2581 rb_end_commit(cpu_buffer);
2582}
2583
2584static __always_inline void
2585rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2586{
2587 bool pagebusy;
2588
2589 if (buffer->irq_work.waiters_pending) {
2590 buffer->irq_work.waiters_pending = false;
2591 /* irq_work_queue() supplies it's own memory barriers */
2592 irq_work_queue(&buffer->irq_work.work);
2593 }
2594
2595 if (cpu_buffer->irq_work.waiters_pending) {
2596 cpu_buffer->irq_work.waiters_pending = false;
2597 /* irq_work_queue() supplies it's own memory barriers */
2598 irq_work_queue(&cpu_buffer->irq_work.work);
2599 }
2600
2601 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2602
2603 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2604 cpu_buffer->irq_work.wakeup_full = true;
2605 cpu_buffer->irq_work.full_waiters_pending = false;
2606 /* irq_work_queue() supplies it's own memory barriers */
2607 irq_work_queue(&cpu_buffer->irq_work.work);
2608 }
2609}
2610
2611/*
2612 * The lock and unlock are done within a preempt disable section.
2613 * The current_context per_cpu variable can only be modified
2614 * by the current task between lock and unlock. But it can
a0e3a18f
SRV
2615 * be modified more than once via an interrupt. To pass this
2616 * information from the lock to the unlock without having to
2617 * access the 'in_interrupt()' functions again (which do show
2618 * a bit of overhead in something as critical as function tracing,
2619 * we use a bitmask trick.
d90fd774 2620 *
a0e3a18f
SRV
2621 * bit 0 = NMI context
2622 * bit 1 = IRQ context
2623 * bit 2 = SoftIRQ context
2624 * bit 3 = normal context.
d90fd774 2625 *
a0e3a18f
SRV
2626 * This works because this is the order of contexts that can
2627 * preempt other contexts. A SoftIRQ never preempts an IRQ
2628 * context.
2629 *
2630 * When the context is determined, the corresponding bit is
2631 * checked and set (if it was set, then a recursion of that context
2632 * happened).
2633 *
2634 * On unlock, we need to clear this bit. To do so, just subtract
2635 * 1 from the current_context and AND it to itself.
2636 *
2637 * (binary)
2638 * 101 - 1 = 100
2639 * 101 & 100 = 100 (clearing bit zero)
2640 *
2641 * 1010 - 1 = 1001
2642 * 1010 & 1001 = 1000 (clearing bit 1)
2643 *
2644 * The least significant bit can be cleared this way, and it
2645 * just so happens that it is the same bit corresponding to
2646 * the current context.
d90fd774
SRRH
2647 */
2648
2649static __always_inline int
2650trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2651{
a0e3a18f
SRV
2652 unsigned int val = cpu_buffer->current_context;
2653 unsigned long pc = preempt_count();
2654 int bit;
2655
2656 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2657 bit = RB_CTX_NORMAL;
2658 else
2659 bit = pc & NMI_MASK ? RB_CTX_NMI :
0164e0d7 2660 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
a0e3a18f 2661
8e012066 2662 if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
d90fd774
SRRH
2663 return 1;
2664
8e012066 2665 val |= (1 << (bit + cpu_buffer->nest));
a0e3a18f 2666 cpu_buffer->current_context = val;
d90fd774
SRRH
2667
2668 return 0;
2669}
2670
2671static __always_inline void
2672trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2673{
8e012066
SRV
2674 cpu_buffer->current_context &=
2675 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2676}
2677
2678/* The recursive locking above uses 4 bits */
2679#define NESTED_BITS 4
2680
2681/**
2682 * ring_buffer_nest_start - Allow to trace while nested
2683 * @buffer: The ring buffer to modify
2684 *
6167c205 2685 * The ring buffer has a safety mechanism to prevent recursion.
8e012066
SRV
2686 * But there may be a case where a trace needs to be done while
2687 * tracing something else. In this case, calling this function
2688 * will allow this function to nest within a currently active
2689 * ring_buffer_lock_reserve().
2690 *
2691 * Call this function before calling another ring_buffer_lock_reserve() and
2692 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2693 */
2694void ring_buffer_nest_start(struct ring_buffer *buffer)
2695{
2696 struct ring_buffer_per_cpu *cpu_buffer;
2697 int cpu;
2698
2699 /* Enabled by ring_buffer_nest_end() */
2700 preempt_disable_notrace();
2701 cpu = raw_smp_processor_id();
2702 cpu_buffer = buffer->buffers[cpu];
6167c205 2703 /* This is the shift value for the above recursive locking */
8e012066
SRV
2704 cpu_buffer->nest += NESTED_BITS;
2705}
2706
2707/**
2708 * ring_buffer_nest_end - Allow to trace while nested
2709 * @buffer: The ring buffer to modify
2710 *
2711 * Must be called after ring_buffer_nest_start() and after the
2712 * ring_buffer_unlock_commit().
2713 */
2714void ring_buffer_nest_end(struct ring_buffer *buffer)
2715{
2716 struct ring_buffer_per_cpu *cpu_buffer;
2717 int cpu;
2718
2719 /* disabled by ring_buffer_nest_start() */
2720 cpu = raw_smp_processor_id();
2721 cpu_buffer = buffer->buffers[cpu];
6167c205 2722 /* This is the shift value for the above recursive locking */
8e012066
SRV
2723 cpu_buffer->nest -= NESTED_BITS;
2724 preempt_enable_notrace();
d90fd774
SRRH
2725}
2726
2727/**
2728 * ring_buffer_unlock_commit - commit a reserved
2729 * @buffer: The buffer to commit to
2730 * @event: The event pointer to commit.
2731 *
2732 * This commits the data to the ring buffer, and releases any locks held.
2733 *
2734 * Must be paired with ring_buffer_lock_reserve.
2735 */
2736int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2737 struct ring_buffer_event *event)
2738{
2739 struct ring_buffer_per_cpu *cpu_buffer;
2740 int cpu = raw_smp_processor_id();
2741
2742 cpu_buffer = buffer->buffers[cpu];
2743
2744 rb_commit(cpu_buffer, event);
2745
2746 rb_wakeups(buffer, cpu_buffer);
2747
2748 trace_recursive_unlock(cpu_buffer);
2749
2750 preempt_enable_notrace();
2751
2752 return 0;
2753}
2754EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2755
2756static noinline void
2757rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
d90fd774
SRRH
2758 struct rb_event_info *info)
2759{
d90fd774
SRRH
2760 WARN_ONCE(info->delta > (1ULL << 59),
2761 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2762 (unsigned long long)info->delta,
2763 (unsigned long long)info->ts,
2764 (unsigned long long)cpu_buffer->write_stamp,
2765 sched_clock_stable() ? "" :
2766 "If you just came from a suspend/resume,\n"
2767 "please switch to the trace global clock:\n"
913ea4d0
CW
2768 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2769 "or add trace_clock=global to the kernel command line\n");
b7dc42fd 2770 info->add_timestamp = 1;
9826b273
SRRH
2771}
2772
6634ff26
SR
2773static struct ring_buffer_event *
2774__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2775 struct rb_event_info *info)
6634ff26 2776{
6634ff26 2777 struct ring_buffer_event *event;
fcc742ea 2778 struct buffer_page *tail_page;
6634ff26 2779 unsigned long tail, write;
b7dc42fd
SRRH
2780
2781 /*
2782 * If the time delta since the last event is too big to
2783 * hold in the time field of the event, then we append a
2784 * TIME EXTEND event ahead of the data event.
2785 */
2786 if (unlikely(info->add_timestamp))
2787 info->length += RB_LEN_TIME_EXTEND;
69d1b839 2788
8573636e
SRRH
2789 /* Don't let the compiler play games with cpu_buffer->tail_page */
2790 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
fcc742ea 2791 write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
2792
2793 /* set write to only the index of the write */
2794 write &= RB_WRITE_MASK;
fcc742ea 2795 tail = write - info->length;
6634ff26 2796
6634ff26 2797 /*
a4543a2f 2798 * If this is the first commit on the page, then it has the same
b7dc42fd 2799 * timestamp as the page itself.
6634ff26 2800 */
dc4e2801 2801 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
a4543a2f
SRRH
2802 info->delta = 0;
2803
b7dc42fd
SRRH
2804 /* See if we shot pass the end of this buffer page */
2805 if (unlikely(write > BUF_PAGE_SIZE))
2806 return rb_move_tail(cpu_buffer, tail, info);
a4543a2f 2807
b7dc42fd
SRRH
2808 /* We reserved something on the buffer */
2809
2810 event = __rb_page_index(tail_page, tail);
a4543a2f
SRRH
2811 rb_update_event(cpu_buffer, event, info);
2812
2813 local_inc(&tail_page->entries);
6634ff26 2814
b7dc42fd
SRRH
2815 /*
2816 * If this is the first commit on the page, then update
2817 * its timestamp.
2818 */
2819 if (!tail)
2820 tail_page->page->time_stamp = info->ts;
2821
c64e148a 2822 /* account for these added bytes */
fcc742ea 2823 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 2824
6634ff26
SR
2825 return event;
2826}
2827
fa7ffb39 2828static __always_inline struct ring_buffer_event *
62f0b3eb
SR
2829rb_reserve_next_event(struct ring_buffer *buffer,
2830 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2831 unsigned long length)
7a8e76a3
SR
2832{
2833 struct ring_buffer_event *event;
fcc742ea 2834 struct rb_event_info info;
818e3dd3 2835 int nr_loops = 0;
b7dc42fd 2836 u64 diff;
7a8e76a3 2837
fa743953
SR
2838 rb_start_commit(cpu_buffer);
2839
85bac32c 2840#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2841 /*
2842 * Due to the ability to swap a cpu buffer from a buffer
2843 * it is possible it was swapped before we committed.
2844 * (committing stops a swap). We check for it here and
2845 * if it happened, we have to fail the write.
2846 */
2847 barrier();
6aa7de05 2848 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
62f0b3eb
SR
2849 local_dec(&cpu_buffer->committing);
2850 local_dec(&cpu_buffer->commits);
2851 return NULL;
2852 }
85bac32c 2853#endif
b7dc42fd 2854
fcc742ea 2855 info.length = rb_calculate_event_length(length);
a4543a2f 2856 again:
b7dc42fd
SRRH
2857 info.add_timestamp = 0;
2858 info.delta = 0;
2859
818e3dd3
SR
2860 /*
2861 * We allow for interrupts to reenter here and do a trace.
2862 * If one does, it will cause this original code to loop
2863 * back here. Even with heavy interrupts happening, this
2864 * should only happen a few times in a row. If this happens
2865 * 1000 times in a row, there must be either an interrupt
2866 * storm or we have something buggy.
2867 * Bail!
2868 */
3e89c7bb 2869 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2870 goto out_fail;
818e3dd3 2871
b7dc42fd
SRRH
2872 info.ts = rb_time_stamp(cpu_buffer->buffer);
2873 diff = info.ts - cpu_buffer->write_stamp;
2874
2875 /* make sure this diff is calculated here */
2876 barrier();
2877
dc4e2801
TZ
2878 if (ring_buffer_time_stamp_abs(buffer)) {
2879 info.delta = info.ts;
2880 rb_handle_timestamp(cpu_buffer, &info);
2881 } else /* Did the write stamp get updated already? */
2882 if (likely(info.ts >= cpu_buffer->write_stamp)) {
b7dc42fd
SRRH
2883 info.delta = diff;
2884 if (unlikely(test_time_stamp(info.delta)))
2885 rb_handle_timestamp(cpu_buffer, &info);
2886 }
2887
fcc742ea
SRRH
2888 event = __rb_reserve_next(cpu_buffer, &info);
2889
bd1b7cd3
SRRH
2890 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2891 if (info.add_timestamp)
2892 info.length -= RB_LEN_TIME_EXTEND;
bf41a158 2893 goto again;
bd1b7cd3 2894 }
bf41a158 2895
fa743953
SR
2896 if (!event)
2897 goto out_fail;
7a8e76a3 2898
7a8e76a3 2899 return event;
fa743953
SR
2900
2901 out_fail:
2902 rb_end_commit(cpu_buffer);
2903 return NULL;
7a8e76a3
SR
2904}
2905
2906/**
2907 * ring_buffer_lock_reserve - reserve a part of the buffer
2908 * @buffer: the ring buffer to reserve from
2909 * @length: the length of the data to reserve (excluding event header)
7a8e76a3 2910 *
6167c205 2911 * Returns a reserved event on the ring buffer to copy directly to.
7a8e76a3
SR
2912 * The user of this interface will need to get the body to write into
2913 * and can use the ring_buffer_event_data() interface.
2914 *
2915 * The length is the length of the data needed, not the event length
2916 * which also includes the event header.
2917 *
2918 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2919 * If NULL is returned, then nothing has been allocated or locked.
2920 */
2921struct ring_buffer_event *
0a987751 2922ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2923{
2924 struct ring_buffer_per_cpu *cpu_buffer;
2925 struct ring_buffer_event *event;
5168ae50 2926 int cpu;
7a8e76a3 2927
bf41a158 2928 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2929 preempt_disable_notrace();
bf41a158 2930
3205f806 2931 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 2932 goto out;
261842b7 2933
7a8e76a3
SR
2934 cpu = raw_smp_processor_id();
2935
3205f806 2936 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 2937 goto out;
7a8e76a3
SR
2938
2939 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2940
3205f806 2941 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 2942 goto out;
7a8e76a3 2943
3205f806 2944 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 2945 goto out;
7a8e76a3 2946
58a09ec6
SRRH
2947 if (unlikely(trace_recursive_lock(cpu_buffer)))
2948 goto out;
2949
62f0b3eb 2950 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2951 if (!event)
58a09ec6 2952 goto out_unlock;
7a8e76a3
SR
2953
2954 return event;
2955
58a09ec6
SRRH
2956 out_unlock:
2957 trace_recursive_unlock(cpu_buffer);
d769041f 2958 out:
5168ae50 2959 preempt_enable_notrace();
7a8e76a3
SR
2960 return NULL;
2961}
c4f50183 2962EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2963
a1863c21
SR
2964/*
2965 * Decrement the entries to the page that an event is on.
2966 * The event does not even need to exist, only the pointer
2967 * to the page it is on. This may only be called before the commit
2968 * takes place.
2969 */
2970static inline void
2971rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2972 struct ring_buffer_event *event)
2973{
2974 unsigned long addr = (unsigned long)event;
2975 struct buffer_page *bpage = cpu_buffer->commit_page;
2976 struct buffer_page *start;
2977
2978 addr &= PAGE_MASK;
2979
2980 /* Do the likely case first */
2981 if (likely(bpage->page == (void *)addr)) {
2982 local_dec(&bpage->entries);
2983 return;
2984 }
2985
2986 /*
2987 * Because the commit page may be on the reader page we
2988 * start with the next page and check the end loop there.
2989 */
2990 rb_inc_page(cpu_buffer, &bpage);
2991 start = bpage;
2992 do {
2993 if (bpage->page == (void *)addr) {
2994 local_dec(&bpage->entries);
2995 return;
2996 }
2997 rb_inc_page(cpu_buffer, &bpage);
2998 } while (bpage != start);
2999
3000 /* commit not part of this buffer?? */
3001 RB_WARN_ON(cpu_buffer, 1);
3002}
3003
fa1b47dd
SR
3004/**
3005 * ring_buffer_commit_discard - discard an event that has not been committed
3006 * @buffer: the ring buffer
3007 * @event: non committed event to discard
3008 *
dc892f73
SR
3009 * Sometimes an event that is in the ring buffer needs to be ignored.
3010 * This function lets the user discard an event in the ring buffer
3011 * and then that event will not be read later.
3012 *
6167c205 3013 * This function only works if it is called before the item has been
dc892f73 3014 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
3015 * if another event has not been added behind it.
3016 *
3017 * If another event has been added behind it, it will set the event
3018 * up as discarded, and perform the commit.
3019 *
3020 * If this function is called, do not call ring_buffer_unlock_commit on
3021 * the event.
3022 */
3023void ring_buffer_discard_commit(struct ring_buffer *buffer,
3024 struct ring_buffer_event *event)
3025{
3026 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
3027 int cpu;
3028
3029 /* The event is discarded regardless */
f3b9aae1 3030 rb_event_discard(event);
fa1b47dd 3031
fa743953
SR
3032 cpu = smp_processor_id();
3033 cpu_buffer = buffer->buffers[cpu];
3034
fa1b47dd
SR
3035 /*
3036 * This must only be called if the event has not been
3037 * committed yet. Thus we can assume that preemption
3038 * is still disabled.
3039 */
fa743953 3040 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 3041
a1863c21 3042 rb_decrement_entry(cpu_buffer, event);
0f2541d2 3043 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 3044 goto out;
fa1b47dd
SR
3045
3046 /*
3047 * The commit is still visible by the reader, so we
a1863c21 3048 * must still update the timestamp.
fa1b47dd 3049 */
a1863c21 3050 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 3051 out:
fa743953 3052 rb_end_commit(cpu_buffer);
fa1b47dd 3053
58a09ec6 3054 trace_recursive_unlock(cpu_buffer);
f3b9aae1 3055
5168ae50 3056 preempt_enable_notrace();
fa1b47dd
SR
3057
3058}
3059EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3060
7a8e76a3
SR
3061/**
3062 * ring_buffer_write - write data to the buffer without reserving
3063 * @buffer: The ring buffer to write to.
3064 * @length: The length of the data being written (excluding the event header)
3065 * @data: The data to write to the buffer.
3066 *
3067 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3068 * one function. If you already have the data to write to the buffer, it
3069 * may be easier to simply call this function.
3070 *
3071 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3072 * and not the length of the event which would hold the header.
3073 */
3074int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
3075 unsigned long length,
3076 void *data)
7a8e76a3
SR
3077{
3078 struct ring_buffer_per_cpu *cpu_buffer;
3079 struct ring_buffer_event *event;
7a8e76a3
SR
3080 void *body;
3081 int ret = -EBUSY;
5168ae50 3082 int cpu;
7a8e76a3 3083
5168ae50 3084 preempt_disable_notrace();
bf41a158 3085
52fbe9cd
LJ
3086 if (atomic_read(&buffer->record_disabled))
3087 goto out;
3088
7a8e76a3
SR
3089 cpu = raw_smp_processor_id();
3090
9e01c1b7 3091 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 3092 goto out;
7a8e76a3
SR
3093
3094 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
3095
3096 if (atomic_read(&cpu_buffer->record_disabled))
3097 goto out;
3098
be957c44
SR
3099 if (length > BUF_MAX_DATA_SIZE)
3100 goto out;
3101
985e871b
SRRH
3102 if (unlikely(trace_recursive_lock(cpu_buffer)))
3103 goto out;
3104
62f0b3eb 3105 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 3106 if (!event)
985e871b 3107 goto out_unlock;
7a8e76a3
SR
3108
3109 body = rb_event_data(event);
3110
3111 memcpy(body, data, length);
3112
3113 rb_commit(cpu_buffer, event);
3114
15693458
SRRH
3115 rb_wakeups(buffer, cpu_buffer);
3116
7a8e76a3 3117 ret = 0;
985e871b
SRRH
3118
3119 out_unlock:
3120 trace_recursive_unlock(cpu_buffer);
3121
7a8e76a3 3122 out:
5168ae50 3123 preempt_enable_notrace();
7a8e76a3
SR
3124
3125 return ret;
3126}
c4f50183 3127EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3128
da58834c 3129static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3130{
3131 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3132 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3133 struct buffer_page *commit = cpu_buffer->commit_page;
3134
77ae365e
SR
3135 /* In case of error, head will be NULL */
3136 if (unlikely(!head))
da58834c 3137 return true;
77ae365e 3138
bf41a158
SR
3139 return reader->read == rb_page_commit(reader) &&
3140 (commit == reader ||
3141 (commit == head &&
3142 head->read == rb_page_commit(commit)));
3143}
3144
7a8e76a3
SR
3145/**
3146 * ring_buffer_record_disable - stop all writes into the buffer
3147 * @buffer: The ring buffer to stop writes to.
3148 *
3149 * This prevents all writes to the buffer. Any attempt to write
3150 * to the buffer after this will fail and return NULL.
3151 *
3152 * The caller should call synchronize_sched() after this.
3153 */
3154void ring_buffer_record_disable(struct ring_buffer *buffer)
3155{
3156 atomic_inc(&buffer->record_disabled);
3157}
c4f50183 3158EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3159
3160/**
3161 * ring_buffer_record_enable - enable writes to the buffer
3162 * @buffer: The ring buffer to enable writes
3163 *
3164 * Note, multiple disables will need the same number of enables
c41b20e7 3165 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3166 */
3167void ring_buffer_record_enable(struct ring_buffer *buffer)
3168{
3169 atomic_dec(&buffer->record_disabled);
3170}
c4f50183 3171EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3172
499e5470
SR
3173/**
3174 * ring_buffer_record_off - stop all writes into the buffer
3175 * @buffer: The ring buffer to stop writes to.
3176 *
3177 * This prevents all writes to the buffer. Any attempt to write
3178 * to the buffer after this will fail and return NULL.
3179 *
3180 * This is different than ring_buffer_record_disable() as
87abb3b1 3181 * it works like an on/off switch, where as the disable() version
499e5470
SR
3182 * must be paired with a enable().
3183 */
3184void ring_buffer_record_off(struct ring_buffer *buffer)
3185{
3186 unsigned int rd;
3187 unsigned int new_rd;
3188
3189 do {
3190 rd = atomic_read(&buffer->record_disabled);
3191 new_rd = rd | RB_BUFFER_OFF;
3192 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3193}
3194EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3195
3196/**
3197 * ring_buffer_record_on - restart writes into the buffer
3198 * @buffer: The ring buffer to start writes to.
3199 *
3200 * This enables all writes to the buffer that was disabled by
3201 * ring_buffer_record_off().
3202 *
3203 * This is different than ring_buffer_record_enable() as
87abb3b1 3204 * it works like an on/off switch, where as the enable() version
499e5470
SR
3205 * must be paired with a disable().
3206 */
3207void ring_buffer_record_on(struct ring_buffer *buffer)
3208{
3209 unsigned int rd;
3210 unsigned int new_rd;
3211
3212 do {
3213 rd = atomic_read(&buffer->record_disabled);
3214 new_rd = rd & ~RB_BUFFER_OFF;
3215 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3216}
3217EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3218
3219/**
3220 * ring_buffer_record_is_on - return true if the ring buffer can write
3221 * @buffer: The ring buffer to see if write is enabled
3222 *
3223 * Returns true if the ring buffer is in a state that it accepts writes.
3224 */
3ebea280 3225bool ring_buffer_record_is_on(struct ring_buffer *buffer)
499e5470
SR
3226{
3227 return !atomic_read(&buffer->record_disabled);
3228}
3229
73c8d894
MH
3230/**
3231 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3232 * @buffer: The ring buffer to see if write is set enabled
3233 *
3234 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3235 * Note that this does NOT mean it is in a writable state.
3236 *
3237 * It may return true when the ring buffer has been disabled by
3238 * ring_buffer_record_disable(), as that is a temporary disabling of
3239 * the ring buffer.
3240 */
d7224c0e 3241bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
73c8d894
MH
3242{
3243 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3244}
3245
7a8e76a3
SR
3246/**
3247 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3248 * @buffer: The ring buffer to stop writes to.
3249 * @cpu: The CPU buffer to stop
3250 *
3251 * This prevents all writes to the buffer. Any attempt to write
3252 * to the buffer after this will fail and return NULL.
3253 *
3254 * The caller should call synchronize_sched() after this.
3255 */
3256void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3257{
3258 struct ring_buffer_per_cpu *cpu_buffer;
3259
9e01c1b7 3260 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3261 return;
7a8e76a3
SR
3262
3263 cpu_buffer = buffer->buffers[cpu];
3264 atomic_inc(&cpu_buffer->record_disabled);
3265}
c4f50183 3266EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3267
3268/**
3269 * ring_buffer_record_enable_cpu - enable writes to the buffer
3270 * @buffer: The ring buffer to enable writes
3271 * @cpu: The CPU to enable.
3272 *
3273 * Note, multiple disables will need the same number of enables
c41b20e7 3274 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3275 */
3276void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3277{
3278 struct ring_buffer_per_cpu *cpu_buffer;
3279
9e01c1b7 3280 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3281 return;
7a8e76a3
SR
3282
3283 cpu_buffer = buffer->buffers[cpu];
3284 atomic_dec(&cpu_buffer->record_disabled);
3285}
c4f50183 3286EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3287
f6195aa0
SR
3288/*
3289 * The total entries in the ring buffer is the running counter
3290 * of entries entered into the ring buffer, minus the sum of
3291 * the entries read from the ring buffer and the number of
3292 * entries that were overwritten.
3293 */
3294static inline unsigned long
3295rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3296{
3297 return local_read(&cpu_buffer->entries) -
3298 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3299}
3300
c64e148a
VN
3301/**
3302 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3303 * @buffer: The ring buffer
3304 * @cpu: The per CPU buffer to read from.
3305 */
50ecf2c3 3306u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3307{
3308 unsigned long flags;
3309 struct ring_buffer_per_cpu *cpu_buffer;
3310 struct buffer_page *bpage;
da830e58 3311 u64 ret = 0;
c64e148a
VN
3312
3313 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3314 return 0;
3315
3316 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3317 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3318 /*
3319 * if the tail is on reader_page, oldest time stamp is on the reader
3320 * page
3321 */
3322 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3323 bpage = cpu_buffer->reader_page;
3324 else
3325 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3326 if (bpage)
3327 ret = bpage->page->time_stamp;
7115e3fc 3328 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3329
3330 return ret;
3331}
3332EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3333
3334/**
3335 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3336 * @buffer: The ring buffer
3337 * @cpu: The per CPU buffer to read from.
3338 */
3339unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3340{
3341 struct ring_buffer_per_cpu *cpu_buffer;
3342 unsigned long ret;
3343
3344 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3345 return 0;
3346
3347 cpu_buffer = buffer->buffers[cpu];
3348 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3349
3350 return ret;
3351}
3352EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3353
7a8e76a3
SR
3354/**
3355 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3356 * @buffer: The ring buffer
3357 * @cpu: The per CPU buffer to get the entries from.
3358 */
3359unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3360{
3361 struct ring_buffer_per_cpu *cpu_buffer;
3362
9e01c1b7 3363 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3364 return 0;
7a8e76a3
SR
3365
3366 cpu_buffer = buffer->buffers[cpu];
554f786e 3367
f6195aa0 3368 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3369}
c4f50183 3370EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3371
3372/**
884bfe89
SP
3373 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3374 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3375 * @buffer: The ring buffer
3376 * @cpu: The per CPU buffer to get the number of overruns from
3377 */
3378unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3379{
3380 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3381 unsigned long ret;
7a8e76a3 3382
9e01c1b7 3383 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3384 return 0;
7a8e76a3
SR
3385
3386 cpu_buffer = buffer->buffers[cpu];
77ae365e 3387 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3388
3389 return ret;
7a8e76a3 3390}
c4f50183 3391EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3392
f0d2c681 3393/**
884bfe89
SP
3394 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3395 * commits failing due to the buffer wrapping around while there are uncommitted
3396 * events, such as during an interrupt storm.
f0d2c681
SR
3397 * @buffer: The ring buffer
3398 * @cpu: The per CPU buffer to get the number of overruns from
3399 */
3400unsigned long
3401ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3402{
3403 struct ring_buffer_per_cpu *cpu_buffer;
3404 unsigned long ret;
3405
3406 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3407 return 0;
3408
3409 cpu_buffer = buffer->buffers[cpu];
77ae365e 3410 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3411
3412 return ret;
3413}
3414EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3415
884bfe89
SP
3416/**
3417 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3418 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3419 * @buffer: The ring buffer
3420 * @cpu: The per CPU buffer to get the number of overruns from
3421 */
3422unsigned long
3423ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3424{
3425 struct ring_buffer_per_cpu *cpu_buffer;
3426 unsigned long ret;
3427
3428 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3429 return 0;
3430
3431 cpu_buffer = buffer->buffers[cpu];
3432 ret = local_read(&cpu_buffer->dropped_events);
3433
3434 return ret;
3435}
3436EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3437
ad964704
SRRH
3438/**
3439 * ring_buffer_read_events_cpu - get the number of events successfully read
3440 * @buffer: The ring buffer
3441 * @cpu: The per CPU buffer to get the number of events read
3442 */
3443unsigned long
3444ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3445{
3446 struct ring_buffer_per_cpu *cpu_buffer;
3447
3448 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3449 return 0;
3450
3451 cpu_buffer = buffer->buffers[cpu];
3452 return cpu_buffer->read;
3453}
3454EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3455
7a8e76a3
SR
3456/**
3457 * ring_buffer_entries - get the number of entries in a buffer
3458 * @buffer: The ring buffer
3459 *
3460 * Returns the total number of entries in the ring buffer
3461 * (all CPU entries)
3462 */
3463unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3464{
3465 struct ring_buffer_per_cpu *cpu_buffer;
3466 unsigned long entries = 0;
3467 int cpu;
3468
3469 /* if you care about this being correct, lock the buffer */
3470 for_each_buffer_cpu(buffer, cpu) {
3471 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3472 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3473 }
3474
3475 return entries;
3476}
c4f50183 3477EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3478
3479/**
67b394f7 3480 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3481 * @buffer: The ring buffer
3482 *
3483 * Returns the total number of overruns in the ring buffer
3484 * (all CPU entries)
3485 */
3486unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3487{
3488 struct ring_buffer_per_cpu *cpu_buffer;
3489 unsigned long overruns = 0;
3490 int cpu;
3491
3492 /* if you care about this being correct, lock the buffer */
3493 for_each_buffer_cpu(buffer, cpu) {
3494 cpu_buffer = buffer->buffers[cpu];
77ae365e 3495 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3496 }
3497
3498 return overruns;
3499}
c4f50183 3500EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3501
642edba5 3502static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3503{
3504 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3505
d769041f 3506 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3507 iter->head_page = cpu_buffer->reader_page;
3508 iter->head = cpu_buffer->reader_page->read;
3509
3510 iter->cache_reader_page = iter->head_page;
24607f11 3511 iter->cache_read = cpu_buffer->read;
651e22f2 3512
d769041f
SR
3513 if (iter->head)
3514 iter->read_stamp = cpu_buffer->read_stamp;
3515 else
abc9b56d 3516 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3517}
f83c9d0f 3518
642edba5
SR
3519/**
3520 * ring_buffer_iter_reset - reset an iterator
3521 * @iter: The iterator to reset
3522 *
3523 * Resets the iterator, so that it will start from the beginning
3524 * again.
3525 */
3526void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3527{
554f786e 3528 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3529 unsigned long flags;
3530
554f786e
SR
3531 if (!iter)
3532 return;
3533
3534 cpu_buffer = iter->cpu_buffer;
3535
5389f6fa 3536 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3537 rb_iter_reset(iter);
5389f6fa 3538 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3539}
c4f50183 3540EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3541
3542/**
3543 * ring_buffer_iter_empty - check if an iterator has no more to read
3544 * @iter: The iterator to check
3545 */
3546int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3547{
3548 struct ring_buffer_per_cpu *cpu_buffer;
78f7a45d
SRV
3549 struct buffer_page *reader;
3550 struct buffer_page *head_page;
3551 struct buffer_page *commit_page;
3552 unsigned commit;
7a8e76a3
SR
3553
3554 cpu_buffer = iter->cpu_buffer;
3555
78f7a45d
SRV
3556 /* Remember, trace recording is off when iterator is in use */
3557 reader = cpu_buffer->reader_page;
3558 head_page = cpu_buffer->head_page;
3559 commit_page = cpu_buffer->commit_page;
3560 commit = rb_page_commit(commit_page);
3561
3562 return ((iter->head_page == commit_page && iter->head == commit) ||
3563 (iter->head_page == reader && commit_page == head_page &&
3564 head_page->read == commit &&
3565 iter->head == rb_page_commit(cpu_buffer->reader_page)));
7a8e76a3 3566}
c4f50183 3567EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3568
3569static void
3570rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3571 struct ring_buffer_event *event)
3572{
3573 u64 delta;
3574
334d4169 3575 switch (event->type_len) {
7a8e76a3
SR
3576 case RINGBUF_TYPE_PADDING:
3577 return;
3578
3579 case RINGBUF_TYPE_TIME_EXTEND:
dc4e2801 3580 delta = ring_buffer_event_time_stamp(event);
7a8e76a3
SR
3581 cpu_buffer->read_stamp += delta;
3582 return;
3583
3584 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
3585 delta = ring_buffer_event_time_stamp(event);
3586 cpu_buffer->read_stamp = delta;
7a8e76a3
SR
3587 return;
3588
3589 case RINGBUF_TYPE_DATA:
3590 cpu_buffer->read_stamp += event->time_delta;
3591 return;
3592
3593 default:
3594 BUG();
3595 }
3596 return;
3597}
3598
3599static void
3600rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3601 struct ring_buffer_event *event)
3602{
3603 u64 delta;
3604
334d4169 3605 switch (event->type_len) {
7a8e76a3
SR
3606 case RINGBUF_TYPE_PADDING:
3607 return;
3608
3609 case RINGBUF_TYPE_TIME_EXTEND:
dc4e2801 3610 delta = ring_buffer_event_time_stamp(event);
7a8e76a3
SR
3611 iter->read_stamp += delta;
3612 return;
3613
3614 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
3615 delta = ring_buffer_event_time_stamp(event);
3616 iter->read_stamp = delta;
7a8e76a3
SR
3617 return;
3618
3619 case RINGBUF_TYPE_DATA:
3620 iter->read_stamp += event->time_delta;
3621 return;
3622
3623 default:
3624 BUG();
3625 }
3626 return;
3627}
3628
d769041f
SR
3629static struct buffer_page *
3630rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3631{
d769041f 3632 struct buffer_page *reader = NULL;
66a8cb95 3633 unsigned long overwrite;
d769041f 3634 unsigned long flags;
818e3dd3 3635 int nr_loops = 0;
77ae365e 3636 int ret;
d769041f 3637
3e03fb7f 3638 local_irq_save(flags);
0199c4e6 3639 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3640
3641 again:
818e3dd3
SR
3642 /*
3643 * This should normally only loop twice. But because the
3644 * start of the reader inserts an empty page, it causes
3645 * a case where we will loop three times. There should be no
3646 * reason to loop four times (that I know of).
3647 */
3e89c7bb 3648 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3649 reader = NULL;
3650 goto out;
3651 }
3652
d769041f
SR
3653 reader = cpu_buffer->reader_page;
3654
3655 /* If there's more to read, return this page */
bf41a158 3656 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3657 goto out;
3658
3659 /* Never should we have an index greater than the size */
3e89c7bb
SR
3660 if (RB_WARN_ON(cpu_buffer,
3661 cpu_buffer->reader_page->read > rb_page_size(reader)))
3662 goto out;
d769041f
SR
3663
3664 /* check if we caught up to the tail */
3665 reader = NULL;
bf41a158 3666 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3667 goto out;
7a8e76a3 3668
a5fb8331
SR
3669 /* Don't bother swapping if the ring buffer is empty */
3670 if (rb_num_of_entries(cpu_buffer) == 0)
3671 goto out;
3672
7a8e76a3 3673 /*
d769041f 3674 * Reset the reader page to size zero.
7a8e76a3 3675 */
77ae365e
SR
3676 local_set(&cpu_buffer->reader_page->write, 0);
3677 local_set(&cpu_buffer->reader_page->entries, 0);
3678 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3679 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3680
77ae365e
SR
3681 spin:
3682 /*
3683 * Splice the empty reader page into the list around the head.
3684 */
3685 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3686 if (!reader)
3687 goto out;
0e1ff5d7 3688 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3689 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3690
3adc54fa
SR
3691 /*
3692 * cpu_buffer->pages just needs to point to the buffer, it
3693 * has no specific buffer page to point to. Lets move it out
25985edc 3694 * of our way so we don't accidentally swap it.
3adc54fa
SR
3695 */
3696 cpu_buffer->pages = reader->list.prev;
3697
77ae365e
SR
3698 /* The reader page will be pointing to the new head */
3699 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3700
66a8cb95
SR
3701 /*
3702 * We want to make sure we read the overruns after we set up our
3703 * pointers to the next object. The writer side does a
3704 * cmpxchg to cross pages which acts as the mb on the writer
3705 * side. Note, the reader will constantly fail the swap
3706 * while the writer is updating the pointers, so this
3707 * guarantees that the overwrite recorded here is the one we
3708 * want to compare with the last_overrun.
3709 */
3710 smp_mb();
3711 overwrite = local_read(&(cpu_buffer->overrun));
3712
77ae365e
SR
3713 /*
3714 * Here's the tricky part.
3715 *
3716 * We need to move the pointer past the header page.
3717 * But we can only do that if a writer is not currently
3718 * moving it. The page before the header page has the
3719 * flag bit '1' set if it is pointing to the page we want.
3720 * but if the writer is in the process of moving it
3721 * than it will be '2' or already moved '0'.
3722 */
3723
3724 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3725
3726 /*
77ae365e 3727 * If we did not convert it, then we must try again.
7a8e76a3 3728 */
77ae365e
SR
3729 if (!ret)
3730 goto spin;
7a8e76a3 3731
77ae365e
SR
3732 /*
3733 * Yeah! We succeeded in replacing the page.
3734 *
3735 * Now make the new head point back to the reader page.
3736 */
5ded3dc6 3737 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3738 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3739
3740 /* Finally update the reader page to the new head */
3741 cpu_buffer->reader_page = reader;
b81f472a 3742 cpu_buffer->reader_page->read = 0;
d769041f 3743
66a8cb95
SR
3744 if (overwrite != cpu_buffer->last_overrun) {
3745 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3746 cpu_buffer->last_overrun = overwrite;
3747 }
3748
d769041f
SR
3749 goto again;
3750
3751 out:
b81f472a
SRRH
3752 /* Update the read_stamp on the first event */
3753 if (reader && reader->read == 0)
3754 cpu_buffer->read_stamp = reader->page->time_stamp;
3755
0199c4e6 3756 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3757 local_irq_restore(flags);
d769041f
SR
3758
3759 return reader;
3760}
3761
3762static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3763{
3764 struct ring_buffer_event *event;
3765 struct buffer_page *reader;
3766 unsigned length;
3767
3768 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3769
d769041f 3770 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3771 if (RB_WARN_ON(cpu_buffer, !reader))
3772 return;
7a8e76a3 3773
d769041f
SR
3774 event = rb_reader_event(cpu_buffer);
3775
a1863c21 3776 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3777 cpu_buffer->read++;
d769041f
SR
3778
3779 rb_update_read_stamp(cpu_buffer, event);
3780
3781 length = rb_event_length(event);
6f807acd 3782 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3783}
3784
3785static void rb_advance_iter(struct ring_buffer_iter *iter)
3786{
7a8e76a3
SR
3787 struct ring_buffer_per_cpu *cpu_buffer;
3788 struct ring_buffer_event *event;
3789 unsigned length;
3790
3791 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3792
3793 /*
3794 * Check if we are at the end of the buffer.
3795 */
bf41a158 3796 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3797 /* discarded commits can make the page empty */
3798 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3799 return;
d769041f 3800 rb_inc_iter(iter);
7a8e76a3
SR
3801 return;
3802 }
3803
3804 event = rb_iter_head_event(iter);
3805
3806 length = rb_event_length(event);
3807
3808 /*
3809 * This should not be called to advance the header if we are
3810 * at the tail of the buffer.
3811 */
3e89c7bb 3812 if (RB_WARN_ON(cpu_buffer,
f536aafc 3813 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3814 (iter->head + length > rb_commit_index(cpu_buffer))))
3815 return;
7a8e76a3
SR
3816
3817 rb_update_iter_read_stamp(iter, event);
3818
3819 iter->head += length;
3820
3821 /* check for end of page padding */
bf41a158
SR
3822 if ((iter->head >= rb_page_size(iter->head_page)) &&
3823 (iter->head_page != cpu_buffer->commit_page))
771e0384 3824 rb_inc_iter(iter);
7a8e76a3
SR
3825}
3826
66a8cb95
SR
3827static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3828{
3829 return cpu_buffer->lost_events;
3830}
3831
f83c9d0f 3832static struct ring_buffer_event *
66a8cb95
SR
3833rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3834 unsigned long *lost_events)
7a8e76a3 3835{
7a8e76a3 3836 struct ring_buffer_event *event;
d769041f 3837 struct buffer_page *reader;
818e3dd3 3838 int nr_loops = 0;
7a8e76a3 3839
dc4e2801
TZ
3840 if (ts)
3841 *ts = 0;
7a8e76a3 3842 again:
818e3dd3 3843 /*
69d1b839
SR
3844 * We repeat when a time extend is encountered.
3845 * Since the time extend is always attached to a data event,
3846 * we should never loop more than once.
3847 * (We never hit the following condition more than twice).
818e3dd3 3848 */
69d1b839 3849 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3850 return NULL;
818e3dd3 3851
d769041f
SR
3852 reader = rb_get_reader_page(cpu_buffer);
3853 if (!reader)
7a8e76a3
SR
3854 return NULL;
3855
d769041f 3856 event = rb_reader_event(cpu_buffer);
7a8e76a3 3857
334d4169 3858 switch (event->type_len) {
7a8e76a3 3859 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3860 if (rb_null_event(event))
3861 RB_WARN_ON(cpu_buffer, 1);
3862 /*
3863 * Because the writer could be discarding every
3864 * event it creates (which would probably be bad)
3865 * if we were to go back to "again" then we may never
3866 * catch up, and will trigger the warn on, or lock
3867 * the box. Return the padding, and we will release
3868 * the current locks, and try again.
3869 */
2d622719 3870 return event;
7a8e76a3
SR
3871
3872 case RINGBUF_TYPE_TIME_EXTEND:
3873 /* Internal data, OK to advance */
d769041f 3874 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3875 goto again;
3876
3877 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
3878 if (ts) {
3879 *ts = ring_buffer_event_time_stamp(event);
3880 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3881 cpu_buffer->cpu, ts);
3882 }
3883 /* Internal data, OK to advance */
d769041f 3884 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3885 goto again;
3886
3887 case RINGBUF_TYPE_DATA:
dc4e2801 3888 if (ts && !(*ts)) {
7a8e76a3 3889 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3890 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3891 cpu_buffer->cpu, ts);
7a8e76a3 3892 }
66a8cb95
SR
3893 if (lost_events)
3894 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3895 return event;
3896
3897 default:
3898 BUG();
3899 }
3900
3901 return NULL;
3902}
c4f50183 3903EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3904
f83c9d0f
SR
3905static struct ring_buffer_event *
3906rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3907{
3908 struct ring_buffer *buffer;
3909 struct ring_buffer_per_cpu *cpu_buffer;
3910 struct ring_buffer_event *event;
818e3dd3 3911 int nr_loops = 0;
7a8e76a3 3912
dc4e2801
TZ
3913 if (ts)
3914 *ts = 0;
3915
7a8e76a3
SR
3916 cpu_buffer = iter->cpu_buffer;
3917 buffer = cpu_buffer->buffer;
3918
492a74f4
SR
3919 /*
3920 * Check if someone performed a consuming read to
3921 * the buffer. A consuming read invalidates the iterator
3922 * and we need to reset the iterator in this case.
3923 */
3924 if (unlikely(iter->cache_read != cpu_buffer->read ||
3925 iter->cache_reader_page != cpu_buffer->reader_page))
3926 rb_iter_reset(iter);
3927
7a8e76a3 3928 again:
3c05d748
SR
3929 if (ring_buffer_iter_empty(iter))
3930 return NULL;
3931
818e3dd3 3932 /*
021de3d9
SRRH
3933 * We repeat when a time extend is encountered or we hit
3934 * the end of the page. Since the time extend is always attached
3935 * to a data event, we should never loop more than three times.
3936 * Once for going to next page, once on time extend, and
3937 * finally once to get the event.
3938 * (We never hit the following condition more than thrice).
818e3dd3 3939 */
021de3d9 3940 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3941 return NULL;
818e3dd3 3942
7a8e76a3
SR
3943 if (rb_per_cpu_empty(cpu_buffer))
3944 return NULL;
3945
10e83fd0 3946 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3947 rb_inc_iter(iter);
3948 goto again;
3949 }
3950
7a8e76a3
SR
3951 event = rb_iter_head_event(iter);
3952
334d4169 3953 switch (event->type_len) {
7a8e76a3 3954 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3955 if (rb_null_event(event)) {
3956 rb_inc_iter(iter);
3957 goto again;
3958 }
3959 rb_advance_iter(iter);
3960 return event;
7a8e76a3
SR
3961
3962 case RINGBUF_TYPE_TIME_EXTEND:
3963 /* Internal data, OK to advance */
3964 rb_advance_iter(iter);
3965 goto again;
3966
3967 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
3968 if (ts) {
3969 *ts = ring_buffer_event_time_stamp(event);
3970 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3971 cpu_buffer->cpu, ts);
3972 }
3973 /* Internal data, OK to advance */
7a8e76a3
SR
3974 rb_advance_iter(iter);
3975 goto again;
3976
3977 case RINGBUF_TYPE_DATA:
dc4e2801 3978 if (ts && !(*ts)) {
7a8e76a3 3979 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3980 ring_buffer_normalize_time_stamp(buffer,
3981 cpu_buffer->cpu, ts);
7a8e76a3
SR
3982 }
3983 return event;
3984
3985 default:
3986 BUG();
3987 }
3988
3989 return NULL;
3990}
c4f50183 3991EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3992
289a5a25 3993static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 3994{
289a5a25
SRRH
3995 if (likely(!in_nmi())) {
3996 raw_spin_lock(&cpu_buffer->reader_lock);
3997 return true;
3998 }
3999
8d707e8e
SR
4000 /*
4001 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
4002 * trylock must be used to prevent a deadlock if the NMI
4003 * preempted a task that holds the ring buffer locks. If
4004 * we get the lock then all is fine, if not, then continue
4005 * to do the read, but this can corrupt the ring buffer,
4006 * so it must be permanently disabled from future writes.
4007 * Reading from NMI is a oneshot deal.
8d707e8e 4008 */
289a5a25
SRRH
4009 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4010 return true;
8d707e8e 4011
289a5a25
SRRH
4012 /* Continue without locking, but disable the ring buffer */
4013 atomic_inc(&cpu_buffer->record_disabled);
4014 return false;
4015}
4016
4017static inline void
4018rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4019{
4020 if (likely(locked))
4021 raw_spin_unlock(&cpu_buffer->reader_lock);
4022 return;
8d707e8e
SR
4023}
4024
f83c9d0f
SR
4025/**
4026 * ring_buffer_peek - peek at the next event to be read
4027 * @buffer: The ring buffer to read
4028 * @cpu: The cpu to peak at
4029 * @ts: The timestamp counter of this event.
66a8cb95 4030 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
4031 *
4032 * This will return the event that will be read next, but does
4033 * not consume the data.
4034 */
4035struct ring_buffer_event *
66a8cb95
SR
4036ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4037 unsigned long *lost_events)
f83c9d0f
SR
4038{
4039 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 4040 struct ring_buffer_event *event;
f83c9d0f 4041 unsigned long flags;
289a5a25 4042 bool dolock;
f83c9d0f 4043
554f786e 4044 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4045 return NULL;
554f786e 4046
2d622719 4047 again:
8d707e8e 4048 local_irq_save(flags);
289a5a25 4049 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 4050 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
4051 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4052 rb_advance_reader(cpu_buffer);
289a5a25 4053 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4054 local_irq_restore(flags);
f83c9d0f 4055
1b959e18 4056 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4057 goto again;
2d622719 4058
f83c9d0f
SR
4059 return event;
4060}
4061
4062/**
4063 * ring_buffer_iter_peek - peek at the next event to be read
4064 * @iter: The ring buffer iterator
4065 * @ts: The timestamp counter of this event.
4066 *
4067 * This will return the event that will be read next, but does
4068 * not increment the iterator.
4069 */
4070struct ring_buffer_event *
4071ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4072{
4073 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4074 struct ring_buffer_event *event;
4075 unsigned long flags;
4076
2d622719 4077 again:
5389f6fa 4078 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4079 event = rb_iter_peek(iter, ts);
5389f6fa 4080 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 4081
1b959e18 4082 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4083 goto again;
2d622719 4084
f83c9d0f
SR
4085 return event;
4086}
4087
7a8e76a3
SR
4088/**
4089 * ring_buffer_consume - return an event and consume it
4090 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
4091 * @cpu: the cpu to read the buffer from
4092 * @ts: a variable to store the timestamp (may be NULL)
4093 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
4094 *
4095 * Returns the next event in the ring buffer, and that event is consumed.
4096 * Meaning, that sequential reads will keep returning a different event,
4097 * and eventually empty the ring buffer if the producer is slower.
4098 */
4099struct ring_buffer_event *
66a8cb95
SR
4100ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4101 unsigned long *lost_events)
7a8e76a3 4102{
554f786e
SR
4103 struct ring_buffer_per_cpu *cpu_buffer;
4104 struct ring_buffer_event *event = NULL;
f83c9d0f 4105 unsigned long flags;
289a5a25 4106 bool dolock;
7a8e76a3 4107
2d622719 4108 again:
554f786e
SR
4109 /* might be called in atomic */
4110 preempt_disable();
4111
9e01c1b7 4112 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 4113 goto out;
7a8e76a3 4114
554f786e 4115 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4116 local_irq_save(flags);
289a5a25 4117 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 4118
66a8cb95
SR
4119 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4120 if (event) {
4121 cpu_buffer->lost_events = 0;
469535a5 4122 rb_advance_reader(cpu_buffer);
66a8cb95 4123 }
7a8e76a3 4124
289a5a25 4125 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4126 local_irq_restore(flags);
f83c9d0f 4127
554f786e
SR
4128 out:
4129 preempt_enable();
4130
1b959e18 4131 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4132 goto again;
2d622719 4133
7a8e76a3
SR
4134 return event;
4135}
c4f50183 4136EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
4137
4138/**
72c9ddfd 4139 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
4140 * @buffer: The ring buffer to read from
4141 * @cpu: The cpu buffer to iterate over
4142 *
72c9ddfd
DM
4143 * This performs the initial preparations necessary to iterate
4144 * through the buffer. Memory is allocated, buffer recording
4145 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 4146 *
6167c205 4147 * Disabling buffer recording prevents the reading from being
72c9ddfd
DM
4148 * corrupted. This is not a consuming read, so a producer is not
4149 * expected.
4150 *
4151 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 4152 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
4153 * Afterwards, ring_buffer_read_start is invoked to get things going
4154 * for real.
4155 *
d611851b 4156 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4157 */
4158struct ring_buffer_iter *
72c9ddfd 4159ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4160{
4161 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4162 struct ring_buffer_iter *iter;
7a8e76a3 4163
9e01c1b7 4164 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4165 return NULL;
7a8e76a3
SR
4166
4167 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4168 if (!iter)
8aabee57 4169 return NULL;
7a8e76a3
SR
4170
4171 cpu_buffer = buffer->buffers[cpu];
4172
4173 iter->cpu_buffer = cpu_buffer;
4174
83f40318 4175 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4176 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4177
4178 return iter;
4179}
4180EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4181
4182/**
4183 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4184 *
4185 * All previously invoked ring_buffer_read_prepare calls to prepare
4186 * iterators will be synchronized. Afterwards, read_buffer_read_start
4187 * calls on those iterators are allowed.
4188 */
4189void
4190ring_buffer_read_prepare_sync(void)
4191{
7a8e76a3 4192 synchronize_sched();
72c9ddfd
DM
4193}
4194EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4195
4196/**
4197 * ring_buffer_read_start - start a non consuming read of the buffer
4198 * @iter: The iterator returned by ring_buffer_read_prepare
4199 *
4200 * This finalizes the startup of an iteration through the buffer.
4201 * The iterator comes from a call to ring_buffer_read_prepare and
4202 * an intervening ring_buffer_read_prepare_sync must have been
4203 * performed.
4204 *
d611851b 4205 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4206 */
4207void
4208ring_buffer_read_start(struct ring_buffer_iter *iter)
4209{
4210 struct ring_buffer_per_cpu *cpu_buffer;
4211 unsigned long flags;
4212
4213 if (!iter)
4214 return;
4215
4216 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4217
5389f6fa 4218 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4219 arch_spin_lock(&cpu_buffer->lock);
642edba5 4220 rb_iter_reset(iter);
0199c4e6 4221 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4222 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4223}
c4f50183 4224EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4225
4226/**
d611851b 4227 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4228 * @iter: The iterator retrieved by ring_buffer_start
4229 *
4230 * This re-enables the recording to the buffer, and frees the
4231 * iterator.
4232 */
4233void
4234ring_buffer_read_finish(struct ring_buffer_iter *iter)
4235{
4236 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4237 unsigned long flags;
7a8e76a3 4238
659f451f
SR
4239 /*
4240 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4241 * to check the integrity of the ring buffer.
4242 * Must prevent readers from trying to read, as the check
4243 * clears the HEAD page and readers require it.
659f451f 4244 */
9366c1ba 4245 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4246 rb_check_pages(cpu_buffer);
9366c1ba 4247 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4248
7a8e76a3 4249 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4250 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4251 kfree(iter);
4252}
c4f50183 4253EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4254
4255/**
4256 * ring_buffer_read - read the next item in the ring buffer by the iterator
4257 * @iter: The ring buffer iterator
4258 * @ts: The time stamp of the event read.
4259 *
4260 * This reads the next event in the ring buffer and increments the iterator.
4261 */
4262struct ring_buffer_event *
4263ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4264{
4265 struct ring_buffer_event *event;
f83c9d0f
SR
4266 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4267 unsigned long flags;
7a8e76a3 4268
5389f6fa 4269 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4270 again:
f83c9d0f 4271 event = rb_iter_peek(iter, ts);
7a8e76a3 4272 if (!event)
f83c9d0f 4273 goto out;
7a8e76a3 4274
7e9391cf
SR
4275 if (event->type_len == RINGBUF_TYPE_PADDING)
4276 goto again;
4277
7a8e76a3 4278 rb_advance_iter(iter);
f83c9d0f 4279 out:
5389f6fa 4280 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4281
4282 return event;
4283}
c4f50183 4284EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4285
4286/**
4287 * ring_buffer_size - return the size of the ring buffer (in bytes)
4288 * @buffer: The ring buffer.
4289 */
438ced17 4290unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4291{
438ced17
VN
4292 /*
4293 * Earlier, this method returned
4294 * BUF_PAGE_SIZE * buffer->nr_pages
4295 * Since the nr_pages field is now removed, we have converted this to
4296 * return the per cpu buffer value.
4297 */
4298 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4299 return 0;
4300
4301 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4302}
c4f50183 4303EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4304
4305static void
4306rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4307{
77ae365e
SR
4308 rb_head_page_deactivate(cpu_buffer);
4309
7a8e76a3 4310 cpu_buffer->head_page
3adc54fa 4311 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4312 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4313 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4314 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4315
6f807acd 4316 cpu_buffer->head_page->read = 0;
bf41a158
SR
4317
4318 cpu_buffer->tail_page = cpu_buffer->head_page;
4319 cpu_buffer->commit_page = cpu_buffer->head_page;
4320
4321 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4322 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4323 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4324 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4325 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4326 cpu_buffer->reader_page->read = 0;
7a8e76a3 4327
c64e148a 4328 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4329 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4330 local_set(&cpu_buffer->commit_overrun, 0);
4331 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4332 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4333 local_set(&cpu_buffer->committing, 0);
4334 local_set(&cpu_buffer->commits, 0);
77ae365e 4335 cpu_buffer->read = 0;
c64e148a 4336 cpu_buffer->read_bytes = 0;
69507c06
SR
4337
4338 cpu_buffer->write_stamp = 0;
4339 cpu_buffer->read_stamp = 0;
77ae365e 4340
66a8cb95
SR
4341 cpu_buffer->lost_events = 0;
4342 cpu_buffer->last_overrun = 0;
4343
77ae365e 4344 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4345}
4346
4347/**
4348 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4349 * @buffer: The ring buffer to reset a per cpu buffer of
4350 * @cpu: The CPU buffer to be reset
4351 */
4352void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4353{
4354 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4355 unsigned long flags;
4356
9e01c1b7 4357 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4358 return;
7a8e76a3 4359
83f40318 4360 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4361 atomic_inc(&cpu_buffer->record_disabled);
4362
83f40318
VN
4363 /* Make sure all commits have finished */
4364 synchronize_sched();
4365
5389f6fa 4366 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4367
41b6a95d
SR
4368 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4369 goto out;
4370
0199c4e6 4371 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4372
4373 rb_reset_cpu(cpu_buffer);
4374
0199c4e6 4375 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4376
41b6a95d 4377 out:
5389f6fa 4378 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4379
4380 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4381 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4382}
c4f50183 4383EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4384
4385/**
4386 * ring_buffer_reset - reset a ring buffer
4387 * @buffer: The ring buffer to reset all cpu buffers
4388 */
4389void ring_buffer_reset(struct ring_buffer *buffer)
4390{
7a8e76a3
SR
4391 int cpu;
4392
7a8e76a3 4393 for_each_buffer_cpu(buffer, cpu)
d769041f 4394 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4395}
c4f50183 4396EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4397
4398/**
4399 * rind_buffer_empty - is the ring buffer empty?
4400 * @buffer: The ring buffer to test
4401 */
3d4e204d 4402bool ring_buffer_empty(struct ring_buffer *buffer)
7a8e76a3
SR
4403{
4404 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4405 unsigned long flags;
289a5a25 4406 bool dolock;
7a8e76a3 4407 int cpu;
d4788207 4408 int ret;
7a8e76a3
SR
4409
4410 /* yes this is racy, but if you don't like the race, lock the buffer */
4411 for_each_buffer_cpu(buffer, cpu) {
4412 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4413 local_irq_save(flags);
289a5a25 4414 dolock = rb_reader_lock(cpu_buffer);
d4788207 4415 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4416 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
4417 local_irq_restore(flags);
4418
d4788207 4419 if (!ret)
3d4e204d 4420 return false;
7a8e76a3 4421 }
554f786e 4422
3d4e204d 4423 return true;
7a8e76a3 4424}
c4f50183 4425EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4426
4427/**
4428 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4429 * @buffer: The ring buffer
4430 * @cpu: The CPU buffer to test
4431 */
3d4e204d 4432bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4433{
4434 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4435 unsigned long flags;
289a5a25 4436 bool dolock;
8aabee57 4437 int ret;
7a8e76a3 4438
9e01c1b7 4439 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3d4e204d 4440 return true;
7a8e76a3
SR
4441
4442 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4443 local_irq_save(flags);
289a5a25 4444 dolock = rb_reader_lock(cpu_buffer);
554f786e 4445 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4446 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4447 local_irq_restore(flags);
554f786e
SR
4448
4449 return ret;
7a8e76a3 4450}
c4f50183 4451EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4452
85bac32c 4453#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4454/**
4455 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4456 * @buffer_a: One buffer to swap with
4457 * @buffer_b: The other buffer to swap with
4458 *
4459 * This function is useful for tracers that want to take a "snapshot"
4460 * of a CPU buffer and has another back up buffer lying around.
4461 * it is expected that the tracer handles the cpu buffer not being
4462 * used at the moment.
4463 */
4464int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4465 struct ring_buffer *buffer_b, int cpu)
4466{
4467 struct ring_buffer_per_cpu *cpu_buffer_a;
4468 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4469 int ret = -EINVAL;
4470
9e01c1b7
RR
4471 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4472 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4473 goto out;
7a8e76a3 4474
438ced17
VN
4475 cpu_buffer_a = buffer_a->buffers[cpu];
4476 cpu_buffer_b = buffer_b->buffers[cpu];
4477
7a8e76a3 4478 /* At least make sure the two buffers are somewhat the same */
438ced17 4479 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4480 goto out;
4481
4482 ret = -EAGAIN;
7a8e76a3 4483
97b17efe 4484 if (atomic_read(&buffer_a->record_disabled))
554f786e 4485 goto out;
97b17efe
SR
4486
4487 if (atomic_read(&buffer_b->record_disabled))
554f786e 4488 goto out;
97b17efe 4489
97b17efe 4490 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4491 goto out;
97b17efe
SR
4492
4493 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4494 goto out;
97b17efe 4495
7a8e76a3
SR
4496 /*
4497 * We can't do a synchronize_sched here because this
4498 * function can be called in atomic context.
4499 * Normally this will be called from the same CPU as cpu.
4500 * If not it's up to the caller to protect this.
4501 */
4502 atomic_inc(&cpu_buffer_a->record_disabled);
4503 atomic_inc(&cpu_buffer_b->record_disabled);
4504
98277991
SR
4505 ret = -EBUSY;
4506 if (local_read(&cpu_buffer_a->committing))
4507 goto out_dec;
4508 if (local_read(&cpu_buffer_b->committing))
4509 goto out_dec;
4510
7a8e76a3
SR
4511 buffer_a->buffers[cpu] = cpu_buffer_b;
4512 buffer_b->buffers[cpu] = cpu_buffer_a;
4513
4514 cpu_buffer_b->buffer = buffer_a;
4515 cpu_buffer_a->buffer = buffer_b;
4516
98277991
SR
4517 ret = 0;
4518
4519out_dec:
7a8e76a3
SR
4520 atomic_dec(&cpu_buffer_a->record_disabled);
4521 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4522out:
554f786e 4523 return ret;
7a8e76a3 4524}
c4f50183 4525EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4526#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4527
8789a9e7
SR
4528/**
4529 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4530 * @buffer: the buffer to allocate for.
d611851b 4531 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4532 *
4533 * This function is used in conjunction with ring_buffer_read_page.
4534 * When reading a full page from the ring buffer, these functions
4535 * can be used to speed up the process. The calling function should
4536 * allocate a few pages first with this function. Then when it
4537 * needs to get pages from the ring buffer, it passes the result
4538 * of this function into ring_buffer_read_page, which will swap
4539 * the page that was allocated, with the read page of the buffer.
4540 *
4541 * Returns:
a7e52ad7 4542 * The page allocated, or ERR_PTR
8789a9e7 4543 */
7ea59064 4544void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4545{
a7e52ad7 4546 struct ring_buffer_per_cpu *cpu_buffer;
73a757e6
SRV
4547 struct buffer_data_page *bpage = NULL;
4548 unsigned long flags;
7ea59064 4549 struct page *page;
8789a9e7 4550
a7e52ad7
SRV
4551 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4552 return ERR_PTR(-ENODEV);
4553
4554 cpu_buffer = buffer->buffers[cpu];
73a757e6
SRV
4555 local_irq_save(flags);
4556 arch_spin_lock(&cpu_buffer->lock);
4557
4558 if (cpu_buffer->free_page) {
4559 bpage = cpu_buffer->free_page;
4560 cpu_buffer->free_page = NULL;
4561 }
4562
4563 arch_spin_unlock(&cpu_buffer->lock);
4564 local_irq_restore(flags);
4565
4566 if (bpage)
4567 goto out;
4568
d7ec4bfe
VN
4569 page = alloc_pages_node(cpu_to_node(cpu),
4570 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4571 if (!page)
a7e52ad7 4572 return ERR_PTR(-ENOMEM);
8789a9e7 4573
7ea59064 4574 bpage = page_address(page);
8789a9e7 4575
73a757e6 4576 out:
ef7a4a16
SR
4577 rb_init_page(bpage);
4578
044fa782 4579 return bpage;
8789a9e7 4580}
d6ce96da 4581EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4582
4583/**
4584 * ring_buffer_free_read_page - free an allocated read page
4585 * @buffer: the buffer the page was allocate for
73a757e6 4586 * @cpu: the cpu buffer the page came from
8789a9e7
SR
4587 * @data: the page to free
4588 *
4589 * Free a page allocated from ring_buffer_alloc_read_page.
4590 */
73a757e6 4591void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
8789a9e7 4592{
73a757e6
SRV
4593 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4594 struct buffer_data_page *bpage = data;
ae415fa4 4595 struct page *page = virt_to_page(bpage);
73a757e6
SRV
4596 unsigned long flags;
4597
ae415fa4
SRV
4598 /* If the page is still in use someplace else, we can't reuse it */
4599 if (page_ref_count(page) > 1)
4600 goto out;
4601
73a757e6
SRV
4602 local_irq_save(flags);
4603 arch_spin_lock(&cpu_buffer->lock);
4604
4605 if (!cpu_buffer->free_page) {
4606 cpu_buffer->free_page = bpage;
4607 bpage = NULL;
4608 }
4609
4610 arch_spin_unlock(&cpu_buffer->lock);
4611 local_irq_restore(flags);
4612
ae415fa4 4613 out:
73a757e6 4614 free_page((unsigned long)bpage);
8789a9e7 4615}
d6ce96da 4616EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4617
4618/**
4619 * ring_buffer_read_page - extract a page from the ring buffer
4620 * @buffer: buffer to extract from
4621 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4622 * @len: amount to extract
8789a9e7
SR
4623 * @cpu: the cpu of the buffer to extract
4624 * @full: should the extraction only happen when the page is full.
4625 *
4626 * This function will pull out a page from the ring buffer and consume it.
4627 * @data_page must be the address of the variable that was returned
4628 * from ring_buffer_alloc_read_page. This is because the page might be used
4629 * to swap with a page in the ring buffer.
4630 *
4631 * for example:
d611851b 4632 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
a7e52ad7
SRV
4633 * if (IS_ERR(rpage))
4634 * return PTR_ERR(rpage);
ef7a4a16 4635 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4636 * if (ret >= 0)
4637 * process_page(rpage, ret);
8789a9e7
SR
4638 *
4639 * When @full is set, the function will not return true unless
4640 * the writer is off the reader page.
4641 *
4642 * Note: it is up to the calling functions to handle sleeps and wakeups.
4643 * The ring buffer can be used anywhere in the kernel and can not
4644 * blindly call wake_up. The layer that uses the ring buffer must be
4645 * responsible for that.
4646 *
4647 * Returns:
667d2412
LJ
4648 * >=0 if data has been transferred, returns the offset of consumed data.
4649 * <0 if no data has been transferred.
8789a9e7
SR
4650 */
4651int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4652 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4653{
4654 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4655 struct ring_buffer_event *event;
044fa782 4656 struct buffer_data_page *bpage;
ef7a4a16 4657 struct buffer_page *reader;
ff0ff84a 4658 unsigned long missed_events;
8789a9e7 4659 unsigned long flags;
ef7a4a16 4660 unsigned int commit;
667d2412 4661 unsigned int read;
4f3640f8 4662 u64 save_timestamp;
667d2412 4663 int ret = -1;
8789a9e7 4664
554f786e
SR
4665 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4666 goto out;
4667
474d32b6
SR
4668 /*
4669 * If len is not big enough to hold the page header, then
4670 * we can not copy anything.
4671 */
4672 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4673 goto out;
474d32b6
SR
4674
4675 len -= BUF_PAGE_HDR_SIZE;
4676
8789a9e7 4677 if (!data_page)
554f786e 4678 goto out;
8789a9e7 4679
044fa782
SR
4680 bpage = *data_page;
4681 if (!bpage)
554f786e 4682 goto out;
8789a9e7 4683
5389f6fa 4684 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4685
ef7a4a16
SR
4686 reader = rb_get_reader_page(cpu_buffer);
4687 if (!reader)
554f786e 4688 goto out_unlock;
8789a9e7 4689
ef7a4a16
SR
4690 event = rb_reader_event(cpu_buffer);
4691
4692 read = reader->read;
4693 commit = rb_page_commit(reader);
667d2412 4694
66a8cb95 4695 /* Check if any events were dropped */
ff0ff84a 4696 missed_events = cpu_buffer->lost_events;
66a8cb95 4697
8789a9e7 4698 /*
474d32b6
SR
4699 * If this page has been partially read or
4700 * if len is not big enough to read the rest of the page or
4701 * a writer is still on the page, then
4702 * we must copy the data from the page to the buffer.
4703 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4704 */
474d32b6 4705 if (read || (len < (commit - read)) ||
ef7a4a16 4706 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4707 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4708 unsigned int rpos = read;
4709 unsigned int pos = 0;
ef7a4a16 4710 unsigned int size;
8789a9e7
SR
4711
4712 if (full)
554f786e 4713 goto out_unlock;
8789a9e7 4714
ef7a4a16
SR
4715 if (len > (commit - read))
4716 len = (commit - read);
4717
69d1b839
SR
4718 /* Always keep the time extend and data together */
4719 size = rb_event_ts_length(event);
ef7a4a16
SR
4720
4721 if (len < size)
554f786e 4722 goto out_unlock;
ef7a4a16 4723
4f3640f8
SR
4724 /* save the current timestamp, since the user will need it */
4725 save_timestamp = cpu_buffer->read_stamp;
4726
ef7a4a16
SR
4727 /* Need to copy one event at a time */
4728 do {
e1e35927
DS
4729 /* We need the size of one event, because
4730 * rb_advance_reader only advances by one event,
4731 * whereas rb_event_ts_length may include the size of
4732 * one or two events.
4733 * We have already ensured there's enough space if this
4734 * is a time extend. */
4735 size = rb_event_length(event);
474d32b6 4736 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4737
4738 len -= size;
4739
4740 rb_advance_reader(cpu_buffer);
474d32b6
SR
4741 rpos = reader->read;
4742 pos += size;
ef7a4a16 4743
18fab912
HY
4744 if (rpos >= commit)
4745 break;
4746
ef7a4a16 4747 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4748 /* Always keep the time extend and data together */
4749 size = rb_event_ts_length(event);
e1e35927 4750 } while (len >= size);
667d2412
LJ
4751
4752 /* update bpage */
ef7a4a16 4753 local_set(&bpage->commit, pos);
4f3640f8 4754 bpage->time_stamp = save_timestamp;
ef7a4a16 4755
474d32b6
SR
4756 /* we copied everything to the beginning */
4757 read = 0;
8789a9e7 4758 } else {
afbab76a 4759 /* update the entry counter */
77ae365e 4760 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4761 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4762
8789a9e7 4763 /* swap the pages */
044fa782 4764 rb_init_page(bpage);
ef7a4a16
SR
4765 bpage = reader->page;
4766 reader->page = *data_page;
4767 local_set(&reader->write, 0);
778c55d4 4768 local_set(&reader->entries, 0);
ef7a4a16 4769 reader->read = 0;
044fa782 4770 *data_page = bpage;
ff0ff84a
SR
4771
4772 /*
4773 * Use the real_end for the data size,
4774 * This gives us a chance to store the lost events
4775 * on the page.
4776 */
4777 if (reader->real_end)
4778 local_set(&bpage->commit, reader->real_end);
8789a9e7 4779 }
667d2412 4780 ret = read;
8789a9e7 4781
66a8cb95 4782 cpu_buffer->lost_events = 0;
2711ca23
SR
4783
4784 commit = local_read(&bpage->commit);
66a8cb95
SR
4785 /*
4786 * Set a flag in the commit field if we lost events
4787 */
ff0ff84a 4788 if (missed_events) {
ff0ff84a
SR
4789 /* If there is room at the end of the page to save the
4790 * missed events, then record it there.
4791 */
4792 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4793 memcpy(&bpage->data[commit], &missed_events,
4794 sizeof(missed_events));
4795 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4796 commit += sizeof(missed_events);
ff0ff84a 4797 }
66a8cb95 4798 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4799 }
66a8cb95 4800
2711ca23
SR
4801 /*
4802 * This page may be off to user land. Zero it out here.
4803 */
4804 if (commit < BUF_PAGE_SIZE)
4805 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4806
554f786e 4807 out_unlock:
5389f6fa 4808 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4809
554f786e 4810 out:
8789a9e7
SR
4811 return ret;
4812}
d6ce96da 4813EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4814
b32614c0
SAS
4815/*
4816 * We only allocate new buffers, never free them if the CPU goes down.
4817 * If we were to free the buffer, then the user would lose any trace that was in
4818 * the buffer.
4819 */
4820int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
554f786e 4821{
b32614c0 4822 struct ring_buffer *buffer;
9b94a8fb
SRRH
4823 long nr_pages_same;
4824 int cpu_i;
4825 unsigned long nr_pages;
554f786e 4826
b32614c0
SAS
4827 buffer = container_of(node, struct ring_buffer, node);
4828 if (cpumask_test_cpu(cpu, buffer->cpumask))
4829 return 0;
4830
4831 nr_pages = 0;
4832 nr_pages_same = 1;
4833 /* check if all cpu sizes are same */
4834 for_each_buffer_cpu(buffer, cpu_i) {
4835 /* fill in the size from first enabled cpu */
4836 if (nr_pages == 0)
4837 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4838 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4839 nr_pages_same = 0;
4840 break;
554f786e 4841 }
554f786e 4842 }
b32614c0
SAS
4843 /* allocate minimum pages, user can later expand it */
4844 if (!nr_pages_same)
4845 nr_pages = 2;
4846 buffer->buffers[cpu] =
4847 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4848 if (!buffer->buffers[cpu]) {
4849 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4850 cpu);
4851 return -ENOMEM;
4852 }
4853 smp_wmb();
4854 cpumask_set_cpu(cpu, buffer->cpumask);
4855 return 0;
554f786e 4856}
6c43e554
SRRH
4857
4858#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4859/*
4860 * This is a basic integrity check of the ring buffer.
4861 * Late in the boot cycle this test will run when configured in.
4862 * It will kick off a thread per CPU that will go into a loop
4863 * writing to the per cpu ring buffer various sizes of data.
4864 * Some of the data will be large items, some small.
4865 *
4866 * Another thread is created that goes into a spin, sending out
4867 * IPIs to the other CPUs to also write into the ring buffer.
4868 * this is to test the nesting ability of the buffer.
4869 *
4870 * Basic stats are recorded and reported. If something in the
4871 * ring buffer should happen that's not expected, a big warning
4872 * is displayed and all ring buffers are disabled.
4873 */
4874static struct task_struct *rb_threads[NR_CPUS] __initdata;
4875
4876struct rb_test_data {
4877 struct ring_buffer *buffer;
4878 unsigned long events;
4879 unsigned long bytes_written;
4880 unsigned long bytes_alloc;
4881 unsigned long bytes_dropped;
4882 unsigned long events_nested;
4883 unsigned long bytes_written_nested;
4884 unsigned long bytes_alloc_nested;
4885 unsigned long bytes_dropped_nested;
4886 int min_size_nested;
4887 int max_size_nested;
4888 int max_size;
4889 int min_size;
4890 int cpu;
4891 int cnt;
4892};
4893
4894static struct rb_test_data rb_data[NR_CPUS] __initdata;
4895
4896/* 1 meg per cpu */
4897#define RB_TEST_BUFFER_SIZE 1048576
4898
4899static char rb_string[] __initdata =
4900 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4901 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4902 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4903
4904static bool rb_test_started __initdata;
4905
4906struct rb_item {
4907 int size;
4908 char str[];
4909};
4910
4911static __init int rb_write_something(struct rb_test_data *data, bool nested)
4912{
4913 struct ring_buffer_event *event;
4914 struct rb_item *item;
4915 bool started;
4916 int event_len;
4917 int size;
4918 int len;
4919 int cnt;
4920
4921 /* Have nested writes different that what is written */
4922 cnt = data->cnt + (nested ? 27 : 0);
4923
4924 /* Multiply cnt by ~e, to make some unique increment */
4925 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4926
4927 len = size + sizeof(struct rb_item);
4928
4929 started = rb_test_started;
4930 /* read rb_test_started before checking buffer enabled */
4931 smp_rmb();
4932
4933 event = ring_buffer_lock_reserve(data->buffer, len);
4934 if (!event) {
4935 /* Ignore dropped events before test starts. */
4936 if (started) {
4937 if (nested)
4938 data->bytes_dropped += len;
4939 else
4940 data->bytes_dropped_nested += len;
4941 }
4942 return len;
4943 }
4944
4945 event_len = ring_buffer_event_length(event);
4946
4947 if (RB_WARN_ON(data->buffer, event_len < len))
4948 goto out;
4949
4950 item = ring_buffer_event_data(event);
4951 item->size = size;
4952 memcpy(item->str, rb_string, size);
4953
4954 if (nested) {
4955 data->bytes_alloc_nested += event_len;
4956 data->bytes_written_nested += len;
4957 data->events_nested++;
4958 if (!data->min_size_nested || len < data->min_size_nested)
4959 data->min_size_nested = len;
4960 if (len > data->max_size_nested)
4961 data->max_size_nested = len;
4962 } else {
4963 data->bytes_alloc += event_len;
4964 data->bytes_written += len;
4965 data->events++;
4966 if (!data->min_size || len < data->min_size)
4967 data->max_size = len;
4968 if (len > data->max_size)
4969 data->max_size = len;
4970 }
4971
4972 out:
4973 ring_buffer_unlock_commit(data->buffer, event);
4974
4975 return 0;
4976}
4977
4978static __init int rb_test(void *arg)
4979{
4980 struct rb_test_data *data = arg;
4981
4982 while (!kthread_should_stop()) {
4983 rb_write_something(data, false);
4984 data->cnt++;
4985
4986 set_current_state(TASK_INTERRUPTIBLE);
4987 /* Now sleep between a min of 100-300us and a max of 1ms */
4988 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4989 }
4990
4991 return 0;
4992}
4993
4994static __init void rb_ipi(void *ignore)
4995{
4996 struct rb_test_data *data;
4997 int cpu = smp_processor_id();
4998
4999 data = &rb_data[cpu];
5000 rb_write_something(data, true);
5001}
5002
5003static __init int rb_hammer_test(void *arg)
5004{
5005 while (!kthread_should_stop()) {
5006
5007 /* Send an IPI to all cpus to write data! */
5008 smp_call_function(rb_ipi, NULL, 1);
5009 /* No sleep, but for non preempt, let others run */
5010 schedule();
5011 }
5012
5013 return 0;
5014}
5015
5016static __init int test_ringbuffer(void)
5017{
5018 struct task_struct *rb_hammer;
5019 struct ring_buffer *buffer;
5020 int cpu;
5021 int ret = 0;
5022
5023 pr_info("Running ring buffer tests...\n");
5024
5025 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5026 if (WARN_ON(!buffer))
5027 return 0;
5028
5029 /* Disable buffer so that threads can't write to it yet */
5030 ring_buffer_record_off(buffer);
5031
5032 for_each_online_cpu(cpu) {
5033 rb_data[cpu].buffer = buffer;
5034 rb_data[cpu].cpu = cpu;
5035 rb_data[cpu].cnt = cpu;
5036 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5037 "rbtester/%d", cpu);
62277de7 5038 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6c43e554 5039 pr_cont("FAILED\n");
62277de7 5040 ret = PTR_ERR(rb_threads[cpu]);
6c43e554
SRRH
5041 goto out_free;
5042 }
5043
5044 kthread_bind(rb_threads[cpu], cpu);
5045 wake_up_process(rb_threads[cpu]);
5046 }
5047
5048 /* Now create the rb hammer! */
5049 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
62277de7 5050 if (WARN_ON(IS_ERR(rb_hammer))) {
6c43e554 5051 pr_cont("FAILED\n");
62277de7 5052 ret = PTR_ERR(rb_hammer);
6c43e554
SRRH
5053 goto out_free;
5054 }
5055
5056 ring_buffer_record_on(buffer);
5057 /*
5058 * Show buffer is enabled before setting rb_test_started.
5059 * Yes there's a small race window where events could be
5060 * dropped and the thread wont catch it. But when a ring
5061 * buffer gets enabled, there will always be some kind of
5062 * delay before other CPUs see it. Thus, we don't care about
5063 * those dropped events. We care about events dropped after
5064 * the threads see that the buffer is active.
5065 */
5066 smp_wmb();
5067 rb_test_started = true;
5068
5069 set_current_state(TASK_INTERRUPTIBLE);
5070 /* Just run for 10 seconds */;
5071 schedule_timeout(10 * HZ);
5072
5073 kthread_stop(rb_hammer);
5074
5075 out_free:
5076 for_each_online_cpu(cpu) {
5077 if (!rb_threads[cpu])
5078 break;
5079 kthread_stop(rb_threads[cpu]);
5080 }
5081 if (ret) {
5082 ring_buffer_free(buffer);
5083 return ret;
5084 }
5085
5086 /* Report! */
5087 pr_info("finished\n");
5088 for_each_online_cpu(cpu) {
5089 struct ring_buffer_event *event;
5090 struct rb_test_data *data = &rb_data[cpu];
5091 struct rb_item *item;
5092 unsigned long total_events;
5093 unsigned long total_dropped;
5094 unsigned long total_written;
5095 unsigned long total_alloc;
5096 unsigned long total_read = 0;
5097 unsigned long total_size = 0;
5098 unsigned long total_len = 0;
5099 unsigned long total_lost = 0;
5100 unsigned long lost;
5101 int big_event_size;
5102 int small_event_size;
5103
5104 ret = -1;
5105
5106 total_events = data->events + data->events_nested;
5107 total_written = data->bytes_written + data->bytes_written_nested;
5108 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5109 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5110
5111 big_event_size = data->max_size + data->max_size_nested;
5112 small_event_size = data->min_size + data->min_size_nested;
5113
5114 pr_info("CPU %d:\n", cpu);
5115 pr_info(" events: %ld\n", total_events);
5116 pr_info(" dropped bytes: %ld\n", total_dropped);
5117 pr_info(" alloced bytes: %ld\n", total_alloc);
5118 pr_info(" written bytes: %ld\n", total_written);
5119 pr_info(" biggest event: %d\n", big_event_size);
5120 pr_info(" smallest event: %d\n", small_event_size);
5121
5122 if (RB_WARN_ON(buffer, total_dropped))
5123 break;
5124
5125 ret = 0;
5126
5127 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5128 total_lost += lost;
5129 item = ring_buffer_event_data(event);
5130 total_len += ring_buffer_event_length(event);
5131 total_size += item->size + sizeof(struct rb_item);
5132 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5133 pr_info("FAILED!\n");
5134 pr_info("buffer had: %.*s\n", item->size, item->str);
5135 pr_info("expected: %.*s\n", item->size, rb_string);
5136 RB_WARN_ON(buffer, 1);
5137 ret = -1;
5138 break;
5139 }
5140 total_read++;
5141 }
5142 if (ret)
5143 break;
5144
5145 ret = -1;
5146
5147 pr_info(" read events: %ld\n", total_read);
5148 pr_info(" lost events: %ld\n", total_lost);
5149 pr_info(" total events: %ld\n", total_lost + total_read);
5150 pr_info(" recorded len bytes: %ld\n", total_len);
5151 pr_info(" recorded size bytes: %ld\n", total_size);
5152 if (total_lost)
5153 pr_info(" With dropped events, record len and size may not match\n"
5154 " alloced and written from above\n");
5155 if (!total_lost) {
5156 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5157 total_size != total_written))
5158 break;
5159 }
5160 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5161 break;
5162
5163 ret = 0;
5164 }
5165 if (!ret)
5166 pr_info("Ring buffer PASSED!\n");
5167
5168 ring_buffer_free(buffer);
5169 return 0;
5170}
5171
5172late_initcall(test_ringbuffer);
5173#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */