Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3 12#include <linux/uaccess.h>
a81bd80a 13#include <linux/hardirq.h>
6c43e554 14#include <linux/kthread.h> /* for self test */
1744a21d 15#include <linux/kmemcheck.h>
7a8e76a3
SR
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
6c43e554 19#include <linux/delay.h>
5a0e3ad6 20#include <linux/slab.h>
7a8e76a3
SR
21#include <linux/init.h>
22#include <linux/hash.h>
23#include <linux/list.h>
554f786e 24#include <linux/cpu.h>
7a8e76a3 25
79615760 26#include <asm/local.h>
182e9f5f 27
83f40318
VN
28static void update_pages_handler(struct work_struct *work);
29
d1b182a8
SR
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
c0cd93aa
SRRH
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
d1b182a8
SR
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
033601a3
SR
118/*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136/*
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
139 *
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
145 */
146
147enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
150};
151
152enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155};
156
5e39841c 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 158
499e5470
SR
159/* Used for individual buffers (after the counter) */
160#define RB_BUFFER_OFF (1 << 20)
a3583244 161
499e5470 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
163
164/**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
c3706f00 168 * permanently.
033601a3
SR
169 */
170void tracing_off_permanent(void)
171{
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
173}
174
e3d6bf0a 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 176#define RB_ALIGNMENT 4U
334d4169 177#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 178#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 179
649508f6 180#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
181# define RB_FORCE_8BYTE_ALIGNMENT 0
182# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183#else
184# define RB_FORCE_8BYTE_ALIGNMENT 1
185# define RB_ARCH_ALIGNMENT 8U
186#endif
187
649508f6
JH
188#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
189
334d4169
LJ
190/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
192
193enum {
194 RB_LEN_TIME_EXTEND = 8,
195 RB_LEN_TIME_STAMP = 16,
196};
197
69d1b839
SR
198#define skip_time_extend(event) \
199 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
2d622719
TZ
201static inline int rb_null_event(struct ring_buffer_event *event)
202{
a1863c21 203 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
204}
205
206static void rb_event_set_padding(struct ring_buffer_event *event)
207{
a1863c21 208 /* padding has a NULL time_delta */
334d4169 209 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
210 event->time_delta = 0;
211}
212
34a148bf 213static unsigned
2d622719 214rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
215{
216 unsigned length;
217
334d4169
LJ
218 if (event->type_len)
219 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
220 else
221 length = event->array[0];
222 return length + RB_EVNT_HDR_SIZE;
223}
224
69d1b839
SR
225/*
226 * Return the length of the given event. Will return
227 * the length of the time extend if the event is a
228 * time extend.
229 */
230static inline unsigned
2d622719
TZ
231rb_event_length(struct ring_buffer_event *event)
232{
334d4169 233 switch (event->type_len) {
7a8e76a3 234 case RINGBUF_TYPE_PADDING:
2d622719
TZ
235 if (rb_null_event(event))
236 /* undefined */
237 return -1;
334d4169 238 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
239
240 case RINGBUF_TYPE_TIME_EXTEND:
241 return RB_LEN_TIME_EXTEND;
242
243 case RINGBUF_TYPE_TIME_STAMP:
244 return RB_LEN_TIME_STAMP;
245
246 case RINGBUF_TYPE_DATA:
2d622719 247 return rb_event_data_length(event);
7a8e76a3
SR
248 default:
249 BUG();
250 }
251 /* not hit */
252 return 0;
253}
254
69d1b839
SR
255/*
256 * Return total length of time extend and data,
257 * or just the event length for all other events.
258 */
259static inline unsigned
260rb_event_ts_length(struct ring_buffer_event *event)
261{
262 unsigned len = 0;
263
264 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265 /* time extends include the data event after it */
266 len = RB_LEN_TIME_EXTEND;
267 event = skip_time_extend(event);
268 }
269 return len + rb_event_length(event);
270}
271
7a8e76a3
SR
272/**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
69d1b839
SR
275 *
276 * Returns the size of the data load of a data event.
277 * If the event is something other than a data event, it
278 * returns the size of the event itself. With the exception
279 * of a TIME EXTEND, where it still returns the size of the
280 * data load of the data event after it.
7a8e76a3
SR
281 */
282unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283{
69d1b839
SR
284 unsigned length;
285
286 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287 event = skip_time_extend(event);
288
289 length = rb_event_length(event);
334d4169 290 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
291 return length;
292 length -= RB_EVNT_HDR_SIZE;
293 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294 length -= sizeof(event->array[0]);
295 return length;
7a8e76a3 296}
c4f50183 297EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
298
299/* inline for ring buffer fast paths */
34a148bf 300static void *
7a8e76a3
SR
301rb_event_data(struct ring_buffer_event *event)
302{
69d1b839
SR
303 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304 event = skip_time_extend(event);
334d4169 305 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 306 /* If length is in len field, then array[0] has the data */
334d4169 307 if (event->type_len)
7a8e76a3
SR
308 return (void *)&event->array[0];
309 /* Otherwise length is in array[0] and array[1] has the data */
310 return (void *)&event->array[1];
311}
312
313/**
314 * ring_buffer_event_data - return the data of the event
315 * @event: the event to get the data from
316 */
317void *ring_buffer_event_data(struct ring_buffer_event *event)
318{
319 return rb_event_data(event);
320}
c4f50183 321EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
322
323#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 324 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
325
326#define TS_SHIFT 27
327#define TS_MASK ((1ULL << TS_SHIFT) - 1)
328#define TS_DELTA_TEST (~TS_MASK)
329
66a8cb95
SR
330/* Flag when events were overwritten */
331#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
332/* Missed count stored at end */
333#define RB_MISSED_STORED (1 << 30)
66a8cb95 334
abc9b56d 335struct buffer_data_page {
e4c2ce82 336 u64 time_stamp; /* page time stamp */
c3706f00 337 local_t commit; /* write committed index */
649508f6 338 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
339};
340
77ae365e
SR
341/*
342 * Note, the buffer_page list must be first. The buffer pages
343 * are allocated in cache lines, which means that each buffer
344 * page will be at the beginning of a cache line, and thus
345 * the least significant bits will be zero. We use this to
346 * add flags in the list struct pointers, to make the ring buffer
347 * lockless.
348 */
abc9b56d 349struct buffer_page {
778c55d4 350 struct list_head list; /* list of buffer pages */
abc9b56d 351 local_t write; /* index for next write */
6f807acd 352 unsigned read; /* index for next read */
778c55d4 353 local_t entries; /* entries on this page */
ff0ff84a 354 unsigned long real_end; /* real end of data */
abc9b56d 355 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
356};
357
77ae365e
SR
358/*
359 * The buffer page counters, write and entries, must be reset
360 * atomically when crossing page boundaries. To synchronize this
361 * update, two counters are inserted into the number. One is
362 * the actual counter for the write position or count on the page.
363 *
364 * The other is a counter of updaters. Before an update happens
365 * the update partition of the counter is incremented. This will
366 * allow the updater to update the counter atomically.
367 *
368 * The counter is 20 bits, and the state data is 12.
369 */
370#define RB_WRITE_MASK 0xfffff
371#define RB_WRITE_INTCNT (1 << 20)
372
044fa782 373static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 374{
044fa782 375 local_set(&bpage->commit, 0);
abc9b56d
SR
376}
377
474d32b6
SR
378/**
379 * ring_buffer_page_len - the size of data on the page.
380 * @page: The page to read
381 *
382 * Returns the amount of data on the page, including buffer page header.
383 */
ef7a4a16
SR
384size_t ring_buffer_page_len(void *page)
385{
474d32b6
SR
386 return local_read(&((struct buffer_data_page *)page)->commit)
387 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
388}
389
ed56829c
SR
390/*
391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392 * this issue out.
393 */
34a148bf 394static void free_buffer_page(struct buffer_page *bpage)
ed56829c 395{
34a148bf 396 free_page((unsigned long)bpage->page);
e4c2ce82 397 kfree(bpage);
ed56829c
SR
398}
399
7a8e76a3
SR
400/*
401 * We need to fit the time_stamp delta into 27 bits.
402 */
403static inline int test_time_stamp(u64 delta)
404{
405 if (delta & TS_DELTA_TEST)
406 return 1;
407 return 0;
408}
409
474d32b6 410#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 411
be957c44
SR
412/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
d1b182a8
SR
415int ring_buffer_print_page_header(struct trace_seq *s)
416{
417 struct buffer_data_page field;
c0cd93aa
SRRH
418
419 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420 "offset:0;\tsize:%u;\tsigned:%u;\n",
421 (unsigned int)sizeof(field.time_stamp),
422 (unsigned int)is_signed_type(u64));
423
424 trace_seq_printf(s, "\tfield: local_t commit;\t"
425 "offset:%u;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)offsetof(typeof(field), commit),
427 (unsigned int)sizeof(field.commit),
428 (unsigned int)is_signed_type(long));
429
430 trace_seq_printf(s, "\tfield: int overwrite;\t"
431 "offset:%u;\tsize:%u;\tsigned:%u;\n",
432 (unsigned int)offsetof(typeof(field), commit),
433 1,
434 (unsigned int)is_signed_type(long));
435
436 trace_seq_printf(s, "\tfield: char data;\t"
437 "offset:%u;\tsize:%u;\tsigned:%u;\n",
438 (unsigned int)offsetof(typeof(field), data),
439 (unsigned int)BUF_PAGE_SIZE,
440 (unsigned int)is_signed_type(char));
441
442 return !trace_seq_has_overflowed(s);
d1b182a8
SR
443}
444
15693458
SRRH
445struct rb_irq_work {
446 struct irq_work work;
447 wait_queue_head_t waiters;
1e0d6714 448 wait_queue_head_t full_waiters;
15693458 449 bool waiters_pending;
1e0d6714
SRRH
450 bool full_waiters_pending;
451 bool wakeup_full;
15693458
SRRH
452};
453
7a8e76a3
SR
454/*
455 * head_page == tail_page && head == tail then buffer is empty.
456 */
457struct ring_buffer_per_cpu {
458 int cpu;
985023de 459 atomic_t record_disabled;
7a8e76a3 460 struct ring_buffer *buffer;
5389f6fa 461 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 462 arch_spinlock_t lock;
7a8e76a3 463 struct lock_class_key lock_key;
438ced17 464 unsigned int nr_pages;
3adc54fa 465 struct list_head *pages;
6f807acd
SR
466 struct buffer_page *head_page; /* read from head */
467 struct buffer_page *tail_page; /* write to tail */
c3706f00 468 struct buffer_page *commit_page; /* committed pages */
d769041f 469 struct buffer_page *reader_page;
66a8cb95
SR
470 unsigned long lost_events;
471 unsigned long last_overrun;
c64e148a 472 local_t entries_bytes;
e4906eff 473 local_t entries;
884bfe89
SP
474 local_t overrun;
475 local_t commit_overrun;
476 local_t dropped_events;
fa743953
SR
477 local_t committing;
478 local_t commits;
77ae365e 479 unsigned long read;
c64e148a 480 unsigned long read_bytes;
7a8e76a3
SR
481 u64 write_stamp;
482 u64 read_stamp;
438ced17
VN
483 /* ring buffer pages to update, > 0 to add, < 0 to remove */
484 int nr_pages_to_update;
485 struct list_head new_pages; /* new pages to add */
83f40318 486 struct work_struct update_pages_work;
05fdd70d 487 struct completion update_done;
15693458
SRRH
488
489 struct rb_irq_work irq_work;
7a8e76a3
SR
490};
491
492struct ring_buffer {
7a8e76a3
SR
493 unsigned flags;
494 int cpus;
7a8e76a3 495 atomic_t record_disabled;
83f40318 496 atomic_t resize_disabled;
00f62f61 497 cpumask_var_t cpumask;
7a8e76a3 498
1f8a6a10
PZ
499 struct lock_class_key *reader_lock_key;
500
7a8e76a3
SR
501 struct mutex mutex;
502
503 struct ring_buffer_per_cpu **buffers;
554f786e 504
59222efe 505#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
506 struct notifier_block cpu_notify;
507#endif
37886f6a 508 u64 (*clock)(void);
15693458
SRRH
509
510 struct rb_irq_work irq_work;
7a8e76a3
SR
511};
512
513struct ring_buffer_iter {
514 struct ring_buffer_per_cpu *cpu_buffer;
515 unsigned long head;
516 struct buffer_page *head_page;
492a74f4
SR
517 struct buffer_page *cache_reader_page;
518 unsigned long cache_read;
7a8e76a3
SR
519 u64 read_stamp;
520};
521
15693458
SRRH
522/*
523 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
524 *
525 * Schedules a delayed work to wake up any task that is blocked on the
526 * ring buffer waiters queue.
527 */
528static void rb_wake_up_waiters(struct irq_work *work)
529{
530 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
531
532 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
533 if (rbwork->wakeup_full) {
534 rbwork->wakeup_full = false;
535 wake_up_all(&rbwork->full_waiters);
536 }
15693458
SRRH
537}
538
539/**
540 * ring_buffer_wait - wait for input to the ring buffer
541 * @buffer: buffer to wait on
542 * @cpu: the cpu buffer to wait on
e30f53aa 543 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
544 *
545 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
546 * as data is added to any of the @buffer's cpu buffers. Otherwise
547 * it will wait for data to be added to a specific cpu buffer.
548 */
e30f53aa 549int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
15693458 550{
e30f53aa 551 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
552 DEFINE_WAIT(wait);
553 struct rb_irq_work *work;
e30f53aa 554 int ret = 0;
15693458
SRRH
555
556 /*
557 * Depending on what the caller is waiting for, either any
558 * data in any cpu buffer, or a specific buffer, put the
559 * caller on the appropriate wait queue.
560 */
1e0d6714 561 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 562 work = &buffer->irq_work;
1e0d6714
SRRH
563 /* Full only makes sense on per cpu reads */
564 full = false;
565 } else {
8b8b3683
SRRH
566 if (!cpumask_test_cpu(cpu, buffer->cpumask))
567 return -ENODEV;
15693458
SRRH
568 cpu_buffer = buffer->buffers[cpu];
569 work = &cpu_buffer->irq_work;
570 }
571
572
e30f53aa 573 while (true) {
1e0d6714
SRRH
574 if (full)
575 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
576 else
577 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
578
579 /*
580 * The events can happen in critical sections where
581 * checking a work queue can cause deadlocks.
582 * After adding a task to the queue, this flag is set
583 * only to notify events to try to wake up the queue
584 * using irq_work.
585 *
586 * We don't clear it even if the buffer is no longer
587 * empty. The flag only causes the next event to run
588 * irq_work to do the work queue wake up. The worse
589 * that can happen if we race with !trace_empty() is that
590 * an event will cause an irq_work to try to wake up
591 * an empty queue.
592 *
593 * There's no reason to protect this flag either, as
594 * the work queue and irq_work logic will do the necessary
595 * synchronization for the wake ups. The only thing
596 * that is necessary is that the wake up happens after
597 * a task has been queued. It's OK for spurious wake ups.
598 */
1e0d6714
SRRH
599 if (full)
600 work->full_waiters_pending = true;
601 else
602 work->waiters_pending = true;
e30f53aa
RV
603
604 if (signal_pending(current)) {
605 ret = -EINTR;
606 break;
607 }
608
609 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
610 break;
611
612 if (cpu != RING_BUFFER_ALL_CPUS &&
613 !ring_buffer_empty_cpu(buffer, cpu)) {
614 unsigned long flags;
615 bool pagebusy;
616
617 if (!full)
618 break;
619
620 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
621 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
622 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
623
624 if (!pagebusy)
625 break;
626 }
15693458 627
15693458 628 schedule();
e30f53aa 629 }
15693458 630
1e0d6714
SRRH
631 if (full)
632 finish_wait(&work->full_waiters, &wait);
633 else
634 finish_wait(&work->waiters, &wait);
e30f53aa
RV
635
636 return ret;
15693458
SRRH
637}
638
639/**
640 * ring_buffer_poll_wait - poll on buffer input
641 * @buffer: buffer to wait on
642 * @cpu: the cpu buffer to wait on
643 * @filp: the file descriptor
644 * @poll_table: The poll descriptor
645 *
646 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
647 * as data is added to any of the @buffer's cpu buffers. Otherwise
648 * it will wait for data to be added to a specific cpu buffer.
649 *
650 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
651 * zero otherwise.
652 */
653int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
654 struct file *filp, poll_table *poll_table)
655{
656 struct ring_buffer_per_cpu *cpu_buffer;
657 struct rb_irq_work *work;
658
15693458
SRRH
659 if (cpu == RING_BUFFER_ALL_CPUS)
660 work = &buffer->irq_work;
661 else {
6721cb60
SRRH
662 if (!cpumask_test_cpu(cpu, buffer->cpumask))
663 return -EINVAL;
664
15693458
SRRH
665 cpu_buffer = buffer->buffers[cpu];
666 work = &cpu_buffer->irq_work;
667 }
668
15693458 669 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
670 work->waiters_pending = true;
671 /*
672 * There's a tight race between setting the waiters_pending and
673 * checking if the ring buffer is empty. Once the waiters_pending bit
674 * is set, the next event will wake the task up, but we can get stuck
675 * if there's only a single event in.
676 *
677 * FIXME: Ideally, we need a memory barrier on the writer side as well,
678 * but adding a memory barrier to all events will cause too much of a
679 * performance hit in the fast path. We only need a memory barrier when
680 * the buffer goes from empty to having content. But as this race is
681 * extremely small, and it's not a problem if another event comes in, we
682 * will fix it later.
683 */
684 smp_mb();
15693458
SRRH
685
686 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
687 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
688 return POLLIN | POLLRDNORM;
689 return 0;
690}
691
f536aafc 692/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
693#define RB_WARN_ON(b, cond) \
694 ({ \
695 int _____ret = unlikely(cond); \
696 if (_____ret) { \
697 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
698 struct ring_buffer_per_cpu *__b = \
699 (void *)b; \
700 atomic_inc(&__b->buffer->record_disabled); \
701 } else \
702 atomic_inc(&b->record_disabled); \
703 WARN_ON(1); \
704 } \
705 _____ret; \
3e89c7bb 706 })
f536aafc 707
37886f6a
SR
708/* Up this if you want to test the TIME_EXTENTS and normalization */
709#define DEBUG_SHIFT 0
710
6d3f1e12 711static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
712{
713 /* shift to debug/test normalization and TIME_EXTENTS */
714 return buffer->clock() << DEBUG_SHIFT;
715}
716
37886f6a
SR
717u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
718{
719 u64 time;
720
721 preempt_disable_notrace();
6d3f1e12 722 time = rb_time_stamp(buffer);
37886f6a
SR
723 preempt_enable_no_resched_notrace();
724
725 return time;
726}
727EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
728
729void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
730 int cpu, u64 *ts)
731{
732 /* Just stupid testing the normalize function and deltas */
733 *ts >>= DEBUG_SHIFT;
734}
735EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
736
77ae365e
SR
737/*
738 * Making the ring buffer lockless makes things tricky.
739 * Although writes only happen on the CPU that they are on,
740 * and they only need to worry about interrupts. Reads can
741 * happen on any CPU.
742 *
743 * The reader page is always off the ring buffer, but when the
744 * reader finishes with a page, it needs to swap its page with
745 * a new one from the buffer. The reader needs to take from
746 * the head (writes go to the tail). But if a writer is in overwrite
747 * mode and wraps, it must push the head page forward.
748 *
749 * Here lies the problem.
750 *
751 * The reader must be careful to replace only the head page, and
752 * not another one. As described at the top of the file in the
753 * ASCII art, the reader sets its old page to point to the next
754 * page after head. It then sets the page after head to point to
755 * the old reader page. But if the writer moves the head page
756 * during this operation, the reader could end up with the tail.
757 *
758 * We use cmpxchg to help prevent this race. We also do something
759 * special with the page before head. We set the LSB to 1.
760 *
761 * When the writer must push the page forward, it will clear the
762 * bit that points to the head page, move the head, and then set
763 * the bit that points to the new head page.
764 *
765 * We also don't want an interrupt coming in and moving the head
766 * page on another writer. Thus we use the second LSB to catch
767 * that too. Thus:
768 *
769 * head->list->prev->next bit 1 bit 0
770 * ------- -------
771 * Normal page 0 0
772 * Points to head page 0 1
773 * New head page 1 0
774 *
775 * Note we can not trust the prev pointer of the head page, because:
776 *
777 * +----+ +-----+ +-----+
778 * | |------>| T |---X--->| N |
779 * | |<------| | | |
780 * +----+ +-----+ +-----+
781 * ^ ^ |
782 * | +-----+ | |
783 * +----------| R |----------+ |
784 * | |<-----------+
785 * +-----+
786 *
787 * Key: ---X--> HEAD flag set in pointer
788 * T Tail page
789 * R Reader page
790 * N Next page
791 *
792 * (see __rb_reserve_next() to see where this happens)
793 *
794 * What the above shows is that the reader just swapped out
795 * the reader page with a page in the buffer, but before it
796 * could make the new header point back to the new page added
797 * it was preempted by a writer. The writer moved forward onto
798 * the new page added by the reader and is about to move forward
799 * again.
800 *
801 * You can see, it is legitimate for the previous pointer of
802 * the head (or any page) not to point back to itself. But only
803 * temporarially.
804 */
805
806#define RB_PAGE_NORMAL 0UL
807#define RB_PAGE_HEAD 1UL
808#define RB_PAGE_UPDATE 2UL
809
810
811#define RB_FLAG_MASK 3UL
812
813/* PAGE_MOVED is not part of the mask */
814#define RB_PAGE_MOVED 4UL
815
816/*
817 * rb_list_head - remove any bit
818 */
819static struct list_head *rb_list_head(struct list_head *list)
820{
821 unsigned long val = (unsigned long)list;
822
823 return (struct list_head *)(val & ~RB_FLAG_MASK);
824}
825
826/*
6d3f1e12 827 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
828 *
829 * Because the reader may move the head_page pointer, we can
830 * not trust what the head page is (it may be pointing to
831 * the reader page). But if the next page is a header page,
832 * its flags will be non zero.
833 */
42b16b3f 834static inline int
77ae365e
SR
835rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
836 struct buffer_page *page, struct list_head *list)
837{
838 unsigned long val;
839
840 val = (unsigned long)list->next;
841
842 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
843 return RB_PAGE_MOVED;
844
845 return val & RB_FLAG_MASK;
846}
847
848/*
849 * rb_is_reader_page
850 *
851 * The unique thing about the reader page, is that, if the
852 * writer is ever on it, the previous pointer never points
853 * back to the reader page.
854 */
855static int rb_is_reader_page(struct buffer_page *page)
856{
857 struct list_head *list = page->list.prev;
858
859 return rb_list_head(list->next) != &page->list;
860}
861
862/*
863 * rb_set_list_to_head - set a list_head to be pointing to head.
864 */
865static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
866 struct list_head *list)
867{
868 unsigned long *ptr;
869
870 ptr = (unsigned long *)&list->next;
871 *ptr |= RB_PAGE_HEAD;
872 *ptr &= ~RB_PAGE_UPDATE;
873}
874
875/*
876 * rb_head_page_activate - sets up head page
877 */
878static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
879{
880 struct buffer_page *head;
881
882 head = cpu_buffer->head_page;
883 if (!head)
884 return;
885
886 /*
887 * Set the previous list pointer to have the HEAD flag.
888 */
889 rb_set_list_to_head(cpu_buffer, head->list.prev);
890}
891
892static void rb_list_head_clear(struct list_head *list)
893{
894 unsigned long *ptr = (unsigned long *)&list->next;
895
896 *ptr &= ~RB_FLAG_MASK;
897}
898
899/*
900 * rb_head_page_dactivate - clears head page ptr (for free list)
901 */
902static void
903rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
904{
905 struct list_head *hd;
906
907 /* Go through the whole list and clear any pointers found. */
908 rb_list_head_clear(cpu_buffer->pages);
909
910 list_for_each(hd, cpu_buffer->pages)
911 rb_list_head_clear(hd);
912}
913
914static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag, int new_flag)
918{
919 struct list_head *list;
920 unsigned long val = (unsigned long)&head->list;
921 unsigned long ret;
922
923 list = &prev->list;
924
925 val &= ~RB_FLAG_MASK;
926
08a40816
SR
927 ret = cmpxchg((unsigned long *)&list->next,
928 val | old_flag, val | new_flag);
77ae365e
SR
929
930 /* check if the reader took the page */
931 if ((ret & ~RB_FLAG_MASK) != val)
932 return RB_PAGE_MOVED;
933
934 return ret & RB_FLAG_MASK;
935}
936
937static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
938 struct buffer_page *head,
939 struct buffer_page *prev,
940 int old_flag)
941{
942 return rb_head_page_set(cpu_buffer, head, prev,
943 old_flag, RB_PAGE_UPDATE);
944}
945
946static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
947 struct buffer_page *head,
948 struct buffer_page *prev,
949 int old_flag)
950{
951 return rb_head_page_set(cpu_buffer, head, prev,
952 old_flag, RB_PAGE_HEAD);
953}
954
955static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
956 struct buffer_page *head,
957 struct buffer_page *prev,
958 int old_flag)
959{
960 return rb_head_page_set(cpu_buffer, head, prev,
961 old_flag, RB_PAGE_NORMAL);
962}
963
964static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
965 struct buffer_page **bpage)
966{
967 struct list_head *p = rb_list_head((*bpage)->list.next);
968
969 *bpage = list_entry(p, struct buffer_page, list);
970}
971
972static struct buffer_page *
973rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
974{
975 struct buffer_page *head;
976 struct buffer_page *page;
977 struct list_head *list;
978 int i;
979
980 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
981 return NULL;
982
983 /* sanity check */
984 list = cpu_buffer->pages;
985 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
986 return NULL;
987
988 page = head = cpu_buffer->head_page;
989 /*
990 * It is possible that the writer moves the header behind
991 * where we started, and we miss in one loop.
992 * A second loop should grab the header, but we'll do
993 * three loops just because I'm paranoid.
994 */
995 for (i = 0; i < 3; i++) {
996 do {
997 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
998 cpu_buffer->head_page = page;
999 return page;
1000 }
1001 rb_inc_page(cpu_buffer, &page);
1002 } while (page != head);
1003 }
1004
1005 RB_WARN_ON(cpu_buffer, 1);
1006
1007 return NULL;
1008}
1009
1010static int rb_head_page_replace(struct buffer_page *old,
1011 struct buffer_page *new)
1012{
1013 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1014 unsigned long val;
1015 unsigned long ret;
1016
1017 val = *ptr & ~RB_FLAG_MASK;
1018 val |= RB_PAGE_HEAD;
1019
08a40816 1020 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
1021
1022 return ret == val;
1023}
1024
1025/*
1026 * rb_tail_page_update - move the tail page forward
1027 *
1028 * Returns 1 if moved tail page, 0 if someone else did.
1029 */
1030static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1031 struct buffer_page *tail_page,
1032 struct buffer_page *next_page)
1033{
1034 struct buffer_page *old_tail;
1035 unsigned long old_entries;
1036 unsigned long old_write;
1037 int ret = 0;
1038
1039 /*
1040 * The tail page now needs to be moved forward.
1041 *
1042 * We need to reset the tail page, but without messing
1043 * with possible erasing of data brought in by interrupts
1044 * that have moved the tail page and are currently on it.
1045 *
1046 * We add a counter to the write field to denote this.
1047 */
1048 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1049 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1050
1051 /*
1052 * Just make sure we have seen our old_write and synchronize
1053 * with any interrupts that come in.
1054 */
1055 barrier();
1056
1057 /*
1058 * If the tail page is still the same as what we think
1059 * it is, then it is up to us to update the tail
1060 * pointer.
1061 */
1062 if (tail_page == cpu_buffer->tail_page) {
1063 /* Zero the write counter */
1064 unsigned long val = old_write & ~RB_WRITE_MASK;
1065 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1066
1067 /*
1068 * This will only succeed if an interrupt did
1069 * not come in and change it. In which case, we
1070 * do not want to modify it.
da706d8b
LJ
1071 *
1072 * We add (void) to let the compiler know that we do not care
1073 * about the return value of these functions. We use the
1074 * cmpxchg to only update if an interrupt did not already
1075 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1076 */
da706d8b
LJ
1077 (void)local_cmpxchg(&next_page->write, old_write, val);
1078 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1079
1080 /*
1081 * No need to worry about races with clearing out the commit.
1082 * it only can increment when a commit takes place. But that
1083 * only happens in the outer most nested commit.
1084 */
1085 local_set(&next_page->page->commit, 0);
1086
1087 old_tail = cmpxchg(&cpu_buffer->tail_page,
1088 tail_page, next_page);
1089
1090 if (old_tail == tail_page)
1091 ret = 1;
1092 }
1093
1094 return ret;
1095}
1096
1097static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1098 struct buffer_page *bpage)
1099{
1100 unsigned long val = (unsigned long)bpage;
1101
1102 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1103 return 1;
1104
1105 return 0;
1106}
1107
1108/**
1109 * rb_check_list - make sure a pointer to a list has the last bits zero
1110 */
1111static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1112 struct list_head *list)
1113{
1114 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1115 return 1;
1116 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1117 return 1;
1118 return 0;
1119}
1120
7a8e76a3 1121/**
d611851b 1122 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1123 * @cpu_buffer: CPU buffer with pages to test
1124 *
c3706f00 1125 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1126 * been corrupted.
1127 */
1128static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1129{
3adc54fa 1130 struct list_head *head = cpu_buffer->pages;
044fa782 1131 struct buffer_page *bpage, *tmp;
7a8e76a3 1132
308f7eeb
SR
1133 /* Reset the head page if it exists */
1134 if (cpu_buffer->head_page)
1135 rb_set_head_page(cpu_buffer);
1136
77ae365e
SR
1137 rb_head_page_deactivate(cpu_buffer);
1138
3e89c7bb
SR
1139 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1140 return -1;
1141 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1142 return -1;
7a8e76a3 1143
77ae365e
SR
1144 if (rb_check_list(cpu_buffer, head))
1145 return -1;
1146
044fa782 1147 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1148 if (RB_WARN_ON(cpu_buffer,
044fa782 1149 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1150 return -1;
1151 if (RB_WARN_ON(cpu_buffer,
044fa782 1152 bpage->list.prev->next != &bpage->list))
3e89c7bb 1153 return -1;
77ae365e
SR
1154 if (rb_check_list(cpu_buffer, &bpage->list))
1155 return -1;
7a8e76a3
SR
1156 }
1157
77ae365e
SR
1158 rb_head_page_activate(cpu_buffer);
1159
7a8e76a3
SR
1160 return 0;
1161}
1162
438ced17 1163static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1164{
438ced17 1165 int i;
044fa782 1166 struct buffer_page *bpage, *tmp;
3adc54fa 1167
7a8e76a3 1168 for (i = 0; i < nr_pages; i++) {
7ea59064 1169 struct page *page;
d7ec4bfe
VN
1170 /*
1171 * __GFP_NORETRY flag makes sure that the allocation fails
1172 * gracefully without invoking oom-killer and the system is
1173 * not destabilized.
1174 */
044fa782 1175 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1176 GFP_KERNEL | __GFP_NORETRY,
438ced17 1177 cpu_to_node(cpu));
044fa782 1178 if (!bpage)
e4c2ce82 1179 goto free_pages;
77ae365e 1180
438ced17 1181 list_add(&bpage->list, pages);
77ae365e 1182
438ced17 1183 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1184 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1185 if (!page)
7a8e76a3 1186 goto free_pages;
7ea59064 1187 bpage->page = page_address(page);
044fa782 1188 rb_init_page(bpage->page);
7a8e76a3
SR
1189 }
1190
438ced17
VN
1191 return 0;
1192
1193free_pages:
1194 list_for_each_entry_safe(bpage, tmp, pages, list) {
1195 list_del_init(&bpage->list);
1196 free_buffer_page(bpage);
1197 }
1198
1199 return -ENOMEM;
1200}
1201
1202static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1203 unsigned nr_pages)
1204{
1205 LIST_HEAD(pages);
1206
1207 WARN_ON(!nr_pages);
1208
1209 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1210 return -ENOMEM;
1211
3adc54fa
SR
1212 /*
1213 * The ring buffer page list is a circular list that does not
1214 * start and end with a list head. All page list items point to
1215 * other pages.
1216 */
1217 cpu_buffer->pages = pages.next;
1218 list_del(&pages);
7a8e76a3 1219
438ced17
VN
1220 cpu_buffer->nr_pages = nr_pages;
1221
7a8e76a3
SR
1222 rb_check_pages(cpu_buffer);
1223
1224 return 0;
7a8e76a3
SR
1225}
1226
1227static struct ring_buffer_per_cpu *
438ced17 1228rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1229{
1230 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1231 struct buffer_page *bpage;
7ea59064 1232 struct page *page;
7a8e76a3
SR
1233 int ret;
1234
1235 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1236 GFP_KERNEL, cpu_to_node(cpu));
1237 if (!cpu_buffer)
1238 return NULL;
1239
1240 cpu_buffer->cpu = cpu;
1241 cpu_buffer->buffer = buffer;
5389f6fa 1242 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1243 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1244 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1245 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1246 init_completion(&cpu_buffer->update_done);
15693458 1247 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1248 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1249 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1250
044fa782 1251 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1252 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1253 if (!bpage)
e4c2ce82
SR
1254 goto fail_free_buffer;
1255
77ae365e
SR
1256 rb_check_bpage(cpu_buffer, bpage);
1257
044fa782 1258 cpu_buffer->reader_page = bpage;
7ea59064
VN
1259 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1260 if (!page)
e4c2ce82 1261 goto fail_free_reader;
7ea59064 1262 bpage->page = page_address(page);
044fa782 1263 rb_init_page(bpage->page);
e4c2ce82 1264
d769041f 1265 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1266 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1267
438ced17 1268 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1269 if (ret < 0)
d769041f 1270 goto fail_free_reader;
7a8e76a3
SR
1271
1272 cpu_buffer->head_page
3adc54fa 1273 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1274 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1275
77ae365e
SR
1276 rb_head_page_activate(cpu_buffer);
1277
7a8e76a3
SR
1278 return cpu_buffer;
1279
d769041f
SR
1280 fail_free_reader:
1281 free_buffer_page(cpu_buffer->reader_page);
1282
7a8e76a3
SR
1283 fail_free_buffer:
1284 kfree(cpu_buffer);
1285 return NULL;
1286}
1287
1288static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1289{
3adc54fa 1290 struct list_head *head = cpu_buffer->pages;
044fa782 1291 struct buffer_page *bpage, *tmp;
7a8e76a3 1292
d769041f
SR
1293 free_buffer_page(cpu_buffer->reader_page);
1294
77ae365e
SR
1295 rb_head_page_deactivate(cpu_buffer);
1296
3adc54fa
SR
1297 if (head) {
1298 list_for_each_entry_safe(bpage, tmp, head, list) {
1299 list_del_init(&bpage->list);
1300 free_buffer_page(bpage);
1301 }
1302 bpage = list_entry(head, struct buffer_page, list);
044fa782 1303 free_buffer_page(bpage);
7a8e76a3 1304 }
3adc54fa 1305
7a8e76a3
SR
1306 kfree(cpu_buffer);
1307}
1308
59222efe 1309#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1310static int rb_cpu_notify(struct notifier_block *self,
1311 unsigned long action, void *hcpu);
554f786e
SR
1312#endif
1313
7a8e76a3 1314/**
d611851b 1315 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1316 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1317 * @flags: attributes to set for the ring buffer.
1318 *
1319 * Currently the only flag that is available is the RB_FL_OVERWRITE
1320 * flag. This flag means that the buffer will overwrite old data
1321 * when the buffer wraps. If this flag is not set, the buffer will
1322 * drop data when the tail hits the head.
1323 */
1f8a6a10
PZ
1324struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1325 struct lock_class_key *key)
7a8e76a3
SR
1326{
1327 struct ring_buffer *buffer;
1328 int bsize;
438ced17 1329 int cpu, nr_pages;
7a8e76a3
SR
1330
1331 /* keep it in its own cache line */
1332 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1333 GFP_KERNEL);
1334 if (!buffer)
1335 return NULL;
1336
9e01c1b7
RR
1337 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1338 goto fail_free_buffer;
1339
438ced17 1340 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1341 buffer->flags = flags;
37886f6a 1342 buffer->clock = trace_clock_local;
1f8a6a10 1343 buffer->reader_lock_key = key;
7a8e76a3 1344
15693458 1345 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1346 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1347
7a8e76a3 1348 /* need at least two pages */
438ced17
VN
1349 if (nr_pages < 2)
1350 nr_pages = 2;
7a8e76a3 1351
3bf832ce
FW
1352 /*
1353 * In case of non-hotplug cpu, if the ring-buffer is allocated
1354 * in early initcall, it will not be notified of secondary cpus.
1355 * In that off case, we need to allocate for all possible cpus.
1356 */
1357#ifdef CONFIG_HOTPLUG_CPU
d39ad278 1358 cpu_notifier_register_begin();
554f786e 1359 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1360#else
1361 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1362#endif
7a8e76a3
SR
1363 buffer->cpus = nr_cpu_ids;
1364
1365 bsize = sizeof(void *) * nr_cpu_ids;
1366 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1367 GFP_KERNEL);
1368 if (!buffer->buffers)
9e01c1b7 1369 goto fail_free_cpumask;
7a8e76a3
SR
1370
1371 for_each_buffer_cpu(buffer, cpu) {
1372 buffer->buffers[cpu] =
438ced17 1373 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1374 if (!buffer->buffers[cpu])
1375 goto fail_free_buffers;
1376 }
1377
59222efe 1378#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1379 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1380 buffer->cpu_notify.priority = 0;
d39ad278
SB
1381 __register_cpu_notifier(&buffer->cpu_notify);
1382 cpu_notifier_register_done();
554f786e
SR
1383#endif
1384
7a8e76a3
SR
1385 mutex_init(&buffer->mutex);
1386
1387 return buffer;
1388
1389 fail_free_buffers:
1390 for_each_buffer_cpu(buffer, cpu) {
1391 if (buffer->buffers[cpu])
1392 rb_free_cpu_buffer(buffer->buffers[cpu]);
1393 }
1394 kfree(buffer->buffers);
1395
9e01c1b7
RR
1396 fail_free_cpumask:
1397 free_cpumask_var(buffer->cpumask);
d39ad278
SB
1398#ifdef CONFIG_HOTPLUG_CPU
1399 cpu_notifier_register_done();
1400#endif
9e01c1b7 1401
7a8e76a3
SR
1402 fail_free_buffer:
1403 kfree(buffer);
1404 return NULL;
1405}
1f8a6a10 1406EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1407
1408/**
1409 * ring_buffer_free - free a ring buffer.
1410 * @buffer: the buffer to free.
1411 */
1412void
1413ring_buffer_free(struct ring_buffer *buffer)
1414{
1415 int cpu;
1416
59222efe 1417#ifdef CONFIG_HOTPLUG_CPU
d39ad278
SB
1418 cpu_notifier_register_begin();
1419 __unregister_cpu_notifier(&buffer->cpu_notify);
554f786e
SR
1420#endif
1421
7a8e76a3
SR
1422 for_each_buffer_cpu(buffer, cpu)
1423 rb_free_cpu_buffer(buffer->buffers[cpu]);
1424
d39ad278
SB
1425#ifdef CONFIG_HOTPLUG_CPU
1426 cpu_notifier_register_done();
1427#endif
554f786e 1428
bd3f0221 1429 kfree(buffer->buffers);
9e01c1b7
RR
1430 free_cpumask_var(buffer->cpumask);
1431
7a8e76a3
SR
1432 kfree(buffer);
1433}
c4f50183 1434EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1435
37886f6a
SR
1436void ring_buffer_set_clock(struct ring_buffer *buffer,
1437 u64 (*clock)(void))
1438{
1439 buffer->clock = clock;
1440}
1441
7a8e76a3
SR
1442static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1443
83f40318
VN
1444static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1445{
1446 return local_read(&bpage->entries) & RB_WRITE_MASK;
1447}
1448
1449static inline unsigned long rb_page_write(struct buffer_page *bpage)
1450{
1451 return local_read(&bpage->write) & RB_WRITE_MASK;
1452}
1453
5040b4b7 1454static int
83f40318 1455rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1456{
83f40318
VN
1457 struct list_head *tail_page, *to_remove, *next_page;
1458 struct buffer_page *to_remove_page, *tmp_iter_page;
1459 struct buffer_page *last_page, *first_page;
1460 unsigned int nr_removed;
1461 unsigned long head_bit;
1462 int page_entries;
1463
1464 head_bit = 0;
7a8e76a3 1465
5389f6fa 1466 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1467 atomic_inc(&cpu_buffer->record_disabled);
1468 /*
1469 * We don't race with the readers since we have acquired the reader
1470 * lock. We also don't race with writers after disabling recording.
1471 * This makes it easy to figure out the first and the last page to be
1472 * removed from the list. We unlink all the pages in between including
1473 * the first and last pages. This is done in a busy loop so that we
1474 * lose the least number of traces.
1475 * The pages are freed after we restart recording and unlock readers.
1476 */
1477 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1478
83f40318
VN
1479 /*
1480 * tail page might be on reader page, we remove the next page
1481 * from the ring buffer
1482 */
1483 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1484 tail_page = rb_list_head(tail_page->next);
1485 to_remove = tail_page;
1486
1487 /* start of pages to remove */
1488 first_page = list_entry(rb_list_head(to_remove->next),
1489 struct buffer_page, list);
1490
1491 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1492 to_remove = rb_list_head(to_remove)->next;
1493 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1494 }
7a8e76a3 1495
83f40318 1496 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1497
83f40318
VN
1498 /*
1499 * Now we remove all pages between tail_page and next_page.
1500 * Make sure that we have head_bit value preserved for the
1501 * next page
1502 */
1503 tail_page->next = (struct list_head *)((unsigned long)next_page |
1504 head_bit);
1505 next_page = rb_list_head(next_page);
1506 next_page->prev = tail_page;
1507
1508 /* make sure pages points to a valid page in the ring buffer */
1509 cpu_buffer->pages = next_page;
1510
1511 /* update head page */
1512 if (head_bit)
1513 cpu_buffer->head_page = list_entry(next_page,
1514 struct buffer_page, list);
1515
1516 /*
1517 * change read pointer to make sure any read iterators reset
1518 * themselves
1519 */
1520 cpu_buffer->read = 0;
1521
1522 /* pages are removed, resume tracing and then free the pages */
1523 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1524 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1525
1526 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1527
1528 /* last buffer page to remove */
1529 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1530 list);
1531 tmp_iter_page = first_page;
1532
1533 do {
1534 to_remove_page = tmp_iter_page;
1535 rb_inc_page(cpu_buffer, &tmp_iter_page);
1536
1537 /* update the counters */
1538 page_entries = rb_page_entries(to_remove_page);
1539 if (page_entries) {
1540 /*
1541 * If something was added to this page, it was full
1542 * since it is not the tail page. So we deduct the
1543 * bytes consumed in ring buffer from here.
48fdc72f 1544 * Increment overrun to account for the lost events.
83f40318 1545 */
48fdc72f 1546 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1547 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1548 }
1549
1550 /*
1551 * We have already removed references to this list item, just
1552 * free up the buffer_page and its page
1553 */
1554 free_buffer_page(to_remove_page);
1555 nr_removed--;
1556
1557 } while (to_remove_page != last_page);
1558
1559 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1560
1561 return nr_removed == 0;
7a8e76a3
SR
1562}
1563
5040b4b7
VN
1564static int
1565rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1566{
5040b4b7
VN
1567 struct list_head *pages = &cpu_buffer->new_pages;
1568 int retries, success;
7a8e76a3 1569
5389f6fa 1570 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1571 /*
1572 * We are holding the reader lock, so the reader page won't be swapped
1573 * in the ring buffer. Now we are racing with the writer trying to
1574 * move head page and the tail page.
1575 * We are going to adapt the reader page update process where:
1576 * 1. We first splice the start and end of list of new pages between
1577 * the head page and its previous page.
1578 * 2. We cmpxchg the prev_page->next to point from head page to the
1579 * start of new pages list.
1580 * 3. Finally, we update the head->prev to the end of new list.
1581 *
1582 * We will try this process 10 times, to make sure that we don't keep
1583 * spinning.
1584 */
1585 retries = 10;
1586 success = 0;
1587 while (retries--) {
1588 struct list_head *head_page, *prev_page, *r;
1589 struct list_head *last_page, *first_page;
1590 struct list_head *head_page_with_bit;
77ae365e 1591
5040b4b7 1592 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1593 if (!head_page)
1594 break;
5040b4b7
VN
1595 prev_page = head_page->prev;
1596
1597 first_page = pages->next;
1598 last_page = pages->prev;
1599
1600 head_page_with_bit = (struct list_head *)
1601 ((unsigned long)head_page | RB_PAGE_HEAD);
1602
1603 last_page->next = head_page_with_bit;
1604 first_page->prev = prev_page;
1605
1606 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1607
1608 if (r == head_page_with_bit) {
1609 /*
1610 * yay, we replaced the page pointer to our new list,
1611 * now, we just have to update to head page's prev
1612 * pointer to point to end of list
1613 */
1614 head_page->prev = last_page;
1615 success = 1;
1616 break;
1617 }
7a8e76a3 1618 }
7a8e76a3 1619
5040b4b7
VN
1620 if (success)
1621 INIT_LIST_HEAD(pages);
1622 /*
1623 * If we weren't successful in adding in new pages, warn and stop
1624 * tracing
1625 */
1626 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1627 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1628
1629 /* free pages if they weren't inserted */
1630 if (!success) {
1631 struct buffer_page *bpage, *tmp;
1632 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1633 list) {
1634 list_del_init(&bpage->list);
1635 free_buffer_page(bpage);
1636 }
1637 }
1638 return success;
7a8e76a3
SR
1639}
1640
83f40318 1641static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1642{
5040b4b7
VN
1643 int success;
1644
438ced17 1645 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1646 success = rb_insert_pages(cpu_buffer);
438ced17 1647 else
5040b4b7
VN
1648 success = rb_remove_pages(cpu_buffer,
1649 -cpu_buffer->nr_pages_to_update);
83f40318 1650
5040b4b7
VN
1651 if (success)
1652 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1653}
1654
1655static void update_pages_handler(struct work_struct *work)
1656{
1657 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1658 struct ring_buffer_per_cpu, update_pages_work);
1659 rb_update_pages(cpu_buffer);
05fdd70d 1660 complete(&cpu_buffer->update_done);
438ced17
VN
1661}
1662
7a8e76a3
SR
1663/**
1664 * ring_buffer_resize - resize the ring buffer
1665 * @buffer: the buffer to resize.
1666 * @size: the new size.
d611851b 1667 * @cpu_id: the cpu buffer to resize
7a8e76a3 1668 *
7a8e76a3
SR
1669 * Minimum size is 2 * BUF_PAGE_SIZE.
1670 *
83f40318 1671 * Returns 0 on success and < 0 on failure.
7a8e76a3 1672 */
438ced17
VN
1673int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1674 int cpu_id)
7a8e76a3
SR
1675{
1676 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1677 unsigned nr_pages;
83f40318 1678 int cpu, err = 0;
7a8e76a3 1679
ee51a1de
IM
1680 /*
1681 * Always succeed at resizing a non-existent buffer:
1682 */
1683 if (!buffer)
1684 return size;
1685
6a31e1f1
SR
1686 /* Make sure the requested buffer exists */
1687 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1688 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1689 return size;
1690
7a8e76a3
SR
1691 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1692 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1693
1694 /* we need a minimum of two pages */
1695 if (size < BUF_PAGE_SIZE * 2)
1696 size = BUF_PAGE_SIZE * 2;
1697
83f40318 1698 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1699
83f40318
VN
1700 /*
1701 * Don't succeed if resizing is disabled, as a reader might be
1702 * manipulating the ring buffer and is expecting a sane state while
1703 * this is true.
1704 */
1705 if (atomic_read(&buffer->resize_disabled))
1706 return -EBUSY;
18421015 1707
83f40318 1708 /* prevent another thread from changing buffer sizes */
7a8e76a3 1709 mutex_lock(&buffer->mutex);
7a8e76a3 1710
438ced17
VN
1711 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1712 /* calculate the pages to update */
7a8e76a3
SR
1713 for_each_buffer_cpu(buffer, cpu) {
1714 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1715
438ced17
VN
1716 cpu_buffer->nr_pages_to_update = nr_pages -
1717 cpu_buffer->nr_pages;
438ced17
VN
1718 /*
1719 * nothing more to do for removing pages or no update
1720 */
1721 if (cpu_buffer->nr_pages_to_update <= 0)
1722 continue;
d7ec4bfe 1723 /*
438ced17
VN
1724 * to add pages, make sure all new pages can be
1725 * allocated without receiving ENOMEM
d7ec4bfe 1726 */
438ced17
VN
1727 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1728 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1729 &cpu_buffer->new_pages, cpu)) {
438ced17 1730 /* not enough memory for new pages */
83f40318
VN
1731 err = -ENOMEM;
1732 goto out_err;
1733 }
1734 }
1735
1736 get_online_cpus();
1737 /*
1738 * Fire off all the required work handlers
05fdd70d 1739 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1740 * since we can change their buffer sizes without any race.
1741 */
1742 for_each_buffer_cpu(buffer, cpu) {
1743 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1744 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1745 continue;
1746
021c5b34
CM
1747 /* Can't run something on an offline CPU. */
1748 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1749 rb_update_pages(cpu_buffer);
1750 cpu_buffer->nr_pages_to_update = 0;
1751 } else {
05fdd70d
VN
1752 schedule_work_on(cpu,
1753 &cpu_buffer->update_pages_work);
f5eb5588 1754 }
7a8e76a3 1755 }
7a8e76a3 1756
438ced17
VN
1757 /* wait for all the updates to complete */
1758 for_each_buffer_cpu(buffer, cpu) {
1759 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1760 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1761 continue;
1762
05fdd70d
VN
1763 if (cpu_online(cpu))
1764 wait_for_completion(&cpu_buffer->update_done);
83f40318 1765 cpu_buffer->nr_pages_to_update = 0;
438ced17 1766 }
83f40318
VN
1767
1768 put_online_cpus();
438ced17 1769 } else {
8e49f418
VN
1770 /* Make sure this CPU has been intitialized */
1771 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1772 goto out;
1773
438ced17 1774 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1775
438ced17
VN
1776 if (nr_pages == cpu_buffer->nr_pages)
1777 goto out;
7a8e76a3 1778
438ced17
VN
1779 cpu_buffer->nr_pages_to_update = nr_pages -
1780 cpu_buffer->nr_pages;
1781
1782 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1783 if (cpu_buffer->nr_pages_to_update > 0 &&
1784 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1785 &cpu_buffer->new_pages, cpu_id)) {
1786 err = -ENOMEM;
1787 goto out_err;
1788 }
438ced17 1789
83f40318
VN
1790 get_online_cpus();
1791
021c5b34
CM
1792 /* Can't run something on an offline CPU. */
1793 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1794 rb_update_pages(cpu_buffer);
1795 else {
83f40318
VN
1796 schedule_work_on(cpu_id,
1797 &cpu_buffer->update_pages_work);
05fdd70d 1798 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1799 }
83f40318 1800
83f40318 1801 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1802 put_online_cpus();
438ced17 1803 }
7a8e76a3
SR
1804
1805 out:
659f451f
SR
1806 /*
1807 * The ring buffer resize can happen with the ring buffer
1808 * enabled, so that the update disturbs the tracing as little
1809 * as possible. But if the buffer is disabled, we do not need
1810 * to worry about that, and we can take the time to verify
1811 * that the buffer is not corrupt.
1812 */
1813 if (atomic_read(&buffer->record_disabled)) {
1814 atomic_inc(&buffer->record_disabled);
1815 /*
1816 * Even though the buffer was disabled, we must make sure
1817 * that it is truly disabled before calling rb_check_pages.
1818 * There could have been a race between checking
1819 * record_disable and incrementing it.
1820 */
1821 synchronize_sched();
1822 for_each_buffer_cpu(buffer, cpu) {
1823 cpu_buffer = buffer->buffers[cpu];
1824 rb_check_pages(cpu_buffer);
1825 }
1826 atomic_dec(&buffer->record_disabled);
1827 }
1828
7a8e76a3 1829 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1830 return size;
1831
83f40318 1832 out_err:
438ced17
VN
1833 for_each_buffer_cpu(buffer, cpu) {
1834 struct buffer_page *bpage, *tmp;
83f40318 1835
438ced17 1836 cpu_buffer = buffer->buffers[cpu];
438ced17 1837 cpu_buffer->nr_pages_to_update = 0;
83f40318 1838
438ced17
VN
1839 if (list_empty(&cpu_buffer->new_pages))
1840 continue;
83f40318 1841
438ced17
VN
1842 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1843 list) {
1844 list_del_init(&bpage->list);
1845 free_buffer_page(bpage);
1846 }
7a8e76a3 1847 }
641d2f63 1848 mutex_unlock(&buffer->mutex);
83f40318 1849 return err;
7a8e76a3 1850}
c4f50183 1851EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1852
750912fa
DS
1853void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1854{
1855 mutex_lock(&buffer->mutex);
1856 if (val)
1857 buffer->flags |= RB_FL_OVERWRITE;
1858 else
1859 buffer->flags &= ~RB_FL_OVERWRITE;
1860 mutex_unlock(&buffer->mutex);
1861}
1862EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1863
8789a9e7 1864static inline void *
044fa782 1865__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1866{
044fa782 1867 return bpage->data + index;
8789a9e7
SR
1868}
1869
044fa782 1870static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1871{
044fa782 1872 return bpage->page->data + index;
7a8e76a3
SR
1873}
1874
1875static inline struct ring_buffer_event *
d769041f 1876rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1877{
6f807acd
SR
1878 return __rb_page_index(cpu_buffer->reader_page,
1879 cpu_buffer->reader_page->read);
1880}
1881
7a8e76a3
SR
1882static inline struct ring_buffer_event *
1883rb_iter_head_event(struct ring_buffer_iter *iter)
1884{
6f807acd 1885 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1886}
1887
bf41a158
SR
1888static inline unsigned rb_page_commit(struct buffer_page *bpage)
1889{
abc9b56d 1890 return local_read(&bpage->page->commit);
bf41a158
SR
1891}
1892
25985edc 1893/* Size is determined by what has been committed */
bf41a158
SR
1894static inline unsigned rb_page_size(struct buffer_page *bpage)
1895{
1896 return rb_page_commit(bpage);
1897}
1898
1899static inline unsigned
1900rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1901{
1902 return rb_page_commit(cpu_buffer->commit_page);
1903}
1904
bf41a158
SR
1905static inline unsigned
1906rb_event_index(struct ring_buffer_event *event)
1907{
1908 unsigned long addr = (unsigned long)event;
1909
22f470f8 1910 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1911}
1912
0f0c85fc 1913static inline int
fa743953
SR
1914rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1915 struct ring_buffer_event *event)
bf41a158
SR
1916{
1917 unsigned long addr = (unsigned long)event;
1918 unsigned long index;
1919
1920 index = rb_event_index(event);
1921 addr &= PAGE_MASK;
1922
1923 return cpu_buffer->commit_page->page == (void *)addr &&
1924 rb_commit_index(cpu_buffer) == index;
1925}
1926
34a148bf 1927static void
bf41a158 1928rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1929{
77ae365e
SR
1930 unsigned long max_count;
1931
bf41a158
SR
1932 /*
1933 * We only race with interrupts and NMIs on this CPU.
1934 * If we own the commit event, then we can commit
1935 * all others that interrupted us, since the interruptions
1936 * are in stack format (they finish before they come
1937 * back to us). This allows us to do a simple loop to
1938 * assign the commit to the tail.
1939 */
a8ccf1d6 1940 again:
438ced17 1941 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1942
bf41a158 1943 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1944 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1945 return;
1946 if (RB_WARN_ON(cpu_buffer,
1947 rb_is_reader_page(cpu_buffer->tail_page)))
1948 return;
1949 local_set(&cpu_buffer->commit_page->page->commit,
1950 rb_page_write(cpu_buffer->commit_page));
bf41a158 1951 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1952 cpu_buffer->write_stamp =
1953 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1954 /* add barrier to keep gcc from optimizing too much */
1955 barrier();
1956 }
1957 while (rb_commit_index(cpu_buffer) !=
1958 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1959
1960 local_set(&cpu_buffer->commit_page->page->commit,
1961 rb_page_write(cpu_buffer->commit_page));
1962 RB_WARN_ON(cpu_buffer,
1963 local_read(&cpu_buffer->commit_page->page->commit) &
1964 ~RB_WRITE_MASK);
bf41a158
SR
1965 barrier();
1966 }
a8ccf1d6
SR
1967
1968 /* again, keep gcc from optimizing */
1969 barrier();
1970
1971 /*
1972 * If an interrupt came in just after the first while loop
1973 * and pushed the tail page forward, we will be left with
1974 * a dangling commit that will never go forward.
1975 */
1976 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1977 goto again;
7a8e76a3
SR
1978}
1979
d769041f 1980static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1981{
abc9b56d 1982 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1983 cpu_buffer->reader_page->read = 0;
d769041f
SR
1984}
1985
34a148bf 1986static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1987{
1988 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1989
1990 /*
1991 * The iterator could be on the reader page (it starts there).
1992 * But the head could have moved, since the reader was
1993 * found. Check for this case and assign the iterator
1994 * to the head page instead of next.
1995 */
1996 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1997 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1998 else
1999 rb_inc_page(cpu_buffer, &iter->head_page);
2000
abc9b56d 2001 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
2002 iter->head = 0;
2003}
2004
69d1b839
SR
2005/* Slow path, do not inline */
2006static noinline struct ring_buffer_event *
2007rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2008{
2009 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2010
2011 /* Not the first event on the page? */
2012 if (rb_event_index(event)) {
2013 event->time_delta = delta & TS_MASK;
2014 event->array[0] = delta >> TS_SHIFT;
2015 } else {
2016 /* nope, just zero it */
2017 event->time_delta = 0;
2018 event->array[0] = 0;
2019 }
2020
2021 return skip_time_extend(event);
2022}
2023
7a8e76a3 2024/**
01e3e710 2025 * rb_update_event - update event type and data
021de3d9 2026 * @event: the event to update
7a8e76a3
SR
2027 * @type: the type of event
2028 * @length: the size of the event field in the ring buffer
2029 *
2030 * Update the type and data fields of the event. The length
2031 * is the actual size that is written to the ring buffer,
2032 * and with this, we can determine what to place into the
2033 * data field.
2034 */
34a148bf 2035static void
69d1b839
SR
2036rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2037 struct ring_buffer_event *event, unsigned length,
2038 int add_timestamp, u64 delta)
7a8e76a3 2039{
69d1b839
SR
2040 /* Only a commit updates the timestamp */
2041 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2042 delta = 0;
7a8e76a3 2043
69d1b839
SR
2044 /*
2045 * If we need to add a timestamp, then we
2046 * add it to the start of the resevered space.
2047 */
2048 if (unlikely(add_timestamp)) {
2049 event = rb_add_time_stamp(event, delta);
2050 length -= RB_LEN_TIME_EXTEND;
2051 delta = 0;
7a8e76a3 2052 }
69d1b839
SR
2053
2054 event->time_delta = delta;
2055 length -= RB_EVNT_HDR_SIZE;
2056 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2057 event->type_len = 0;
2058 event->array[0] = length;
2059 } else
2060 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
2061}
2062
77ae365e
SR
2063/*
2064 * rb_handle_head_page - writer hit the head page
2065 *
2066 * Returns: +1 to retry page
2067 * 0 to continue
2068 * -1 on error
2069 */
2070static int
2071rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2072 struct buffer_page *tail_page,
2073 struct buffer_page *next_page)
2074{
2075 struct buffer_page *new_head;
2076 int entries;
2077 int type;
2078 int ret;
2079
2080 entries = rb_page_entries(next_page);
2081
2082 /*
2083 * The hard part is here. We need to move the head
2084 * forward, and protect against both readers on
2085 * other CPUs and writers coming in via interrupts.
2086 */
2087 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2088 RB_PAGE_HEAD);
2089
2090 /*
2091 * type can be one of four:
2092 * NORMAL - an interrupt already moved it for us
2093 * HEAD - we are the first to get here.
2094 * UPDATE - we are the interrupt interrupting
2095 * a current move.
2096 * MOVED - a reader on another CPU moved the next
2097 * pointer to its reader page. Give up
2098 * and try again.
2099 */
2100
2101 switch (type) {
2102 case RB_PAGE_HEAD:
2103 /*
2104 * We changed the head to UPDATE, thus
2105 * it is our responsibility to update
2106 * the counters.
2107 */
2108 local_add(entries, &cpu_buffer->overrun);
c64e148a 2109 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2110
2111 /*
2112 * The entries will be zeroed out when we move the
2113 * tail page.
2114 */
2115
2116 /* still more to do */
2117 break;
2118
2119 case RB_PAGE_UPDATE:
2120 /*
2121 * This is an interrupt that interrupt the
2122 * previous update. Still more to do.
2123 */
2124 break;
2125 case RB_PAGE_NORMAL:
2126 /*
2127 * An interrupt came in before the update
2128 * and processed this for us.
2129 * Nothing left to do.
2130 */
2131 return 1;
2132 case RB_PAGE_MOVED:
2133 /*
2134 * The reader is on another CPU and just did
2135 * a swap with our next_page.
2136 * Try again.
2137 */
2138 return 1;
2139 default:
2140 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2141 return -1;
2142 }
2143
2144 /*
2145 * Now that we are here, the old head pointer is
2146 * set to UPDATE. This will keep the reader from
2147 * swapping the head page with the reader page.
2148 * The reader (on another CPU) will spin till
2149 * we are finished.
2150 *
2151 * We just need to protect against interrupts
2152 * doing the job. We will set the next pointer
2153 * to HEAD. After that, we set the old pointer
2154 * to NORMAL, but only if it was HEAD before.
2155 * otherwise we are an interrupt, and only
2156 * want the outer most commit to reset it.
2157 */
2158 new_head = next_page;
2159 rb_inc_page(cpu_buffer, &new_head);
2160
2161 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2162 RB_PAGE_NORMAL);
2163
2164 /*
2165 * Valid returns are:
2166 * HEAD - an interrupt came in and already set it.
2167 * NORMAL - One of two things:
2168 * 1) We really set it.
2169 * 2) A bunch of interrupts came in and moved
2170 * the page forward again.
2171 */
2172 switch (ret) {
2173 case RB_PAGE_HEAD:
2174 case RB_PAGE_NORMAL:
2175 /* OK */
2176 break;
2177 default:
2178 RB_WARN_ON(cpu_buffer, 1);
2179 return -1;
2180 }
2181
2182 /*
2183 * It is possible that an interrupt came in,
2184 * set the head up, then more interrupts came in
2185 * and moved it again. When we get back here,
2186 * the page would have been set to NORMAL but we
2187 * just set it back to HEAD.
2188 *
2189 * How do you detect this? Well, if that happened
2190 * the tail page would have moved.
2191 */
2192 if (ret == RB_PAGE_NORMAL) {
2193 /*
2194 * If the tail had moved passed next, then we need
2195 * to reset the pointer.
2196 */
2197 if (cpu_buffer->tail_page != tail_page &&
2198 cpu_buffer->tail_page != next_page)
2199 rb_head_page_set_normal(cpu_buffer, new_head,
2200 next_page,
2201 RB_PAGE_HEAD);
2202 }
2203
2204 /*
2205 * If this was the outer most commit (the one that
2206 * changed the original pointer from HEAD to UPDATE),
2207 * then it is up to us to reset it to NORMAL.
2208 */
2209 if (type == RB_PAGE_HEAD) {
2210 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2211 tail_page,
2212 RB_PAGE_UPDATE);
2213 if (RB_WARN_ON(cpu_buffer,
2214 ret != RB_PAGE_UPDATE))
2215 return -1;
2216 }
2217
2218 return 0;
2219}
2220
34a148bf 2221static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2222{
2223 struct ring_buffer_event event; /* Used only for sizeof array */
2224
2225 /* zero length can cause confusions */
2226 if (!length)
2227 length = 1;
2228
2271048d 2229 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2230 length += sizeof(event.array[0]);
2231
2232 length += RB_EVNT_HDR_SIZE;
2271048d 2233 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2234
2235 return length;
2236}
2237
c7b09308
SR
2238static inline void
2239rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2240 struct buffer_page *tail_page,
2241 unsigned long tail, unsigned long length)
2242{
2243 struct ring_buffer_event *event;
2244
2245 /*
2246 * Only the event that crossed the page boundary
2247 * must fill the old tail_page with padding.
2248 */
2249 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2250 /*
2251 * If the page was filled, then we still need
2252 * to update the real_end. Reset it to zero
2253 * and the reader will ignore it.
2254 */
2255 if (tail == BUF_PAGE_SIZE)
2256 tail_page->real_end = 0;
2257
c7b09308
SR
2258 local_sub(length, &tail_page->write);
2259 return;
2260 }
2261
2262 event = __rb_page_index(tail_page, tail);
b0b7065b 2263 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2264
c64e148a
VN
2265 /* account for padding bytes */
2266 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2267
ff0ff84a
SR
2268 /*
2269 * Save the original length to the meta data.
2270 * This will be used by the reader to add lost event
2271 * counter.
2272 */
2273 tail_page->real_end = tail;
2274
c7b09308
SR
2275 /*
2276 * If this event is bigger than the minimum size, then
2277 * we need to be careful that we don't subtract the
2278 * write counter enough to allow another writer to slip
2279 * in on this page.
2280 * We put in a discarded commit instead, to make sure
2281 * that this space is not used again.
2282 *
2283 * If we are less than the minimum size, we don't need to
2284 * worry about it.
2285 */
2286 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2287 /* No room for any events */
2288
2289 /* Mark the rest of the page with padding */
2290 rb_event_set_padding(event);
2291
2292 /* Set the write back to the previous setting */
2293 local_sub(length, &tail_page->write);
2294 return;
2295 }
2296
2297 /* Put in a discarded event */
2298 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2299 event->type_len = RINGBUF_TYPE_PADDING;
2300 /* time delta must be non zero */
2301 event->time_delta = 1;
c7b09308
SR
2302
2303 /* Set write to end of buffer */
2304 length = (tail + length) - BUF_PAGE_SIZE;
2305 local_sub(length, &tail_page->write);
2306}
6634ff26 2307
747e94ae
SR
2308/*
2309 * This is the slow path, force gcc not to inline it.
2310 */
2311static noinline struct ring_buffer_event *
6634ff26
SR
2312rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2313 unsigned long length, unsigned long tail,
e8bc43e8 2314 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2315{
5a50e33c 2316 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2317 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2318 struct buffer_page *next_page;
2319 int ret;
aa20ae84
SR
2320
2321 next_page = tail_page;
2322
aa20ae84
SR
2323 rb_inc_page(cpu_buffer, &next_page);
2324
aa20ae84
SR
2325 /*
2326 * If for some reason, we had an interrupt storm that made
2327 * it all the way around the buffer, bail, and warn
2328 * about it.
2329 */
2330 if (unlikely(next_page == commit_page)) {
77ae365e 2331 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2332 goto out_reset;
2333 }
2334
77ae365e
SR
2335 /*
2336 * This is where the fun begins!
2337 *
2338 * We are fighting against races between a reader that
2339 * could be on another CPU trying to swap its reader
2340 * page with the buffer head.
2341 *
2342 * We are also fighting against interrupts coming in and
2343 * moving the head or tail on us as well.
2344 *
2345 * If the next page is the head page then we have filled
2346 * the buffer, unless the commit page is still on the
2347 * reader page.
2348 */
2349 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2350
77ae365e
SR
2351 /*
2352 * If the commit is not on the reader page, then
2353 * move the header page.
2354 */
2355 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2356 /*
2357 * If we are not in overwrite mode,
2358 * this is easy, just stop here.
2359 */
884bfe89
SP
2360 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2361 local_inc(&cpu_buffer->dropped_events);
77ae365e 2362 goto out_reset;
884bfe89 2363 }
77ae365e
SR
2364
2365 ret = rb_handle_head_page(cpu_buffer,
2366 tail_page,
2367 next_page);
2368 if (ret < 0)
2369 goto out_reset;
2370 if (ret)
2371 goto out_again;
2372 } else {
2373 /*
2374 * We need to be careful here too. The
2375 * commit page could still be on the reader
2376 * page. We could have a small buffer, and
2377 * have filled up the buffer with events
2378 * from interrupts and such, and wrapped.
2379 *
2380 * Note, if the tail page is also the on the
2381 * reader_page, we let it move out.
2382 */
2383 if (unlikely((cpu_buffer->commit_page !=
2384 cpu_buffer->tail_page) &&
2385 (cpu_buffer->commit_page ==
2386 cpu_buffer->reader_page))) {
2387 local_inc(&cpu_buffer->commit_overrun);
2388 goto out_reset;
2389 }
aa20ae84
SR
2390 }
2391 }
2392
77ae365e
SR
2393 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2394 if (ret) {
2395 /*
2396 * Nested commits always have zero deltas, so
2397 * just reread the time stamp
2398 */
e8bc43e8
SR
2399 ts = rb_time_stamp(buffer);
2400 next_page->page->time_stamp = ts;
aa20ae84
SR
2401 }
2402
77ae365e 2403 out_again:
aa20ae84 2404
77ae365e 2405 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2406
2407 /* fail and let the caller try again */
2408 return ERR_PTR(-EAGAIN);
2409
45141d46 2410 out_reset:
6f3b3440 2411 /* reset write */
c7b09308 2412 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2413
bf41a158 2414 return NULL;
7a8e76a3
SR
2415}
2416
6634ff26
SR
2417static struct ring_buffer_event *
2418__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2419 unsigned long length, u64 ts,
2420 u64 delta, int add_timestamp)
6634ff26 2421{
5a50e33c 2422 struct buffer_page *tail_page;
6634ff26
SR
2423 struct ring_buffer_event *event;
2424 unsigned long tail, write;
2425
69d1b839
SR
2426 /*
2427 * If the time delta since the last event is too big to
2428 * hold in the time field of the event, then we append a
2429 * TIME EXTEND event ahead of the data event.
2430 */
2431 if (unlikely(add_timestamp))
2432 length += RB_LEN_TIME_EXTEND;
2433
6634ff26
SR
2434 tail_page = cpu_buffer->tail_page;
2435 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2436
2437 /* set write to only the index of the write */
2438 write &= RB_WRITE_MASK;
6634ff26
SR
2439 tail = write - length;
2440
d651aa1d
SRRH
2441 /*
2442 * If this is the first commit on the page, then it has the same
2443 * timestamp as the page itself.
2444 */
2445 if (!tail)
2446 delta = 0;
2447
6634ff26 2448 /* See if we shot pass the end of this buffer page */
747e94ae 2449 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2450 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2451 tail_page, ts);
6634ff26
SR
2452
2453 /* We reserved something on the buffer */
2454
6634ff26 2455 event = __rb_page_index(tail_page, tail);
1744a21d 2456 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2457 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2458
69d1b839 2459 local_inc(&tail_page->entries);
6634ff26
SR
2460
2461 /*
fa743953
SR
2462 * If this is the first commit on the page, then update
2463 * its timestamp.
6634ff26 2464 */
fa743953 2465 if (!tail)
e8bc43e8 2466 tail_page->page->time_stamp = ts;
6634ff26 2467
c64e148a
VN
2468 /* account for these added bytes */
2469 local_add(length, &cpu_buffer->entries_bytes);
2470
6634ff26
SR
2471 return event;
2472}
2473
edd813bf
SR
2474static inline int
2475rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2476 struct ring_buffer_event *event)
2477{
2478 unsigned long new_index, old_index;
2479 struct buffer_page *bpage;
2480 unsigned long index;
2481 unsigned long addr;
2482
2483 new_index = rb_event_index(event);
69d1b839 2484 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2485 addr = (unsigned long)event;
2486 addr &= PAGE_MASK;
2487
2488 bpage = cpu_buffer->tail_page;
2489
2490 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2491 unsigned long write_mask =
2492 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2493 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2494 /*
2495 * This is on the tail page. It is possible that
2496 * a write could come in and move the tail page
2497 * and write to the next page. That is fine
2498 * because we just shorten what is on this page.
2499 */
77ae365e
SR
2500 old_index += write_mask;
2501 new_index += write_mask;
edd813bf 2502 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2503 if (index == old_index) {
2504 /* update counters */
2505 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2506 return 1;
c64e148a 2507 }
edd813bf
SR
2508 }
2509
2510 /* could not discard */
2511 return 0;
2512}
2513
fa743953
SR
2514static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2515{
2516 local_inc(&cpu_buffer->committing);
2517 local_inc(&cpu_buffer->commits);
2518}
2519
d9abde21 2520static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2521{
2522 unsigned long commits;
2523
2524 if (RB_WARN_ON(cpu_buffer,
2525 !local_read(&cpu_buffer->committing)))
2526 return;
2527
2528 again:
2529 commits = local_read(&cpu_buffer->commits);
2530 /* synchronize with interrupts */
2531 barrier();
2532 if (local_read(&cpu_buffer->committing) == 1)
2533 rb_set_commit_to_write(cpu_buffer);
2534
2535 local_dec(&cpu_buffer->committing);
2536
2537 /* synchronize with interrupts */
2538 barrier();
2539
2540 /*
2541 * Need to account for interrupts coming in between the
2542 * updating of the commit page and the clearing of the
2543 * committing counter.
2544 */
2545 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2546 !local_read(&cpu_buffer->committing)) {
2547 local_inc(&cpu_buffer->committing);
2548 goto again;
2549 }
2550}
2551
7a8e76a3 2552static struct ring_buffer_event *
62f0b3eb
SR
2553rb_reserve_next_event(struct ring_buffer *buffer,
2554 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2555 unsigned long length)
7a8e76a3
SR
2556{
2557 struct ring_buffer_event *event;
69d1b839 2558 u64 ts, delta;
818e3dd3 2559 int nr_loops = 0;
69d1b839 2560 int add_timestamp;
140ff891 2561 u64 diff;
7a8e76a3 2562
fa743953
SR
2563 rb_start_commit(cpu_buffer);
2564
85bac32c 2565#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2566 /*
2567 * Due to the ability to swap a cpu buffer from a buffer
2568 * it is possible it was swapped before we committed.
2569 * (committing stops a swap). We check for it here and
2570 * if it happened, we have to fail the write.
2571 */
2572 barrier();
2573 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2574 local_dec(&cpu_buffer->committing);
2575 local_dec(&cpu_buffer->commits);
2576 return NULL;
2577 }
85bac32c 2578#endif
62f0b3eb 2579
be957c44 2580 length = rb_calculate_event_length(length);
bf41a158 2581 again:
69d1b839
SR
2582 add_timestamp = 0;
2583 delta = 0;
2584
818e3dd3
SR
2585 /*
2586 * We allow for interrupts to reenter here and do a trace.
2587 * If one does, it will cause this original code to loop
2588 * back here. Even with heavy interrupts happening, this
2589 * should only happen a few times in a row. If this happens
2590 * 1000 times in a row, there must be either an interrupt
2591 * storm or we have something buggy.
2592 * Bail!
2593 */
3e89c7bb 2594 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2595 goto out_fail;
818e3dd3 2596
6d3f1e12 2597 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2598 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2599
140ff891
SR
2600 /* make sure this diff is calculated here */
2601 barrier();
bf41a158 2602
140ff891
SR
2603 /* Did the write stamp get updated already? */
2604 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2605 delta = diff;
2606 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2607 int local_clock_stable = 1;
2608#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
35af99e6 2609 local_clock_stable = sched_clock_stable();
31274d72 2610#endif
69d1b839 2611 WARN_ONCE(delta > (1ULL << 59),
31274d72 2612 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2613 (unsigned long long)delta,
2614 (unsigned long long)ts,
31274d72
JO
2615 (unsigned long long)cpu_buffer->write_stamp,
2616 local_clock_stable ? "" :
2617 "If you just came from a suspend/resume,\n"
2618 "please switch to the trace global clock:\n"
2619 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2620 add_timestamp = 1;
7a8e76a3 2621 }
168b6b1d 2622 }
7a8e76a3 2623
69d1b839
SR
2624 event = __rb_reserve_next(cpu_buffer, length, ts,
2625 delta, add_timestamp);
168b6b1d 2626 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2627 goto again;
2628
fa743953
SR
2629 if (!event)
2630 goto out_fail;
7a8e76a3 2631
7a8e76a3 2632 return event;
fa743953
SR
2633
2634 out_fail:
2635 rb_end_commit(cpu_buffer);
2636 return NULL;
7a8e76a3
SR
2637}
2638
1155de47
PM
2639#ifdef CONFIG_TRACING
2640
567cd4da
SR
2641/*
2642 * The lock and unlock are done within a preempt disable section.
2643 * The current_context per_cpu variable can only be modified
2644 * by the current task between lock and unlock. But it can
2645 * be modified more than once via an interrupt. To pass this
2646 * information from the lock to the unlock without having to
2647 * access the 'in_interrupt()' functions again (which do show
2648 * a bit of overhead in something as critical as function tracing,
2649 * we use a bitmask trick.
2650 *
2651 * bit 0 = NMI context
2652 * bit 1 = IRQ context
2653 * bit 2 = SoftIRQ context
2654 * bit 3 = normal context.
2655 *
2656 * This works because this is the order of contexts that can
2657 * preempt other contexts. A SoftIRQ never preempts an IRQ
2658 * context.
2659 *
2660 * When the context is determined, the corresponding bit is
2661 * checked and set (if it was set, then a recursion of that context
2662 * happened).
2663 *
2664 * On unlock, we need to clear this bit. To do so, just subtract
2665 * 1 from the current_context and AND it to itself.
2666 *
2667 * (binary)
2668 * 101 - 1 = 100
2669 * 101 & 100 = 100 (clearing bit zero)
2670 *
2671 * 1010 - 1 = 1001
2672 * 1010 & 1001 = 1000 (clearing bit 1)
2673 *
2674 * The least significant bit can be cleared this way, and it
2675 * just so happens that it is the same bit corresponding to
2676 * the current context.
2677 */
2678static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2679
567cd4da 2680static __always_inline int trace_recursive_lock(void)
261842b7 2681{
80a9b64e 2682 unsigned int val = __this_cpu_read(current_context);
567cd4da 2683 int bit;
d9abde21 2684
567cd4da
SR
2685 if (in_interrupt()) {
2686 if (in_nmi())
2687 bit = 0;
2688 else if (in_irq())
2689 bit = 1;
2690 else
2691 bit = 2;
2692 } else
2693 bit = 3;
d9abde21 2694
567cd4da
SR
2695 if (unlikely(val & (1 << bit)))
2696 return 1;
d9abde21 2697
567cd4da 2698 val |= (1 << bit);
80a9b64e 2699 __this_cpu_write(current_context, val);
d9abde21 2700
567cd4da 2701 return 0;
261842b7
SR
2702}
2703
567cd4da 2704static __always_inline void trace_recursive_unlock(void)
261842b7 2705{
d631c8cc 2706 __this_cpu_and(current_context, __this_cpu_read(current_context) - 1);
261842b7
SR
2707}
2708
1155de47
PM
2709#else
2710
2711#define trace_recursive_lock() (0)
2712#define trace_recursive_unlock() do { } while (0)
2713
2714#endif
2715
7a8e76a3
SR
2716/**
2717 * ring_buffer_lock_reserve - reserve a part of the buffer
2718 * @buffer: the ring buffer to reserve from
2719 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2720 *
2721 * Returns a reseverd event on the ring buffer to copy directly to.
2722 * The user of this interface will need to get the body to write into
2723 * and can use the ring_buffer_event_data() interface.
2724 *
2725 * The length is the length of the data needed, not the event length
2726 * which also includes the event header.
2727 *
2728 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2729 * If NULL is returned, then nothing has been allocated or locked.
2730 */
2731struct ring_buffer_event *
0a987751 2732ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2733{
2734 struct ring_buffer_per_cpu *cpu_buffer;
2735 struct ring_buffer_event *event;
5168ae50 2736 int cpu;
7a8e76a3 2737
033601a3 2738 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2739 return NULL;
2740
bf41a158 2741 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2742 preempt_disable_notrace();
bf41a158 2743
52fbe9cd
LJ
2744 if (atomic_read(&buffer->record_disabled))
2745 goto out_nocheck;
2746
261842b7
SR
2747 if (trace_recursive_lock())
2748 goto out_nocheck;
2749
7a8e76a3
SR
2750 cpu = raw_smp_processor_id();
2751
9e01c1b7 2752 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2753 goto out;
7a8e76a3
SR
2754
2755 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2756
2757 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2758 goto out;
7a8e76a3 2759
be957c44 2760 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2761 goto out;
7a8e76a3 2762
62f0b3eb 2763 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2764 if (!event)
d769041f 2765 goto out;
7a8e76a3
SR
2766
2767 return event;
2768
d769041f 2769 out:
261842b7
SR
2770 trace_recursive_unlock();
2771
2772 out_nocheck:
5168ae50 2773 preempt_enable_notrace();
7a8e76a3
SR
2774 return NULL;
2775}
c4f50183 2776EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2777
a1863c21
SR
2778static void
2779rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2780 struct ring_buffer_event *event)
2781{
69d1b839
SR
2782 u64 delta;
2783
fa743953
SR
2784 /*
2785 * The event first in the commit queue updates the
2786 * time stamp.
2787 */
69d1b839
SR
2788 if (rb_event_is_commit(cpu_buffer, event)) {
2789 /*
2790 * A commit event that is first on a page
2791 * updates the write timestamp with the page stamp
2792 */
2793 if (!rb_event_index(event))
2794 cpu_buffer->write_stamp =
2795 cpu_buffer->commit_page->page->time_stamp;
2796 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2797 delta = event->array[0];
2798 delta <<= TS_SHIFT;
2799 delta += event->time_delta;
2800 cpu_buffer->write_stamp += delta;
2801 } else
2802 cpu_buffer->write_stamp += event->time_delta;
2803 }
a1863c21 2804}
bf41a158 2805
a1863c21
SR
2806static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2807 struct ring_buffer_event *event)
2808{
2809 local_inc(&cpu_buffer->entries);
2810 rb_update_write_stamp(cpu_buffer, event);
fa743953 2811 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2812}
2813
15693458
SRRH
2814static __always_inline void
2815rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2816{
1e0d6714
SRRH
2817 bool pagebusy;
2818
15693458
SRRH
2819 if (buffer->irq_work.waiters_pending) {
2820 buffer->irq_work.waiters_pending = false;
2821 /* irq_work_queue() supplies it's own memory barriers */
2822 irq_work_queue(&buffer->irq_work.work);
2823 }
2824
2825 if (cpu_buffer->irq_work.waiters_pending) {
2826 cpu_buffer->irq_work.waiters_pending = false;
2827 /* irq_work_queue() supplies it's own memory barriers */
2828 irq_work_queue(&cpu_buffer->irq_work.work);
2829 }
1e0d6714
SRRH
2830
2831 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2832
2833 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2834 cpu_buffer->irq_work.wakeup_full = true;
2835 cpu_buffer->irq_work.full_waiters_pending = false;
2836 /* irq_work_queue() supplies it's own memory barriers */
2837 irq_work_queue(&cpu_buffer->irq_work.work);
2838 }
15693458
SRRH
2839}
2840
7a8e76a3
SR
2841/**
2842 * ring_buffer_unlock_commit - commit a reserved
2843 * @buffer: The buffer to commit to
2844 * @event: The event pointer to commit.
7a8e76a3
SR
2845 *
2846 * This commits the data to the ring buffer, and releases any locks held.
2847 *
2848 * Must be paired with ring_buffer_lock_reserve.
2849 */
2850int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2851 struct ring_buffer_event *event)
7a8e76a3
SR
2852{
2853 struct ring_buffer_per_cpu *cpu_buffer;
2854 int cpu = raw_smp_processor_id();
2855
2856 cpu_buffer = buffer->buffers[cpu];
2857
7a8e76a3
SR
2858 rb_commit(cpu_buffer, event);
2859
15693458
SRRH
2860 rb_wakeups(buffer, cpu_buffer);
2861
261842b7
SR
2862 trace_recursive_unlock();
2863
5168ae50 2864 preempt_enable_notrace();
7a8e76a3
SR
2865
2866 return 0;
2867}
c4f50183 2868EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2869
f3b9aae1
FW
2870static inline void rb_event_discard(struct ring_buffer_event *event)
2871{
69d1b839
SR
2872 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2873 event = skip_time_extend(event);
2874
334d4169
LJ
2875 /* array[0] holds the actual length for the discarded event */
2876 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2877 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2878 /* time delta must be non zero */
2879 if (!event->time_delta)
2880 event->time_delta = 1;
2881}
2882
a1863c21
SR
2883/*
2884 * Decrement the entries to the page that an event is on.
2885 * The event does not even need to exist, only the pointer
2886 * to the page it is on. This may only be called before the commit
2887 * takes place.
2888 */
2889static inline void
2890rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2891 struct ring_buffer_event *event)
2892{
2893 unsigned long addr = (unsigned long)event;
2894 struct buffer_page *bpage = cpu_buffer->commit_page;
2895 struct buffer_page *start;
2896
2897 addr &= PAGE_MASK;
2898
2899 /* Do the likely case first */
2900 if (likely(bpage->page == (void *)addr)) {
2901 local_dec(&bpage->entries);
2902 return;
2903 }
2904
2905 /*
2906 * Because the commit page may be on the reader page we
2907 * start with the next page and check the end loop there.
2908 */
2909 rb_inc_page(cpu_buffer, &bpage);
2910 start = bpage;
2911 do {
2912 if (bpage->page == (void *)addr) {
2913 local_dec(&bpage->entries);
2914 return;
2915 }
2916 rb_inc_page(cpu_buffer, &bpage);
2917 } while (bpage != start);
2918
2919 /* commit not part of this buffer?? */
2920 RB_WARN_ON(cpu_buffer, 1);
2921}
2922
fa1b47dd
SR
2923/**
2924 * ring_buffer_commit_discard - discard an event that has not been committed
2925 * @buffer: the ring buffer
2926 * @event: non committed event to discard
2927 *
dc892f73
SR
2928 * Sometimes an event that is in the ring buffer needs to be ignored.
2929 * This function lets the user discard an event in the ring buffer
2930 * and then that event will not be read later.
2931 *
2932 * This function only works if it is called before the the item has been
2933 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2934 * if another event has not been added behind it.
2935 *
2936 * If another event has been added behind it, it will set the event
2937 * up as discarded, and perform the commit.
2938 *
2939 * If this function is called, do not call ring_buffer_unlock_commit on
2940 * the event.
2941 */
2942void ring_buffer_discard_commit(struct ring_buffer *buffer,
2943 struct ring_buffer_event *event)
2944{
2945 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2946 int cpu;
2947
2948 /* The event is discarded regardless */
f3b9aae1 2949 rb_event_discard(event);
fa1b47dd 2950
fa743953
SR
2951 cpu = smp_processor_id();
2952 cpu_buffer = buffer->buffers[cpu];
2953
fa1b47dd
SR
2954 /*
2955 * This must only be called if the event has not been
2956 * committed yet. Thus we can assume that preemption
2957 * is still disabled.
2958 */
fa743953 2959 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2960
a1863c21 2961 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2962 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2963 goto out;
fa1b47dd
SR
2964
2965 /*
2966 * The commit is still visible by the reader, so we
a1863c21 2967 * must still update the timestamp.
fa1b47dd 2968 */
a1863c21 2969 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2970 out:
fa743953 2971 rb_end_commit(cpu_buffer);
fa1b47dd 2972
f3b9aae1
FW
2973 trace_recursive_unlock();
2974
5168ae50 2975 preempt_enable_notrace();
fa1b47dd
SR
2976
2977}
2978EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2979
7a8e76a3
SR
2980/**
2981 * ring_buffer_write - write data to the buffer without reserving
2982 * @buffer: The ring buffer to write to.
2983 * @length: The length of the data being written (excluding the event header)
2984 * @data: The data to write to the buffer.
2985 *
2986 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2987 * one function. If you already have the data to write to the buffer, it
2988 * may be easier to simply call this function.
2989 *
2990 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2991 * and not the length of the event which would hold the header.
2992 */
2993int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2994 unsigned long length,
2995 void *data)
7a8e76a3
SR
2996{
2997 struct ring_buffer_per_cpu *cpu_buffer;
2998 struct ring_buffer_event *event;
7a8e76a3
SR
2999 void *body;
3000 int ret = -EBUSY;
5168ae50 3001 int cpu;
7a8e76a3 3002
033601a3 3003 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
3004 return -EBUSY;
3005
5168ae50 3006 preempt_disable_notrace();
bf41a158 3007
52fbe9cd
LJ
3008 if (atomic_read(&buffer->record_disabled))
3009 goto out;
3010
7a8e76a3
SR
3011 cpu = raw_smp_processor_id();
3012
9e01c1b7 3013 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 3014 goto out;
7a8e76a3
SR
3015
3016 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
3017
3018 if (atomic_read(&cpu_buffer->record_disabled))
3019 goto out;
3020
be957c44
SR
3021 if (length > BUF_MAX_DATA_SIZE)
3022 goto out;
3023
62f0b3eb 3024 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
3025 if (!event)
3026 goto out;
3027
3028 body = rb_event_data(event);
3029
3030 memcpy(body, data, length);
3031
3032 rb_commit(cpu_buffer, event);
3033
15693458
SRRH
3034 rb_wakeups(buffer, cpu_buffer);
3035
7a8e76a3
SR
3036 ret = 0;
3037 out:
5168ae50 3038 preempt_enable_notrace();
7a8e76a3
SR
3039
3040 return ret;
3041}
c4f50183 3042EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3043
34a148bf 3044static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3045{
3046 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3047 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3048 struct buffer_page *commit = cpu_buffer->commit_page;
3049
77ae365e
SR
3050 /* In case of error, head will be NULL */
3051 if (unlikely(!head))
3052 return 1;
3053
bf41a158
SR
3054 return reader->read == rb_page_commit(reader) &&
3055 (commit == reader ||
3056 (commit == head &&
3057 head->read == rb_page_commit(commit)));
3058}
3059
7a8e76a3
SR
3060/**
3061 * ring_buffer_record_disable - stop all writes into the buffer
3062 * @buffer: The ring buffer to stop writes to.
3063 *
3064 * This prevents all writes to the buffer. Any attempt to write
3065 * to the buffer after this will fail and return NULL.
3066 *
3067 * The caller should call synchronize_sched() after this.
3068 */
3069void ring_buffer_record_disable(struct ring_buffer *buffer)
3070{
3071 atomic_inc(&buffer->record_disabled);
3072}
c4f50183 3073EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3074
3075/**
3076 * ring_buffer_record_enable - enable writes to the buffer
3077 * @buffer: The ring buffer to enable writes
3078 *
3079 * Note, multiple disables will need the same number of enables
c41b20e7 3080 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3081 */
3082void ring_buffer_record_enable(struct ring_buffer *buffer)
3083{
3084 atomic_dec(&buffer->record_disabled);
3085}
c4f50183 3086EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3087
499e5470
SR
3088/**
3089 * ring_buffer_record_off - stop all writes into the buffer
3090 * @buffer: The ring buffer to stop writes to.
3091 *
3092 * This prevents all writes to the buffer. Any attempt to write
3093 * to the buffer after this will fail and return NULL.
3094 *
3095 * This is different than ring_buffer_record_disable() as
87abb3b1 3096 * it works like an on/off switch, where as the disable() version
499e5470
SR
3097 * must be paired with a enable().
3098 */
3099void ring_buffer_record_off(struct ring_buffer *buffer)
3100{
3101 unsigned int rd;
3102 unsigned int new_rd;
3103
3104 do {
3105 rd = atomic_read(&buffer->record_disabled);
3106 new_rd = rd | RB_BUFFER_OFF;
3107 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3108}
3109EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3110
3111/**
3112 * ring_buffer_record_on - restart writes into the buffer
3113 * @buffer: The ring buffer to start writes to.
3114 *
3115 * This enables all writes to the buffer that was disabled by
3116 * ring_buffer_record_off().
3117 *
3118 * This is different than ring_buffer_record_enable() as
87abb3b1 3119 * it works like an on/off switch, where as the enable() version
499e5470
SR
3120 * must be paired with a disable().
3121 */
3122void ring_buffer_record_on(struct ring_buffer *buffer)
3123{
3124 unsigned int rd;
3125 unsigned int new_rd;
3126
3127 do {
3128 rd = atomic_read(&buffer->record_disabled);
3129 new_rd = rd & ~RB_BUFFER_OFF;
3130 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3131}
3132EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3133
3134/**
3135 * ring_buffer_record_is_on - return true if the ring buffer can write
3136 * @buffer: The ring buffer to see if write is enabled
3137 *
3138 * Returns true if the ring buffer is in a state that it accepts writes.
3139 */
3140int ring_buffer_record_is_on(struct ring_buffer *buffer)
3141{
3142 return !atomic_read(&buffer->record_disabled);
3143}
3144
7a8e76a3
SR
3145/**
3146 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3147 * @buffer: The ring buffer to stop writes to.
3148 * @cpu: The CPU buffer to stop
3149 *
3150 * This prevents all writes to the buffer. Any attempt to write
3151 * to the buffer after this will fail and return NULL.
3152 *
3153 * The caller should call synchronize_sched() after this.
3154 */
3155void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3156{
3157 struct ring_buffer_per_cpu *cpu_buffer;
3158
9e01c1b7 3159 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3160 return;
7a8e76a3
SR
3161
3162 cpu_buffer = buffer->buffers[cpu];
3163 atomic_inc(&cpu_buffer->record_disabled);
3164}
c4f50183 3165EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3166
3167/**
3168 * ring_buffer_record_enable_cpu - enable writes to the buffer
3169 * @buffer: The ring buffer to enable writes
3170 * @cpu: The CPU to enable.
3171 *
3172 * Note, multiple disables will need the same number of enables
c41b20e7 3173 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3174 */
3175void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3176{
3177 struct ring_buffer_per_cpu *cpu_buffer;
3178
9e01c1b7 3179 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3180 return;
7a8e76a3
SR
3181
3182 cpu_buffer = buffer->buffers[cpu];
3183 atomic_dec(&cpu_buffer->record_disabled);
3184}
c4f50183 3185EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3186
f6195aa0
SR
3187/*
3188 * The total entries in the ring buffer is the running counter
3189 * of entries entered into the ring buffer, minus the sum of
3190 * the entries read from the ring buffer and the number of
3191 * entries that were overwritten.
3192 */
3193static inline unsigned long
3194rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3195{
3196 return local_read(&cpu_buffer->entries) -
3197 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3198}
3199
c64e148a
VN
3200/**
3201 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3202 * @buffer: The ring buffer
3203 * @cpu: The per CPU buffer to read from.
3204 */
50ecf2c3 3205u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3206{
3207 unsigned long flags;
3208 struct ring_buffer_per_cpu *cpu_buffer;
3209 struct buffer_page *bpage;
da830e58 3210 u64 ret = 0;
c64e148a
VN
3211
3212 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3213 return 0;
3214
3215 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3216 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3217 /*
3218 * if the tail is on reader_page, oldest time stamp is on the reader
3219 * page
3220 */
3221 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3222 bpage = cpu_buffer->reader_page;
3223 else
3224 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3225 if (bpage)
3226 ret = bpage->page->time_stamp;
7115e3fc 3227 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3228
3229 return ret;
3230}
3231EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3232
3233/**
3234 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3235 * @buffer: The ring buffer
3236 * @cpu: The per CPU buffer to read from.
3237 */
3238unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3239{
3240 struct ring_buffer_per_cpu *cpu_buffer;
3241 unsigned long ret;
3242
3243 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244 return 0;
3245
3246 cpu_buffer = buffer->buffers[cpu];
3247 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3248
3249 return ret;
3250}
3251EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3252
7a8e76a3
SR
3253/**
3254 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3255 * @buffer: The ring buffer
3256 * @cpu: The per CPU buffer to get the entries from.
3257 */
3258unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3259{
3260 struct ring_buffer_per_cpu *cpu_buffer;
3261
9e01c1b7 3262 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3263 return 0;
7a8e76a3
SR
3264
3265 cpu_buffer = buffer->buffers[cpu];
554f786e 3266
f6195aa0 3267 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3268}
c4f50183 3269EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3270
3271/**
884bfe89
SP
3272 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3273 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3274 * @buffer: The ring buffer
3275 * @cpu: The per CPU buffer to get the number of overruns from
3276 */
3277unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3278{
3279 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3280 unsigned long ret;
7a8e76a3 3281
9e01c1b7 3282 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3283 return 0;
7a8e76a3
SR
3284
3285 cpu_buffer = buffer->buffers[cpu];
77ae365e 3286 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3287
3288 return ret;
7a8e76a3 3289}
c4f50183 3290EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3291
f0d2c681 3292/**
884bfe89
SP
3293 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3294 * commits failing due to the buffer wrapping around while there are uncommitted
3295 * events, such as during an interrupt storm.
f0d2c681
SR
3296 * @buffer: The ring buffer
3297 * @cpu: The per CPU buffer to get the number of overruns from
3298 */
3299unsigned long
3300ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3301{
3302 struct ring_buffer_per_cpu *cpu_buffer;
3303 unsigned long ret;
3304
3305 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3306 return 0;
3307
3308 cpu_buffer = buffer->buffers[cpu];
77ae365e 3309 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3310
3311 return ret;
3312}
3313EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3314
884bfe89
SP
3315/**
3316 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3317 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3318 * @buffer: The ring buffer
3319 * @cpu: The per CPU buffer to get the number of overruns from
3320 */
3321unsigned long
3322ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3323{
3324 struct ring_buffer_per_cpu *cpu_buffer;
3325 unsigned long ret;
3326
3327 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3328 return 0;
3329
3330 cpu_buffer = buffer->buffers[cpu];
3331 ret = local_read(&cpu_buffer->dropped_events);
3332
3333 return ret;
3334}
3335EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3336
ad964704
SRRH
3337/**
3338 * ring_buffer_read_events_cpu - get the number of events successfully read
3339 * @buffer: The ring buffer
3340 * @cpu: The per CPU buffer to get the number of events read
3341 */
3342unsigned long
3343ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3344{
3345 struct ring_buffer_per_cpu *cpu_buffer;
3346
3347 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3348 return 0;
3349
3350 cpu_buffer = buffer->buffers[cpu];
3351 return cpu_buffer->read;
3352}
3353EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3354
7a8e76a3
SR
3355/**
3356 * ring_buffer_entries - get the number of entries in a buffer
3357 * @buffer: The ring buffer
3358 *
3359 * Returns the total number of entries in the ring buffer
3360 * (all CPU entries)
3361 */
3362unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3363{
3364 struct ring_buffer_per_cpu *cpu_buffer;
3365 unsigned long entries = 0;
3366 int cpu;
3367
3368 /* if you care about this being correct, lock the buffer */
3369 for_each_buffer_cpu(buffer, cpu) {
3370 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3371 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3372 }
3373
3374 return entries;
3375}
c4f50183 3376EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3377
3378/**
67b394f7 3379 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3380 * @buffer: The ring buffer
3381 *
3382 * Returns the total number of overruns in the ring buffer
3383 * (all CPU entries)
3384 */
3385unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3386{
3387 struct ring_buffer_per_cpu *cpu_buffer;
3388 unsigned long overruns = 0;
3389 int cpu;
3390
3391 /* if you care about this being correct, lock the buffer */
3392 for_each_buffer_cpu(buffer, cpu) {
3393 cpu_buffer = buffer->buffers[cpu];
77ae365e 3394 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3395 }
3396
3397 return overruns;
3398}
c4f50183 3399EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3400
642edba5 3401static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3402{
3403 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3404
d769041f 3405 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3406 iter->head_page = cpu_buffer->reader_page;
3407 iter->head = cpu_buffer->reader_page->read;
3408
3409 iter->cache_reader_page = iter->head_page;
24607f11 3410 iter->cache_read = cpu_buffer->read;
651e22f2 3411
d769041f
SR
3412 if (iter->head)
3413 iter->read_stamp = cpu_buffer->read_stamp;
3414 else
abc9b56d 3415 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3416}
f83c9d0f 3417
642edba5
SR
3418/**
3419 * ring_buffer_iter_reset - reset an iterator
3420 * @iter: The iterator to reset
3421 *
3422 * Resets the iterator, so that it will start from the beginning
3423 * again.
3424 */
3425void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3426{
554f786e 3427 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3428 unsigned long flags;
3429
554f786e
SR
3430 if (!iter)
3431 return;
3432
3433 cpu_buffer = iter->cpu_buffer;
3434
5389f6fa 3435 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3436 rb_iter_reset(iter);
5389f6fa 3437 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3438}
c4f50183 3439EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3440
3441/**
3442 * ring_buffer_iter_empty - check if an iterator has no more to read
3443 * @iter: The iterator to check
3444 */
3445int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3446{
3447 struct ring_buffer_per_cpu *cpu_buffer;
3448
3449 cpu_buffer = iter->cpu_buffer;
3450
bf41a158
SR
3451 return iter->head_page == cpu_buffer->commit_page &&
3452 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3453}
c4f50183 3454EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3455
3456static void
3457rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3458 struct ring_buffer_event *event)
3459{
3460 u64 delta;
3461
334d4169 3462 switch (event->type_len) {
7a8e76a3
SR
3463 case RINGBUF_TYPE_PADDING:
3464 return;
3465
3466 case RINGBUF_TYPE_TIME_EXTEND:
3467 delta = event->array[0];
3468 delta <<= TS_SHIFT;
3469 delta += event->time_delta;
3470 cpu_buffer->read_stamp += delta;
3471 return;
3472
3473 case RINGBUF_TYPE_TIME_STAMP:
3474 /* FIXME: not implemented */
3475 return;
3476
3477 case RINGBUF_TYPE_DATA:
3478 cpu_buffer->read_stamp += event->time_delta;
3479 return;
3480
3481 default:
3482 BUG();
3483 }
3484 return;
3485}
3486
3487static void
3488rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3489 struct ring_buffer_event *event)
3490{
3491 u64 delta;
3492
334d4169 3493 switch (event->type_len) {
7a8e76a3
SR
3494 case RINGBUF_TYPE_PADDING:
3495 return;
3496
3497 case RINGBUF_TYPE_TIME_EXTEND:
3498 delta = event->array[0];
3499 delta <<= TS_SHIFT;
3500 delta += event->time_delta;
3501 iter->read_stamp += delta;
3502 return;
3503
3504 case RINGBUF_TYPE_TIME_STAMP:
3505 /* FIXME: not implemented */
3506 return;
3507
3508 case RINGBUF_TYPE_DATA:
3509 iter->read_stamp += event->time_delta;
3510 return;
3511
3512 default:
3513 BUG();
3514 }
3515 return;
3516}
3517
d769041f
SR
3518static struct buffer_page *
3519rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3520{
d769041f 3521 struct buffer_page *reader = NULL;
66a8cb95 3522 unsigned long overwrite;
d769041f 3523 unsigned long flags;
818e3dd3 3524 int nr_loops = 0;
77ae365e 3525 int ret;
d769041f 3526
3e03fb7f 3527 local_irq_save(flags);
0199c4e6 3528 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3529
3530 again:
818e3dd3
SR
3531 /*
3532 * This should normally only loop twice. But because the
3533 * start of the reader inserts an empty page, it causes
3534 * a case where we will loop three times. There should be no
3535 * reason to loop four times (that I know of).
3536 */
3e89c7bb 3537 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3538 reader = NULL;
3539 goto out;
3540 }
3541
d769041f
SR
3542 reader = cpu_buffer->reader_page;
3543
3544 /* If there's more to read, return this page */
bf41a158 3545 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3546 goto out;
3547
3548 /* Never should we have an index greater than the size */
3e89c7bb
SR
3549 if (RB_WARN_ON(cpu_buffer,
3550 cpu_buffer->reader_page->read > rb_page_size(reader)))
3551 goto out;
d769041f
SR
3552
3553 /* check if we caught up to the tail */
3554 reader = NULL;
bf41a158 3555 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3556 goto out;
7a8e76a3 3557
a5fb8331
SR
3558 /* Don't bother swapping if the ring buffer is empty */
3559 if (rb_num_of_entries(cpu_buffer) == 0)
3560 goto out;
3561
7a8e76a3 3562 /*
d769041f 3563 * Reset the reader page to size zero.
7a8e76a3 3564 */
77ae365e
SR
3565 local_set(&cpu_buffer->reader_page->write, 0);
3566 local_set(&cpu_buffer->reader_page->entries, 0);
3567 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3568 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3569
77ae365e
SR
3570 spin:
3571 /*
3572 * Splice the empty reader page into the list around the head.
3573 */
3574 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3575 if (!reader)
3576 goto out;
0e1ff5d7 3577 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3578 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3579
3adc54fa
SR
3580 /*
3581 * cpu_buffer->pages just needs to point to the buffer, it
3582 * has no specific buffer page to point to. Lets move it out
25985edc 3583 * of our way so we don't accidentally swap it.
3adc54fa
SR
3584 */
3585 cpu_buffer->pages = reader->list.prev;
3586
77ae365e
SR
3587 /* The reader page will be pointing to the new head */
3588 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3589
66a8cb95
SR
3590 /*
3591 * We want to make sure we read the overruns after we set up our
3592 * pointers to the next object. The writer side does a
3593 * cmpxchg to cross pages which acts as the mb on the writer
3594 * side. Note, the reader will constantly fail the swap
3595 * while the writer is updating the pointers, so this
3596 * guarantees that the overwrite recorded here is the one we
3597 * want to compare with the last_overrun.
3598 */
3599 smp_mb();
3600 overwrite = local_read(&(cpu_buffer->overrun));
3601
77ae365e
SR
3602 /*
3603 * Here's the tricky part.
3604 *
3605 * We need to move the pointer past the header page.
3606 * But we can only do that if a writer is not currently
3607 * moving it. The page before the header page has the
3608 * flag bit '1' set if it is pointing to the page we want.
3609 * but if the writer is in the process of moving it
3610 * than it will be '2' or already moved '0'.
3611 */
3612
3613 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3614
3615 /*
77ae365e 3616 * If we did not convert it, then we must try again.
7a8e76a3 3617 */
77ae365e
SR
3618 if (!ret)
3619 goto spin;
7a8e76a3 3620
77ae365e
SR
3621 /*
3622 * Yeah! We succeeded in replacing the page.
3623 *
3624 * Now make the new head point back to the reader page.
3625 */
5ded3dc6 3626 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3627 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3628
3629 /* Finally update the reader page to the new head */
3630 cpu_buffer->reader_page = reader;
3631 rb_reset_reader_page(cpu_buffer);
3632
66a8cb95
SR
3633 if (overwrite != cpu_buffer->last_overrun) {
3634 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3635 cpu_buffer->last_overrun = overwrite;
3636 }
3637
d769041f
SR
3638 goto again;
3639
3640 out:
0199c4e6 3641 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3642 local_irq_restore(flags);
d769041f
SR
3643
3644 return reader;
3645}
3646
3647static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3648{
3649 struct ring_buffer_event *event;
3650 struct buffer_page *reader;
3651 unsigned length;
3652
3653 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3654
d769041f 3655 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3656 if (RB_WARN_ON(cpu_buffer, !reader))
3657 return;
7a8e76a3 3658
d769041f
SR
3659 event = rb_reader_event(cpu_buffer);
3660
a1863c21 3661 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3662 cpu_buffer->read++;
d769041f
SR
3663
3664 rb_update_read_stamp(cpu_buffer, event);
3665
3666 length = rb_event_length(event);
6f807acd 3667 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3668}
3669
3670static void rb_advance_iter(struct ring_buffer_iter *iter)
3671{
7a8e76a3
SR
3672 struct ring_buffer_per_cpu *cpu_buffer;
3673 struct ring_buffer_event *event;
3674 unsigned length;
3675
3676 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3677
3678 /*
3679 * Check if we are at the end of the buffer.
3680 */
bf41a158 3681 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3682 /* discarded commits can make the page empty */
3683 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3684 return;
d769041f 3685 rb_inc_iter(iter);
7a8e76a3
SR
3686 return;
3687 }
3688
3689 event = rb_iter_head_event(iter);
3690
3691 length = rb_event_length(event);
3692
3693 /*
3694 * This should not be called to advance the header if we are
3695 * at the tail of the buffer.
3696 */
3e89c7bb 3697 if (RB_WARN_ON(cpu_buffer,
f536aafc 3698 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3699 (iter->head + length > rb_commit_index(cpu_buffer))))
3700 return;
7a8e76a3
SR
3701
3702 rb_update_iter_read_stamp(iter, event);
3703
3704 iter->head += length;
3705
3706 /* check for end of page padding */
bf41a158
SR
3707 if ((iter->head >= rb_page_size(iter->head_page)) &&
3708 (iter->head_page != cpu_buffer->commit_page))
771e0384 3709 rb_inc_iter(iter);
7a8e76a3
SR
3710}
3711
66a8cb95
SR
3712static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3713{
3714 return cpu_buffer->lost_events;
3715}
3716
f83c9d0f 3717static struct ring_buffer_event *
66a8cb95
SR
3718rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3719 unsigned long *lost_events)
7a8e76a3 3720{
7a8e76a3 3721 struct ring_buffer_event *event;
d769041f 3722 struct buffer_page *reader;
818e3dd3 3723 int nr_loops = 0;
7a8e76a3 3724
7a8e76a3 3725 again:
818e3dd3 3726 /*
69d1b839
SR
3727 * We repeat when a time extend is encountered.
3728 * Since the time extend is always attached to a data event,
3729 * we should never loop more than once.
3730 * (We never hit the following condition more than twice).
818e3dd3 3731 */
69d1b839 3732 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3733 return NULL;
818e3dd3 3734
d769041f
SR
3735 reader = rb_get_reader_page(cpu_buffer);
3736 if (!reader)
7a8e76a3
SR
3737 return NULL;
3738
d769041f 3739 event = rb_reader_event(cpu_buffer);
7a8e76a3 3740
334d4169 3741 switch (event->type_len) {
7a8e76a3 3742 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3743 if (rb_null_event(event))
3744 RB_WARN_ON(cpu_buffer, 1);
3745 /*
3746 * Because the writer could be discarding every
3747 * event it creates (which would probably be bad)
3748 * if we were to go back to "again" then we may never
3749 * catch up, and will trigger the warn on, or lock
3750 * the box. Return the padding, and we will release
3751 * the current locks, and try again.
3752 */
2d622719 3753 return event;
7a8e76a3
SR
3754
3755 case RINGBUF_TYPE_TIME_EXTEND:
3756 /* Internal data, OK to advance */
d769041f 3757 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3758 goto again;
3759
3760 case RINGBUF_TYPE_TIME_STAMP:
3761 /* FIXME: not implemented */
d769041f 3762 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3763 goto again;
3764
3765 case RINGBUF_TYPE_DATA:
3766 if (ts) {
3767 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3768 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3769 cpu_buffer->cpu, ts);
7a8e76a3 3770 }
66a8cb95
SR
3771 if (lost_events)
3772 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3773 return event;
3774
3775 default:
3776 BUG();
3777 }
3778
3779 return NULL;
3780}
c4f50183 3781EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3782
f83c9d0f
SR
3783static struct ring_buffer_event *
3784rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3785{
3786 struct ring_buffer *buffer;
3787 struct ring_buffer_per_cpu *cpu_buffer;
3788 struct ring_buffer_event *event;
818e3dd3 3789 int nr_loops = 0;
7a8e76a3 3790
7a8e76a3
SR
3791 cpu_buffer = iter->cpu_buffer;
3792 buffer = cpu_buffer->buffer;
3793
492a74f4
SR
3794 /*
3795 * Check if someone performed a consuming read to
3796 * the buffer. A consuming read invalidates the iterator
3797 * and we need to reset the iterator in this case.
3798 */
3799 if (unlikely(iter->cache_read != cpu_buffer->read ||
3800 iter->cache_reader_page != cpu_buffer->reader_page))
3801 rb_iter_reset(iter);
3802
7a8e76a3 3803 again:
3c05d748
SR
3804 if (ring_buffer_iter_empty(iter))
3805 return NULL;
3806
818e3dd3 3807 /*
021de3d9
SRRH
3808 * We repeat when a time extend is encountered or we hit
3809 * the end of the page. Since the time extend is always attached
3810 * to a data event, we should never loop more than three times.
3811 * Once for going to next page, once on time extend, and
3812 * finally once to get the event.
3813 * (We never hit the following condition more than thrice).
818e3dd3 3814 */
021de3d9 3815 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3816 return NULL;
818e3dd3 3817
7a8e76a3
SR
3818 if (rb_per_cpu_empty(cpu_buffer))
3819 return NULL;
3820
10e83fd0 3821 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3822 rb_inc_iter(iter);
3823 goto again;
3824 }
3825
7a8e76a3
SR
3826 event = rb_iter_head_event(iter);
3827
334d4169 3828 switch (event->type_len) {
7a8e76a3 3829 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3830 if (rb_null_event(event)) {
3831 rb_inc_iter(iter);
3832 goto again;
3833 }
3834 rb_advance_iter(iter);
3835 return event;
7a8e76a3
SR
3836
3837 case RINGBUF_TYPE_TIME_EXTEND:
3838 /* Internal data, OK to advance */
3839 rb_advance_iter(iter);
3840 goto again;
3841
3842 case RINGBUF_TYPE_TIME_STAMP:
3843 /* FIXME: not implemented */
3844 rb_advance_iter(iter);
3845 goto again;
3846
3847 case RINGBUF_TYPE_DATA:
3848 if (ts) {
3849 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3850 ring_buffer_normalize_time_stamp(buffer,
3851 cpu_buffer->cpu, ts);
7a8e76a3
SR
3852 }
3853 return event;
3854
3855 default:
3856 BUG();
3857 }
3858
3859 return NULL;
3860}
c4f50183 3861EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3862
8d707e8e
SR
3863static inline int rb_ok_to_lock(void)
3864{
3865 /*
3866 * If an NMI die dumps out the content of the ring buffer
3867 * do not grab locks. We also permanently disable the ring
3868 * buffer too. A one time deal is all you get from reading
3869 * the ring buffer from an NMI.
3870 */
464e85eb 3871 if (likely(!in_nmi()))
8d707e8e
SR
3872 return 1;
3873
3874 tracing_off_permanent();
3875 return 0;
3876}
3877
f83c9d0f
SR
3878/**
3879 * ring_buffer_peek - peek at the next event to be read
3880 * @buffer: The ring buffer to read
3881 * @cpu: The cpu to peak at
3882 * @ts: The timestamp counter of this event.
66a8cb95 3883 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3884 *
3885 * This will return the event that will be read next, but does
3886 * not consume the data.
3887 */
3888struct ring_buffer_event *
66a8cb95
SR
3889ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3890 unsigned long *lost_events)
f83c9d0f
SR
3891{
3892 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3893 struct ring_buffer_event *event;
f83c9d0f 3894 unsigned long flags;
8d707e8e 3895 int dolock;
f83c9d0f 3896
554f786e 3897 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3898 return NULL;
554f786e 3899
8d707e8e 3900 dolock = rb_ok_to_lock();
2d622719 3901 again:
8d707e8e
SR
3902 local_irq_save(flags);
3903 if (dolock)
5389f6fa 3904 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3905 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3906 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3907 rb_advance_reader(cpu_buffer);
8d707e8e 3908 if (dolock)
5389f6fa 3909 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3910 local_irq_restore(flags);
f83c9d0f 3911
1b959e18 3912 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3913 goto again;
2d622719 3914
f83c9d0f
SR
3915 return event;
3916}
3917
3918/**
3919 * ring_buffer_iter_peek - peek at the next event to be read
3920 * @iter: The ring buffer iterator
3921 * @ts: The timestamp counter of this event.
3922 *
3923 * This will return the event that will be read next, but does
3924 * not increment the iterator.
3925 */
3926struct ring_buffer_event *
3927ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3928{
3929 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3930 struct ring_buffer_event *event;
3931 unsigned long flags;
3932
2d622719 3933 again:
5389f6fa 3934 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3935 event = rb_iter_peek(iter, ts);
5389f6fa 3936 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3937
1b959e18 3938 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3939 goto again;
2d622719 3940
f83c9d0f
SR
3941 return event;
3942}
3943
7a8e76a3
SR
3944/**
3945 * ring_buffer_consume - return an event and consume it
3946 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3947 * @cpu: the cpu to read the buffer from
3948 * @ts: a variable to store the timestamp (may be NULL)
3949 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3950 *
3951 * Returns the next event in the ring buffer, and that event is consumed.
3952 * Meaning, that sequential reads will keep returning a different event,
3953 * and eventually empty the ring buffer if the producer is slower.
3954 */
3955struct ring_buffer_event *
66a8cb95
SR
3956ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3957 unsigned long *lost_events)
7a8e76a3 3958{
554f786e
SR
3959 struct ring_buffer_per_cpu *cpu_buffer;
3960 struct ring_buffer_event *event = NULL;
f83c9d0f 3961 unsigned long flags;
8d707e8e
SR
3962 int dolock;
3963
3964 dolock = rb_ok_to_lock();
7a8e76a3 3965
2d622719 3966 again:
554f786e
SR
3967 /* might be called in atomic */
3968 preempt_disable();
3969
9e01c1b7 3970 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3971 goto out;
7a8e76a3 3972
554f786e 3973 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3974 local_irq_save(flags);
3975 if (dolock)
5389f6fa 3976 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3977
66a8cb95
SR
3978 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3979 if (event) {
3980 cpu_buffer->lost_events = 0;
469535a5 3981 rb_advance_reader(cpu_buffer);
66a8cb95 3982 }
7a8e76a3 3983
8d707e8e 3984 if (dolock)
5389f6fa 3985 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3986 local_irq_restore(flags);
f83c9d0f 3987
554f786e
SR
3988 out:
3989 preempt_enable();
3990
1b959e18 3991 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3992 goto again;
2d622719 3993
7a8e76a3
SR
3994 return event;
3995}
c4f50183 3996EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3997
3998/**
72c9ddfd 3999 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
4000 * @buffer: The ring buffer to read from
4001 * @cpu: The cpu buffer to iterate over
4002 *
72c9ddfd
DM
4003 * This performs the initial preparations necessary to iterate
4004 * through the buffer. Memory is allocated, buffer recording
4005 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 4006 *
72c9ddfd
DM
4007 * Disabling buffer recordng prevents the reading from being
4008 * corrupted. This is not a consuming read, so a producer is not
4009 * expected.
4010 *
4011 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 4012 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
4013 * Afterwards, ring_buffer_read_start is invoked to get things going
4014 * for real.
4015 *
d611851b 4016 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4017 */
4018struct ring_buffer_iter *
72c9ddfd 4019ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4020{
4021 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4022 struct ring_buffer_iter *iter;
7a8e76a3 4023
9e01c1b7 4024 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4025 return NULL;
7a8e76a3
SR
4026
4027 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4028 if (!iter)
8aabee57 4029 return NULL;
7a8e76a3
SR
4030
4031 cpu_buffer = buffer->buffers[cpu];
4032
4033 iter->cpu_buffer = cpu_buffer;
4034
83f40318 4035 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4036 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4037
4038 return iter;
4039}
4040EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4041
4042/**
4043 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4044 *
4045 * All previously invoked ring_buffer_read_prepare calls to prepare
4046 * iterators will be synchronized. Afterwards, read_buffer_read_start
4047 * calls on those iterators are allowed.
4048 */
4049void
4050ring_buffer_read_prepare_sync(void)
4051{
7a8e76a3 4052 synchronize_sched();
72c9ddfd
DM
4053}
4054EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4055
4056/**
4057 * ring_buffer_read_start - start a non consuming read of the buffer
4058 * @iter: The iterator returned by ring_buffer_read_prepare
4059 *
4060 * This finalizes the startup of an iteration through the buffer.
4061 * The iterator comes from a call to ring_buffer_read_prepare and
4062 * an intervening ring_buffer_read_prepare_sync must have been
4063 * performed.
4064 *
d611851b 4065 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4066 */
4067void
4068ring_buffer_read_start(struct ring_buffer_iter *iter)
4069{
4070 struct ring_buffer_per_cpu *cpu_buffer;
4071 unsigned long flags;
4072
4073 if (!iter)
4074 return;
4075
4076 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4077
5389f6fa 4078 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4079 arch_spin_lock(&cpu_buffer->lock);
642edba5 4080 rb_iter_reset(iter);
0199c4e6 4081 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4082 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4083}
c4f50183 4084EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4085
4086/**
d611851b 4087 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4088 * @iter: The iterator retrieved by ring_buffer_start
4089 *
4090 * This re-enables the recording to the buffer, and frees the
4091 * iterator.
4092 */
4093void
4094ring_buffer_read_finish(struct ring_buffer_iter *iter)
4095{
4096 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4097 unsigned long flags;
7a8e76a3 4098
659f451f
SR
4099 /*
4100 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4101 * to check the integrity of the ring buffer.
4102 * Must prevent readers from trying to read, as the check
4103 * clears the HEAD page and readers require it.
659f451f 4104 */
9366c1ba 4105 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4106 rb_check_pages(cpu_buffer);
9366c1ba 4107 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4108
7a8e76a3 4109 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4110 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4111 kfree(iter);
4112}
c4f50183 4113EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4114
4115/**
4116 * ring_buffer_read - read the next item in the ring buffer by the iterator
4117 * @iter: The ring buffer iterator
4118 * @ts: The time stamp of the event read.
4119 *
4120 * This reads the next event in the ring buffer and increments the iterator.
4121 */
4122struct ring_buffer_event *
4123ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4124{
4125 struct ring_buffer_event *event;
f83c9d0f
SR
4126 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4127 unsigned long flags;
7a8e76a3 4128
5389f6fa 4129 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4130 again:
f83c9d0f 4131 event = rb_iter_peek(iter, ts);
7a8e76a3 4132 if (!event)
f83c9d0f 4133 goto out;
7a8e76a3 4134
7e9391cf
SR
4135 if (event->type_len == RINGBUF_TYPE_PADDING)
4136 goto again;
4137
7a8e76a3 4138 rb_advance_iter(iter);
f83c9d0f 4139 out:
5389f6fa 4140 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4141
4142 return event;
4143}
c4f50183 4144EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4145
4146/**
4147 * ring_buffer_size - return the size of the ring buffer (in bytes)
4148 * @buffer: The ring buffer.
4149 */
438ced17 4150unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4151{
438ced17
VN
4152 /*
4153 * Earlier, this method returned
4154 * BUF_PAGE_SIZE * buffer->nr_pages
4155 * Since the nr_pages field is now removed, we have converted this to
4156 * return the per cpu buffer value.
4157 */
4158 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4159 return 0;
4160
4161 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4162}
c4f50183 4163EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4164
4165static void
4166rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4167{
77ae365e
SR
4168 rb_head_page_deactivate(cpu_buffer);
4169
7a8e76a3 4170 cpu_buffer->head_page
3adc54fa 4171 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4172 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4173 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4174 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4175
6f807acd 4176 cpu_buffer->head_page->read = 0;
bf41a158
SR
4177
4178 cpu_buffer->tail_page = cpu_buffer->head_page;
4179 cpu_buffer->commit_page = cpu_buffer->head_page;
4180
4181 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4182 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4183 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4184 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4185 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4186 cpu_buffer->reader_page->read = 0;
7a8e76a3 4187
c64e148a 4188 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4189 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4190 local_set(&cpu_buffer->commit_overrun, 0);
4191 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4192 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4193 local_set(&cpu_buffer->committing, 0);
4194 local_set(&cpu_buffer->commits, 0);
77ae365e 4195 cpu_buffer->read = 0;
c64e148a 4196 cpu_buffer->read_bytes = 0;
69507c06
SR
4197
4198 cpu_buffer->write_stamp = 0;
4199 cpu_buffer->read_stamp = 0;
77ae365e 4200
66a8cb95
SR
4201 cpu_buffer->lost_events = 0;
4202 cpu_buffer->last_overrun = 0;
4203
77ae365e 4204 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4205}
4206
4207/**
4208 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4209 * @buffer: The ring buffer to reset a per cpu buffer of
4210 * @cpu: The CPU buffer to be reset
4211 */
4212void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4213{
4214 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4215 unsigned long flags;
4216
9e01c1b7 4217 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4218 return;
7a8e76a3 4219
83f40318 4220 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4221 atomic_inc(&cpu_buffer->record_disabled);
4222
83f40318
VN
4223 /* Make sure all commits have finished */
4224 synchronize_sched();
4225
5389f6fa 4226 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4227
41b6a95d
SR
4228 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4229 goto out;
4230
0199c4e6 4231 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4232
4233 rb_reset_cpu(cpu_buffer);
4234
0199c4e6 4235 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4236
41b6a95d 4237 out:
5389f6fa 4238 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4239
4240 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4241 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4242}
c4f50183 4243EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4244
4245/**
4246 * ring_buffer_reset - reset a ring buffer
4247 * @buffer: The ring buffer to reset all cpu buffers
4248 */
4249void ring_buffer_reset(struct ring_buffer *buffer)
4250{
7a8e76a3
SR
4251 int cpu;
4252
7a8e76a3 4253 for_each_buffer_cpu(buffer, cpu)
d769041f 4254 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4255}
c4f50183 4256EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4257
4258/**
4259 * rind_buffer_empty - is the ring buffer empty?
4260 * @buffer: The ring buffer to test
4261 */
4262int ring_buffer_empty(struct ring_buffer *buffer)
4263{
4264 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4265 unsigned long flags;
8d707e8e 4266 int dolock;
7a8e76a3 4267 int cpu;
d4788207 4268 int ret;
7a8e76a3 4269
8d707e8e 4270 dolock = rb_ok_to_lock();
7a8e76a3
SR
4271
4272 /* yes this is racy, but if you don't like the race, lock the buffer */
4273 for_each_buffer_cpu(buffer, cpu) {
4274 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4275 local_irq_save(flags);
4276 if (dolock)
5389f6fa 4277 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4278 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4279 if (dolock)
5389f6fa 4280 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4281 local_irq_restore(flags);
4282
d4788207 4283 if (!ret)
7a8e76a3
SR
4284 return 0;
4285 }
554f786e 4286
7a8e76a3
SR
4287 return 1;
4288}
c4f50183 4289EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4290
4291/**
4292 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4293 * @buffer: The ring buffer
4294 * @cpu: The CPU buffer to test
4295 */
4296int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4297{
4298 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4299 unsigned long flags;
8d707e8e 4300 int dolock;
8aabee57 4301 int ret;
7a8e76a3 4302
9e01c1b7 4303 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4304 return 1;
7a8e76a3 4305
8d707e8e
SR
4306 dolock = rb_ok_to_lock();
4307
7a8e76a3 4308 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4309 local_irq_save(flags);
4310 if (dolock)
5389f6fa 4311 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4312 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4313 if (dolock)
5389f6fa 4314 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4315 local_irq_restore(flags);
554f786e
SR
4316
4317 return ret;
7a8e76a3 4318}
c4f50183 4319EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4320
85bac32c 4321#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4322/**
4323 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4324 * @buffer_a: One buffer to swap with
4325 * @buffer_b: The other buffer to swap with
4326 *
4327 * This function is useful for tracers that want to take a "snapshot"
4328 * of a CPU buffer and has another back up buffer lying around.
4329 * it is expected that the tracer handles the cpu buffer not being
4330 * used at the moment.
4331 */
4332int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4333 struct ring_buffer *buffer_b, int cpu)
4334{
4335 struct ring_buffer_per_cpu *cpu_buffer_a;
4336 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4337 int ret = -EINVAL;
4338
9e01c1b7
RR
4339 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4340 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4341 goto out;
7a8e76a3 4342
438ced17
VN
4343 cpu_buffer_a = buffer_a->buffers[cpu];
4344 cpu_buffer_b = buffer_b->buffers[cpu];
4345
7a8e76a3 4346 /* At least make sure the two buffers are somewhat the same */
438ced17 4347 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4348 goto out;
4349
4350 ret = -EAGAIN;
7a8e76a3 4351
97b17efe 4352 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4353 goto out;
97b17efe
SR
4354
4355 if (atomic_read(&buffer_a->record_disabled))
554f786e 4356 goto out;
97b17efe
SR
4357
4358 if (atomic_read(&buffer_b->record_disabled))
554f786e 4359 goto out;
97b17efe 4360
97b17efe 4361 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4362 goto out;
97b17efe
SR
4363
4364 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4365 goto out;
97b17efe 4366
7a8e76a3
SR
4367 /*
4368 * We can't do a synchronize_sched here because this
4369 * function can be called in atomic context.
4370 * Normally this will be called from the same CPU as cpu.
4371 * If not it's up to the caller to protect this.
4372 */
4373 atomic_inc(&cpu_buffer_a->record_disabled);
4374 atomic_inc(&cpu_buffer_b->record_disabled);
4375
98277991
SR
4376 ret = -EBUSY;
4377 if (local_read(&cpu_buffer_a->committing))
4378 goto out_dec;
4379 if (local_read(&cpu_buffer_b->committing))
4380 goto out_dec;
4381
7a8e76a3
SR
4382 buffer_a->buffers[cpu] = cpu_buffer_b;
4383 buffer_b->buffers[cpu] = cpu_buffer_a;
4384
4385 cpu_buffer_b->buffer = buffer_a;
4386 cpu_buffer_a->buffer = buffer_b;
4387
98277991
SR
4388 ret = 0;
4389
4390out_dec:
7a8e76a3
SR
4391 atomic_dec(&cpu_buffer_a->record_disabled);
4392 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4393out:
554f786e 4394 return ret;
7a8e76a3 4395}
c4f50183 4396EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4397#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4398
8789a9e7
SR
4399/**
4400 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4401 * @buffer: the buffer to allocate for.
d611851b 4402 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4403 *
4404 * This function is used in conjunction with ring_buffer_read_page.
4405 * When reading a full page from the ring buffer, these functions
4406 * can be used to speed up the process. The calling function should
4407 * allocate a few pages first with this function. Then when it
4408 * needs to get pages from the ring buffer, it passes the result
4409 * of this function into ring_buffer_read_page, which will swap
4410 * the page that was allocated, with the read page of the buffer.
4411 *
4412 * Returns:
4413 * The page allocated, or NULL on error.
4414 */
7ea59064 4415void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4416{
044fa782 4417 struct buffer_data_page *bpage;
7ea59064 4418 struct page *page;
8789a9e7 4419
d7ec4bfe
VN
4420 page = alloc_pages_node(cpu_to_node(cpu),
4421 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4422 if (!page)
8789a9e7
SR
4423 return NULL;
4424
7ea59064 4425 bpage = page_address(page);
8789a9e7 4426
ef7a4a16
SR
4427 rb_init_page(bpage);
4428
044fa782 4429 return bpage;
8789a9e7 4430}
d6ce96da 4431EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4432
4433/**
4434 * ring_buffer_free_read_page - free an allocated read page
4435 * @buffer: the buffer the page was allocate for
4436 * @data: the page to free
4437 *
4438 * Free a page allocated from ring_buffer_alloc_read_page.
4439 */
4440void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4441{
4442 free_page((unsigned long)data);
4443}
d6ce96da 4444EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4445
4446/**
4447 * ring_buffer_read_page - extract a page from the ring buffer
4448 * @buffer: buffer to extract from
4449 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4450 * @len: amount to extract
8789a9e7
SR
4451 * @cpu: the cpu of the buffer to extract
4452 * @full: should the extraction only happen when the page is full.
4453 *
4454 * This function will pull out a page from the ring buffer and consume it.
4455 * @data_page must be the address of the variable that was returned
4456 * from ring_buffer_alloc_read_page. This is because the page might be used
4457 * to swap with a page in the ring buffer.
4458 *
4459 * for example:
d611851b 4460 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4461 * if (!rpage)
4462 * return error;
ef7a4a16 4463 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4464 * if (ret >= 0)
4465 * process_page(rpage, ret);
8789a9e7
SR
4466 *
4467 * When @full is set, the function will not return true unless
4468 * the writer is off the reader page.
4469 *
4470 * Note: it is up to the calling functions to handle sleeps and wakeups.
4471 * The ring buffer can be used anywhere in the kernel and can not
4472 * blindly call wake_up. The layer that uses the ring buffer must be
4473 * responsible for that.
4474 *
4475 * Returns:
667d2412
LJ
4476 * >=0 if data has been transferred, returns the offset of consumed data.
4477 * <0 if no data has been transferred.
8789a9e7
SR
4478 */
4479int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4480 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4481{
4482 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4483 struct ring_buffer_event *event;
044fa782 4484 struct buffer_data_page *bpage;
ef7a4a16 4485 struct buffer_page *reader;
ff0ff84a 4486 unsigned long missed_events;
8789a9e7 4487 unsigned long flags;
ef7a4a16 4488 unsigned int commit;
667d2412 4489 unsigned int read;
4f3640f8 4490 u64 save_timestamp;
667d2412 4491 int ret = -1;
8789a9e7 4492
554f786e
SR
4493 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4494 goto out;
4495
474d32b6
SR
4496 /*
4497 * If len is not big enough to hold the page header, then
4498 * we can not copy anything.
4499 */
4500 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4501 goto out;
474d32b6
SR
4502
4503 len -= BUF_PAGE_HDR_SIZE;
4504
8789a9e7 4505 if (!data_page)
554f786e 4506 goto out;
8789a9e7 4507
044fa782
SR
4508 bpage = *data_page;
4509 if (!bpage)
554f786e 4510 goto out;
8789a9e7 4511
5389f6fa 4512 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4513
ef7a4a16
SR
4514 reader = rb_get_reader_page(cpu_buffer);
4515 if (!reader)
554f786e 4516 goto out_unlock;
8789a9e7 4517
ef7a4a16
SR
4518 event = rb_reader_event(cpu_buffer);
4519
4520 read = reader->read;
4521 commit = rb_page_commit(reader);
667d2412 4522
66a8cb95 4523 /* Check if any events were dropped */
ff0ff84a 4524 missed_events = cpu_buffer->lost_events;
66a8cb95 4525
8789a9e7 4526 /*
474d32b6
SR
4527 * If this page has been partially read or
4528 * if len is not big enough to read the rest of the page or
4529 * a writer is still on the page, then
4530 * we must copy the data from the page to the buffer.
4531 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4532 */
474d32b6 4533 if (read || (len < (commit - read)) ||
ef7a4a16 4534 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4535 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4536 unsigned int rpos = read;
4537 unsigned int pos = 0;
ef7a4a16 4538 unsigned int size;
8789a9e7
SR
4539
4540 if (full)
554f786e 4541 goto out_unlock;
8789a9e7 4542
ef7a4a16
SR
4543 if (len > (commit - read))
4544 len = (commit - read);
4545
69d1b839
SR
4546 /* Always keep the time extend and data together */
4547 size = rb_event_ts_length(event);
ef7a4a16
SR
4548
4549 if (len < size)
554f786e 4550 goto out_unlock;
ef7a4a16 4551
4f3640f8
SR
4552 /* save the current timestamp, since the user will need it */
4553 save_timestamp = cpu_buffer->read_stamp;
4554
ef7a4a16
SR
4555 /* Need to copy one event at a time */
4556 do {
e1e35927
DS
4557 /* We need the size of one event, because
4558 * rb_advance_reader only advances by one event,
4559 * whereas rb_event_ts_length may include the size of
4560 * one or two events.
4561 * We have already ensured there's enough space if this
4562 * is a time extend. */
4563 size = rb_event_length(event);
474d32b6 4564 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4565
4566 len -= size;
4567
4568 rb_advance_reader(cpu_buffer);
474d32b6
SR
4569 rpos = reader->read;
4570 pos += size;
ef7a4a16 4571
18fab912
HY
4572 if (rpos >= commit)
4573 break;
4574
ef7a4a16 4575 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4576 /* Always keep the time extend and data together */
4577 size = rb_event_ts_length(event);
e1e35927 4578 } while (len >= size);
667d2412
LJ
4579
4580 /* update bpage */
ef7a4a16 4581 local_set(&bpage->commit, pos);
4f3640f8 4582 bpage->time_stamp = save_timestamp;
ef7a4a16 4583
474d32b6
SR
4584 /* we copied everything to the beginning */
4585 read = 0;
8789a9e7 4586 } else {
afbab76a 4587 /* update the entry counter */
77ae365e 4588 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4589 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4590
8789a9e7 4591 /* swap the pages */
044fa782 4592 rb_init_page(bpage);
ef7a4a16
SR
4593 bpage = reader->page;
4594 reader->page = *data_page;
4595 local_set(&reader->write, 0);
778c55d4 4596 local_set(&reader->entries, 0);
ef7a4a16 4597 reader->read = 0;
044fa782 4598 *data_page = bpage;
ff0ff84a
SR
4599
4600 /*
4601 * Use the real_end for the data size,
4602 * This gives us a chance to store the lost events
4603 * on the page.
4604 */
4605 if (reader->real_end)
4606 local_set(&bpage->commit, reader->real_end);
8789a9e7 4607 }
667d2412 4608 ret = read;
8789a9e7 4609
66a8cb95 4610 cpu_buffer->lost_events = 0;
2711ca23
SR
4611
4612 commit = local_read(&bpage->commit);
66a8cb95
SR
4613 /*
4614 * Set a flag in the commit field if we lost events
4615 */
ff0ff84a 4616 if (missed_events) {
ff0ff84a
SR
4617 /* If there is room at the end of the page to save the
4618 * missed events, then record it there.
4619 */
4620 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4621 memcpy(&bpage->data[commit], &missed_events,
4622 sizeof(missed_events));
4623 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4624 commit += sizeof(missed_events);
ff0ff84a 4625 }
66a8cb95 4626 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4627 }
66a8cb95 4628
2711ca23
SR
4629 /*
4630 * This page may be off to user land. Zero it out here.
4631 */
4632 if (commit < BUF_PAGE_SIZE)
4633 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4634
554f786e 4635 out_unlock:
5389f6fa 4636 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4637
554f786e 4638 out:
8789a9e7
SR
4639 return ret;
4640}
d6ce96da 4641EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4642
59222efe 4643#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4644static int rb_cpu_notify(struct notifier_block *self,
4645 unsigned long action, void *hcpu)
554f786e
SR
4646{
4647 struct ring_buffer *buffer =
4648 container_of(self, struct ring_buffer, cpu_notify);
4649 long cpu = (long)hcpu;
438ced17
VN
4650 int cpu_i, nr_pages_same;
4651 unsigned int nr_pages;
554f786e
SR
4652
4653 switch (action) {
4654 case CPU_UP_PREPARE:
4655 case CPU_UP_PREPARE_FROZEN:
3f237a79 4656 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4657 return NOTIFY_OK;
4658
438ced17
VN
4659 nr_pages = 0;
4660 nr_pages_same = 1;
4661 /* check if all cpu sizes are same */
4662 for_each_buffer_cpu(buffer, cpu_i) {
4663 /* fill in the size from first enabled cpu */
4664 if (nr_pages == 0)
4665 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4666 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4667 nr_pages_same = 0;
4668 break;
4669 }
4670 }
4671 /* allocate minimum pages, user can later expand it */
4672 if (!nr_pages_same)
4673 nr_pages = 2;
554f786e 4674 buffer->buffers[cpu] =
438ced17 4675 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4676 if (!buffer->buffers[cpu]) {
4677 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4678 cpu);
4679 return NOTIFY_OK;
4680 }
4681 smp_wmb();
3f237a79 4682 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4683 break;
4684 case CPU_DOWN_PREPARE:
4685 case CPU_DOWN_PREPARE_FROZEN:
4686 /*
4687 * Do nothing.
4688 * If we were to free the buffer, then the user would
4689 * lose any trace that was in the buffer.
4690 */
4691 break;
4692 default:
4693 break;
4694 }
4695 return NOTIFY_OK;
4696}
4697#endif
6c43e554
SRRH
4698
4699#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4700/*
4701 * This is a basic integrity check of the ring buffer.
4702 * Late in the boot cycle this test will run when configured in.
4703 * It will kick off a thread per CPU that will go into a loop
4704 * writing to the per cpu ring buffer various sizes of data.
4705 * Some of the data will be large items, some small.
4706 *
4707 * Another thread is created that goes into a spin, sending out
4708 * IPIs to the other CPUs to also write into the ring buffer.
4709 * this is to test the nesting ability of the buffer.
4710 *
4711 * Basic stats are recorded and reported. If something in the
4712 * ring buffer should happen that's not expected, a big warning
4713 * is displayed and all ring buffers are disabled.
4714 */
4715static struct task_struct *rb_threads[NR_CPUS] __initdata;
4716
4717struct rb_test_data {
4718 struct ring_buffer *buffer;
4719 unsigned long events;
4720 unsigned long bytes_written;
4721 unsigned long bytes_alloc;
4722 unsigned long bytes_dropped;
4723 unsigned long events_nested;
4724 unsigned long bytes_written_nested;
4725 unsigned long bytes_alloc_nested;
4726 unsigned long bytes_dropped_nested;
4727 int min_size_nested;
4728 int max_size_nested;
4729 int max_size;
4730 int min_size;
4731 int cpu;
4732 int cnt;
4733};
4734
4735static struct rb_test_data rb_data[NR_CPUS] __initdata;
4736
4737/* 1 meg per cpu */
4738#define RB_TEST_BUFFER_SIZE 1048576
4739
4740static char rb_string[] __initdata =
4741 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4742 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4743 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4744
4745static bool rb_test_started __initdata;
4746
4747struct rb_item {
4748 int size;
4749 char str[];
4750};
4751
4752static __init int rb_write_something(struct rb_test_data *data, bool nested)
4753{
4754 struct ring_buffer_event *event;
4755 struct rb_item *item;
4756 bool started;
4757 int event_len;
4758 int size;
4759 int len;
4760 int cnt;
4761
4762 /* Have nested writes different that what is written */
4763 cnt = data->cnt + (nested ? 27 : 0);
4764
4765 /* Multiply cnt by ~e, to make some unique increment */
4766 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4767
4768 len = size + sizeof(struct rb_item);
4769
4770 started = rb_test_started;
4771 /* read rb_test_started before checking buffer enabled */
4772 smp_rmb();
4773
4774 event = ring_buffer_lock_reserve(data->buffer, len);
4775 if (!event) {
4776 /* Ignore dropped events before test starts. */
4777 if (started) {
4778 if (nested)
4779 data->bytes_dropped += len;
4780 else
4781 data->bytes_dropped_nested += len;
4782 }
4783 return len;
4784 }
4785
4786 event_len = ring_buffer_event_length(event);
4787
4788 if (RB_WARN_ON(data->buffer, event_len < len))
4789 goto out;
4790
4791 item = ring_buffer_event_data(event);
4792 item->size = size;
4793 memcpy(item->str, rb_string, size);
4794
4795 if (nested) {
4796 data->bytes_alloc_nested += event_len;
4797 data->bytes_written_nested += len;
4798 data->events_nested++;
4799 if (!data->min_size_nested || len < data->min_size_nested)
4800 data->min_size_nested = len;
4801 if (len > data->max_size_nested)
4802 data->max_size_nested = len;
4803 } else {
4804 data->bytes_alloc += event_len;
4805 data->bytes_written += len;
4806 data->events++;
4807 if (!data->min_size || len < data->min_size)
4808 data->max_size = len;
4809 if (len > data->max_size)
4810 data->max_size = len;
4811 }
4812
4813 out:
4814 ring_buffer_unlock_commit(data->buffer, event);
4815
4816 return 0;
4817}
4818
4819static __init int rb_test(void *arg)
4820{
4821 struct rb_test_data *data = arg;
4822
4823 while (!kthread_should_stop()) {
4824 rb_write_something(data, false);
4825 data->cnt++;
4826
4827 set_current_state(TASK_INTERRUPTIBLE);
4828 /* Now sleep between a min of 100-300us and a max of 1ms */
4829 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4830 }
4831
4832 return 0;
4833}
4834
4835static __init void rb_ipi(void *ignore)
4836{
4837 struct rb_test_data *data;
4838 int cpu = smp_processor_id();
4839
4840 data = &rb_data[cpu];
4841 rb_write_something(data, true);
4842}
4843
4844static __init int rb_hammer_test(void *arg)
4845{
4846 while (!kthread_should_stop()) {
4847
4848 /* Send an IPI to all cpus to write data! */
4849 smp_call_function(rb_ipi, NULL, 1);
4850 /* No sleep, but for non preempt, let others run */
4851 schedule();
4852 }
4853
4854 return 0;
4855}
4856
4857static __init int test_ringbuffer(void)
4858{
4859 struct task_struct *rb_hammer;
4860 struct ring_buffer *buffer;
4861 int cpu;
4862 int ret = 0;
4863
4864 pr_info("Running ring buffer tests...\n");
4865
4866 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4867 if (WARN_ON(!buffer))
4868 return 0;
4869
4870 /* Disable buffer so that threads can't write to it yet */
4871 ring_buffer_record_off(buffer);
4872
4873 for_each_online_cpu(cpu) {
4874 rb_data[cpu].buffer = buffer;
4875 rb_data[cpu].cpu = cpu;
4876 rb_data[cpu].cnt = cpu;
4877 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4878 "rbtester/%d", cpu);
4879 if (WARN_ON(!rb_threads[cpu])) {
4880 pr_cont("FAILED\n");
4881 ret = -1;
4882 goto out_free;
4883 }
4884
4885 kthread_bind(rb_threads[cpu], cpu);
4886 wake_up_process(rb_threads[cpu]);
4887 }
4888
4889 /* Now create the rb hammer! */
4890 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4891 if (WARN_ON(!rb_hammer)) {
4892 pr_cont("FAILED\n");
4893 ret = -1;
4894 goto out_free;
4895 }
4896
4897 ring_buffer_record_on(buffer);
4898 /*
4899 * Show buffer is enabled before setting rb_test_started.
4900 * Yes there's a small race window where events could be
4901 * dropped and the thread wont catch it. But when a ring
4902 * buffer gets enabled, there will always be some kind of
4903 * delay before other CPUs see it. Thus, we don't care about
4904 * those dropped events. We care about events dropped after
4905 * the threads see that the buffer is active.
4906 */
4907 smp_wmb();
4908 rb_test_started = true;
4909
4910 set_current_state(TASK_INTERRUPTIBLE);
4911 /* Just run for 10 seconds */;
4912 schedule_timeout(10 * HZ);
4913
4914 kthread_stop(rb_hammer);
4915
4916 out_free:
4917 for_each_online_cpu(cpu) {
4918 if (!rb_threads[cpu])
4919 break;
4920 kthread_stop(rb_threads[cpu]);
4921 }
4922 if (ret) {
4923 ring_buffer_free(buffer);
4924 return ret;
4925 }
4926
4927 /* Report! */
4928 pr_info("finished\n");
4929 for_each_online_cpu(cpu) {
4930 struct ring_buffer_event *event;
4931 struct rb_test_data *data = &rb_data[cpu];
4932 struct rb_item *item;
4933 unsigned long total_events;
4934 unsigned long total_dropped;
4935 unsigned long total_written;
4936 unsigned long total_alloc;
4937 unsigned long total_read = 0;
4938 unsigned long total_size = 0;
4939 unsigned long total_len = 0;
4940 unsigned long total_lost = 0;
4941 unsigned long lost;
4942 int big_event_size;
4943 int small_event_size;
4944
4945 ret = -1;
4946
4947 total_events = data->events + data->events_nested;
4948 total_written = data->bytes_written + data->bytes_written_nested;
4949 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4950 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4951
4952 big_event_size = data->max_size + data->max_size_nested;
4953 small_event_size = data->min_size + data->min_size_nested;
4954
4955 pr_info("CPU %d:\n", cpu);
4956 pr_info(" events: %ld\n", total_events);
4957 pr_info(" dropped bytes: %ld\n", total_dropped);
4958 pr_info(" alloced bytes: %ld\n", total_alloc);
4959 pr_info(" written bytes: %ld\n", total_written);
4960 pr_info(" biggest event: %d\n", big_event_size);
4961 pr_info(" smallest event: %d\n", small_event_size);
4962
4963 if (RB_WARN_ON(buffer, total_dropped))
4964 break;
4965
4966 ret = 0;
4967
4968 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4969 total_lost += lost;
4970 item = ring_buffer_event_data(event);
4971 total_len += ring_buffer_event_length(event);
4972 total_size += item->size + sizeof(struct rb_item);
4973 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4974 pr_info("FAILED!\n");
4975 pr_info("buffer had: %.*s\n", item->size, item->str);
4976 pr_info("expected: %.*s\n", item->size, rb_string);
4977 RB_WARN_ON(buffer, 1);
4978 ret = -1;
4979 break;
4980 }
4981 total_read++;
4982 }
4983 if (ret)
4984 break;
4985
4986 ret = -1;
4987
4988 pr_info(" read events: %ld\n", total_read);
4989 pr_info(" lost events: %ld\n", total_lost);
4990 pr_info(" total events: %ld\n", total_lost + total_read);
4991 pr_info(" recorded len bytes: %ld\n", total_len);
4992 pr_info(" recorded size bytes: %ld\n", total_size);
4993 if (total_lost)
4994 pr_info(" With dropped events, record len and size may not match\n"
4995 " alloced and written from above\n");
4996 if (!total_lost) {
4997 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4998 total_size != total_written))
4999 break;
5000 }
5001 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5002 break;
5003
5004 ret = 0;
5005 }
5006 if (!ret)
5007 pr_info("Ring buffer PASSED!\n");
5008
5009 ring_buffer_free(buffer);
5010 return 0;
5011}
5012
5013late_initcall(test_ringbuffer);
5014#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */