timers: Fix slack calculation really
[linux-block.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
cdd6c482 40#include <linux/perf_event.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
a6fa8e5a
PM
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
6e453a67 85} ____cacheline_aligned;
1da177e4 86
a6fa8e5a 87struct tvec_base boot_tvec_bases;
3691c519 88EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 90
6e453a67 91/*
a6fa8e5a 92 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
93 * base in timer_list is guaranteed to be zero. Use the LSB for
94 * the new flag to indicate whether the timer is deferrable
95 */
96#define TBASE_DEFERRABLE_FLAG (0x1)
97
98/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 99static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 100{
e9910846 101 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
102}
103
a6fa8e5a 104static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 105{
a6fa8e5a 106 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
107}
108
109static inline void timer_set_deferrable(struct timer_list *timer)
110{
a6fa8e5a 111 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 112 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
113}
114
115static inline void
a6fa8e5a 116timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 117{
a6fa8e5a 118 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 119 tbase_get_deferrable(timer->base));
6e453a67
VP
120}
121
9c133c46
AS
122static unsigned long round_jiffies_common(unsigned long j, int cpu,
123 bool force_up)
4c36a5de
AV
124{
125 int rem;
126 unsigned long original = j;
127
128 /*
129 * We don't want all cpus firing their timers at once hitting the
130 * same lock or cachelines, so we skew each extra cpu with an extra
131 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
132 * already did this.
133 * The skew is done by adding 3*cpunr, then round, then subtract this
134 * extra offset again.
135 */
136 j += cpu * 3;
137
138 rem = j % HZ;
139
140 /*
141 * If the target jiffie is just after a whole second (which can happen
142 * due to delays of the timer irq, long irq off times etc etc) then
143 * we should round down to the whole second, not up. Use 1/4th second
144 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 145 * But never round down if @force_up is set.
4c36a5de 146 */
9c133c46 147 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
148 j = j - rem;
149 else /* round up */
150 j = j - rem + HZ;
151
152 /* now that we have rounded, subtract the extra skew again */
153 j -= cpu * 3;
154
155 if (j <= jiffies) /* rounding ate our timeout entirely; */
156 return original;
157 return j;
158}
9c133c46
AS
159
160/**
161 * __round_jiffies - function to round jiffies to a full second
162 * @j: the time in (absolute) jiffies that should be rounded
163 * @cpu: the processor number on which the timeout will happen
164 *
165 * __round_jiffies() rounds an absolute time in the future (in jiffies)
166 * up or down to (approximately) full seconds. This is useful for timers
167 * for which the exact time they fire does not matter too much, as long as
168 * they fire approximately every X seconds.
169 *
170 * By rounding these timers to whole seconds, all such timers will fire
171 * at the same time, rather than at various times spread out. The goal
172 * of this is to have the CPU wake up less, which saves power.
173 *
174 * The exact rounding is skewed for each processor to avoid all
175 * processors firing at the exact same time, which could lead
176 * to lock contention or spurious cache line bouncing.
177 *
178 * The return value is the rounded version of the @j parameter.
179 */
180unsigned long __round_jiffies(unsigned long j, int cpu)
181{
182 return round_jiffies_common(j, cpu, false);
183}
4c36a5de
AV
184EXPORT_SYMBOL_GPL(__round_jiffies);
185
186/**
187 * __round_jiffies_relative - function to round jiffies to a full second
188 * @j: the time in (relative) jiffies that should be rounded
189 * @cpu: the processor number on which the timeout will happen
190 *
72fd4a35 191 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
192 * up or down to (approximately) full seconds. This is useful for timers
193 * for which the exact time they fire does not matter too much, as long as
194 * they fire approximately every X seconds.
195 *
196 * By rounding these timers to whole seconds, all such timers will fire
197 * at the same time, rather than at various times spread out. The goal
198 * of this is to have the CPU wake up less, which saves power.
199 *
200 * The exact rounding is skewed for each processor to avoid all
201 * processors firing at the exact same time, which could lead
202 * to lock contention or spurious cache line bouncing.
203 *
72fd4a35 204 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
205 */
206unsigned long __round_jiffies_relative(unsigned long j, int cpu)
207{
9c133c46
AS
208 unsigned long j0 = jiffies;
209
210 /* Use j0 because jiffies might change while we run */
211 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
212}
213EXPORT_SYMBOL_GPL(__round_jiffies_relative);
214
215/**
216 * round_jiffies - function to round jiffies to a full second
217 * @j: the time in (absolute) jiffies that should be rounded
218 *
72fd4a35 219 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
220 * up or down to (approximately) full seconds. This is useful for timers
221 * for which the exact time they fire does not matter too much, as long as
222 * they fire approximately every X seconds.
223 *
224 * By rounding these timers to whole seconds, all such timers will fire
225 * at the same time, rather than at various times spread out. The goal
226 * of this is to have the CPU wake up less, which saves power.
227 *
72fd4a35 228 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
229 */
230unsigned long round_jiffies(unsigned long j)
231{
9c133c46 232 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
233}
234EXPORT_SYMBOL_GPL(round_jiffies);
235
236/**
237 * round_jiffies_relative - function to round jiffies to a full second
238 * @j: the time in (relative) jiffies that should be rounded
239 *
72fd4a35 240 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
241 * up or down to (approximately) full seconds. This is useful for timers
242 * for which the exact time they fire does not matter too much, as long as
243 * they fire approximately every X seconds.
244 *
245 * By rounding these timers to whole seconds, all such timers will fire
246 * at the same time, rather than at various times spread out. The goal
247 * of this is to have the CPU wake up less, which saves power.
248 *
72fd4a35 249 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
250 */
251unsigned long round_jiffies_relative(unsigned long j)
252{
253 return __round_jiffies_relative(j, raw_smp_processor_id());
254}
255EXPORT_SYMBOL_GPL(round_jiffies_relative);
256
9c133c46
AS
257/**
258 * __round_jiffies_up - function to round jiffies up to a full second
259 * @j: the time in (absolute) jiffies that should be rounded
260 * @cpu: the processor number on which the timeout will happen
261 *
262 * This is the same as __round_jiffies() except that it will never
263 * round down. This is useful for timeouts for which the exact time
264 * of firing does not matter too much, as long as they don't fire too
265 * early.
266 */
267unsigned long __round_jiffies_up(unsigned long j, int cpu)
268{
269 return round_jiffies_common(j, cpu, true);
270}
271EXPORT_SYMBOL_GPL(__round_jiffies_up);
272
273/**
274 * __round_jiffies_up_relative - function to round jiffies up to a full second
275 * @j: the time in (relative) jiffies that should be rounded
276 * @cpu: the processor number on which the timeout will happen
277 *
278 * This is the same as __round_jiffies_relative() except that it will never
279 * round down. This is useful for timeouts for which the exact time
280 * of firing does not matter too much, as long as they don't fire too
281 * early.
282 */
283unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
284{
285 unsigned long j0 = jiffies;
286
287 /* Use j0 because jiffies might change while we run */
288 return round_jiffies_common(j + j0, cpu, true) - j0;
289}
290EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
291
292/**
293 * round_jiffies_up - function to round jiffies up to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
295 *
296 * This is the same as round_jiffies() except that it will never
297 * round down. This is useful for timeouts for which the exact time
298 * of firing does not matter too much, as long as they don't fire too
299 * early.
300 */
301unsigned long round_jiffies_up(unsigned long j)
302{
303 return round_jiffies_common(j, raw_smp_processor_id(), true);
304}
305EXPORT_SYMBOL_GPL(round_jiffies_up);
306
307/**
308 * round_jiffies_up_relative - function to round jiffies up to a full second
309 * @j: the time in (relative) jiffies that should be rounded
310 *
311 * This is the same as round_jiffies_relative() except that it will never
312 * round down. This is useful for timeouts for which the exact time
313 * of firing does not matter too much, as long as they don't fire too
314 * early.
315 */
316unsigned long round_jiffies_up_relative(unsigned long j)
317{
318 return __round_jiffies_up_relative(j, raw_smp_processor_id());
319}
320EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
321
3bbb9ec9
AV
322/**
323 * set_timer_slack - set the allowed slack for a timer
324 * @slack_hz: the amount of time (in jiffies) allowed for rounding
325 *
326 * Set the amount of time, in jiffies, that a certain timer has
327 * in terms of slack. By setting this value, the timer subsystem
328 * will schedule the actual timer somewhere between
329 * the time mod_timer() asks for, and that time plus the slack.
330 *
331 * By setting the slack to -1, a percentage of the delay is used
332 * instead.
333 */
334void set_timer_slack(struct timer_list *timer, int slack_hz)
335{
336 timer->slack = slack_hz;
337}
338EXPORT_SYMBOL_GPL(set_timer_slack);
339
4c36a5de 340
a6fa8e5a 341static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
342 struct timer_list *timer)
343{
344#ifdef CONFIG_SMP
3691c519 345 base->running_timer = timer;
1da177e4
LT
346#endif
347}
348
a6fa8e5a 349static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
350{
351 unsigned long expires = timer->expires;
352 unsigned long idx = expires - base->timer_jiffies;
353 struct list_head *vec;
354
355 if (idx < TVR_SIZE) {
356 int i = expires & TVR_MASK;
357 vec = base->tv1.vec + i;
358 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
359 int i = (expires >> TVR_BITS) & TVN_MASK;
360 vec = base->tv2.vec + i;
361 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
362 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
363 vec = base->tv3.vec + i;
364 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
365 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
366 vec = base->tv4.vec + i;
367 } else if ((signed long) idx < 0) {
368 /*
369 * Can happen if you add a timer with expires == jiffies,
370 * or you set a timer to go off in the past
371 */
372 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
373 } else {
374 int i;
375 /* If the timeout is larger than 0xffffffff on 64-bit
376 * architectures then we use the maximum timeout:
377 */
378 if (idx > 0xffffffffUL) {
379 idx = 0xffffffffUL;
380 expires = idx + base->timer_jiffies;
381 }
382 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
383 vec = base->tv5.vec + i;
384 }
385 /*
386 * Timers are FIFO:
387 */
388 list_add_tail(&timer->entry, vec);
389}
390
82f67cd9
IM
391#ifdef CONFIG_TIMER_STATS
392void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
393{
394 if (timer->start_site)
395 return;
396
397 timer->start_site = addr;
398 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
399 timer->start_pid = current->pid;
400}
c5c061b8
VP
401
402static void timer_stats_account_timer(struct timer_list *timer)
403{
404 unsigned int flag = 0;
405
507e1231
HC
406 if (likely(!timer->start_site))
407 return;
c5c061b8
VP
408 if (unlikely(tbase_get_deferrable(timer->base)))
409 flag |= TIMER_STATS_FLAG_DEFERRABLE;
410
411 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
412 timer->function, timer->start_comm, flag);
413}
414
415#else
416static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
417#endif
418
c6f3a97f
TG
419#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
420
421static struct debug_obj_descr timer_debug_descr;
422
423/*
424 * fixup_init is called when:
425 * - an active object is initialized
55c888d6 426 */
c6f3a97f
TG
427static int timer_fixup_init(void *addr, enum debug_obj_state state)
428{
429 struct timer_list *timer = addr;
430
431 switch (state) {
432 case ODEBUG_STATE_ACTIVE:
433 del_timer_sync(timer);
434 debug_object_init(timer, &timer_debug_descr);
435 return 1;
436 default:
437 return 0;
438 }
439}
440
441/*
442 * fixup_activate is called when:
443 * - an active object is activated
444 * - an unknown object is activated (might be a statically initialized object)
445 */
446static int timer_fixup_activate(void *addr, enum debug_obj_state state)
447{
448 struct timer_list *timer = addr;
449
450 switch (state) {
451
452 case ODEBUG_STATE_NOTAVAILABLE:
453 /*
454 * This is not really a fixup. The timer was
455 * statically initialized. We just make sure that it
456 * is tracked in the object tracker.
457 */
458 if (timer->entry.next == NULL &&
459 timer->entry.prev == TIMER_ENTRY_STATIC) {
460 debug_object_init(timer, &timer_debug_descr);
461 debug_object_activate(timer, &timer_debug_descr);
462 return 0;
463 } else {
464 WARN_ON_ONCE(1);
465 }
466 return 0;
467
468 case ODEBUG_STATE_ACTIVE:
469 WARN_ON(1);
470
471 default:
472 return 0;
473 }
474}
475
476/*
477 * fixup_free is called when:
478 * - an active object is freed
479 */
480static int timer_fixup_free(void *addr, enum debug_obj_state state)
481{
482 struct timer_list *timer = addr;
483
484 switch (state) {
485 case ODEBUG_STATE_ACTIVE:
486 del_timer_sync(timer);
487 debug_object_free(timer, &timer_debug_descr);
488 return 1;
489 default:
490 return 0;
491 }
492}
493
494static struct debug_obj_descr timer_debug_descr = {
495 .name = "timer_list",
496 .fixup_init = timer_fixup_init,
497 .fixup_activate = timer_fixup_activate,
498 .fixup_free = timer_fixup_free,
499};
500
501static inline void debug_timer_init(struct timer_list *timer)
502{
503 debug_object_init(timer, &timer_debug_descr);
504}
505
506static inline void debug_timer_activate(struct timer_list *timer)
507{
508 debug_object_activate(timer, &timer_debug_descr);
509}
510
511static inline void debug_timer_deactivate(struct timer_list *timer)
512{
513 debug_object_deactivate(timer, &timer_debug_descr);
514}
515
516static inline void debug_timer_free(struct timer_list *timer)
517{
518 debug_object_free(timer, &timer_debug_descr);
519}
520
6f2b9b9a
JB
521static void __init_timer(struct timer_list *timer,
522 const char *name,
523 struct lock_class_key *key);
c6f3a97f 524
6f2b9b9a
JB
525void init_timer_on_stack_key(struct timer_list *timer,
526 const char *name,
527 struct lock_class_key *key)
c6f3a97f
TG
528{
529 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 530 __init_timer(timer, name, key);
c6f3a97f 531}
6f2b9b9a 532EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
533
534void destroy_timer_on_stack(struct timer_list *timer)
535{
536 debug_object_free(timer, &timer_debug_descr);
537}
538EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
539
540#else
541static inline void debug_timer_init(struct timer_list *timer) { }
542static inline void debug_timer_activate(struct timer_list *timer) { }
543static inline void debug_timer_deactivate(struct timer_list *timer) { }
544#endif
545
2b022e3d
XG
546static inline void debug_init(struct timer_list *timer)
547{
548 debug_timer_init(timer);
549 trace_timer_init(timer);
550}
551
552static inline void
553debug_activate(struct timer_list *timer, unsigned long expires)
554{
555 debug_timer_activate(timer);
556 trace_timer_start(timer, expires);
557}
558
559static inline void debug_deactivate(struct timer_list *timer)
560{
561 debug_timer_deactivate(timer);
562 trace_timer_cancel(timer);
563}
564
6f2b9b9a
JB
565static void __init_timer(struct timer_list *timer,
566 const char *name,
567 struct lock_class_key *key)
55c888d6
ON
568{
569 timer->entry.next = NULL;
bfe5d834 570 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 571 timer->slack = -1;
82f67cd9
IM
572#ifdef CONFIG_TIMER_STATS
573 timer->start_site = NULL;
574 timer->start_pid = -1;
575 memset(timer->start_comm, 0, TASK_COMM_LEN);
576#endif
6f2b9b9a 577 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 578}
c6f3a97f
TG
579
580/**
633fe795 581 * init_timer_key - initialize a timer
c6f3a97f 582 * @timer: the timer to be initialized
633fe795
RD
583 * @name: name of the timer
584 * @key: lockdep class key of the fake lock used for tracking timer
585 * sync lock dependencies
c6f3a97f 586 *
633fe795 587 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
588 * other timer functions.
589 */
6f2b9b9a
JB
590void init_timer_key(struct timer_list *timer,
591 const char *name,
592 struct lock_class_key *key)
c6f3a97f 593{
2b022e3d 594 debug_init(timer);
6f2b9b9a 595 __init_timer(timer, name, key);
c6f3a97f 596}
6f2b9b9a 597EXPORT_SYMBOL(init_timer_key);
55c888d6 598
6f2b9b9a
JB
599void init_timer_deferrable_key(struct timer_list *timer,
600 const char *name,
601 struct lock_class_key *key)
6e453a67 602{
6f2b9b9a 603 init_timer_key(timer, name, key);
6e453a67
VP
604 timer_set_deferrable(timer);
605}
6f2b9b9a 606EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 607
55c888d6 608static inline void detach_timer(struct timer_list *timer,
82f67cd9 609 int clear_pending)
55c888d6
ON
610{
611 struct list_head *entry = &timer->entry;
612
2b022e3d 613 debug_deactivate(timer);
c6f3a97f 614
55c888d6
ON
615 __list_del(entry->prev, entry->next);
616 if (clear_pending)
617 entry->next = NULL;
618 entry->prev = LIST_POISON2;
619}
620
621/*
3691c519 622 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
623 * means that all timers which are tied to this base via timer->base are
624 * locked, and the base itself is locked too.
625 *
626 * So __run_timers/migrate_timers can safely modify all timers which could
627 * be found on ->tvX lists.
628 *
629 * When the timer's base is locked, and the timer removed from list, it is
630 * possible to set timer->base = NULL and drop the lock: the timer remains
631 * locked.
632 */
a6fa8e5a 633static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 634 unsigned long *flags)
89e7e374 635 __acquires(timer->base->lock)
55c888d6 636{
a6fa8e5a 637 struct tvec_base *base;
55c888d6
ON
638
639 for (;;) {
a6fa8e5a 640 struct tvec_base *prelock_base = timer->base;
6e453a67 641 base = tbase_get_base(prelock_base);
55c888d6
ON
642 if (likely(base != NULL)) {
643 spin_lock_irqsave(&base->lock, *flags);
6e453a67 644 if (likely(prelock_base == timer->base))
55c888d6
ON
645 return base;
646 /* The timer has migrated to another CPU */
647 spin_unlock_irqrestore(&base->lock, *flags);
648 }
649 cpu_relax();
650 }
651}
652
74019224 653static inline int
597d0275
AB
654__mod_timer(struct timer_list *timer, unsigned long expires,
655 bool pending_only, int pinned)
1da177e4 656{
a6fa8e5a 657 struct tvec_base *base, *new_base;
1da177e4 658 unsigned long flags;
eea08f32 659 int ret = 0 , cpu;
1da177e4 660
82f67cd9 661 timer_stats_timer_set_start_info(timer);
1da177e4 662 BUG_ON(!timer->function);
1da177e4 663
55c888d6
ON
664 base = lock_timer_base(timer, &flags);
665
666 if (timer_pending(timer)) {
667 detach_timer(timer, 0);
97fd9ed4
MS
668 if (timer->expires == base->next_timer &&
669 !tbase_get_deferrable(timer->base))
670 base->next_timer = base->timer_jiffies;
55c888d6 671 ret = 1;
74019224
IM
672 } else {
673 if (pending_only)
674 goto out_unlock;
55c888d6
ON
675 }
676
2b022e3d 677 debug_activate(timer, expires);
c6f3a97f 678
eea08f32
AB
679 cpu = smp_processor_id();
680
681#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
682 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
683 int preferred_cpu = get_nohz_load_balancer();
684
685 if (preferred_cpu >= 0)
686 cpu = preferred_cpu;
687 }
688#endif
689 new_base = per_cpu(tvec_bases, cpu);
690
3691c519 691 if (base != new_base) {
1da177e4 692 /*
55c888d6
ON
693 * We are trying to schedule the timer on the local CPU.
694 * However we can't change timer's base while it is running,
695 * otherwise del_timer_sync() can't detect that the timer's
696 * handler yet has not finished. This also guarantees that
697 * the timer is serialized wrt itself.
1da177e4 698 */
a2c348fe 699 if (likely(base->running_timer != timer)) {
55c888d6 700 /* See the comment in lock_timer_base() */
6e453a67 701 timer_set_base(timer, NULL);
55c888d6 702 spin_unlock(&base->lock);
a2c348fe
ON
703 base = new_base;
704 spin_lock(&base->lock);
6e453a67 705 timer_set_base(timer, base);
1da177e4
LT
706 }
707 }
708
1da177e4 709 timer->expires = expires;
97fd9ed4
MS
710 if (time_before(timer->expires, base->next_timer) &&
711 !tbase_get_deferrable(timer->base))
712 base->next_timer = timer->expires;
a2c348fe 713 internal_add_timer(base, timer);
74019224
IM
714
715out_unlock:
a2c348fe 716 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
717
718 return ret;
719}
720
2aae4a10 721/**
74019224
IM
722 * mod_timer_pending - modify a pending timer's timeout
723 * @timer: the pending timer to be modified
724 * @expires: new timeout in jiffies
1da177e4 725 *
74019224
IM
726 * mod_timer_pending() is the same for pending timers as mod_timer(),
727 * but will not re-activate and modify already deleted timers.
728 *
729 * It is useful for unserialized use of timers.
1da177e4 730 */
74019224 731int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 732{
597d0275 733 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 734}
74019224 735EXPORT_SYMBOL(mod_timer_pending);
1da177e4 736
3bbb9ec9
AV
737/*
738 * Decide where to put the timer while taking the slack into account
739 *
740 * Algorithm:
741 * 1) calculate the maximum (absolute) time
742 * 2) calculate the highest bit where the expires and new max are different
743 * 3) use this bit to make a mask
744 * 4) use the bitmask to round down the maximum time, so that all last
745 * bits are zeros
746 */
747static inline
748unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
749{
8e63d779 750 unsigned long expires_limit, mask, now;
3bbb9ec9
AV
751 int bit;
752
f00e047e 753 expires_limit = expires;
3bbb9ec9 754
8e63d779 755 if (timer->slack >= 0) {
f00e047e 756 expires_limit = expires + timer->slack;
8e63d779
TG
757 } else {
758 now = jiffies;
759 /* No slack, if already expired else auto slack 0.4% */
760 if (time_after(expires, now))
761 expires_limit = expires + (expires - now)/256;
762 }
3bbb9ec9 763 mask = expires ^ expires_limit;
3bbb9ec9
AV
764 if (mask == 0)
765 return expires;
766
767 bit = find_last_bit(&mask, BITS_PER_LONG);
768
769 mask = (1 << bit) - 1;
770
771 expires_limit = expires_limit & ~(mask);
772
773 return expires_limit;
774}
775
2aae4a10 776/**
1da177e4
LT
777 * mod_timer - modify a timer's timeout
778 * @timer: the timer to be modified
2aae4a10 779 * @expires: new timeout in jiffies
1da177e4 780 *
72fd4a35 781 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
782 * active timer (if the timer is inactive it will be activated)
783 *
784 * mod_timer(timer, expires) is equivalent to:
785 *
786 * del_timer(timer); timer->expires = expires; add_timer(timer);
787 *
788 * Note that if there are multiple unserialized concurrent users of the
789 * same timer, then mod_timer() is the only safe way to modify the timeout,
790 * since add_timer() cannot modify an already running timer.
791 *
792 * The function returns whether it has modified a pending timer or not.
793 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
794 * active timer returns 1.)
795 */
796int mod_timer(struct timer_list *timer, unsigned long expires)
797{
1da177e4
LT
798 /*
799 * This is a common optimization triggered by the
800 * networking code - if the timer is re-modified
801 * to be the same thing then just return:
802 */
4841158b 803 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
804 return 1;
805
3bbb9ec9
AV
806 expires = apply_slack(timer, expires);
807
597d0275 808 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 809}
1da177e4
LT
810EXPORT_SYMBOL(mod_timer);
811
597d0275
AB
812/**
813 * mod_timer_pinned - modify a timer's timeout
814 * @timer: the timer to be modified
815 * @expires: new timeout in jiffies
816 *
817 * mod_timer_pinned() is a way to update the expire field of an
818 * active timer (if the timer is inactive it will be activated)
819 * and not allow the timer to be migrated to a different CPU.
820 *
821 * mod_timer_pinned(timer, expires) is equivalent to:
822 *
823 * del_timer(timer); timer->expires = expires; add_timer(timer);
824 */
825int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
826{
827 if (timer->expires == expires && timer_pending(timer))
828 return 1;
829
830 return __mod_timer(timer, expires, false, TIMER_PINNED);
831}
832EXPORT_SYMBOL(mod_timer_pinned);
833
74019224
IM
834/**
835 * add_timer - start a timer
836 * @timer: the timer to be added
837 *
838 * The kernel will do a ->function(->data) callback from the
839 * timer interrupt at the ->expires point in the future. The
840 * current time is 'jiffies'.
841 *
842 * The timer's ->expires, ->function (and if the handler uses it, ->data)
843 * fields must be set prior calling this function.
844 *
845 * Timers with an ->expires field in the past will be executed in the next
846 * timer tick.
847 */
848void add_timer(struct timer_list *timer)
849{
850 BUG_ON(timer_pending(timer));
851 mod_timer(timer, timer->expires);
852}
853EXPORT_SYMBOL(add_timer);
854
855/**
856 * add_timer_on - start a timer on a particular CPU
857 * @timer: the timer to be added
858 * @cpu: the CPU to start it on
859 *
860 * This is not very scalable on SMP. Double adds are not possible.
861 */
862void add_timer_on(struct timer_list *timer, int cpu)
863{
864 struct tvec_base *base = per_cpu(tvec_bases, cpu);
865 unsigned long flags;
866
867 timer_stats_timer_set_start_info(timer);
868 BUG_ON(timer_pending(timer) || !timer->function);
869 spin_lock_irqsave(&base->lock, flags);
870 timer_set_base(timer, base);
2b022e3d 871 debug_activate(timer, timer->expires);
97fd9ed4
MS
872 if (time_before(timer->expires, base->next_timer) &&
873 !tbase_get_deferrable(timer->base))
874 base->next_timer = timer->expires;
74019224
IM
875 internal_add_timer(base, timer);
876 /*
877 * Check whether the other CPU is idle and needs to be
878 * triggered to reevaluate the timer wheel when nohz is
879 * active. We are protected against the other CPU fiddling
880 * with the timer by holding the timer base lock. This also
881 * makes sure that a CPU on the way to idle can not evaluate
882 * the timer wheel.
883 */
884 wake_up_idle_cpu(cpu);
885 spin_unlock_irqrestore(&base->lock, flags);
886}
a9862e05 887EXPORT_SYMBOL_GPL(add_timer_on);
74019224 888
2aae4a10 889/**
1da177e4
LT
890 * del_timer - deactive a timer.
891 * @timer: the timer to be deactivated
892 *
893 * del_timer() deactivates a timer - this works on both active and inactive
894 * timers.
895 *
896 * The function returns whether it has deactivated a pending timer or not.
897 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
898 * active timer returns 1.)
899 */
900int del_timer(struct timer_list *timer)
901{
a6fa8e5a 902 struct tvec_base *base;
1da177e4 903 unsigned long flags;
55c888d6 904 int ret = 0;
1da177e4 905
82f67cd9 906 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
907 if (timer_pending(timer)) {
908 base = lock_timer_base(timer, &flags);
909 if (timer_pending(timer)) {
910 detach_timer(timer, 1);
97fd9ed4
MS
911 if (timer->expires == base->next_timer &&
912 !tbase_get_deferrable(timer->base))
913 base->next_timer = base->timer_jiffies;
55c888d6
ON
914 ret = 1;
915 }
1da177e4 916 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 917 }
1da177e4 918
55c888d6 919 return ret;
1da177e4 920}
1da177e4
LT
921EXPORT_SYMBOL(del_timer);
922
923#ifdef CONFIG_SMP
2aae4a10
REB
924/**
925 * try_to_del_timer_sync - Try to deactivate a timer
926 * @timer: timer do del
927 *
fd450b73
ON
928 * This function tries to deactivate a timer. Upon successful (ret >= 0)
929 * exit the timer is not queued and the handler is not running on any CPU.
930 *
931 * It must not be called from interrupt contexts.
932 */
933int try_to_del_timer_sync(struct timer_list *timer)
934{
a6fa8e5a 935 struct tvec_base *base;
fd450b73
ON
936 unsigned long flags;
937 int ret = -1;
938
939 base = lock_timer_base(timer, &flags);
940
941 if (base->running_timer == timer)
942 goto out;
943
829b6c1e 944 timer_stats_timer_clear_start_info(timer);
fd450b73
ON
945 ret = 0;
946 if (timer_pending(timer)) {
947 detach_timer(timer, 1);
97fd9ed4
MS
948 if (timer->expires == base->next_timer &&
949 !tbase_get_deferrable(timer->base))
950 base->next_timer = base->timer_jiffies;
fd450b73
ON
951 ret = 1;
952 }
953out:
954 spin_unlock_irqrestore(&base->lock, flags);
955
956 return ret;
957}
e19dff1f
DH
958EXPORT_SYMBOL(try_to_del_timer_sync);
959
2aae4a10 960/**
1da177e4
LT
961 * del_timer_sync - deactivate a timer and wait for the handler to finish.
962 * @timer: the timer to be deactivated
963 *
964 * This function only differs from del_timer() on SMP: besides deactivating
965 * the timer it also makes sure the handler has finished executing on other
966 * CPUs.
967 *
72fd4a35 968 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
969 * otherwise this function is meaningless. It must not be called from
970 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
971 * completion of the timer's handler. The timer's handler must not call
972 * add_timer_on(). Upon exit the timer is not queued and the handler is
973 * not running on any CPU.
1da177e4
LT
974 *
975 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
976 */
977int del_timer_sync(struct timer_list *timer)
978{
6f2b9b9a
JB
979#ifdef CONFIG_LOCKDEP
980 unsigned long flags;
981
982 local_irq_save(flags);
983 lock_map_acquire(&timer->lockdep_map);
984 lock_map_release(&timer->lockdep_map);
985 local_irq_restore(flags);
986#endif
987
fd450b73
ON
988 for (;;) {
989 int ret = try_to_del_timer_sync(timer);
990 if (ret >= 0)
991 return ret;
a0009652 992 cpu_relax();
fd450b73 993 }
1da177e4 994}
55c888d6 995EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
996#endif
997
a6fa8e5a 998static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
999{
1000 /* cascade all the timers from tv up one level */
3439dd86
P
1001 struct timer_list *timer, *tmp;
1002 struct list_head tv_list;
1003
1004 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1005
1da177e4 1006 /*
3439dd86
P
1007 * We are removing _all_ timers from the list, so we
1008 * don't have to detach them individually.
1da177e4 1009 */
3439dd86 1010 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1011 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 1012 internal_add_timer(base, timer);
1da177e4 1013 }
1da177e4
LT
1014
1015 return index;
1016}
1017
576da126
TG
1018static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1019 unsigned long data)
1020{
1021 int preempt_count = preempt_count();
1022
1023#ifdef CONFIG_LOCKDEP
1024 /*
1025 * It is permissible to free the timer from inside the
1026 * function that is called from it, this we need to take into
1027 * account for lockdep too. To avoid bogus "held lock freed"
1028 * warnings as well as problems when looking into
1029 * timer->lockdep_map, make a copy and use that here.
1030 */
1031 struct lockdep_map lockdep_map = timer->lockdep_map;
1032#endif
1033 /*
1034 * Couple the lock chain with the lock chain at
1035 * del_timer_sync() by acquiring the lock_map around the fn()
1036 * call here and in del_timer_sync().
1037 */
1038 lock_map_acquire(&lockdep_map);
1039
1040 trace_timer_expire_entry(timer);
1041 fn(data);
1042 trace_timer_expire_exit(timer);
1043
1044 lock_map_release(&lockdep_map);
1045
1046 if (preempt_count != preempt_count()) {
802702e0
TG
1047 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1048 fn, preempt_count, preempt_count());
1049 /*
1050 * Restore the preempt count. That gives us a decent
1051 * chance to survive and extract information. If the
1052 * callback kept a lock held, bad luck, but not worse
1053 * than the BUG() we had.
1054 */
1055 preempt_count() = preempt_count;
576da126
TG
1056 }
1057}
1058
2aae4a10
REB
1059#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1060
1061/**
1da177e4
LT
1062 * __run_timers - run all expired timers (if any) on this CPU.
1063 * @base: the timer vector to be processed.
1064 *
1065 * This function cascades all vectors and executes all expired timer
1066 * vectors.
1067 */
a6fa8e5a 1068static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1069{
1070 struct timer_list *timer;
1071
3691c519 1072 spin_lock_irq(&base->lock);
1da177e4 1073 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1074 struct list_head work_list;
1da177e4 1075 struct list_head *head = &work_list;
6819457d 1076 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1077
1da177e4
LT
1078 /*
1079 * Cascade timers:
1080 */
1081 if (!index &&
1082 (!cascade(base, &base->tv2, INDEX(0))) &&
1083 (!cascade(base, &base->tv3, INDEX(1))) &&
1084 !cascade(base, &base->tv4, INDEX(2)))
1085 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1086 ++base->timer_jiffies;
1087 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1088 while (!list_empty(head)) {
1da177e4
LT
1089 void (*fn)(unsigned long);
1090 unsigned long data;
1091
b5e61818 1092 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1093 fn = timer->function;
1094 data = timer->data;
1da177e4 1095
82f67cd9
IM
1096 timer_stats_account_timer(timer);
1097
1da177e4 1098 set_running_timer(base, timer);
55c888d6 1099 detach_timer(timer, 1);
6f2b9b9a 1100
3691c519 1101 spin_unlock_irq(&base->lock);
576da126 1102 call_timer_fn(timer, fn, data);
3691c519 1103 spin_lock_irq(&base->lock);
1da177e4
LT
1104 }
1105 }
1106 set_running_timer(base, NULL);
3691c519 1107 spin_unlock_irq(&base->lock);
1da177e4
LT
1108}
1109
ee9c5785 1110#ifdef CONFIG_NO_HZ
1da177e4
LT
1111/*
1112 * Find out when the next timer event is due to happen. This
90cba64a
RD
1113 * is used on S/390 to stop all activity when a CPU is idle.
1114 * This function needs to be called with interrupts disabled.
1da177e4 1115 */
a6fa8e5a 1116static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1117{
1cfd6849 1118 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1119 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1120 int index, slot, array, found = 0;
1da177e4 1121 struct timer_list *nte;
a6fa8e5a 1122 struct tvec *varray[4];
1da177e4
LT
1123
1124 /* Look for timer events in tv1. */
1cfd6849 1125 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1126 do {
1cfd6849 1127 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1128 if (tbase_get_deferrable(nte->base))
1129 continue;
6e453a67 1130
1cfd6849 1131 found = 1;
1da177e4 1132 expires = nte->expires;
1cfd6849
TG
1133 /* Look at the cascade bucket(s)? */
1134 if (!index || slot < index)
1135 goto cascade;
1136 return expires;
1da177e4 1137 }
1cfd6849
TG
1138 slot = (slot + 1) & TVR_MASK;
1139 } while (slot != index);
1140
1141cascade:
1142 /* Calculate the next cascade event */
1143 if (index)
1144 timer_jiffies += TVR_SIZE - index;
1145 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1146
1147 /* Check tv2-tv5. */
1148 varray[0] = &base->tv2;
1149 varray[1] = &base->tv3;
1150 varray[2] = &base->tv4;
1151 varray[3] = &base->tv5;
1cfd6849
TG
1152
1153 for (array = 0; array < 4; array++) {
a6fa8e5a 1154 struct tvec *varp = varray[array];
1cfd6849
TG
1155
1156 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1157 do {
1cfd6849 1158 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1159 if (tbase_get_deferrable(nte->base))
1160 continue;
1161
1cfd6849 1162 found = 1;
1da177e4
LT
1163 if (time_before(nte->expires, expires))
1164 expires = nte->expires;
1cfd6849
TG
1165 }
1166 /*
1167 * Do we still search for the first timer or are
1168 * we looking up the cascade buckets ?
1169 */
1170 if (found) {
1171 /* Look at the cascade bucket(s)? */
1172 if (!index || slot < index)
1173 break;
1174 return expires;
1175 }
1176 slot = (slot + 1) & TVN_MASK;
1177 } while (slot != index);
1178
1179 if (index)
1180 timer_jiffies += TVN_SIZE - index;
1181 timer_jiffies >>= TVN_BITS;
1da177e4 1182 }
1cfd6849
TG
1183 return expires;
1184}
69239749 1185
1cfd6849
TG
1186/*
1187 * Check, if the next hrtimer event is before the next timer wheel
1188 * event:
1189 */
1190static unsigned long cmp_next_hrtimer_event(unsigned long now,
1191 unsigned long expires)
1192{
1193 ktime_t hr_delta = hrtimer_get_next_event();
1194 struct timespec tsdelta;
9501b6cf 1195 unsigned long delta;
1cfd6849
TG
1196
1197 if (hr_delta.tv64 == KTIME_MAX)
1198 return expires;
0662b713 1199
9501b6cf
TG
1200 /*
1201 * Expired timer available, let it expire in the next tick
1202 */
1203 if (hr_delta.tv64 <= 0)
1204 return now + 1;
69239749 1205
1cfd6849 1206 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1207 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1208
1209 /*
1210 * Limit the delta to the max value, which is checked in
1211 * tick_nohz_stop_sched_tick():
1212 */
1213 if (delta > NEXT_TIMER_MAX_DELTA)
1214 delta = NEXT_TIMER_MAX_DELTA;
1215
9501b6cf
TG
1216 /*
1217 * Take rounding errors in to account and make sure, that it
1218 * expires in the next tick. Otherwise we go into an endless
1219 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1220 * the timer softirq
1221 */
1222 if (delta < 1)
1223 delta = 1;
1224 now += delta;
1cfd6849
TG
1225 if (time_before(now, expires))
1226 return now;
1da177e4
LT
1227 return expires;
1228}
1cfd6849
TG
1229
1230/**
8dce39c2 1231 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1232 * @now: current time (in jiffies)
1cfd6849 1233 */
fd064b9b 1234unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1235{
a6fa8e5a 1236 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1237 unsigned long expires;
1cfd6849
TG
1238
1239 spin_lock(&base->lock);
97fd9ed4
MS
1240 if (time_before_eq(base->next_timer, base->timer_jiffies))
1241 base->next_timer = __next_timer_interrupt(base);
1242 expires = base->next_timer;
1cfd6849
TG
1243 spin_unlock(&base->lock);
1244
1245 if (time_before_eq(expires, now))
1246 return now;
1247
1248 return cmp_next_hrtimer_event(now, expires);
1249}
1da177e4
LT
1250#endif
1251
1da177e4 1252/*
5b4db0c2 1253 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1254 * process. user_tick is 1 if the tick is user time, 0 for system.
1255 */
1256void update_process_times(int user_tick)
1257{
1258 struct task_struct *p = current;
1259 int cpu = smp_processor_id();
1260
1261 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1262 account_process_tick(p, user_tick);
1da177e4 1263 run_local_timers();
a157229c 1264 rcu_check_callbacks(cpu, user_tick);
b845b517 1265 printk_tick();
fe432200 1266 perf_event_do_pending();
1da177e4 1267 scheduler_tick();
6819457d 1268 run_posix_cpu_timers(p);
1da177e4
LT
1269}
1270
1da177e4
LT
1271/*
1272 * This function runs timers and the timer-tq in bottom half context.
1273 */
1274static void run_timer_softirq(struct softirq_action *h)
1275{
a6fa8e5a 1276 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1277
d3d74453 1278 hrtimer_run_pending();
82f67cd9 1279
1da177e4
LT
1280 if (time_after_eq(jiffies, base->timer_jiffies))
1281 __run_timers(base);
1282}
1283
1284/*
1285 * Called by the local, per-CPU timer interrupt on SMP.
1286 */
1287void run_local_timers(void)
1288{
d3d74453 1289 hrtimer_run_queues();
1da177e4 1290 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1291 softlockup_tick();
1da177e4
LT
1292}
1293
1da177e4
LT
1294/*
1295 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1296 * without sampling the sequence number in xtime_lock.
1297 * jiffies is defined in the linker script...
1298 */
1299
3171a030 1300void do_timer(unsigned long ticks)
1da177e4 1301{
3171a030 1302 jiffies_64 += ticks;
dce48a84
TG
1303 update_wall_time();
1304 calc_global_load();
1da177e4
LT
1305}
1306
1307#ifdef __ARCH_WANT_SYS_ALARM
1308
1309/*
1310 * For backwards compatibility? This can be done in libc so Alpha
1311 * and all newer ports shouldn't need it.
1312 */
58fd3aa2 1313SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1314{
c08b8a49 1315 return alarm_setitimer(seconds);
1da177e4
LT
1316}
1317
1318#endif
1319
1320#ifndef __alpha__
1321
1322/*
1323 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1324 * should be moved into arch/i386 instead?
1325 */
1326
1327/**
1328 * sys_getpid - return the thread group id of the current process
1329 *
1330 * Note, despite the name, this returns the tgid not the pid. The tgid and
1331 * the pid are identical unless CLONE_THREAD was specified on clone() in
1332 * which case the tgid is the same in all threads of the same group.
1333 *
1334 * This is SMP safe as current->tgid does not change.
1335 */
58fd3aa2 1336SYSCALL_DEFINE0(getpid)
1da177e4 1337{
b488893a 1338 return task_tgid_vnr(current);
1da177e4
LT
1339}
1340
1341/*
6997a6fa
KK
1342 * Accessing ->real_parent is not SMP-safe, it could
1343 * change from under us. However, we can use a stale
1344 * value of ->real_parent under rcu_read_lock(), see
1345 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1346 */
dbf040d9 1347SYSCALL_DEFINE0(getppid)
1da177e4
LT
1348{
1349 int pid;
1da177e4 1350
6997a6fa 1351 rcu_read_lock();
6c5f3e7b 1352 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1353 rcu_read_unlock();
1da177e4 1354
1da177e4
LT
1355 return pid;
1356}
1357
dbf040d9 1358SYSCALL_DEFINE0(getuid)
1da177e4
LT
1359{
1360 /* Only we change this so SMP safe */
76aac0e9 1361 return current_uid();
1da177e4
LT
1362}
1363
dbf040d9 1364SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1365{
1366 /* Only we change this so SMP safe */
76aac0e9 1367 return current_euid();
1da177e4
LT
1368}
1369
dbf040d9 1370SYSCALL_DEFINE0(getgid)
1da177e4
LT
1371{
1372 /* Only we change this so SMP safe */
76aac0e9 1373 return current_gid();
1da177e4
LT
1374}
1375
dbf040d9 1376SYSCALL_DEFINE0(getegid)
1da177e4
LT
1377{
1378 /* Only we change this so SMP safe */
76aac0e9 1379 return current_egid();
1da177e4
LT
1380}
1381
1382#endif
1383
1384static void process_timeout(unsigned long __data)
1385{
36c8b586 1386 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1387}
1388
1389/**
1390 * schedule_timeout - sleep until timeout
1391 * @timeout: timeout value in jiffies
1392 *
1393 * Make the current task sleep until @timeout jiffies have
1394 * elapsed. The routine will return immediately unless
1395 * the current task state has been set (see set_current_state()).
1396 *
1397 * You can set the task state as follows -
1398 *
1399 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1400 * pass before the routine returns. The routine will return 0
1401 *
1402 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1403 * delivered to the current task. In this case the remaining time
1404 * in jiffies will be returned, or 0 if the timer expired in time
1405 *
1406 * The current task state is guaranteed to be TASK_RUNNING when this
1407 * routine returns.
1408 *
1409 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1410 * the CPU away without a bound on the timeout. In this case the return
1411 * value will be %MAX_SCHEDULE_TIMEOUT.
1412 *
1413 * In all cases the return value is guaranteed to be non-negative.
1414 */
7ad5b3a5 1415signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1416{
1417 struct timer_list timer;
1418 unsigned long expire;
1419
1420 switch (timeout)
1421 {
1422 case MAX_SCHEDULE_TIMEOUT:
1423 /*
1424 * These two special cases are useful to be comfortable
1425 * in the caller. Nothing more. We could take
1426 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1427 * but I' d like to return a valid offset (>=0) to allow
1428 * the caller to do everything it want with the retval.
1429 */
1430 schedule();
1431 goto out;
1432 default:
1433 /*
1434 * Another bit of PARANOID. Note that the retval will be
1435 * 0 since no piece of kernel is supposed to do a check
1436 * for a negative retval of schedule_timeout() (since it
1437 * should never happens anyway). You just have the printk()
1438 * that will tell you if something is gone wrong and where.
1439 */
5b149bcc 1440 if (timeout < 0) {
1da177e4 1441 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1442 "value %lx\n", timeout);
1443 dump_stack();
1da177e4
LT
1444 current->state = TASK_RUNNING;
1445 goto out;
1446 }
1447 }
1448
1449 expire = timeout + jiffies;
1450
c6f3a97f 1451 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1452 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1453 schedule();
1454 del_singleshot_timer_sync(&timer);
1455
c6f3a97f
TG
1456 /* Remove the timer from the object tracker */
1457 destroy_timer_on_stack(&timer);
1458
1da177e4
LT
1459 timeout = expire - jiffies;
1460
1461 out:
1462 return timeout < 0 ? 0 : timeout;
1463}
1da177e4
LT
1464EXPORT_SYMBOL(schedule_timeout);
1465
8a1c1757
AM
1466/*
1467 * We can use __set_current_state() here because schedule_timeout() calls
1468 * schedule() unconditionally.
1469 */
64ed93a2
NA
1470signed long __sched schedule_timeout_interruptible(signed long timeout)
1471{
a5a0d52c
AM
1472 __set_current_state(TASK_INTERRUPTIBLE);
1473 return schedule_timeout(timeout);
64ed93a2
NA
1474}
1475EXPORT_SYMBOL(schedule_timeout_interruptible);
1476
294d5cc2
MW
1477signed long __sched schedule_timeout_killable(signed long timeout)
1478{
1479 __set_current_state(TASK_KILLABLE);
1480 return schedule_timeout(timeout);
1481}
1482EXPORT_SYMBOL(schedule_timeout_killable);
1483
64ed93a2
NA
1484signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1485{
a5a0d52c
AM
1486 __set_current_state(TASK_UNINTERRUPTIBLE);
1487 return schedule_timeout(timeout);
64ed93a2
NA
1488}
1489EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1490
1da177e4 1491/* Thread ID - the internal kernel "pid" */
58fd3aa2 1492SYSCALL_DEFINE0(gettid)
1da177e4 1493{
b488893a 1494 return task_pid_vnr(current);
1da177e4
LT
1495}
1496
2aae4a10 1497/**
d4d23add 1498 * do_sysinfo - fill in sysinfo struct
2aae4a10 1499 * @info: pointer to buffer to fill
6819457d 1500 */
d4d23add 1501int do_sysinfo(struct sysinfo *info)
1da177e4 1502{
1da177e4
LT
1503 unsigned long mem_total, sav_total;
1504 unsigned int mem_unit, bitcount;
2d02494f 1505 struct timespec tp;
1da177e4 1506
d4d23add 1507 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1508
2d02494f
TG
1509 ktime_get_ts(&tp);
1510 monotonic_to_bootbased(&tp);
1511 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1512
2d02494f 1513 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1514
2d02494f 1515 info->procs = nr_threads;
1da177e4 1516
d4d23add
KM
1517 si_meminfo(info);
1518 si_swapinfo(info);
1da177e4
LT
1519
1520 /*
1521 * If the sum of all the available memory (i.e. ram + swap)
1522 * is less than can be stored in a 32 bit unsigned long then
1523 * we can be binary compatible with 2.2.x kernels. If not,
1524 * well, in that case 2.2.x was broken anyways...
1525 *
1526 * -Erik Andersen <andersee@debian.org>
1527 */
1528
d4d23add
KM
1529 mem_total = info->totalram + info->totalswap;
1530 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1531 goto out;
1532 bitcount = 0;
d4d23add 1533 mem_unit = info->mem_unit;
1da177e4
LT
1534 while (mem_unit > 1) {
1535 bitcount++;
1536 mem_unit >>= 1;
1537 sav_total = mem_total;
1538 mem_total <<= 1;
1539 if (mem_total < sav_total)
1540 goto out;
1541 }
1542
1543 /*
1544 * If mem_total did not overflow, multiply all memory values by
d4d23add 1545 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1546 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1547 * kernels...
1548 */
1549
d4d23add
KM
1550 info->mem_unit = 1;
1551 info->totalram <<= bitcount;
1552 info->freeram <<= bitcount;
1553 info->sharedram <<= bitcount;
1554 info->bufferram <<= bitcount;
1555 info->totalswap <<= bitcount;
1556 info->freeswap <<= bitcount;
1557 info->totalhigh <<= bitcount;
1558 info->freehigh <<= bitcount;
1559
1560out:
1561 return 0;
1562}
1563
1e7bfb21 1564SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1565{
1566 struct sysinfo val;
1567
1568 do_sysinfo(&val);
1da177e4 1569
1da177e4
LT
1570 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1571 return -EFAULT;
1572
1573 return 0;
1574}
1575
b4be6258 1576static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1577{
1578 int j;
a6fa8e5a 1579 struct tvec_base *base;
b4be6258 1580 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1581
ba6edfcd 1582 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1583 static char boot_done;
1584
a4a6198b 1585 if (boot_done) {
ba6edfcd
AM
1586 /*
1587 * The APs use this path later in boot
1588 */
94f6030c
CL
1589 base = kmalloc_node(sizeof(*base),
1590 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1591 cpu_to_node(cpu));
1592 if (!base)
1593 return -ENOMEM;
6e453a67
VP
1594
1595 /* Make sure that tvec_base is 2 byte aligned */
1596 if (tbase_get_deferrable(base)) {
1597 WARN_ON(1);
1598 kfree(base);
1599 return -ENOMEM;
1600 }
ba6edfcd 1601 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1602 } else {
ba6edfcd
AM
1603 /*
1604 * This is for the boot CPU - we use compile-time
1605 * static initialisation because per-cpu memory isn't
1606 * ready yet and because the memory allocators are not
1607 * initialised either.
1608 */
a4a6198b 1609 boot_done = 1;
ba6edfcd 1610 base = &boot_tvec_bases;
a4a6198b 1611 }
ba6edfcd
AM
1612 tvec_base_done[cpu] = 1;
1613 } else {
1614 base = per_cpu(tvec_bases, cpu);
a4a6198b 1615 }
ba6edfcd 1616
3691c519 1617 spin_lock_init(&base->lock);
d730e882 1618
1da177e4
LT
1619 for (j = 0; j < TVN_SIZE; j++) {
1620 INIT_LIST_HEAD(base->tv5.vec + j);
1621 INIT_LIST_HEAD(base->tv4.vec + j);
1622 INIT_LIST_HEAD(base->tv3.vec + j);
1623 INIT_LIST_HEAD(base->tv2.vec + j);
1624 }
1625 for (j = 0; j < TVR_SIZE; j++)
1626 INIT_LIST_HEAD(base->tv1.vec + j);
1627
1628 base->timer_jiffies = jiffies;
97fd9ed4 1629 base->next_timer = base->timer_jiffies;
a4a6198b 1630 return 0;
1da177e4
LT
1631}
1632
1633#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1634static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1635{
1636 struct timer_list *timer;
1637
1638 while (!list_empty(head)) {
b5e61818 1639 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1640 detach_timer(timer, 0);
6e453a67 1641 timer_set_base(timer, new_base);
97fd9ed4
MS
1642 if (time_before(timer->expires, new_base->next_timer) &&
1643 !tbase_get_deferrable(timer->base))
1644 new_base->next_timer = timer->expires;
1da177e4 1645 internal_add_timer(new_base, timer);
1da177e4 1646 }
1da177e4
LT
1647}
1648
48ccf3da 1649static void __cpuinit migrate_timers(int cpu)
1da177e4 1650{
a6fa8e5a
PM
1651 struct tvec_base *old_base;
1652 struct tvec_base *new_base;
1da177e4
LT
1653 int i;
1654
1655 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1656 old_base = per_cpu(tvec_bases, cpu);
1657 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1658 /*
1659 * The caller is globally serialized and nobody else
1660 * takes two locks at once, deadlock is not possible.
1661 */
1662 spin_lock_irq(&new_base->lock);
0d180406 1663 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1664
1665 BUG_ON(old_base->running_timer);
1da177e4 1666
1da177e4 1667 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1668 migrate_timer_list(new_base, old_base->tv1.vec + i);
1669 for (i = 0; i < TVN_SIZE; i++) {
1670 migrate_timer_list(new_base, old_base->tv2.vec + i);
1671 migrate_timer_list(new_base, old_base->tv3.vec + i);
1672 migrate_timer_list(new_base, old_base->tv4.vec + i);
1673 migrate_timer_list(new_base, old_base->tv5.vec + i);
1674 }
1675
0d180406 1676 spin_unlock(&old_base->lock);
d82f0b0f 1677 spin_unlock_irq(&new_base->lock);
1da177e4 1678 put_cpu_var(tvec_bases);
1da177e4
LT
1679}
1680#endif /* CONFIG_HOTPLUG_CPU */
1681
8c78f307 1682static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1683 unsigned long action, void *hcpu)
1684{
1685 long cpu = (long)hcpu;
1686 switch(action) {
1687 case CPU_UP_PREPARE:
8bb78442 1688 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1689 if (init_timers_cpu(cpu) < 0)
1690 return NOTIFY_BAD;
1da177e4
LT
1691 break;
1692#ifdef CONFIG_HOTPLUG_CPU
1693 case CPU_DEAD:
8bb78442 1694 case CPU_DEAD_FROZEN:
1da177e4
LT
1695 migrate_timers(cpu);
1696 break;
1697#endif
1698 default:
1699 break;
1700 }
1701 return NOTIFY_OK;
1702}
1703
8c78f307 1704static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1705 .notifier_call = timer_cpu_notify,
1706};
1707
1708
1709void __init init_timers(void)
1710{
07dccf33 1711 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1712 (void *)(long)smp_processor_id());
07dccf33 1713
82f67cd9
IM
1714 init_timer_stats();
1715
07dccf33 1716 BUG_ON(err == NOTIFY_BAD);
1da177e4 1717 register_cpu_notifier(&timers_nb);
962cf36c 1718 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1719}
1720
1da177e4
LT
1721/**
1722 * msleep - sleep safely even with waitqueue interruptions
1723 * @msecs: Time in milliseconds to sleep for
1724 */
1725void msleep(unsigned int msecs)
1726{
1727 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1728
75bcc8c5
NA
1729 while (timeout)
1730 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1731}
1732
1733EXPORT_SYMBOL(msleep);
1734
1735/**
96ec3efd 1736 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1737 * @msecs: Time in milliseconds to sleep for
1738 */
1739unsigned long msleep_interruptible(unsigned int msecs)
1740{
1741 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1742
75bcc8c5
NA
1743 while (timeout && !signal_pending(current))
1744 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1745 return jiffies_to_msecs(timeout);
1746}
1747
1748EXPORT_SYMBOL(msleep_interruptible);