timers: add missing kernel-doc
[linux-block.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
1da177e4
LT
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43#include <asm/div64.h>
44#include <asm/timex.h>
45#include <asm/io.h>
46
ecea8d19
TG
47u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
48
49EXPORT_SYMBOL(jiffies_64);
50
1da177e4
LT
51/*
52 * per-CPU timer vector definitions:
53 */
1da177e4
LT
54#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56#define TVN_SIZE (1 << TVN_BITS)
57#define TVR_SIZE (1 << TVR_BITS)
58#define TVN_MASK (TVN_SIZE - 1)
59#define TVR_MASK (TVR_SIZE - 1)
60
a6fa8e5a 61struct tvec {
1da177e4 62 struct list_head vec[TVN_SIZE];
a6fa8e5a 63};
1da177e4 64
a6fa8e5a 65struct tvec_root {
1da177e4 66 struct list_head vec[TVR_SIZE];
a6fa8e5a 67};
1da177e4 68
a6fa8e5a 69struct tvec_base {
3691c519
ON
70 spinlock_t lock;
71 struct timer_list *running_timer;
1da177e4 72 unsigned long timer_jiffies;
a6fa8e5a
PM
73 struct tvec_root tv1;
74 struct tvec tv2;
75 struct tvec tv3;
76 struct tvec tv4;
77 struct tvec tv5;
6e453a67 78} ____cacheline_aligned;
1da177e4 79
a6fa8e5a 80struct tvec_base boot_tvec_bases;
3691c519 81EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 82static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 83
6e453a67 84/*
a6fa8e5a 85 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
88 */
89#define TBASE_DEFERRABLE_FLAG (0x1)
90
91/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 93{
e9910846 94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
95}
96
a6fa8e5a 97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 98{
a6fa8e5a 99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
100}
101
102static inline void timer_set_deferrable(struct timer_list *timer)
103{
a6fa8e5a 104 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 105 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
106}
107
108static inline void
a6fa8e5a 109timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 110{
a6fa8e5a 111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 112 tbase_get_deferrable(timer->base));
6e453a67
VP
113}
114
9c133c46
AS
115static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
4c36a5de
AV
117{
118 int rem;
119 unsigned long original = j;
120
121 /*
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
128 */
129 j += cpu * 3;
130
131 rem = j % HZ;
132
133 /*
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 138 * But never round down if @force_up is set.
4c36a5de 139 */
9c133c46 140 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
144
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
147
148 if (j <= jiffies) /* rounding ate our timeout entirely; */
149 return original;
150 return j;
151}
9c133c46
AS
152
153/**
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
157 *
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
162 *
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
166 *
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
170 *
171 * The return value is the rounded version of the @j parameter.
172 */
173unsigned long __round_jiffies(unsigned long j, int cpu)
174{
175 return round_jiffies_common(j, cpu, false);
176}
4c36a5de
AV
177EXPORT_SYMBOL_GPL(__round_jiffies);
178
179/**
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
183 *
72fd4a35 184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
188 *
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
192 *
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
196 *
72fd4a35 197 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
198 */
199unsigned long __round_jiffies_relative(unsigned long j, int cpu)
200{
9c133c46
AS
201 unsigned long j0 = jiffies;
202
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
205}
206EXPORT_SYMBOL_GPL(__round_jiffies_relative);
207
208/**
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
211 *
72fd4a35 212 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
216 *
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
220 *
72fd4a35 221 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
222 */
223unsigned long round_jiffies(unsigned long j)
224{
9c133c46 225 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
226}
227EXPORT_SYMBOL_GPL(round_jiffies);
228
229/**
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
232 *
72fd4a35 233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
237 *
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
241 *
72fd4a35 242 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
243 */
244unsigned long round_jiffies_relative(unsigned long j)
245{
246 return __round_jiffies_relative(j, raw_smp_processor_id());
247}
248EXPORT_SYMBOL_GPL(round_jiffies_relative);
249
9c133c46
AS
250/**
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
254 *
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
258 * early.
259 */
260unsigned long __round_jiffies_up(unsigned long j, int cpu)
261{
262 return round_jiffies_common(j, cpu, true);
263}
264EXPORT_SYMBOL_GPL(__round_jiffies_up);
265
266/**
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
270 *
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
274 * early.
275 */
276unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
277{
278 unsigned long j0 = jiffies;
279
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j + j0, cpu, true) - j0;
282}
283EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
284
285/**
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
288 *
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
293 */
294unsigned long round_jiffies_up(unsigned long j)
295{
296 return round_jiffies_common(j, raw_smp_processor_id(), true);
297}
298EXPORT_SYMBOL_GPL(round_jiffies_up);
299
300/**
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
303 *
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
307 * early.
308 */
309unsigned long round_jiffies_up_relative(unsigned long j)
310{
311 return __round_jiffies_up_relative(j, raw_smp_processor_id());
312}
313EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
314
4c36a5de 315
a6fa8e5a 316static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
317 struct timer_list *timer)
318{
319#ifdef CONFIG_SMP
3691c519 320 base->running_timer = timer;
1da177e4
LT
321#endif
322}
323
a6fa8e5a 324static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
325{
326 unsigned long expires = timer->expires;
327 unsigned long idx = expires - base->timer_jiffies;
328 struct list_head *vec;
329
330 if (idx < TVR_SIZE) {
331 int i = expires & TVR_MASK;
332 vec = base->tv1.vec + i;
333 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
334 int i = (expires >> TVR_BITS) & TVN_MASK;
335 vec = base->tv2.vec + i;
336 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
337 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
338 vec = base->tv3.vec + i;
339 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
340 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
341 vec = base->tv4.vec + i;
342 } else if ((signed long) idx < 0) {
343 /*
344 * Can happen if you add a timer with expires == jiffies,
345 * or you set a timer to go off in the past
346 */
347 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
348 } else {
349 int i;
350 /* If the timeout is larger than 0xffffffff on 64-bit
351 * architectures then we use the maximum timeout:
352 */
353 if (idx > 0xffffffffUL) {
354 idx = 0xffffffffUL;
355 expires = idx + base->timer_jiffies;
356 }
357 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
358 vec = base->tv5.vec + i;
359 }
360 /*
361 * Timers are FIFO:
362 */
363 list_add_tail(&timer->entry, vec);
364}
365
82f67cd9
IM
366#ifdef CONFIG_TIMER_STATS
367void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
368{
369 if (timer->start_site)
370 return;
371
372 timer->start_site = addr;
373 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
374 timer->start_pid = current->pid;
375}
c5c061b8
VP
376
377static void timer_stats_account_timer(struct timer_list *timer)
378{
379 unsigned int flag = 0;
380
381 if (unlikely(tbase_get_deferrable(timer->base)))
382 flag |= TIMER_STATS_FLAG_DEFERRABLE;
383
384 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
385 timer->function, timer->start_comm, flag);
386}
387
388#else
389static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
390#endif
391
c6f3a97f
TG
392#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
393
394static struct debug_obj_descr timer_debug_descr;
395
396/*
397 * fixup_init is called when:
398 * - an active object is initialized
55c888d6 399 */
c6f3a97f
TG
400static int timer_fixup_init(void *addr, enum debug_obj_state state)
401{
402 struct timer_list *timer = addr;
403
404 switch (state) {
405 case ODEBUG_STATE_ACTIVE:
406 del_timer_sync(timer);
407 debug_object_init(timer, &timer_debug_descr);
408 return 1;
409 default:
410 return 0;
411 }
412}
413
414/*
415 * fixup_activate is called when:
416 * - an active object is activated
417 * - an unknown object is activated (might be a statically initialized object)
418 */
419static int timer_fixup_activate(void *addr, enum debug_obj_state state)
420{
421 struct timer_list *timer = addr;
422
423 switch (state) {
424
425 case ODEBUG_STATE_NOTAVAILABLE:
426 /*
427 * This is not really a fixup. The timer was
428 * statically initialized. We just make sure that it
429 * is tracked in the object tracker.
430 */
431 if (timer->entry.next == NULL &&
432 timer->entry.prev == TIMER_ENTRY_STATIC) {
433 debug_object_init(timer, &timer_debug_descr);
434 debug_object_activate(timer, &timer_debug_descr);
435 return 0;
436 } else {
437 WARN_ON_ONCE(1);
438 }
439 return 0;
440
441 case ODEBUG_STATE_ACTIVE:
442 WARN_ON(1);
443
444 default:
445 return 0;
446 }
447}
448
449/*
450 * fixup_free is called when:
451 * - an active object is freed
452 */
453static int timer_fixup_free(void *addr, enum debug_obj_state state)
454{
455 struct timer_list *timer = addr;
456
457 switch (state) {
458 case ODEBUG_STATE_ACTIVE:
459 del_timer_sync(timer);
460 debug_object_free(timer, &timer_debug_descr);
461 return 1;
462 default:
463 return 0;
464 }
465}
466
467static struct debug_obj_descr timer_debug_descr = {
468 .name = "timer_list",
469 .fixup_init = timer_fixup_init,
470 .fixup_activate = timer_fixup_activate,
471 .fixup_free = timer_fixup_free,
472};
473
474static inline void debug_timer_init(struct timer_list *timer)
475{
476 debug_object_init(timer, &timer_debug_descr);
477}
478
479static inline void debug_timer_activate(struct timer_list *timer)
480{
481 debug_object_activate(timer, &timer_debug_descr);
482}
483
484static inline void debug_timer_deactivate(struct timer_list *timer)
485{
486 debug_object_deactivate(timer, &timer_debug_descr);
487}
488
489static inline void debug_timer_free(struct timer_list *timer)
490{
491 debug_object_free(timer, &timer_debug_descr);
492}
493
494static void __init_timer(struct timer_list *timer);
495
496void init_timer_on_stack(struct timer_list *timer)
497{
498 debug_object_init_on_stack(timer, &timer_debug_descr);
499 __init_timer(timer);
500}
501EXPORT_SYMBOL_GPL(init_timer_on_stack);
502
503void destroy_timer_on_stack(struct timer_list *timer)
504{
505 debug_object_free(timer, &timer_debug_descr);
506}
507EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
508
509#else
510static inline void debug_timer_init(struct timer_list *timer) { }
511static inline void debug_timer_activate(struct timer_list *timer) { }
512static inline void debug_timer_deactivate(struct timer_list *timer) { }
513#endif
514
515static void __init_timer(struct timer_list *timer)
55c888d6
ON
516{
517 timer->entry.next = NULL;
bfe5d834 518 timer->base = __raw_get_cpu_var(tvec_bases);
82f67cd9
IM
519#ifdef CONFIG_TIMER_STATS
520 timer->start_site = NULL;
521 timer->start_pid = -1;
522 memset(timer->start_comm, 0, TASK_COMM_LEN);
523#endif
55c888d6 524}
c6f3a97f
TG
525
526/**
633fe795 527 * init_timer_key - initialize a timer
c6f3a97f 528 * @timer: the timer to be initialized
633fe795
RD
529 * @name: name of the timer
530 * @key: lockdep class key of the fake lock used for tracking timer
531 * sync lock dependencies
c6f3a97f 532 *
633fe795 533 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
534 * other timer functions.
535 */
536void init_timer(struct timer_list *timer)
537{
538 debug_timer_init(timer);
539 __init_timer(timer);
540}
55c888d6
ON
541EXPORT_SYMBOL(init_timer);
542
7ad5b3a5 543void init_timer_deferrable(struct timer_list *timer)
6e453a67
VP
544{
545 init_timer(timer);
546 timer_set_deferrable(timer);
547}
548EXPORT_SYMBOL(init_timer_deferrable);
549
55c888d6 550static inline void detach_timer(struct timer_list *timer,
82f67cd9 551 int clear_pending)
55c888d6
ON
552{
553 struct list_head *entry = &timer->entry;
554
c6f3a97f
TG
555 debug_timer_deactivate(timer);
556
55c888d6
ON
557 __list_del(entry->prev, entry->next);
558 if (clear_pending)
559 entry->next = NULL;
560 entry->prev = LIST_POISON2;
561}
562
563/*
3691c519 564 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
565 * means that all timers which are tied to this base via timer->base are
566 * locked, and the base itself is locked too.
567 *
568 * So __run_timers/migrate_timers can safely modify all timers which could
569 * be found on ->tvX lists.
570 *
571 * When the timer's base is locked, and the timer removed from list, it is
572 * possible to set timer->base = NULL and drop the lock: the timer remains
573 * locked.
574 */
a6fa8e5a 575static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 576 unsigned long *flags)
89e7e374 577 __acquires(timer->base->lock)
55c888d6 578{
a6fa8e5a 579 struct tvec_base *base;
55c888d6
ON
580
581 for (;;) {
a6fa8e5a 582 struct tvec_base *prelock_base = timer->base;
6e453a67 583 base = tbase_get_base(prelock_base);
55c888d6
ON
584 if (likely(base != NULL)) {
585 spin_lock_irqsave(&base->lock, *flags);
6e453a67 586 if (likely(prelock_base == timer->base))
55c888d6
ON
587 return base;
588 /* The timer has migrated to another CPU */
589 spin_unlock_irqrestore(&base->lock, *flags);
590 }
591 cpu_relax();
592 }
593}
594
74019224
IM
595static inline int
596__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
1da177e4 597{
a6fa8e5a 598 struct tvec_base *base, *new_base;
1da177e4 599 unsigned long flags;
74019224
IM
600 int ret;
601
602 ret = 0;
1da177e4 603
82f67cd9 604 timer_stats_timer_set_start_info(timer);
1da177e4 605 BUG_ON(!timer->function);
1da177e4 606
55c888d6
ON
607 base = lock_timer_base(timer, &flags);
608
609 if (timer_pending(timer)) {
610 detach_timer(timer, 0);
611 ret = 1;
74019224
IM
612 } else {
613 if (pending_only)
614 goto out_unlock;
55c888d6
ON
615 }
616
c6f3a97f
TG
617 debug_timer_activate(timer);
618
a4a6198b 619 new_base = __get_cpu_var(tvec_bases);
1da177e4 620
3691c519 621 if (base != new_base) {
1da177e4 622 /*
55c888d6
ON
623 * We are trying to schedule the timer on the local CPU.
624 * However we can't change timer's base while it is running,
625 * otherwise del_timer_sync() can't detect that the timer's
626 * handler yet has not finished. This also guarantees that
627 * the timer is serialized wrt itself.
1da177e4 628 */
a2c348fe 629 if (likely(base->running_timer != timer)) {
55c888d6 630 /* See the comment in lock_timer_base() */
6e453a67 631 timer_set_base(timer, NULL);
55c888d6 632 spin_unlock(&base->lock);
a2c348fe
ON
633 base = new_base;
634 spin_lock(&base->lock);
6e453a67 635 timer_set_base(timer, base);
1da177e4
LT
636 }
637 }
638
1da177e4 639 timer->expires = expires;
a2c348fe 640 internal_add_timer(base, timer);
74019224
IM
641
642out_unlock:
a2c348fe 643 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
644
645 return ret;
646}
647
2aae4a10 648/**
74019224
IM
649 * mod_timer_pending - modify a pending timer's timeout
650 * @timer: the pending timer to be modified
651 * @expires: new timeout in jiffies
1da177e4 652 *
74019224
IM
653 * mod_timer_pending() is the same for pending timers as mod_timer(),
654 * but will not re-activate and modify already deleted timers.
655 *
656 * It is useful for unserialized use of timers.
1da177e4 657 */
74019224 658int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 659{
74019224 660 return __mod_timer(timer, expires, true);
1da177e4 661}
74019224 662EXPORT_SYMBOL(mod_timer_pending);
1da177e4 663
2aae4a10 664/**
1da177e4
LT
665 * mod_timer - modify a timer's timeout
666 * @timer: the timer to be modified
2aae4a10 667 * @expires: new timeout in jiffies
1da177e4 668 *
72fd4a35 669 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
670 * active timer (if the timer is inactive it will be activated)
671 *
672 * mod_timer(timer, expires) is equivalent to:
673 *
674 * del_timer(timer); timer->expires = expires; add_timer(timer);
675 *
676 * Note that if there are multiple unserialized concurrent users of the
677 * same timer, then mod_timer() is the only safe way to modify the timeout,
678 * since add_timer() cannot modify an already running timer.
679 *
680 * The function returns whether it has modified a pending timer or not.
681 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
682 * active timer returns 1.)
683 */
684int mod_timer(struct timer_list *timer, unsigned long expires)
685{
1da177e4
LT
686 /*
687 * This is a common optimization triggered by the
688 * networking code - if the timer is re-modified
689 * to be the same thing then just return:
690 */
691 if (timer->expires == expires && timer_pending(timer))
692 return 1;
693
74019224 694 return __mod_timer(timer, expires, false);
1da177e4 695}
1da177e4
LT
696EXPORT_SYMBOL(mod_timer);
697
74019224
IM
698/**
699 * add_timer - start a timer
700 * @timer: the timer to be added
701 *
702 * The kernel will do a ->function(->data) callback from the
703 * timer interrupt at the ->expires point in the future. The
704 * current time is 'jiffies'.
705 *
706 * The timer's ->expires, ->function (and if the handler uses it, ->data)
707 * fields must be set prior calling this function.
708 *
709 * Timers with an ->expires field in the past will be executed in the next
710 * timer tick.
711 */
712void add_timer(struct timer_list *timer)
713{
714 BUG_ON(timer_pending(timer));
715 mod_timer(timer, timer->expires);
716}
717EXPORT_SYMBOL(add_timer);
718
719/**
720 * add_timer_on - start a timer on a particular CPU
721 * @timer: the timer to be added
722 * @cpu: the CPU to start it on
723 *
724 * This is not very scalable on SMP. Double adds are not possible.
725 */
726void add_timer_on(struct timer_list *timer, int cpu)
727{
728 struct tvec_base *base = per_cpu(tvec_bases, cpu);
729 unsigned long flags;
730
731 timer_stats_timer_set_start_info(timer);
732 BUG_ON(timer_pending(timer) || !timer->function);
733 spin_lock_irqsave(&base->lock, flags);
734 timer_set_base(timer, base);
735 debug_timer_activate(timer);
736 internal_add_timer(base, timer);
737 /*
738 * Check whether the other CPU is idle and needs to be
739 * triggered to reevaluate the timer wheel when nohz is
740 * active. We are protected against the other CPU fiddling
741 * with the timer by holding the timer base lock. This also
742 * makes sure that a CPU on the way to idle can not evaluate
743 * the timer wheel.
744 */
745 wake_up_idle_cpu(cpu);
746 spin_unlock_irqrestore(&base->lock, flags);
747}
748
2aae4a10 749/**
1da177e4
LT
750 * del_timer - deactive a timer.
751 * @timer: the timer to be deactivated
752 *
753 * del_timer() deactivates a timer - this works on both active and inactive
754 * timers.
755 *
756 * The function returns whether it has deactivated a pending timer or not.
757 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
758 * active timer returns 1.)
759 */
760int del_timer(struct timer_list *timer)
761{
a6fa8e5a 762 struct tvec_base *base;
1da177e4 763 unsigned long flags;
55c888d6 764 int ret = 0;
1da177e4 765
82f67cd9 766 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
767 if (timer_pending(timer)) {
768 base = lock_timer_base(timer, &flags);
769 if (timer_pending(timer)) {
770 detach_timer(timer, 1);
771 ret = 1;
772 }
1da177e4 773 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 774 }
1da177e4 775
55c888d6 776 return ret;
1da177e4 777}
1da177e4
LT
778EXPORT_SYMBOL(del_timer);
779
780#ifdef CONFIG_SMP
2aae4a10
REB
781/**
782 * try_to_del_timer_sync - Try to deactivate a timer
783 * @timer: timer do del
784 *
fd450b73
ON
785 * This function tries to deactivate a timer. Upon successful (ret >= 0)
786 * exit the timer is not queued and the handler is not running on any CPU.
787 *
788 * It must not be called from interrupt contexts.
789 */
790int try_to_del_timer_sync(struct timer_list *timer)
791{
a6fa8e5a 792 struct tvec_base *base;
fd450b73
ON
793 unsigned long flags;
794 int ret = -1;
795
796 base = lock_timer_base(timer, &flags);
797
798 if (base->running_timer == timer)
799 goto out;
800
801 ret = 0;
802 if (timer_pending(timer)) {
803 detach_timer(timer, 1);
804 ret = 1;
805 }
806out:
807 spin_unlock_irqrestore(&base->lock, flags);
808
809 return ret;
810}
e19dff1f
DH
811EXPORT_SYMBOL(try_to_del_timer_sync);
812
2aae4a10 813/**
1da177e4
LT
814 * del_timer_sync - deactivate a timer and wait for the handler to finish.
815 * @timer: the timer to be deactivated
816 *
817 * This function only differs from del_timer() on SMP: besides deactivating
818 * the timer it also makes sure the handler has finished executing on other
819 * CPUs.
820 *
72fd4a35 821 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
822 * otherwise this function is meaningless. It must not be called from
823 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
824 * completion of the timer's handler. The timer's handler must not call
825 * add_timer_on(). Upon exit the timer is not queued and the handler is
826 * not running on any CPU.
1da177e4
LT
827 *
828 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
829 */
830int del_timer_sync(struct timer_list *timer)
831{
fd450b73
ON
832 for (;;) {
833 int ret = try_to_del_timer_sync(timer);
834 if (ret >= 0)
835 return ret;
a0009652 836 cpu_relax();
fd450b73 837 }
1da177e4 838}
55c888d6 839EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
840#endif
841
a6fa8e5a 842static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
843{
844 /* cascade all the timers from tv up one level */
3439dd86
P
845 struct timer_list *timer, *tmp;
846 struct list_head tv_list;
847
848 list_replace_init(tv->vec + index, &tv_list);
1da177e4 849
1da177e4 850 /*
3439dd86
P
851 * We are removing _all_ timers from the list, so we
852 * don't have to detach them individually.
1da177e4 853 */
3439dd86 854 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 855 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 856 internal_add_timer(base, timer);
1da177e4 857 }
1da177e4
LT
858
859 return index;
860}
861
2aae4a10
REB
862#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
863
864/**
1da177e4
LT
865 * __run_timers - run all expired timers (if any) on this CPU.
866 * @base: the timer vector to be processed.
867 *
868 * This function cascades all vectors and executes all expired timer
869 * vectors.
870 */
a6fa8e5a 871static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
872{
873 struct timer_list *timer;
874
3691c519 875 spin_lock_irq(&base->lock);
1da177e4 876 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 877 struct list_head work_list;
1da177e4 878 struct list_head *head = &work_list;
6819457d 879 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 880
1da177e4
LT
881 /*
882 * Cascade timers:
883 */
884 if (!index &&
885 (!cascade(base, &base->tv2, INDEX(0))) &&
886 (!cascade(base, &base->tv3, INDEX(1))) &&
887 !cascade(base, &base->tv4, INDEX(2)))
888 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
889 ++base->timer_jiffies;
890 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 891 while (!list_empty(head)) {
1da177e4
LT
892 void (*fn)(unsigned long);
893 unsigned long data;
894
b5e61818 895 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
896 fn = timer->function;
897 data = timer->data;
1da177e4 898
82f67cd9
IM
899 timer_stats_account_timer(timer);
900
1da177e4 901 set_running_timer(base, timer);
55c888d6 902 detach_timer(timer, 1);
3691c519 903 spin_unlock_irq(&base->lock);
1da177e4 904 {
be5b4fbd 905 int preempt_count = preempt_count();
1da177e4
LT
906 fn(data);
907 if (preempt_count != preempt_count()) {
4c9dc641 908 printk(KERN_ERR "huh, entered %p "
be5b4fbd
JJ
909 "with preempt_count %08x, exited"
910 " with %08x?\n",
911 fn, preempt_count,
912 preempt_count());
1da177e4
LT
913 BUG();
914 }
915 }
3691c519 916 spin_lock_irq(&base->lock);
1da177e4
LT
917 }
918 }
919 set_running_timer(base, NULL);
3691c519 920 spin_unlock_irq(&base->lock);
1da177e4
LT
921}
922
ee9c5785 923#ifdef CONFIG_NO_HZ
1da177e4
LT
924/*
925 * Find out when the next timer event is due to happen. This
926 * is used on S/390 to stop all activity when a cpus is idle.
927 * This functions needs to be called disabled.
928 */
a6fa8e5a 929static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 930{
1cfd6849 931 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 932 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 933 int index, slot, array, found = 0;
1da177e4 934 struct timer_list *nte;
a6fa8e5a 935 struct tvec *varray[4];
1da177e4
LT
936
937 /* Look for timer events in tv1. */
1cfd6849 938 index = slot = timer_jiffies & TVR_MASK;
1da177e4 939 do {
1cfd6849 940 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
941 if (tbase_get_deferrable(nte->base))
942 continue;
6e453a67 943
1cfd6849 944 found = 1;
1da177e4 945 expires = nte->expires;
1cfd6849
TG
946 /* Look at the cascade bucket(s)? */
947 if (!index || slot < index)
948 goto cascade;
949 return expires;
1da177e4 950 }
1cfd6849
TG
951 slot = (slot + 1) & TVR_MASK;
952 } while (slot != index);
953
954cascade:
955 /* Calculate the next cascade event */
956 if (index)
957 timer_jiffies += TVR_SIZE - index;
958 timer_jiffies >>= TVR_BITS;
1da177e4
LT
959
960 /* Check tv2-tv5. */
961 varray[0] = &base->tv2;
962 varray[1] = &base->tv3;
963 varray[2] = &base->tv4;
964 varray[3] = &base->tv5;
1cfd6849
TG
965
966 for (array = 0; array < 4; array++) {
a6fa8e5a 967 struct tvec *varp = varray[array];
1cfd6849
TG
968
969 index = slot = timer_jiffies & TVN_MASK;
1da177e4 970 do {
1cfd6849
TG
971 list_for_each_entry(nte, varp->vec + slot, entry) {
972 found = 1;
1da177e4
LT
973 if (time_before(nte->expires, expires))
974 expires = nte->expires;
1cfd6849
TG
975 }
976 /*
977 * Do we still search for the first timer or are
978 * we looking up the cascade buckets ?
979 */
980 if (found) {
981 /* Look at the cascade bucket(s)? */
982 if (!index || slot < index)
983 break;
984 return expires;
985 }
986 slot = (slot + 1) & TVN_MASK;
987 } while (slot != index);
988
989 if (index)
990 timer_jiffies += TVN_SIZE - index;
991 timer_jiffies >>= TVN_BITS;
1da177e4 992 }
1cfd6849
TG
993 return expires;
994}
69239749 995
1cfd6849
TG
996/*
997 * Check, if the next hrtimer event is before the next timer wheel
998 * event:
999 */
1000static unsigned long cmp_next_hrtimer_event(unsigned long now,
1001 unsigned long expires)
1002{
1003 ktime_t hr_delta = hrtimer_get_next_event();
1004 struct timespec tsdelta;
9501b6cf 1005 unsigned long delta;
1cfd6849
TG
1006
1007 if (hr_delta.tv64 == KTIME_MAX)
1008 return expires;
0662b713 1009
9501b6cf
TG
1010 /*
1011 * Expired timer available, let it expire in the next tick
1012 */
1013 if (hr_delta.tv64 <= 0)
1014 return now + 1;
69239749 1015
1cfd6849 1016 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1017 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1018
1019 /*
1020 * Limit the delta to the max value, which is checked in
1021 * tick_nohz_stop_sched_tick():
1022 */
1023 if (delta > NEXT_TIMER_MAX_DELTA)
1024 delta = NEXT_TIMER_MAX_DELTA;
1025
9501b6cf
TG
1026 /*
1027 * Take rounding errors in to account and make sure, that it
1028 * expires in the next tick. Otherwise we go into an endless
1029 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1030 * the timer softirq
1031 */
1032 if (delta < 1)
1033 delta = 1;
1034 now += delta;
1cfd6849
TG
1035 if (time_before(now, expires))
1036 return now;
1da177e4
LT
1037 return expires;
1038}
1cfd6849
TG
1039
1040/**
8dce39c2 1041 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1042 * @now: current time (in jiffies)
1cfd6849 1043 */
fd064b9b 1044unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1045{
a6fa8e5a 1046 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1047 unsigned long expires;
1cfd6849
TG
1048
1049 spin_lock(&base->lock);
1050 expires = __next_timer_interrupt(base);
1051 spin_unlock(&base->lock);
1052
1053 if (time_before_eq(expires, now))
1054 return now;
1055
1056 return cmp_next_hrtimer_event(now, expires);
1057}
1da177e4
LT
1058#endif
1059
1da177e4 1060/*
5b4db0c2 1061 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1062 * process. user_tick is 1 if the tick is user time, 0 for system.
1063 */
1064void update_process_times(int user_tick)
1065{
1066 struct task_struct *p = current;
1067 int cpu = smp_processor_id();
1068
1069 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1070 account_process_tick(p, user_tick);
1da177e4
LT
1071 run_local_timers();
1072 if (rcu_pending(cpu))
1073 rcu_check_callbacks(cpu, user_tick);
b845b517 1074 printk_tick();
1da177e4 1075 scheduler_tick();
6819457d 1076 run_posix_cpu_timers(p);
1da177e4
LT
1077}
1078
1079/*
1080 * Nr of active tasks - counted in fixed-point numbers
1081 */
1082static unsigned long count_active_tasks(void)
1083{
db1b1fef 1084 return nr_active() * FIXED_1;
1da177e4
LT
1085}
1086
1087/*
1088 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1089 * imply that avenrun[] is the standard name for this kind of thing.
1090 * Nothing else seems to be standardized: the fractional size etc
1091 * all seem to differ on different machines.
1092 *
1093 * Requires xtime_lock to access.
1094 */
1095unsigned long avenrun[3];
1096
1097EXPORT_SYMBOL(avenrun);
1098
1099/*
1100 * calc_load - given tick count, update the avenrun load estimates.
1101 * This is called while holding a write_lock on xtime_lock.
1102 */
1103static inline void calc_load(unsigned long ticks)
1104{
1105 unsigned long active_tasks; /* fixed-point */
1106 static int count = LOAD_FREQ;
1107
cd7175ed
ED
1108 count -= ticks;
1109 if (unlikely(count < 0)) {
1110 active_tasks = count_active_tasks();
1111 do {
1112 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1113 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1114 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1115 count += LOAD_FREQ;
1116 } while (count < 0);
1da177e4
LT
1117 }
1118}
1119
1da177e4
LT
1120/*
1121 * This function runs timers and the timer-tq in bottom half context.
1122 */
1123static void run_timer_softirq(struct softirq_action *h)
1124{
a6fa8e5a 1125 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1126
d3d74453 1127 hrtimer_run_pending();
82f67cd9 1128
1da177e4
LT
1129 if (time_after_eq(jiffies, base->timer_jiffies))
1130 __run_timers(base);
1131}
1132
1133/*
1134 * Called by the local, per-CPU timer interrupt on SMP.
1135 */
1136void run_local_timers(void)
1137{
d3d74453 1138 hrtimer_run_queues();
1da177e4 1139 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1140 softlockup_tick();
1da177e4
LT
1141}
1142
1143/*
1144 * Called by the timer interrupt. xtime_lock must already be taken
1145 * by the timer IRQ!
1146 */
3171a030 1147static inline void update_times(unsigned long ticks)
1da177e4 1148{
ad596171 1149 update_wall_time();
1da177e4
LT
1150 calc_load(ticks);
1151}
6819457d 1152
1da177e4
LT
1153/*
1154 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1155 * without sampling the sequence number in xtime_lock.
1156 * jiffies is defined in the linker script...
1157 */
1158
3171a030 1159void do_timer(unsigned long ticks)
1da177e4 1160{
3171a030
AN
1161 jiffies_64 += ticks;
1162 update_times(ticks);
1da177e4
LT
1163}
1164
1165#ifdef __ARCH_WANT_SYS_ALARM
1166
1167/*
1168 * For backwards compatibility? This can be done in libc so Alpha
1169 * and all newer ports shouldn't need it.
1170 */
58fd3aa2 1171SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1172{
c08b8a49 1173 return alarm_setitimer(seconds);
1da177e4
LT
1174}
1175
1176#endif
1177
1178#ifndef __alpha__
1179
1180/*
1181 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1182 * should be moved into arch/i386 instead?
1183 */
1184
1185/**
1186 * sys_getpid - return the thread group id of the current process
1187 *
1188 * Note, despite the name, this returns the tgid not the pid. The tgid and
1189 * the pid are identical unless CLONE_THREAD was specified on clone() in
1190 * which case the tgid is the same in all threads of the same group.
1191 *
1192 * This is SMP safe as current->tgid does not change.
1193 */
58fd3aa2 1194SYSCALL_DEFINE0(getpid)
1da177e4 1195{
b488893a 1196 return task_tgid_vnr(current);
1da177e4
LT
1197}
1198
1199/*
6997a6fa
KK
1200 * Accessing ->real_parent is not SMP-safe, it could
1201 * change from under us. However, we can use a stale
1202 * value of ->real_parent under rcu_read_lock(), see
1203 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1204 */
dbf040d9 1205SYSCALL_DEFINE0(getppid)
1da177e4
LT
1206{
1207 int pid;
1da177e4 1208
6997a6fa 1209 rcu_read_lock();
6c5f3e7b 1210 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1211 rcu_read_unlock();
1da177e4 1212
1da177e4
LT
1213 return pid;
1214}
1215
dbf040d9 1216SYSCALL_DEFINE0(getuid)
1da177e4
LT
1217{
1218 /* Only we change this so SMP safe */
76aac0e9 1219 return current_uid();
1da177e4
LT
1220}
1221
dbf040d9 1222SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1223{
1224 /* Only we change this so SMP safe */
76aac0e9 1225 return current_euid();
1da177e4
LT
1226}
1227
dbf040d9 1228SYSCALL_DEFINE0(getgid)
1da177e4
LT
1229{
1230 /* Only we change this so SMP safe */
76aac0e9 1231 return current_gid();
1da177e4
LT
1232}
1233
dbf040d9 1234SYSCALL_DEFINE0(getegid)
1da177e4
LT
1235{
1236 /* Only we change this so SMP safe */
76aac0e9 1237 return current_egid();
1da177e4
LT
1238}
1239
1240#endif
1241
1242static void process_timeout(unsigned long __data)
1243{
36c8b586 1244 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1245}
1246
1247/**
1248 * schedule_timeout - sleep until timeout
1249 * @timeout: timeout value in jiffies
1250 *
1251 * Make the current task sleep until @timeout jiffies have
1252 * elapsed. The routine will return immediately unless
1253 * the current task state has been set (see set_current_state()).
1254 *
1255 * You can set the task state as follows -
1256 *
1257 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1258 * pass before the routine returns. The routine will return 0
1259 *
1260 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1261 * delivered to the current task. In this case the remaining time
1262 * in jiffies will be returned, or 0 if the timer expired in time
1263 *
1264 * The current task state is guaranteed to be TASK_RUNNING when this
1265 * routine returns.
1266 *
1267 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1268 * the CPU away without a bound on the timeout. In this case the return
1269 * value will be %MAX_SCHEDULE_TIMEOUT.
1270 *
1271 * In all cases the return value is guaranteed to be non-negative.
1272 */
7ad5b3a5 1273signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1274{
1275 struct timer_list timer;
1276 unsigned long expire;
1277
1278 switch (timeout)
1279 {
1280 case MAX_SCHEDULE_TIMEOUT:
1281 /*
1282 * These two special cases are useful to be comfortable
1283 * in the caller. Nothing more. We could take
1284 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1285 * but I' d like to return a valid offset (>=0) to allow
1286 * the caller to do everything it want with the retval.
1287 */
1288 schedule();
1289 goto out;
1290 default:
1291 /*
1292 * Another bit of PARANOID. Note that the retval will be
1293 * 0 since no piece of kernel is supposed to do a check
1294 * for a negative retval of schedule_timeout() (since it
1295 * should never happens anyway). You just have the printk()
1296 * that will tell you if something is gone wrong and where.
1297 */
5b149bcc 1298 if (timeout < 0) {
1da177e4 1299 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1300 "value %lx\n", timeout);
1301 dump_stack();
1da177e4
LT
1302 current->state = TASK_RUNNING;
1303 goto out;
1304 }
1305 }
1306
1307 expire = timeout + jiffies;
1308
c6f3a97f 1309 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
74019224 1310 __mod_timer(&timer, expire, false);
1da177e4
LT
1311 schedule();
1312 del_singleshot_timer_sync(&timer);
1313
c6f3a97f
TG
1314 /* Remove the timer from the object tracker */
1315 destroy_timer_on_stack(&timer);
1316
1da177e4
LT
1317 timeout = expire - jiffies;
1318
1319 out:
1320 return timeout < 0 ? 0 : timeout;
1321}
1da177e4
LT
1322EXPORT_SYMBOL(schedule_timeout);
1323
8a1c1757
AM
1324/*
1325 * We can use __set_current_state() here because schedule_timeout() calls
1326 * schedule() unconditionally.
1327 */
64ed93a2
NA
1328signed long __sched schedule_timeout_interruptible(signed long timeout)
1329{
a5a0d52c
AM
1330 __set_current_state(TASK_INTERRUPTIBLE);
1331 return schedule_timeout(timeout);
64ed93a2
NA
1332}
1333EXPORT_SYMBOL(schedule_timeout_interruptible);
1334
294d5cc2
MW
1335signed long __sched schedule_timeout_killable(signed long timeout)
1336{
1337 __set_current_state(TASK_KILLABLE);
1338 return schedule_timeout(timeout);
1339}
1340EXPORT_SYMBOL(schedule_timeout_killable);
1341
64ed93a2
NA
1342signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1343{
a5a0d52c
AM
1344 __set_current_state(TASK_UNINTERRUPTIBLE);
1345 return schedule_timeout(timeout);
64ed93a2
NA
1346}
1347EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1348
1da177e4 1349/* Thread ID - the internal kernel "pid" */
58fd3aa2 1350SYSCALL_DEFINE0(gettid)
1da177e4 1351{
b488893a 1352 return task_pid_vnr(current);
1da177e4
LT
1353}
1354
2aae4a10 1355/**
d4d23add 1356 * do_sysinfo - fill in sysinfo struct
2aae4a10 1357 * @info: pointer to buffer to fill
6819457d 1358 */
d4d23add 1359int do_sysinfo(struct sysinfo *info)
1da177e4 1360{
1da177e4
LT
1361 unsigned long mem_total, sav_total;
1362 unsigned int mem_unit, bitcount;
1363 unsigned long seq;
1364
d4d23add 1365 memset(info, 0, sizeof(struct sysinfo));
1da177e4
LT
1366
1367 do {
1368 struct timespec tp;
1369 seq = read_seqbegin(&xtime_lock);
1370
1371 /*
1372 * This is annoying. The below is the same thing
1373 * posix_get_clock_monotonic() does, but it wants to
1374 * take the lock which we want to cover the loads stuff
1375 * too.
1376 */
1377
1378 getnstimeofday(&tp);
1379 tp.tv_sec += wall_to_monotonic.tv_sec;
1380 tp.tv_nsec += wall_to_monotonic.tv_nsec;
d6214141 1381 monotonic_to_bootbased(&tp);
1da177e4
LT
1382 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1383 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1384 tp.tv_sec++;
1385 }
d4d23add 1386 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1387
d4d23add
KM
1388 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1389 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1390 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1da177e4 1391
d4d23add 1392 info->procs = nr_threads;
1da177e4
LT
1393 } while (read_seqretry(&xtime_lock, seq));
1394
d4d23add
KM
1395 si_meminfo(info);
1396 si_swapinfo(info);
1da177e4
LT
1397
1398 /*
1399 * If the sum of all the available memory (i.e. ram + swap)
1400 * is less than can be stored in a 32 bit unsigned long then
1401 * we can be binary compatible with 2.2.x kernels. If not,
1402 * well, in that case 2.2.x was broken anyways...
1403 *
1404 * -Erik Andersen <andersee@debian.org>
1405 */
1406
d4d23add
KM
1407 mem_total = info->totalram + info->totalswap;
1408 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1409 goto out;
1410 bitcount = 0;
d4d23add 1411 mem_unit = info->mem_unit;
1da177e4
LT
1412 while (mem_unit > 1) {
1413 bitcount++;
1414 mem_unit >>= 1;
1415 sav_total = mem_total;
1416 mem_total <<= 1;
1417 if (mem_total < sav_total)
1418 goto out;
1419 }
1420
1421 /*
1422 * If mem_total did not overflow, multiply all memory values by
d4d23add 1423 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1424 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1425 * kernels...
1426 */
1427
d4d23add
KM
1428 info->mem_unit = 1;
1429 info->totalram <<= bitcount;
1430 info->freeram <<= bitcount;
1431 info->sharedram <<= bitcount;
1432 info->bufferram <<= bitcount;
1433 info->totalswap <<= bitcount;
1434 info->freeswap <<= bitcount;
1435 info->totalhigh <<= bitcount;
1436 info->freehigh <<= bitcount;
1437
1438out:
1439 return 0;
1440}
1441
1e7bfb21 1442SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1443{
1444 struct sysinfo val;
1445
1446 do_sysinfo(&val);
1da177e4 1447
1da177e4
LT
1448 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1449 return -EFAULT;
1450
1451 return 0;
1452}
1453
b4be6258 1454static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1455{
1456 int j;
a6fa8e5a 1457 struct tvec_base *base;
b4be6258 1458 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1459
ba6edfcd 1460 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1461 static char boot_done;
1462
a4a6198b 1463 if (boot_done) {
ba6edfcd
AM
1464 /*
1465 * The APs use this path later in boot
1466 */
94f6030c
CL
1467 base = kmalloc_node(sizeof(*base),
1468 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1469 cpu_to_node(cpu));
1470 if (!base)
1471 return -ENOMEM;
6e453a67
VP
1472
1473 /* Make sure that tvec_base is 2 byte aligned */
1474 if (tbase_get_deferrable(base)) {
1475 WARN_ON(1);
1476 kfree(base);
1477 return -ENOMEM;
1478 }
ba6edfcd 1479 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1480 } else {
ba6edfcd
AM
1481 /*
1482 * This is for the boot CPU - we use compile-time
1483 * static initialisation because per-cpu memory isn't
1484 * ready yet and because the memory allocators are not
1485 * initialised either.
1486 */
a4a6198b 1487 boot_done = 1;
ba6edfcd 1488 base = &boot_tvec_bases;
a4a6198b 1489 }
ba6edfcd
AM
1490 tvec_base_done[cpu] = 1;
1491 } else {
1492 base = per_cpu(tvec_bases, cpu);
a4a6198b 1493 }
ba6edfcd 1494
3691c519 1495 spin_lock_init(&base->lock);
d730e882 1496
1da177e4
LT
1497 for (j = 0; j < TVN_SIZE; j++) {
1498 INIT_LIST_HEAD(base->tv5.vec + j);
1499 INIT_LIST_HEAD(base->tv4.vec + j);
1500 INIT_LIST_HEAD(base->tv3.vec + j);
1501 INIT_LIST_HEAD(base->tv2.vec + j);
1502 }
1503 for (j = 0; j < TVR_SIZE; j++)
1504 INIT_LIST_HEAD(base->tv1.vec + j);
1505
1506 base->timer_jiffies = jiffies;
a4a6198b 1507 return 0;
1da177e4
LT
1508}
1509
1510#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1511static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1512{
1513 struct timer_list *timer;
1514
1515 while (!list_empty(head)) {
b5e61818 1516 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1517 detach_timer(timer, 0);
6e453a67 1518 timer_set_base(timer, new_base);
1da177e4 1519 internal_add_timer(new_base, timer);
1da177e4 1520 }
1da177e4
LT
1521}
1522
48ccf3da 1523static void __cpuinit migrate_timers(int cpu)
1da177e4 1524{
a6fa8e5a
PM
1525 struct tvec_base *old_base;
1526 struct tvec_base *new_base;
1da177e4
LT
1527 int i;
1528
1529 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1530 old_base = per_cpu(tvec_bases, cpu);
1531 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1532 /*
1533 * The caller is globally serialized and nobody else
1534 * takes two locks at once, deadlock is not possible.
1535 */
1536 spin_lock_irq(&new_base->lock);
0d180406 1537 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1538
1539 BUG_ON(old_base->running_timer);
1da177e4 1540
1da177e4 1541 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1542 migrate_timer_list(new_base, old_base->tv1.vec + i);
1543 for (i = 0; i < TVN_SIZE; i++) {
1544 migrate_timer_list(new_base, old_base->tv2.vec + i);
1545 migrate_timer_list(new_base, old_base->tv3.vec + i);
1546 migrate_timer_list(new_base, old_base->tv4.vec + i);
1547 migrate_timer_list(new_base, old_base->tv5.vec + i);
1548 }
1549
0d180406 1550 spin_unlock(&old_base->lock);
d82f0b0f 1551 spin_unlock_irq(&new_base->lock);
1da177e4 1552 put_cpu_var(tvec_bases);
1da177e4
LT
1553}
1554#endif /* CONFIG_HOTPLUG_CPU */
1555
8c78f307 1556static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1557 unsigned long action, void *hcpu)
1558{
1559 long cpu = (long)hcpu;
1560 switch(action) {
1561 case CPU_UP_PREPARE:
8bb78442 1562 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1563 if (init_timers_cpu(cpu) < 0)
1564 return NOTIFY_BAD;
1da177e4
LT
1565 break;
1566#ifdef CONFIG_HOTPLUG_CPU
1567 case CPU_DEAD:
8bb78442 1568 case CPU_DEAD_FROZEN:
1da177e4
LT
1569 migrate_timers(cpu);
1570 break;
1571#endif
1572 default:
1573 break;
1574 }
1575 return NOTIFY_OK;
1576}
1577
8c78f307 1578static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1579 .notifier_call = timer_cpu_notify,
1580};
1581
1582
1583void __init init_timers(void)
1584{
07dccf33 1585 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1586 (void *)(long)smp_processor_id());
07dccf33 1587
82f67cd9
IM
1588 init_timer_stats();
1589
07dccf33 1590 BUG_ON(err == NOTIFY_BAD);
1da177e4 1591 register_cpu_notifier(&timers_nb);
962cf36c 1592 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1593}
1594
1da177e4
LT
1595/**
1596 * msleep - sleep safely even with waitqueue interruptions
1597 * @msecs: Time in milliseconds to sleep for
1598 */
1599void msleep(unsigned int msecs)
1600{
1601 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1602
75bcc8c5
NA
1603 while (timeout)
1604 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1605}
1606
1607EXPORT_SYMBOL(msleep);
1608
1609/**
96ec3efd 1610 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1611 * @msecs: Time in milliseconds to sleep for
1612 */
1613unsigned long msleep_interruptible(unsigned int msecs)
1614{
1615 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1616
75bcc8c5
NA
1617 while (timeout && !signal_pending(current))
1618 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1619 return jiffies_to_msecs(timeout);
1620}
1621
1622EXPORT_SYMBOL(msleep_interruptible);