V4L/DVB (10825): Add ids for Yuan PD378S DVB adapter
[linux-2.6-block.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
1da177e4
LT
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43#include <asm/div64.h>
44#include <asm/timex.h>
45#include <asm/io.h>
46
ecea8d19
TG
47u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
48
49EXPORT_SYMBOL(jiffies_64);
50
1da177e4
LT
51/*
52 * per-CPU timer vector definitions:
53 */
1da177e4
LT
54#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56#define TVN_SIZE (1 << TVN_BITS)
57#define TVR_SIZE (1 << TVR_BITS)
58#define TVN_MASK (TVN_SIZE - 1)
59#define TVR_MASK (TVR_SIZE - 1)
60
a6fa8e5a 61struct tvec {
1da177e4 62 struct list_head vec[TVN_SIZE];
a6fa8e5a 63};
1da177e4 64
a6fa8e5a 65struct tvec_root {
1da177e4 66 struct list_head vec[TVR_SIZE];
a6fa8e5a 67};
1da177e4 68
a6fa8e5a 69struct tvec_base {
3691c519
ON
70 spinlock_t lock;
71 struct timer_list *running_timer;
1da177e4 72 unsigned long timer_jiffies;
a6fa8e5a
PM
73 struct tvec_root tv1;
74 struct tvec tv2;
75 struct tvec tv3;
76 struct tvec tv4;
77 struct tvec tv5;
6e453a67 78} ____cacheline_aligned;
1da177e4 79
a6fa8e5a 80struct tvec_base boot_tvec_bases;
3691c519 81EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 82static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 83
6e453a67 84/*
a6fa8e5a 85 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
88 */
89#define TBASE_DEFERRABLE_FLAG (0x1)
90
91/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 93{
e9910846 94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
95}
96
a6fa8e5a 97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 98{
a6fa8e5a 99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
100}
101
102static inline void timer_set_deferrable(struct timer_list *timer)
103{
a6fa8e5a 104 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 105 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
106}
107
108static inline void
a6fa8e5a 109timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 110{
a6fa8e5a 111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 112 tbase_get_deferrable(timer->base));
6e453a67
VP
113}
114
9c133c46
AS
115static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
4c36a5de
AV
117{
118 int rem;
119 unsigned long original = j;
120
121 /*
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
128 */
129 j += cpu * 3;
130
131 rem = j % HZ;
132
133 /*
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 138 * But never round down if @force_up is set.
4c36a5de 139 */
9c133c46 140 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
144
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
147
148 if (j <= jiffies) /* rounding ate our timeout entirely; */
149 return original;
150 return j;
151}
9c133c46
AS
152
153/**
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
157 *
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
162 *
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
166 *
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
170 *
171 * The return value is the rounded version of the @j parameter.
172 */
173unsigned long __round_jiffies(unsigned long j, int cpu)
174{
175 return round_jiffies_common(j, cpu, false);
176}
4c36a5de
AV
177EXPORT_SYMBOL_GPL(__round_jiffies);
178
179/**
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
183 *
72fd4a35 184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
188 *
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
192 *
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
196 *
72fd4a35 197 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
198 */
199unsigned long __round_jiffies_relative(unsigned long j, int cpu)
200{
9c133c46
AS
201 unsigned long j0 = jiffies;
202
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
205}
206EXPORT_SYMBOL_GPL(__round_jiffies_relative);
207
208/**
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
211 *
72fd4a35 212 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
216 *
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
220 *
72fd4a35 221 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
222 */
223unsigned long round_jiffies(unsigned long j)
224{
9c133c46 225 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
226}
227EXPORT_SYMBOL_GPL(round_jiffies);
228
229/**
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
232 *
72fd4a35 233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
237 *
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
241 *
72fd4a35 242 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
243 */
244unsigned long round_jiffies_relative(unsigned long j)
245{
246 return __round_jiffies_relative(j, raw_smp_processor_id());
247}
248EXPORT_SYMBOL_GPL(round_jiffies_relative);
249
9c133c46
AS
250/**
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
254 *
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
258 * early.
259 */
260unsigned long __round_jiffies_up(unsigned long j, int cpu)
261{
262 return round_jiffies_common(j, cpu, true);
263}
264EXPORT_SYMBOL_GPL(__round_jiffies_up);
265
266/**
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
270 *
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
274 * early.
275 */
276unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
277{
278 unsigned long j0 = jiffies;
279
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j + j0, cpu, true) - j0;
282}
283EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
284
285/**
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
288 *
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
293 */
294unsigned long round_jiffies_up(unsigned long j)
295{
296 return round_jiffies_common(j, raw_smp_processor_id(), true);
297}
298EXPORT_SYMBOL_GPL(round_jiffies_up);
299
300/**
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
303 *
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
307 * early.
308 */
309unsigned long round_jiffies_up_relative(unsigned long j)
310{
311 return __round_jiffies_up_relative(j, raw_smp_processor_id());
312}
313EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
314
4c36a5de 315
a6fa8e5a 316static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
317 struct timer_list *timer)
318{
319#ifdef CONFIG_SMP
3691c519 320 base->running_timer = timer;
1da177e4
LT
321#endif
322}
323
a6fa8e5a 324static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
325{
326 unsigned long expires = timer->expires;
327 unsigned long idx = expires - base->timer_jiffies;
328 struct list_head *vec;
329
330 if (idx < TVR_SIZE) {
331 int i = expires & TVR_MASK;
332 vec = base->tv1.vec + i;
333 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
334 int i = (expires >> TVR_BITS) & TVN_MASK;
335 vec = base->tv2.vec + i;
336 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
337 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
338 vec = base->tv3.vec + i;
339 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
340 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
341 vec = base->tv4.vec + i;
342 } else if ((signed long) idx < 0) {
343 /*
344 * Can happen if you add a timer with expires == jiffies,
345 * or you set a timer to go off in the past
346 */
347 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
348 } else {
349 int i;
350 /* If the timeout is larger than 0xffffffff on 64-bit
351 * architectures then we use the maximum timeout:
352 */
353 if (idx > 0xffffffffUL) {
354 idx = 0xffffffffUL;
355 expires = idx + base->timer_jiffies;
356 }
357 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
358 vec = base->tv5.vec + i;
359 }
360 /*
361 * Timers are FIFO:
362 */
363 list_add_tail(&timer->entry, vec);
364}
365
82f67cd9
IM
366#ifdef CONFIG_TIMER_STATS
367void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
368{
369 if (timer->start_site)
370 return;
371
372 timer->start_site = addr;
373 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
374 timer->start_pid = current->pid;
375}
c5c061b8
VP
376
377static void timer_stats_account_timer(struct timer_list *timer)
378{
379 unsigned int flag = 0;
380
381 if (unlikely(tbase_get_deferrable(timer->base)))
382 flag |= TIMER_STATS_FLAG_DEFERRABLE;
383
384 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
385 timer->function, timer->start_comm, flag);
386}
387
388#else
389static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
390#endif
391
c6f3a97f
TG
392#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
393
394static struct debug_obj_descr timer_debug_descr;
395
396/*
397 * fixup_init is called when:
398 * - an active object is initialized
55c888d6 399 */
c6f3a97f
TG
400static int timer_fixup_init(void *addr, enum debug_obj_state state)
401{
402 struct timer_list *timer = addr;
403
404 switch (state) {
405 case ODEBUG_STATE_ACTIVE:
406 del_timer_sync(timer);
407 debug_object_init(timer, &timer_debug_descr);
408 return 1;
409 default:
410 return 0;
411 }
412}
413
414/*
415 * fixup_activate is called when:
416 * - an active object is activated
417 * - an unknown object is activated (might be a statically initialized object)
418 */
419static int timer_fixup_activate(void *addr, enum debug_obj_state state)
420{
421 struct timer_list *timer = addr;
422
423 switch (state) {
424
425 case ODEBUG_STATE_NOTAVAILABLE:
426 /*
427 * This is not really a fixup. The timer was
428 * statically initialized. We just make sure that it
429 * is tracked in the object tracker.
430 */
431 if (timer->entry.next == NULL &&
432 timer->entry.prev == TIMER_ENTRY_STATIC) {
433 debug_object_init(timer, &timer_debug_descr);
434 debug_object_activate(timer, &timer_debug_descr);
435 return 0;
436 } else {
437 WARN_ON_ONCE(1);
438 }
439 return 0;
440
441 case ODEBUG_STATE_ACTIVE:
442 WARN_ON(1);
443
444 default:
445 return 0;
446 }
447}
448
449/*
450 * fixup_free is called when:
451 * - an active object is freed
452 */
453static int timer_fixup_free(void *addr, enum debug_obj_state state)
454{
455 struct timer_list *timer = addr;
456
457 switch (state) {
458 case ODEBUG_STATE_ACTIVE:
459 del_timer_sync(timer);
460 debug_object_free(timer, &timer_debug_descr);
461 return 1;
462 default:
463 return 0;
464 }
465}
466
467static struct debug_obj_descr timer_debug_descr = {
468 .name = "timer_list",
469 .fixup_init = timer_fixup_init,
470 .fixup_activate = timer_fixup_activate,
471 .fixup_free = timer_fixup_free,
472};
473
474static inline void debug_timer_init(struct timer_list *timer)
475{
476 debug_object_init(timer, &timer_debug_descr);
477}
478
479static inline void debug_timer_activate(struct timer_list *timer)
480{
481 debug_object_activate(timer, &timer_debug_descr);
482}
483
484static inline void debug_timer_deactivate(struct timer_list *timer)
485{
486 debug_object_deactivate(timer, &timer_debug_descr);
487}
488
489static inline void debug_timer_free(struct timer_list *timer)
490{
491 debug_object_free(timer, &timer_debug_descr);
492}
493
494static void __init_timer(struct timer_list *timer);
495
496void init_timer_on_stack(struct timer_list *timer)
497{
498 debug_object_init_on_stack(timer, &timer_debug_descr);
499 __init_timer(timer);
500}
501EXPORT_SYMBOL_GPL(init_timer_on_stack);
502
503void destroy_timer_on_stack(struct timer_list *timer)
504{
505 debug_object_free(timer, &timer_debug_descr);
506}
507EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
508
509#else
510static inline void debug_timer_init(struct timer_list *timer) { }
511static inline void debug_timer_activate(struct timer_list *timer) { }
512static inline void debug_timer_deactivate(struct timer_list *timer) { }
513#endif
514
515static void __init_timer(struct timer_list *timer)
55c888d6
ON
516{
517 timer->entry.next = NULL;
bfe5d834 518 timer->base = __raw_get_cpu_var(tvec_bases);
82f67cd9
IM
519#ifdef CONFIG_TIMER_STATS
520 timer->start_site = NULL;
521 timer->start_pid = -1;
522 memset(timer->start_comm, 0, TASK_COMM_LEN);
523#endif
55c888d6 524}
c6f3a97f
TG
525
526/**
527 * init_timer - initialize a timer.
528 * @timer: the timer to be initialized
529 *
530 * init_timer() must be done to a timer prior calling *any* of the
531 * other timer functions.
532 */
533void init_timer(struct timer_list *timer)
534{
535 debug_timer_init(timer);
536 __init_timer(timer);
537}
55c888d6
ON
538EXPORT_SYMBOL(init_timer);
539
7ad5b3a5 540void init_timer_deferrable(struct timer_list *timer)
6e453a67
VP
541{
542 init_timer(timer);
543 timer_set_deferrable(timer);
544}
545EXPORT_SYMBOL(init_timer_deferrable);
546
55c888d6 547static inline void detach_timer(struct timer_list *timer,
82f67cd9 548 int clear_pending)
55c888d6
ON
549{
550 struct list_head *entry = &timer->entry;
551
c6f3a97f
TG
552 debug_timer_deactivate(timer);
553
55c888d6
ON
554 __list_del(entry->prev, entry->next);
555 if (clear_pending)
556 entry->next = NULL;
557 entry->prev = LIST_POISON2;
558}
559
560/*
3691c519 561 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
562 * means that all timers which are tied to this base via timer->base are
563 * locked, and the base itself is locked too.
564 *
565 * So __run_timers/migrate_timers can safely modify all timers which could
566 * be found on ->tvX lists.
567 *
568 * When the timer's base is locked, and the timer removed from list, it is
569 * possible to set timer->base = NULL and drop the lock: the timer remains
570 * locked.
571 */
a6fa8e5a 572static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 573 unsigned long *flags)
89e7e374 574 __acquires(timer->base->lock)
55c888d6 575{
a6fa8e5a 576 struct tvec_base *base;
55c888d6
ON
577
578 for (;;) {
a6fa8e5a 579 struct tvec_base *prelock_base = timer->base;
6e453a67 580 base = tbase_get_base(prelock_base);
55c888d6
ON
581 if (likely(base != NULL)) {
582 spin_lock_irqsave(&base->lock, *flags);
6e453a67 583 if (likely(prelock_base == timer->base))
55c888d6
ON
584 return base;
585 /* The timer has migrated to another CPU */
586 spin_unlock_irqrestore(&base->lock, *flags);
587 }
588 cpu_relax();
589 }
590}
591
74019224
IM
592static inline int
593__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
1da177e4 594{
a6fa8e5a 595 struct tvec_base *base, *new_base;
1da177e4 596 unsigned long flags;
74019224
IM
597 int ret;
598
599 ret = 0;
1da177e4 600
82f67cd9 601 timer_stats_timer_set_start_info(timer);
1da177e4 602 BUG_ON(!timer->function);
1da177e4 603
55c888d6
ON
604 base = lock_timer_base(timer, &flags);
605
606 if (timer_pending(timer)) {
607 detach_timer(timer, 0);
608 ret = 1;
74019224
IM
609 } else {
610 if (pending_only)
611 goto out_unlock;
55c888d6
ON
612 }
613
c6f3a97f
TG
614 debug_timer_activate(timer);
615
a4a6198b 616 new_base = __get_cpu_var(tvec_bases);
1da177e4 617
3691c519 618 if (base != new_base) {
1da177e4 619 /*
55c888d6
ON
620 * We are trying to schedule the timer on the local CPU.
621 * However we can't change timer's base while it is running,
622 * otherwise del_timer_sync() can't detect that the timer's
623 * handler yet has not finished. This also guarantees that
624 * the timer is serialized wrt itself.
1da177e4 625 */
a2c348fe 626 if (likely(base->running_timer != timer)) {
55c888d6 627 /* See the comment in lock_timer_base() */
6e453a67 628 timer_set_base(timer, NULL);
55c888d6 629 spin_unlock(&base->lock);
a2c348fe
ON
630 base = new_base;
631 spin_lock(&base->lock);
6e453a67 632 timer_set_base(timer, base);
1da177e4
LT
633 }
634 }
635
1da177e4 636 timer->expires = expires;
a2c348fe 637 internal_add_timer(base, timer);
74019224
IM
638
639out_unlock:
a2c348fe 640 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
641
642 return ret;
643}
644
2aae4a10 645/**
74019224
IM
646 * mod_timer_pending - modify a pending timer's timeout
647 * @timer: the pending timer to be modified
648 * @expires: new timeout in jiffies
1da177e4 649 *
74019224
IM
650 * mod_timer_pending() is the same for pending timers as mod_timer(),
651 * but will not re-activate and modify already deleted timers.
652 *
653 * It is useful for unserialized use of timers.
1da177e4 654 */
74019224 655int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 656{
74019224 657 return __mod_timer(timer, expires, true);
1da177e4 658}
74019224 659EXPORT_SYMBOL(mod_timer_pending);
1da177e4 660
2aae4a10 661/**
1da177e4
LT
662 * mod_timer - modify a timer's timeout
663 * @timer: the timer to be modified
2aae4a10 664 * @expires: new timeout in jiffies
1da177e4 665 *
72fd4a35 666 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
667 * active timer (if the timer is inactive it will be activated)
668 *
669 * mod_timer(timer, expires) is equivalent to:
670 *
671 * del_timer(timer); timer->expires = expires; add_timer(timer);
672 *
673 * Note that if there are multiple unserialized concurrent users of the
674 * same timer, then mod_timer() is the only safe way to modify the timeout,
675 * since add_timer() cannot modify an already running timer.
676 *
677 * The function returns whether it has modified a pending timer or not.
678 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
679 * active timer returns 1.)
680 */
681int mod_timer(struct timer_list *timer, unsigned long expires)
682{
1da177e4
LT
683 /*
684 * This is a common optimization triggered by the
685 * networking code - if the timer is re-modified
686 * to be the same thing then just return:
687 */
688 if (timer->expires == expires && timer_pending(timer))
689 return 1;
690
74019224 691 return __mod_timer(timer, expires, false);
1da177e4 692}
1da177e4
LT
693EXPORT_SYMBOL(mod_timer);
694
74019224
IM
695/**
696 * add_timer - start a timer
697 * @timer: the timer to be added
698 *
699 * The kernel will do a ->function(->data) callback from the
700 * timer interrupt at the ->expires point in the future. The
701 * current time is 'jiffies'.
702 *
703 * The timer's ->expires, ->function (and if the handler uses it, ->data)
704 * fields must be set prior calling this function.
705 *
706 * Timers with an ->expires field in the past will be executed in the next
707 * timer tick.
708 */
709void add_timer(struct timer_list *timer)
710{
711 BUG_ON(timer_pending(timer));
712 mod_timer(timer, timer->expires);
713}
714EXPORT_SYMBOL(add_timer);
715
716/**
717 * add_timer_on - start a timer on a particular CPU
718 * @timer: the timer to be added
719 * @cpu: the CPU to start it on
720 *
721 * This is not very scalable on SMP. Double adds are not possible.
722 */
723void add_timer_on(struct timer_list *timer, int cpu)
724{
725 struct tvec_base *base = per_cpu(tvec_bases, cpu);
726 unsigned long flags;
727
728 timer_stats_timer_set_start_info(timer);
729 BUG_ON(timer_pending(timer) || !timer->function);
730 spin_lock_irqsave(&base->lock, flags);
731 timer_set_base(timer, base);
732 debug_timer_activate(timer);
733 internal_add_timer(base, timer);
734 /*
735 * Check whether the other CPU is idle and needs to be
736 * triggered to reevaluate the timer wheel when nohz is
737 * active. We are protected against the other CPU fiddling
738 * with the timer by holding the timer base lock. This also
739 * makes sure that a CPU on the way to idle can not evaluate
740 * the timer wheel.
741 */
742 wake_up_idle_cpu(cpu);
743 spin_unlock_irqrestore(&base->lock, flags);
744}
745
2aae4a10 746/**
1da177e4
LT
747 * del_timer - deactive a timer.
748 * @timer: the timer to be deactivated
749 *
750 * del_timer() deactivates a timer - this works on both active and inactive
751 * timers.
752 *
753 * The function returns whether it has deactivated a pending timer or not.
754 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
755 * active timer returns 1.)
756 */
757int del_timer(struct timer_list *timer)
758{
a6fa8e5a 759 struct tvec_base *base;
1da177e4 760 unsigned long flags;
55c888d6 761 int ret = 0;
1da177e4 762
82f67cd9 763 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
764 if (timer_pending(timer)) {
765 base = lock_timer_base(timer, &flags);
766 if (timer_pending(timer)) {
767 detach_timer(timer, 1);
768 ret = 1;
769 }
1da177e4 770 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 771 }
1da177e4 772
55c888d6 773 return ret;
1da177e4 774}
1da177e4
LT
775EXPORT_SYMBOL(del_timer);
776
777#ifdef CONFIG_SMP
2aae4a10
REB
778/**
779 * try_to_del_timer_sync - Try to deactivate a timer
780 * @timer: timer do del
781 *
fd450b73
ON
782 * This function tries to deactivate a timer. Upon successful (ret >= 0)
783 * exit the timer is not queued and the handler is not running on any CPU.
784 *
785 * It must not be called from interrupt contexts.
786 */
787int try_to_del_timer_sync(struct timer_list *timer)
788{
a6fa8e5a 789 struct tvec_base *base;
fd450b73
ON
790 unsigned long flags;
791 int ret = -1;
792
793 base = lock_timer_base(timer, &flags);
794
795 if (base->running_timer == timer)
796 goto out;
797
798 ret = 0;
799 if (timer_pending(timer)) {
800 detach_timer(timer, 1);
801 ret = 1;
802 }
803out:
804 spin_unlock_irqrestore(&base->lock, flags);
805
806 return ret;
807}
e19dff1f
DH
808EXPORT_SYMBOL(try_to_del_timer_sync);
809
2aae4a10 810/**
1da177e4
LT
811 * del_timer_sync - deactivate a timer and wait for the handler to finish.
812 * @timer: the timer to be deactivated
813 *
814 * This function only differs from del_timer() on SMP: besides deactivating
815 * the timer it also makes sure the handler has finished executing on other
816 * CPUs.
817 *
72fd4a35 818 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
819 * otherwise this function is meaningless. It must not be called from
820 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
821 * completion of the timer's handler. The timer's handler must not call
822 * add_timer_on(). Upon exit the timer is not queued and the handler is
823 * not running on any CPU.
1da177e4
LT
824 *
825 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
826 */
827int del_timer_sync(struct timer_list *timer)
828{
fd450b73
ON
829 for (;;) {
830 int ret = try_to_del_timer_sync(timer);
831 if (ret >= 0)
832 return ret;
a0009652 833 cpu_relax();
fd450b73 834 }
1da177e4 835}
55c888d6 836EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
837#endif
838
a6fa8e5a 839static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
840{
841 /* cascade all the timers from tv up one level */
3439dd86
P
842 struct timer_list *timer, *tmp;
843 struct list_head tv_list;
844
845 list_replace_init(tv->vec + index, &tv_list);
1da177e4 846
1da177e4 847 /*
3439dd86
P
848 * We are removing _all_ timers from the list, so we
849 * don't have to detach them individually.
1da177e4 850 */
3439dd86 851 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 852 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 853 internal_add_timer(base, timer);
1da177e4 854 }
1da177e4
LT
855
856 return index;
857}
858
2aae4a10
REB
859#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
860
861/**
1da177e4
LT
862 * __run_timers - run all expired timers (if any) on this CPU.
863 * @base: the timer vector to be processed.
864 *
865 * This function cascades all vectors and executes all expired timer
866 * vectors.
867 */
a6fa8e5a 868static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
869{
870 struct timer_list *timer;
871
3691c519 872 spin_lock_irq(&base->lock);
1da177e4 873 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 874 struct list_head work_list;
1da177e4 875 struct list_head *head = &work_list;
6819457d 876 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 877
1da177e4
LT
878 /*
879 * Cascade timers:
880 */
881 if (!index &&
882 (!cascade(base, &base->tv2, INDEX(0))) &&
883 (!cascade(base, &base->tv3, INDEX(1))) &&
884 !cascade(base, &base->tv4, INDEX(2)))
885 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
886 ++base->timer_jiffies;
887 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 888 while (!list_empty(head)) {
1da177e4
LT
889 void (*fn)(unsigned long);
890 unsigned long data;
891
b5e61818 892 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
893 fn = timer->function;
894 data = timer->data;
1da177e4 895
82f67cd9
IM
896 timer_stats_account_timer(timer);
897
1da177e4 898 set_running_timer(base, timer);
55c888d6 899 detach_timer(timer, 1);
3691c519 900 spin_unlock_irq(&base->lock);
1da177e4 901 {
be5b4fbd 902 int preempt_count = preempt_count();
1da177e4
LT
903 fn(data);
904 if (preempt_count != preempt_count()) {
4c9dc641 905 printk(KERN_ERR "huh, entered %p "
be5b4fbd
JJ
906 "with preempt_count %08x, exited"
907 " with %08x?\n",
908 fn, preempt_count,
909 preempt_count());
1da177e4
LT
910 BUG();
911 }
912 }
3691c519 913 spin_lock_irq(&base->lock);
1da177e4
LT
914 }
915 }
916 set_running_timer(base, NULL);
3691c519 917 spin_unlock_irq(&base->lock);
1da177e4
LT
918}
919
ee9c5785 920#ifdef CONFIG_NO_HZ
1da177e4
LT
921/*
922 * Find out when the next timer event is due to happen. This
923 * is used on S/390 to stop all activity when a cpus is idle.
924 * This functions needs to be called disabled.
925 */
a6fa8e5a 926static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 927{
1cfd6849 928 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 929 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 930 int index, slot, array, found = 0;
1da177e4 931 struct timer_list *nte;
a6fa8e5a 932 struct tvec *varray[4];
1da177e4
LT
933
934 /* Look for timer events in tv1. */
1cfd6849 935 index = slot = timer_jiffies & TVR_MASK;
1da177e4 936 do {
1cfd6849 937 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
938 if (tbase_get_deferrable(nte->base))
939 continue;
6e453a67 940
1cfd6849 941 found = 1;
1da177e4 942 expires = nte->expires;
1cfd6849
TG
943 /* Look at the cascade bucket(s)? */
944 if (!index || slot < index)
945 goto cascade;
946 return expires;
1da177e4 947 }
1cfd6849
TG
948 slot = (slot + 1) & TVR_MASK;
949 } while (slot != index);
950
951cascade:
952 /* Calculate the next cascade event */
953 if (index)
954 timer_jiffies += TVR_SIZE - index;
955 timer_jiffies >>= TVR_BITS;
1da177e4
LT
956
957 /* Check tv2-tv5. */
958 varray[0] = &base->tv2;
959 varray[1] = &base->tv3;
960 varray[2] = &base->tv4;
961 varray[3] = &base->tv5;
1cfd6849
TG
962
963 for (array = 0; array < 4; array++) {
a6fa8e5a 964 struct tvec *varp = varray[array];
1cfd6849
TG
965
966 index = slot = timer_jiffies & TVN_MASK;
1da177e4 967 do {
1cfd6849
TG
968 list_for_each_entry(nte, varp->vec + slot, entry) {
969 found = 1;
1da177e4
LT
970 if (time_before(nte->expires, expires))
971 expires = nte->expires;
1cfd6849
TG
972 }
973 /*
974 * Do we still search for the first timer or are
975 * we looking up the cascade buckets ?
976 */
977 if (found) {
978 /* Look at the cascade bucket(s)? */
979 if (!index || slot < index)
980 break;
981 return expires;
982 }
983 slot = (slot + 1) & TVN_MASK;
984 } while (slot != index);
985
986 if (index)
987 timer_jiffies += TVN_SIZE - index;
988 timer_jiffies >>= TVN_BITS;
1da177e4 989 }
1cfd6849
TG
990 return expires;
991}
69239749 992
1cfd6849
TG
993/*
994 * Check, if the next hrtimer event is before the next timer wheel
995 * event:
996 */
997static unsigned long cmp_next_hrtimer_event(unsigned long now,
998 unsigned long expires)
999{
1000 ktime_t hr_delta = hrtimer_get_next_event();
1001 struct timespec tsdelta;
9501b6cf 1002 unsigned long delta;
1cfd6849
TG
1003
1004 if (hr_delta.tv64 == KTIME_MAX)
1005 return expires;
0662b713 1006
9501b6cf
TG
1007 /*
1008 * Expired timer available, let it expire in the next tick
1009 */
1010 if (hr_delta.tv64 <= 0)
1011 return now + 1;
69239749 1012
1cfd6849 1013 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1014 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1015
1016 /*
1017 * Limit the delta to the max value, which is checked in
1018 * tick_nohz_stop_sched_tick():
1019 */
1020 if (delta > NEXT_TIMER_MAX_DELTA)
1021 delta = NEXT_TIMER_MAX_DELTA;
1022
9501b6cf
TG
1023 /*
1024 * Take rounding errors in to account and make sure, that it
1025 * expires in the next tick. Otherwise we go into an endless
1026 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1027 * the timer softirq
1028 */
1029 if (delta < 1)
1030 delta = 1;
1031 now += delta;
1cfd6849
TG
1032 if (time_before(now, expires))
1033 return now;
1da177e4
LT
1034 return expires;
1035}
1cfd6849
TG
1036
1037/**
8dce39c2 1038 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1039 * @now: current time (in jiffies)
1cfd6849 1040 */
fd064b9b 1041unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1042{
a6fa8e5a 1043 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1044 unsigned long expires;
1cfd6849
TG
1045
1046 spin_lock(&base->lock);
1047 expires = __next_timer_interrupt(base);
1048 spin_unlock(&base->lock);
1049
1050 if (time_before_eq(expires, now))
1051 return now;
1052
1053 return cmp_next_hrtimer_event(now, expires);
1054}
1da177e4
LT
1055#endif
1056
1da177e4 1057/*
5b4db0c2 1058 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1059 * process. user_tick is 1 if the tick is user time, 0 for system.
1060 */
1061void update_process_times(int user_tick)
1062{
1063 struct task_struct *p = current;
1064 int cpu = smp_processor_id();
1065
1066 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1067 account_process_tick(p, user_tick);
1da177e4
LT
1068 run_local_timers();
1069 if (rcu_pending(cpu))
1070 rcu_check_callbacks(cpu, user_tick);
b845b517 1071 printk_tick();
1da177e4 1072 scheduler_tick();
6819457d 1073 run_posix_cpu_timers(p);
1da177e4
LT
1074}
1075
1076/*
1077 * Nr of active tasks - counted in fixed-point numbers
1078 */
1079static unsigned long count_active_tasks(void)
1080{
db1b1fef 1081 return nr_active() * FIXED_1;
1da177e4
LT
1082}
1083
1084/*
1085 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1086 * imply that avenrun[] is the standard name for this kind of thing.
1087 * Nothing else seems to be standardized: the fractional size etc
1088 * all seem to differ on different machines.
1089 *
1090 * Requires xtime_lock to access.
1091 */
1092unsigned long avenrun[3];
1093
1094EXPORT_SYMBOL(avenrun);
1095
1096/*
1097 * calc_load - given tick count, update the avenrun load estimates.
1098 * This is called while holding a write_lock on xtime_lock.
1099 */
1100static inline void calc_load(unsigned long ticks)
1101{
1102 unsigned long active_tasks; /* fixed-point */
1103 static int count = LOAD_FREQ;
1104
cd7175ed
ED
1105 count -= ticks;
1106 if (unlikely(count < 0)) {
1107 active_tasks = count_active_tasks();
1108 do {
1109 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1110 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1111 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1112 count += LOAD_FREQ;
1113 } while (count < 0);
1da177e4
LT
1114 }
1115}
1116
1da177e4
LT
1117/*
1118 * This function runs timers and the timer-tq in bottom half context.
1119 */
1120static void run_timer_softirq(struct softirq_action *h)
1121{
a6fa8e5a 1122 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1123
d3d74453 1124 hrtimer_run_pending();
82f67cd9 1125
1da177e4
LT
1126 if (time_after_eq(jiffies, base->timer_jiffies))
1127 __run_timers(base);
1128}
1129
1130/*
1131 * Called by the local, per-CPU timer interrupt on SMP.
1132 */
1133void run_local_timers(void)
1134{
d3d74453 1135 hrtimer_run_queues();
1da177e4 1136 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1137 softlockup_tick();
1da177e4
LT
1138}
1139
1140/*
1141 * Called by the timer interrupt. xtime_lock must already be taken
1142 * by the timer IRQ!
1143 */
3171a030 1144static inline void update_times(unsigned long ticks)
1da177e4 1145{
ad596171 1146 update_wall_time();
1da177e4
LT
1147 calc_load(ticks);
1148}
6819457d 1149
1da177e4
LT
1150/*
1151 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1152 * without sampling the sequence number in xtime_lock.
1153 * jiffies is defined in the linker script...
1154 */
1155
3171a030 1156void do_timer(unsigned long ticks)
1da177e4 1157{
3171a030
AN
1158 jiffies_64 += ticks;
1159 update_times(ticks);
1da177e4
LT
1160}
1161
1162#ifdef __ARCH_WANT_SYS_ALARM
1163
1164/*
1165 * For backwards compatibility? This can be done in libc so Alpha
1166 * and all newer ports shouldn't need it.
1167 */
58fd3aa2 1168SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1169{
c08b8a49 1170 return alarm_setitimer(seconds);
1da177e4
LT
1171}
1172
1173#endif
1174
1175#ifndef __alpha__
1176
1177/*
1178 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1179 * should be moved into arch/i386 instead?
1180 */
1181
1182/**
1183 * sys_getpid - return the thread group id of the current process
1184 *
1185 * Note, despite the name, this returns the tgid not the pid. The tgid and
1186 * the pid are identical unless CLONE_THREAD was specified on clone() in
1187 * which case the tgid is the same in all threads of the same group.
1188 *
1189 * This is SMP safe as current->tgid does not change.
1190 */
58fd3aa2 1191SYSCALL_DEFINE0(getpid)
1da177e4 1192{
b488893a 1193 return task_tgid_vnr(current);
1da177e4
LT
1194}
1195
1196/*
6997a6fa
KK
1197 * Accessing ->real_parent is not SMP-safe, it could
1198 * change from under us. However, we can use a stale
1199 * value of ->real_parent under rcu_read_lock(), see
1200 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1201 */
dbf040d9 1202SYSCALL_DEFINE0(getppid)
1da177e4
LT
1203{
1204 int pid;
1da177e4 1205
6997a6fa 1206 rcu_read_lock();
6c5f3e7b 1207 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1208 rcu_read_unlock();
1da177e4 1209
1da177e4
LT
1210 return pid;
1211}
1212
dbf040d9 1213SYSCALL_DEFINE0(getuid)
1da177e4
LT
1214{
1215 /* Only we change this so SMP safe */
76aac0e9 1216 return current_uid();
1da177e4
LT
1217}
1218
dbf040d9 1219SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1220{
1221 /* Only we change this so SMP safe */
76aac0e9 1222 return current_euid();
1da177e4
LT
1223}
1224
dbf040d9 1225SYSCALL_DEFINE0(getgid)
1da177e4
LT
1226{
1227 /* Only we change this so SMP safe */
76aac0e9 1228 return current_gid();
1da177e4
LT
1229}
1230
dbf040d9 1231SYSCALL_DEFINE0(getegid)
1da177e4
LT
1232{
1233 /* Only we change this so SMP safe */
76aac0e9 1234 return current_egid();
1da177e4
LT
1235}
1236
1237#endif
1238
1239static void process_timeout(unsigned long __data)
1240{
36c8b586 1241 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1242}
1243
1244/**
1245 * schedule_timeout - sleep until timeout
1246 * @timeout: timeout value in jiffies
1247 *
1248 * Make the current task sleep until @timeout jiffies have
1249 * elapsed. The routine will return immediately unless
1250 * the current task state has been set (see set_current_state()).
1251 *
1252 * You can set the task state as follows -
1253 *
1254 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1255 * pass before the routine returns. The routine will return 0
1256 *
1257 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1258 * delivered to the current task. In this case the remaining time
1259 * in jiffies will be returned, or 0 if the timer expired in time
1260 *
1261 * The current task state is guaranteed to be TASK_RUNNING when this
1262 * routine returns.
1263 *
1264 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1265 * the CPU away without a bound on the timeout. In this case the return
1266 * value will be %MAX_SCHEDULE_TIMEOUT.
1267 *
1268 * In all cases the return value is guaranteed to be non-negative.
1269 */
7ad5b3a5 1270signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1271{
1272 struct timer_list timer;
1273 unsigned long expire;
1274
1275 switch (timeout)
1276 {
1277 case MAX_SCHEDULE_TIMEOUT:
1278 /*
1279 * These two special cases are useful to be comfortable
1280 * in the caller. Nothing more. We could take
1281 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1282 * but I' d like to return a valid offset (>=0) to allow
1283 * the caller to do everything it want with the retval.
1284 */
1285 schedule();
1286 goto out;
1287 default:
1288 /*
1289 * Another bit of PARANOID. Note that the retval will be
1290 * 0 since no piece of kernel is supposed to do a check
1291 * for a negative retval of schedule_timeout() (since it
1292 * should never happens anyway). You just have the printk()
1293 * that will tell you if something is gone wrong and where.
1294 */
5b149bcc 1295 if (timeout < 0) {
1da177e4 1296 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1297 "value %lx\n", timeout);
1298 dump_stack();
1da177e4
LT
1299 current->state = TASK_RUNNING;
1300 goto out;
1301 }
1302 }
1303
1304 expire = timeout + jiffies;
1305
c6f3a97f 1306 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
74019224 1307 __mod_timer(&timer, expire, false);
1da177e4
LT
1308 schedule();
1309 del_singleshot_timer_sync(&timer);
1310
c6f3a97f
TG
1311 /* Remove the timer from the object tracker */
1312 destroy_timer_on_stack(&timer);
1313
1da177e4
LT
1314 timeout = expire - jiffies;
1315
1316 out:
1317 return timeout < 0 ? 0 : timeout;
1318}
1da177e4
LT
1319EXPORT_SYMBOL(schedule_timeout);
1320
8a1c1757
AM
1321/*
1322 * We can use __set_current_state() here because schedule_timeout() calls
1323 * schedule() unconditionally.
1324 */
64ed93a2
NA
1325signed long __sched schedule_timeout_interruptible(signed long timeout)
1326{
a5a0d52c
AM
1327 __set_current_state(TASK_INTERRUPTIBLE);
1328 return schedule_timeout(timeout);
64ed93a2
NA
1329}
1330EXPORT_SYMBOL(schedule_timeout_interruptible);
1331
294d5cc2
MW
1332signed long __sched schedule_timeout_killable(signed long timeout)
1333{
1334 __set_current_state(TASK_KILLABLE);
1335 return schedule_timeout(timeout);
1336}
1337EXPORT_SYMBOL(schedule_timeout_killable);
1338
64ed93a2
NA
1339signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1340{
a5a0d52c
AM
1341 __set_current_state(TASK_UNINTERRUPTIBLE);
1342 return schedule_timeout(timeout);
64ed93a2
NA
1343}
1344EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1345
1da177e4 1346/* Thread ID - the internal kernel "pid" */
58fd3aa2 1347SYSCALL_DEFINE0(gettid)
1da177e4 1348{
b488893a 1349 return task_pid_vnr(current);
1da177e4
LT
1350}
1351
2aae4a10 1352/**
d4d23add 1353 * do_sysinfo - fill in sysinfo struct
2aae4a10 1354 * @info: pointer to buffer to fill
6819457d 1355 */
d4d23add 1356int do_sysinfo(struct sysinfo *info)
1da177e4 1357{
1da177e4
LT
1358 unsigned long mem_total, sav_total;
1359 unsigned int mem_unit, bitcount;
1360 unsigned long seq;
1361
d4d23add 1362 memset(info, 0, sizeof(struct sysinfo));
1da177e4
LT
1363
1364 do {
1365 struct timespec tp;
1366 seq = read_seqbegin(&xtime_lock);
1367
1368 /*
1369 * This is annoying. The below is the same thing
1370 * posix_get_clock_monotonic() does, but it wants to
1371 * take the lock which we want to cover the loads stuff
1372 * too.
1373 */
1374
1375 getnstimeofday(&tp);
1376 tp.tv_sec += wall_to_monotonic.tv_sec;
1377 tp.tv_nsec += wall_to_monotonic.tv_nsec;
d6214141 1378 monotonic_to_bootbased(&tp);
1da177e4
LT
1379 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1380 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1381 tp.tv_sec++;
1382 }
d4d23add 1383 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1384
d4d23add
KM
1385 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1386 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1387 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1da177e4 1388
d4d23add 1389 info->procs = nr_threads;
1da177e4
LT
1390 } while (read_seqretry(&xtime_lock, seq));
1391
d4d23add
KM
1392 si_meminfo(info);
1393 si_swapinfo(info);
1da177e4
LT
1394
1395 /*
1396 * If the sum of all the available memory (i.e. ram + swap)
1397 * is less than can be stored in a 32 bit unsigned long then
1398 * we can be binary compatible with 2.2.x kernels. If not,
1399 * well, in that case 2.2.x was broken anyways...
1400 *
1401 * -Erik Andersen <andersee@debian.org>
1402 */
1403
d4d23add
KM
1404 mem_total = info->totalram + info->totalswap;
1405 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1406 goto out;
1407 bitcount = 0;
d4d23add 1408 mem_unit = info->mem_unit;
1da177e4
LT
1409 while (mem_unit > 1) {
1410 bitcount++;
1411 mem_unit >>= 1;
1412 sav_total = mem_total;
1413 mem_total <<= 1;
1414 if (mem_total < sav_total)
1415 goto out;
1416 }
1417
1418 /*
1419 * If mem_total did not overflow, multiply all memory values by
d4d23add 1420 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1421 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1422 * kernels...
1423 */
1424
d4d23add
KM
1425 info->mem_unit = 1;
1426 info->totalram <<= bitcount;
1427 info->freeram <<= bitcount;
1428 info->sharedram <<= bitcount;
1429 info->bufferram <<= bitcount;
1430 info->totalswap <<= bitcount;
1431 info->freeswap <<= bitcount;
1432 info->totalhigh <<= bitcount;
1433 info->freehigh <<= bitcount;
1434
1435out:
1436 return 0;
1437}
1438
1e7bfb21 1439SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1440{
1441 struct sysinfo val;
1442
1443 do_sysinfo(&val);
1da177e4 1444
1da177e4
LT
1445 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1446 return -EFAULT;
1447
1448 return 0;
1449}
1450
b4be6258 1451static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1452{
1453 int j;
a6fa8e5a 1454 struct tvec_base *base;
b4be6258 1455 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1456
ba6edfcd 1457 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1458 static char boot_done;
1459
a4a6198b 1460 if (boot_done) {
ba6edfcd
AM
1461 /*
1462 * The APs use this path later in boot
1463 */
94f6030c
CL
1464 base = kmalloc_node(sizeof(*base),
1465 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1466 cpu_to_node(cpu));
1467 if (!base)
1468 return -ENOMEM;
6e453a67
VP
1469
1470 /* Make sure that tvec_base is 2 byte aligned */
1471 if (tbase_get_deferrable(base)) {
1472 WARN_ON(1);
1473 kfree(base);
1474 return -ENOMEM;
1475 }
ba6edfcd 1476 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1477 } else {
ba6edfcd
AM
1478 /*
1479 * This is for the boot CPU - we use compile-time
1480 * static initialisation because per-cpu memory isn't
1481 * ready yet and because the memory allocators are not
1482 * initialised either.
1483 */
a4a6198b 1484 boot_done = 1;
ba6edfcd 1485 base = &boot_tvec_bases;
a4a6198b 1486 }
ba6edfcd
AM
1487 tvec_base_done[cpu] = 1;
1488 } else {
1489 base = per_cpu(tvec_bases, cpu);
a4a6198b 1490 }
ba6edfcd 1491
3691c519 1492 spin_lock_init(&base->lock);
d730e882 1493
1da177e4
LT
1494 for (j = 0; j < TVN_SIZE; j++) {
1495 INIT_LIST_HEAD(base->tv5.vec + j);
1496 INIT_LIST_HEAD(base->tv4.vec + j);
1497 INIT_LIST_HEAD(base->tv3.vec + j);
1498 INIT_LIST_HEAD(base->tv2.vec + j);
1499 }
1500 for (j = 0; j < TVR_SIZE; j++)
1501 INIT_LIST_HEAD(base->tv1.vec + j);
1502
1503 base->timer_jiffies = jiffies;
a4a6198b 1504 return 0;
1da177e4
LT
1505}
1506
1507#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1508static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1509{
1510 struct timer_list *timer;
1511
1512 while (!list_empty(head)) {
b5e61818 1513 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1514 detach_timer(timer, 0);
6e453a67 1515 timer_set_base(timer, new_base);
1da177e4 1516 internal_add_timer(new_base, timer);
1da177e4 1517 }
1da177e4
LT
1518}
1519
48ccf3da 1520static void __cpuinit migrate_timers(int cpu)
1da177e4 1521{
a6fa8e5a
PM
1522 struct tvec_base *old_base;
1523 struct tvec_base *new_base;
1da177e4
LT
1524 int i;
1525
1526 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1527 old_base = per_cpu(tvec_bases, cpu);
1528 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1529 /*
1530 * The caller is globally serialized and nobody else
1531 * takes two locks at once, deadlock is not possible.
1532 */
1533 spin_lock_irq(&new_base->lock);
0d180406 1534 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1535
1536 BUG_ON(old_base->running_timer);
1da177e4 1537
1da177e4 1538 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1539 migrate_timer_list(new_base, old_base->tv1.vec + i);
1540 for (i = 0; i < TVN_SIZE; i++) {
1541 migrate_timer_list(new_base, old_base->tv2.vec + i);
1542 migrate_timer_list(new_base, old_base->tv3.vec + i);
1543 migrate_timer_list(new_base, old_base->tv4.vec + i);
1544 migrate_timer_list(new_base, old_base->tv5.vec + i);
1545 }
1546
0d180406 1547 spin_unlock(&old_base->lock);
d82f0b0f 1548 spin_unlock_irq(&new_base->lock);
1da177e4 1549 put_cpu_var(tvec_bases);
1da177e4
LT
1550}
1551#endif /* CONFIG_HOTPLUG_CPU */
1552
8c78f307 1553static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1554 unsigned long action, void *hcpu)
1555{
1556 long cpu = (long)hcpu;
1557 switch(action) {
1558 case CPU_UP_PREPARE:
8bb78442 1559 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1560 if (init_timers_cpu(cpu) < 0)
1561 return NOTIFY_BAD;
1da177e4
LT
1562 break;
1563#ifdef CONFIG_HOTPLUG_CPU
1564 case CPU_DEAD:
8bb78442 1565 case CPU_DEAD_FROZEN:
1da177e4
LT
1566 migrate_timers(cpu);
1567 break;
1568#endif
1569 default:
1570 break;
1571 }
1572 return NOTIFY_OK;
1573}
1574
8c78f307 1575static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1576 .notifier_call = timer_cpu_notify,
1577};
1578
1579
1580void __init init_timers(void)
1581{
07dccf33 1582 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1583 (void *)(long)smp_processor_id());
07dccf33 1584
82f67cd9
IM
1585 init_timer_stats();
1586
07dccf33 1587 BUG_ON(err == NOTIFY_BAD);
1da177e4 1588 register_cpu_notifier(&timers_nb);
962cf36c 1589 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1590}
1591
1da177e4
LT
1592/**
1593 * msleep - sleep safely even with waitqueue interruptions
1594 * @msecs: Time in milliseconds to sleep for
1595 */
1596void msleep(unsigned int msecs)
1597{
1598 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1599
75bcc8c5
NA
1600 while (timeout)
1601 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1602}
1603
1604EXPORT_SYMBOL(msleep);
1605
1606/**
96ec3efd 1607 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1608 * @msecs: Time in milliseconds to sleep for
1609 */
1610unsigned long msleep_interruptible(unsigned int msecs)
1611{
1612 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1613
75bcc8c5
NA
1614 while (timeout && !signal_pending(current))
1615 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1616 return jiffies_to_msecs(timeout);
1617}
1618
1619EXPORT_SYMBOL(msleep_interruptible);