mxser: fix compiler warning when building without CONFIG_PCI
[linux-2.6-block.git] / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
2c622148 33#include <linux/clocksource.h>
1da177e4 34#include <linux/errno.h>
1da177e4
LT
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
40#include <asm/unistd.h>
41
42/*
43 * The timezone where the local system is located. Used as a default by some
44 * programs who obtain this value by using gettimeofday.
45 */
46struct timezone sys_tz;
47
48EXPORT_SYMBOL(sys_tz);
49
50#ifdef __ARCH_WANT_SYS_TIME
51
52/*
53 * sys_time() can be implemented in user-level using
54 * sys_gettimeofday(). Is this for backwards compatibility? If so,
55 * why not move it into the appropriate arch directory (for those
56 * architectures that need it).
57 */
58asmlinkage long sys_time(time_t __user * tloc)
59{
f20bf612 60 time_t i = get_seconds();
1da177e4
LT
61
62 if (tloc) {
20082208 63 if (put_user(i,tloc))
1da177e4
LT
64 i = -EFAULT;
65 }
66 return i;
67}
68
69/*
70 * sys_stime() can be implemented in user-level using
71 * sys_settimeofday(). Is this for backwards compatibility? If so,
72 * why not move it into the appropriate arch directory (for those
73 * architectures that need it).
74 */
75
76asmlinkage long sys_stime(time_t __user *tptr)
77{
78 struct timespec tv;
79 int err;
80
81 if (get_user(tv.tv_sec, tptr))
82 return -EFAULT;
83
84 tv.tv_nsec = 0;
85
86 err = security_settime(&tv, NULL);
87 if (err)
88 return err;
89
90 do_settimeofday(&tv);
91 return 0;
92}
93
94#endif /* __ARCH_WANT_SYS_TIME */
95
96asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
97{
98 if (likely(tv != NULL)) {
99 struct timeval ktv;
100 do_gettimeofday(&ktv);
101 if (copy_to_user(tv, &ktv, sizeof(ktv)))
102 return -EFAULT;
103 }
104 if (unlikely(tz != NULL)) {
105 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
106 return -EFAULT;
107 }
108 return 0;
109}
110
111/*
112 * Adjust the time obtained from the CMOS to be UTC time instead of
113 * local time.
114 *
115 * This is ugly, but preferable to the alternatives. Otherwise we
116 * would either need to write a program to do it in /etc/rc (and risk
117 * confusion if the program gets run more than once; it would also be
118 * hard to make the program warp the clock precisely n hours) or
119 * compile in the timezone information into the kernel. Bad, bad....
120 *
121 * - TYT, 1992-01-01
122 *
123 * The best thing to do is to keep the CMOS clock in universal time (UTC)
124 * as real UNIX machines always do it. This avoids all headaches about
125 * daylight saving times and warping kernel clocks.
126 */
77933d72 127static inline void warp_clock(void)
1da177e4
LT
128{
129 write_seqlock_irq(&xtime_lock);
130 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
131 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
1da177e4
LT
132 write_sequnlock_irq(&xtime_lock);
133 clock_was_set();
134}
135
136/*
137 * In case for some reason the CMOS clock has not already been running
138 * in UTC, but in some local time: The first time we set the timezone,
139 * we will warp the clock so that it is ticking UTC time instead of
140 * local time. Presumably, if someone is setting the timezone then we
141 * are running in an environment where the programs understand about
142 * timezones. This should be done at boot time in the /etc/rc script,
143 * as soon as possible, so that the clock can be set right. Otherwise,
144 * various programs will get confused when the clock gets warped.
145 */
146
147int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
148{
149 static int firsttime = 1;
150 int error = 0;
151
951069e3 152 if (tv && !timespec_valid(tv))
718bcceb
TG
153 return -EINVAL;
154
1da177e4
LT
155 error = security_settime(tv, tz);
156 if (error)
157 return error;
158
159 if (tz) {
160 /* SMP safe, global irq locking makes it work. */
161 sys_tz = *tz;
2c622148 162 update_vsyscall_tz();
1da177e4
LT
163 if (firsttime) {
164 firsttime = 0;
165 if (!tv)
166 warp_clock();
167 }
168 }
169 if (tv)
170 {
171 /* SMP safe, again the code in arch/foo/time.c should
172 * globally block out interrupts when it runs.
173 */
174 return do_settimeofday(tv);
175 }
176 return 0;
177}
178
179asmlinkage long sys_settimeofday(struct timeval __user *tv,
180 struct timezone __user *tz)
181{
182 struct timeval user_tv;
183 struct timespec new_ts;
184 struct timezone new_tz;
185
186 if (tv) {
187 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
188 return -EFAULT;
189 new_ts.tv_sec = user_tv.tv_sec;
190 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
191 }
192 if (tz) {
193 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
194 return -EFAULT;
195 }
196
197 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
198}
199
1da177e4
LT
200asmlinkage long sys_adjtimex(struct timex __user *txc_p)
201{
202 struct timex txc; /* Local copy of parameter */
203 int ret;
204
205 /* Copy the user data space into the kernel copy
206 * structure. But bear in mind that the structures
207 * may change
208 */
209 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
210 return -EFAULT;
211 ret = do_adjtimex(&txc);
212 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
213}
214
1da177e4
LT
215/**
216 * current_fs_time - Return FS time
217 * @sb: Superblock.
218 *
8ba8e95e 219 * Return the current time truncated to the time granularity supported by
1da177e4
LT
220 * the fs.
221 */
222struct timespec current_fs_time(struct super_block *sb)
223{
224 struct timespec now = current_kernel_time();
225 return timespec_trunc(now, sb->s_time_gran);
226}
227EXPORT_SYMBOL(current_fs_time);
228
753e9c5c
ED
229/*
230 * Convert jiffies to milliseconds and back.
231 *
232 * Avoid unnecessary multiplications/divisions in the
233 * two most common HZ cases:
234 */
235unsigned int inline jiffies_to_msecs(const unsigned long j)
236{
237#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
238 return (MSEC_PER_SEC / HZ) * j;
239#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
240 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
241#else
242 return (j * MSEC_PER_SEC) / HZ;
243#endif
244}
245EXPORT_SYMBOL(jiffies_to_msecs);
246
247unsigned int inline jiffies_to_usecs(const unsigned long j)
248{
249#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
250 return (USEC_PER_SEC / HZ) * j;
251#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
252 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
253#else
254 return (j * USEC_PER_SEC) / HZ;
255#endif
256}
257EXPORT_SYMBOL(jiffies_to_usecs);
258
1da177e4 259/**
8ba8e95e 260 * timespec_trunc - Truncate timespec to a granularity
1da177e4 261 * @t: Timespec
8ba8e95e 262 * @gran: Granularity in ns.
1da177e4 263 *
8ba8e95e 264 * Truncate a timespec to a granularity. gran must be smaller than a second.
1da177e4
LT
265 * Always rounds down.
266 *
267 * This function should be only used for timestamps returned by
268 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
269 * it doesn't handle the better resolution of the later.
270 */
271struct timespec timespec_trunc(struct timespec t, unsigned gran)
272{
273 /*
274 * Division is pretty slow so avoid it for common cases.
275 * Currently current_kernel_time() never returns better than
276 * jiffies resolution. Exploit that.
277 */
278 if (gran <= jiffies_to_usecs(1) * 1000) {
279 /* nothing */
280 } else if (gran == 1000000000) {
281 t.tv_nsec = 0;
282 } else {
283 t.tv_nsec -= t.tv_nsec % gran;
284 }
285 return t;
286}
287EXPORT_SYMBOL(timespec_trunc);
288
cf3c769b 289#ifndef CONFIG_GENERIC_TIME
1da177e4
LT
290/*
291 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
292 * and therefore only yields usec accuracy
293 */
294void getnstimeofday(struct timespec *tv)
295{
296 struct timeval x;
297
298 do_gettimeofday(&x);
299 tv->tv_sec = x.tv_sec;
300 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
301}
c6ecf7ed 302EXPORT_SYMBOL_GPL(getnstimeofday);
1da177e4
LT
303#endif
304
753be622
TG
305/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
306 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
307 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
308 *
309 * [For the Julian calendar (which was used in Russia before 1917,
310 * Britain & colonies before 1752, anywhere else before 1582,
311 * and is still in use by some communities) leave out the
312 * -year/100+year/400 terms, and add 10.]
313 *
314 * This algorithm was first published by Gauss (I think).
315 *
316 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
317 * machines were long is 32-bit! (However, as time_t is signed, we
318 * will already get problems at other places on 2038-01-19 03:14:08)
319 */
320unsigned long
f4818900
IM
321mktime(const unsigned int year0, const unsigned int mon0,
322 const unsigned int day, const unsigned int hour,
323 const unsigned int min, const unsigned int sec)
753be622 324{
f4818900
IM
325 unsigned int mon = mon0, year = year0;
326
327 /* 1..12 -> 11,12,1..10 */
328 if (0 >= (int) (mon -= 2)) {
329 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
330 year -= 1;
331 }
332
333 return ((((unsigned long)
334 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
335 year*365 - 719499
336 )*24 + hour /* now have hours */
337 )*60 + min /* now have minutes */
338 )*60 + sec; /* finally seconds */
339}
340
199e7056
AM
341EXPORT_SYMBOL(mktime);
342
753be622
TG
343/**
344 * set_normalized_timespec - set timespec sec and nsec parts and normalize
345 *
346 * @ts: pointer to timespec variable to be set
347 * @sec: seconds to set
348 * @nsec: nanoseconds to set
349 *
350 * Set seconds and nanoseconds field of a timespec variable and
351 * normalize to the timespec storage format
352 *
353 * Note: The tv_nsec part is always in the range of
354 * 0 <= tv_nsec < NSEC_PER_SEC
355 * For negative values only the tv_sec field is negative !
356 */
f4818900 357void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
753be622
TG
358{
359 while (nsec >= NSEC_PER_SEC) {
360 nsec -= NSEC_PER_SEC;
361 ++sec;
362 }
363 while (nsec < 0) {
364 nsec += NSEC_PER_SEC;
365 --sec;
366 }
367 ts->tv_sec = sec;
368 ts->tv_nsec = nsec;
369}
370
f8f46da3
TG
371/**
372 * ns_to_timespec - Convert nanoseconds to timespec
373 * @nsec: the nanoseconds value to be converted
374 *
375 * Returns the timespec representation of the nsec parameter.
376 */
df869b63 377struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
378{
379 struct timespec ts;
380
88fc3897
GA
381 if (!nsec)
382 return (struct timespec) {0, 0};
383
384 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
385 if (unlikely(nsec < 0))
386 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
f8f46da3
TG
387
388 return ts;
389}
85795d64 390EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
391
392/**
393 * ns_to_timeval - Convert nanoseconds to timeval
394 * @nsec: the nanoseconds value to be converted
395 *
396 * Returns the timeval representation of the nsec parameter.
397 */
df869b63 398struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
399{
400 struct timespec ts = ns_to_timespec(nsec);
401 struct timeval tv;
402
403 tv.tv_sec = ts.tv_sec;
404 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
405
406 return tv;
407}
b7aa0bf7 408EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 409
41cf5445
IM
410/*
411 * When we convert to jiffies then we interpret incoming values
412 * the following way:
413 *
414 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
415 *
416 * - 'too large' values [that would result in larger than
417 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
418 *
419 * - all other values are converted to jiffies by either multiplying
420 * the input value by a factor or dividing it with a factor
421 *
422 * We must also be careful about 32-bit overflows.
423 */
8b9365d7
IM
424unsigned long msecs_to_jiffies(const unsigned int m)
425{
41cf5445
IM
426 /*
427 * Negative value, means infinite timeout:
428 */
429 if ((int)m < 0)
8b9365d7 430 return MAX_JIFFY_OFFSET;
41cf5445 431
8b9365d7 432#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
41cf5445
IM
433 /*
434 * HZ is equal to or smaller than 1000, and 1000 is a nice
435 * round multiple of HZ, divide with the factor between them,
436 * but round upwards:
437 */
8b9365d7
IM
438 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
439#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
41cf5445
IM
440 /*
441 * HZ is larger than 1000, and HZ is a nice round multiple of
442 * 1000 - simply multiply with the factor between them.
443 *
444 * But first make sure the multiplication result cannot
445 * overflow:
446 */
447 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
448 return MAX_JIFFY_OFFSET;
449
8b9365d7
IM
450 return m * (HZ / MSEC_PER_SEC);
451#else
41cf5445
IM
452 /*
453 * Generic case - multiply, round and divide. But first
454 * check that if we are doing a net multiplication, that
455 * we wouldnt overflow:
456 */
457 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
458 return MAX_JIFFY_OFFSET;
459
8b9365d7
IM
460 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
461#endif
462}
463EXPORT_SYMBOL(msecs_to_jiffies);
464
465unsigned long usecs_to_jiffies(const unsigned int u)
466{
467 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
468 return MAX_JIFFY_OFFSET;
469#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
470 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
471#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
472 return u * (HZ / USEC_PER_SEC);
473#else
474 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
475#endif
476}
477EXPORT_SYMBOL(usecs_to_jiffies);
478
479/*
480 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
481 * that a remainder subtract here would not do the right thing as the
482 * resolution values don't fall on second boundries. I.e. the line:
483 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
484 *
485 * Rather, we just shift the bits off the right.
486 *
487 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
488 * value to a scaled second value.
489 */
490unsigned long
491timespec_to_jiffies(const struct timespec *value)
492{
493 unsigned long sec = value->tv_sec;
494 long nsec = value->tv_nsec + TICK_NSEC - 1;
495
496 if (sec >= MAX_SEC_IN_JIFFIES){
497 sec = MAX_SEC_IN_JIFFIES;
498 nsec = 0;
499 }
500 return (((u64)sec * SEC_CONVERSION) +
501 (((u64)nsec * NSEC_CONVERSION) >>
502 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
503
504}
505EXPORT_SYMBOL(timespec_to_jiffies);
506
507void
508jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
509{
510 /*
511 * Convert jiffies to nanoseconds and separate with
512 * one divide.
513 */
514 u64 nsec = (u64)jiffies * TICK_NSEC;
515 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
516}
517EXPORT_SYMBOL(jiffies_to_timespec);
518
519/* Same for "timeval"
520 *
521 * Well, almost. The problem here is that the real system resolution is
522 * in nanoseconds and the value being converted is in micro seconds.
523 * Also for some machines (those that use HZ = 1024, in-particular),
524 * there is a LARGE error in the tick size in microseconds.
525
526 * The solution we use is to do the rounding AFTER we convert the
527 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
528 * Instruction wise, this should cost only an additional add with carry
529 * instruction above the way it was done above.
530 */
531unsigned long
532timeval_to_jiffies(const struct timeval *value)
533{
534 unsigned long sec = value->tv_sec;
535 long usec = value->tv_usec;
536
537 if (sec >= MAX_SEC_IN_JIFFIES){
538 sec = MAX_SEC_IN_JIFFIES;
539 usec = 0;
540 }
541 return (((u64)sec * SEC_CONVERSION) +
542 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
543 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
544}
456a09dc 545EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
546
547void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
548{
549 /*
550 * Convert jiffies to nanoseconds and separate with
551 * one divide.
552 */
553 u64 nsec = (u64)jiffies * TICK_NSEC;
554 long tv_usec;
555
556 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
557 tv_usec /= NSEC_PER_USEC;
558 value->tv_usec = tv_usec;
559}
456a09dc 560EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
561
562/*
563 * Convert jiffies/jiffies_64 to clock_t and back.
564 */
565clock_t jiffies_to_clock_t(long x)
566{
567#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
568 return x / (HZ / USER_HZ);
569#else
570 u64 tmp = (u64)x * TICK_NSEC;
571 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
572 return (long)tmp;
573#endif
574}
575EXPORT_SYMBOL(jiffies_to_clock_t);
576
577unsigned long clock_t_to_jiffies(unsigned long x)
578{
579#if (HZ % USER_HZ)==0
580 if (x >= ~0UL / (HZ / USER_HZ))
581 return ~0UL;
582 return x * (HZ / USER_HZ);
583#else
584 u64 jif;
585
586 /* Don't worry about loss of precision here .. */
587 if (x >= ~0UL / HZ * USER_HZ)
588 return ~0UL;
589
590 /* .. but do try to contain it here */
591 jif = x * (u64) HZ;
592 do_div(jif, USER_HZ);
593 return jif;
594#endif
595}
596EXPORT_SYMBOL(clock_t_to_jiffies);
597
598u64 jiffies_64_to_clock_t(u64 x)
599{
600#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
601 do_div(x, HZ / USER_HZ);
602#else
603 /*
604 * There are better ways that don't overflow early,
605 * but even this doesn't overflow in hundreds of years
606 * in 64 bits, so..
607 */
608 x *= TICK_NSEC;
609 do_div(x, (NSEC_PER_SEC / USER_HZ));
610#endif
611 return x;
612}
613
614EXPORT_SYMBOL(jiffies_64_to_clock_t);
615
616u64 nsec_to_clock_t(u64 x)
617{
618#if (NSEC_PER_SEC % USER_HZ) == 0
619 do_div(x, (NSEC_PER_SEC / USER_HZ));
620#elif (USER_HZ % 512) == 0
621 x *= USER_HZ/512;
622 do_div(x, (NSEC_PER_SEC / 512));
623#else
624 /*
625 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
626 * overflow after 64.99 years.
627 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
628 */
629 x *= 9;
630 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
631 USER_HZ));
632#endif
633 return x;
634}
635
1da177e4
LT
636#if (BITS_PER_LONG < 64)
637u64 get_jiffies_64(void)
638{
639 unsigned long seq;
640 u64 ret;
641
642 do {
643 seq = read_seqbegin(&xtime_lock);
644 ret = jiffies_64;
645 } while (read_seqretry(&xtime_lock, seq));
646 return ret;
647}
648
649EXPORT_SYMBOL(get_jiffies_64);
650#endif
651
652EXPORT_SYMBOL(jiffies);