Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/time.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | * | |
6 | * This file contains the interface functions for the various | |
7 | * time related system calls: time, stime, gettimeofday, settimeofday, | |
8 | * adjtime | |
9 | */ | |
10 | /* | |
11 | * Modification history kernel/time.c | |
6fa6c3b1 | 12 | * |
1da177e4 | 13 | * 1993-09-02 Philip Gladstone |
0a0fca9d | 14 | * Created file with time related functions from sched/core.c and adjtimex() |
1da177e4 LT |
15 | * 1993-10-08 Torsten Duwe |
16 | * adjtime interface update and CMOS clock write code | |
17 | * 1995-08-13 Torsten Duwe | |
18 | * kernel PLL updated to 1994-12-13 specs (rfc-1589) | |
19 | * 1999-01-16 Ulrich Windl | |
20 | * Introduced error checking for many cases in adjtimex(). | |
21 | * Updated NTP code according to technical memorandum Jan '96 | |
22 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | |
23 | * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) | |
24 | * (Even though the technical memorandum forbids it) | |
25 | * 2004-07-14 Christoph Lameter | |
26 | * Added getnstimeofday to allow the posix timer functions to return | |
27 | * with nanosecond accuracy | |
28 | */ | |
29 | ||
9984de1a | 30 | #include <linux/export.h> |
1da177e4 | 31 | #include <linux/timex.h> |
c59ede7b | 32 | #include <linux/capability.h> |
189374ae | 33 | #include <linux/timekeeper_internal.h> |
1da177e4 | 34 | #include <linux/errno.h> |
1da177e4 LT |
35 | #include <linux/syscalls.h> |
36 | #include <linux/security.h> | |
37 | #include <linux/fs.h> | |
71abb3af | 38 | #include <linux/math64.h> |
e3d5a27d | 39 | #include <linux/ptrace.h> |
1da177e4 LT |
40 | |
41 | #include <asm/uaccess.h> | |
42 | #include <asm/unistd.h> | |
43 | ||
bdc80787 PA |
44 | #include "timeconst.h" |
45 | ||
6fa6c3b1 | 46 | /* |
1da177e4 LT |
47 | * The timezone where the local system is located. Used as a default by some |
48 | * programs who obtain this value by using gettimeofday. | |
49 | */ | |
50 | struct timezone sys_tz; | |
51 | ||
52 | EXPORT_SYMBOL(sys_tz); | |
53 | ||
54 | #ifdef __ARCH_WANT_SYS_TIME | |
55 | ||
56 | /* | |
57 | * sys_time() can be implemented in user-level using | |
58 | * sys_gettimeofday(). Is this for backwards compatibility? If so, | |
59 | * why not move it into the appropriate arch directory (for those | |
60 | * architectures that need it). | |
61 | */ | |
58fd3aa2 | 62 | SYSCALL_DEFINE1(time, time_t __user *, tloc) |
1da177e4 | 63 | { |
f20bf612 | 64 | time_t i = get_seconds(); |
1da177e4 LT |
65 | |
66 | if (tloc) { | |
20082208 | 67 | if (put_user(i,tloc)) |
e3d5a27d | 68 | return -EFAULT; |
1da177e4 | 69 | } |
e3d5a27d | 70 | force_successful_syscall_return(); |
1da177e4 LT |
71 | return i; |
72 | } | |
73 | ||
74 | /* | |
75 | * sys_stime() can be implemented in user-level using | |
76 | * sys_settimeofday(). Is this for backwards compatibility? If so, | |
77 | * why not move it into the appropriate arch directory (for those | |
78 | * architectures that need it). | |
79 | */ | |
6fa6c3b1 | 80 | |
58fd3aa2 | 81 | SYSCALL_DEFINE1(stime, time_t __user *, tptr) |
1da177e4 LT |
82 | { |
83 | struct timespec tv; | |
84 | int err; | |
85 | ||
86 | if (get_user(tv.tv_sec, tptr)) | |
87 | return -EFAULT; | |
88 | ||
89 | tv.tv_nsec = 0; | |
90 | ||
91 | err = security_settime(&tv, NULL); | |
92 | if (err) | |
93 | return err; | |
94 | ||
95 | do_settimeofday(&tv); | |
96 | return 0; | |
97 | } | |
98 | ||
99 | #endif /* __ARCH_WANT_SYS_TIME */ | |
100 | ||
58fd3aa2 HC |
101 | SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, |
102 | struct timezone __user *, tz) | |
1da177e4 LT |
103 | { |
104 | if (likely(tv != NULL)) { | |
105 | struct timeval ktv; | |
106 | do_gettimeofday(&ktv); | |
107 | if (copy_to_user(tv, &ktv, sizeof(ktv))) | |
108 | return -EFAULT; | |
109 | } | |
110 | if (unlikely(tz != NULL)) { | |
111 | if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) | |
112 | return -EFAULT; | |
113 | } | |
114 | return 0; | |
115 | } | |
116 | ||
84e345e4 PB |
117 | /* |
118 | * Indicates if there is an offset between the system clock and the hardware | |
119 | * clock/persistent clock/rtc. | |
120 | */ | |
121 | int persistent_clock_is_local; | |
122 | ||
1da177e4 LT |
123 | /* |
124 | * Adjust the time obtained from the CMOS to be UTC time instead of | |
125 | * local time. | |
6fa6c3b1 | 126 | * |
1da177e4 LT |
127 | * This is ugly, but preferable to the alternatives. Otherwise we |
128 | * would either need to write a program to do it in /etc/rc (and risk | |
6fa6c3b1 | 129 | * confusion if the program gets run more than once; it would also be |
1da177e4 LT |
130 | * hard to make the program warp the clock precisely n hours) or |
131 | * compile in the timezone information into the kernel. Bad, bad.... | |
132 | * | |
bdc80787 | 133 | * - TYT, 1992-01-01 |
1da177e4 LT |
134 | * |
135 | * The best thing to do is to keep the CMOS clock in universal time (UTC) | |
136 | * as real UNIX machines always do it. This avoids all headaches about | |
137 | * daylight saving times and warping kernel clocks. | |
138 | */ | |
77933d72 | 139 | static inline void warp_clock(void) |
1da177e4 | 140 | { |
c30bd099 DZ |
141 | if (sys_tz.tz_minuteswest != 0) { |
142 | struct timespec adjust; | |
bd45b7a3 | 143 | |
84e345e4 | 144 | persistent_clock_is_local = 1; |
7859e404 JS |
145 | adjust.tv_sec = sys_tz.tz_minuteswest * 60; |
146 | adjust.tv_nsec = 0; | |
147 | timekeeping_inject_offset(&adjust); | |
c30bd099 | 148 | } |
1da177e4 LT |
149 | } |
150 | ||
151 | /* | |
152 | * In case for some reason the CMOS clock has not already been running | |
153 | * in UTC, but in some local time: The first time we set the timezone, | |
154 | * we will warp the clock so that it is ticking UTC time instead of | |
155 | * local time. Presumably, if someone is setting the timezone then we | |
156 | * are running in an environment where the programs understand about | |
157 | * timezones. This should be done at boot time in the /etc/rc script, | |
158 | * as soon as possible, so that the clock can be set right. Otherwise, | |
159 | * various programs will get confused when the clock gets warped. | |
160 | */ | |
161 | ||
1e6d7679 | 162 | int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz) |
1da177e4 LT |
163 | { |
164 | static int firsttime = 1; | |
165 | int error = 0; | |
166 | ||
951069e3 | 167 | if (tv && !timespec_valid(tv)) |
718bcceb TG |
168 | return -EINVAL; |
169 | ||
1da177e4 LT |
170 | error = security_settime(tv, tz); |
171 | if (error) | |
172 | return error; | |
173 | ||
174 | if (tz) { | |
1da177e4 | 175 | sys_tz = *tz; |
2c622148 | 176 | update_vsyscall_tz(); |
1da177e4 LT |
177 | if (firsttime) { |
178 | firsttime = 0; | |
179 | if (!tv) | |
180 | warp_clock(); | |
181 | } | |
182 | } | |
183 | if (tv) | |
1da177e4 | 184 | return do_settimeofday(tv); |
1da177e4 LT |
185 | return 0; |
186 | } | |
187 | ||
58fd3aa2 HC |
188 | SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv, |
189 | struct timezone __user *, tz) | |
1da177e4 LT |
190 | { |
191 | struct timeval user_tv; | |
192 | struct timespec new_ts; | |
193 | struct timezone new_tz; | |
194 | ||
195 | if (tv) { | |
196 | if (copy_from_user(&user_tv, tv, sizeof(*tv))) | |
197 | return -EFAULT; | |
198 | new_ts.tv_sec = user_tv.tv_sec; | |
199 | new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; | |
200 | } | |
201 | if (tz) { | |
202 | if (copy_from_user(&new_tz, tz, sizeof(*tz))) | |
203 | return -EFAULT; | |
204 | } | |
205 | ||
206 | return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); | |
207 | } | |
208 | ||
58fd3aa2 | 209 | SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p) |
1da177e4 LT |
210 | { |
211 | struct timex txc; /* Local copy of parameter */ | |
212 | int ret; | |
213 | ||
214 | /* Copy the user data space into the kernel copy | |
215 | * structure. But bear in mind that the structures | |
216 | * may change | |
217 | */ | |
218 | if(copy_from_user(&txc, txc_p, sizeof(struct timex))) | |
219 | return -EFAULT; | |
220 | ret = do_adjtimex(&txc); | |
221 | return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; | |
222 | } | |
223 | ||
1da177e4 LT |
224 | /** |
225 | * current_fs_time - Return FS time | |
226 | * @sb: Superblock. | |
227 | * | |
8ba8e95e | 228 | * Return the current time truncated to the time granularity supported by |
1da177e4 LT |
229 | * the fs. |
230 | */ | |
231 | struct timespec current_fs_time(struct super_block *sb) | |
232 | { | |
233 | struct timespec now = current_kernel_time(); | |
234 | return timespec_trunc(now, sb->s_time_gran); | |
235 | } | |
236 | EXPORT_SYMBOL(current_fs_time); | |
237 | ||
753e9c5c ED |
238 | /* |
239 | * Convert jiffies to milliseconds and back. | |
240 | * | |
241 | * Avoid unnecessary multiplications/divisions in the | |
242 | * two most common HZ cases: | |
243 | */ | |
af3b5628 | 244 | unsigned int jiffies_to_msecs(const unsigned long j) |
753e9c5c ED |
245 | { |
246 | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) | |
247 | return (MSEC_PER_SEC / HZ) * j; | |
248 | #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) | |
249 | return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); | |
250 | #else | |
bdc80787 | 251 | # if BITS_PER_LONG == 32 |
b9095fd8 | 252 | return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32; |
bdc80787 PA |
253 | # else |
254 | return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN; | |
255 | # endif | |
753e9c5c ED |
256 | #endif |
257 | } | |
258 | EXPORT_SYMBOL(jiffies_to_msecs); | |
259 | ||
af3b5628 | 260 | unsigned int jiffies_to_usecs(const unsigned long j) |
753e9c5c ED |
261 | { |
262 | #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) | |
263 | return (USEC_PER_SEC / HZ) * j; | |
264 | #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) | |
265 | return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC); | |
266 | #else | |
bdc80787 | 267 | # if BITS_PER_LONG == 32 |
b9095fd8 | 268 | return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; |
bdc80787 PA |
269 | # else |
270 | return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; | |
271 | # endif | |
753e9c5c ED |
272 | #endif |
273 | } | |
274 | EXPORT_SYMBOL(jiffies_to_usecs); | |
275 | ||
1da177e4 | 276 | /** |
8ba8e95e | 277 | * timespec_trunc - Truncate timespec to a granularity |
1da177e4 | 278 | * @t: Timespec |
8ba8e95e | 279 | * @gran: Granularity in ns. |
1da177e4 | 280 | * |
8ba8e95e | 281 | * Truncate a timespec to a granularity. gran must be smaller than a second. |
1da177e4 LT |
282 | * Always rounds down. |
283 | * | |
284 | * This function should be only used for timestamps returned by | |
285 | * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because | |
3eb05676 | 286 | * it doesn't handle the better resolution of the latter. |
1da177e4 LT |
287 | */ |
288 | struct timespec timespec_trunc(struct timespec t, unsigned gran) | |
289 | { | |
290 | /* | |
291 | * Division is pretty slow so avoid it for common cases. | |
292 | * Currently current_kernel_time() never returns better than | |
293 | * jiffies resolution. Exploit that. | |
294 | */ | |
295 | if (gran <= jiffies_to_usecs(1) * 1000) { | |
296 | /* nothing */ | |
297 | } else if (gran == 1000000000) { | |
298 | t.tv_nsec = 0; | |
299 | } else { | |
300 | t.tv_nsec -= t.tv_nsec % gran; | |
301 | } | |
302 | return t; | |
303 | } | |
304 | EXPORT_SYMBOL(timespec_trunc); | |
305 | ||
753be622 TG |
306 | /* Converts Gregorian date to seconds since 1970-01-01 00:00:00. |
307 | * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 | |
308 | * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. | |
309 | * | |
310 | * [For the Julian calendar (which was used in Russia before 1917, | |
311 | * Britain & colonies before 1752, anywhere else before 1582, | |
312 | * and is still in use by some communities) leave out the | |
313 | * -year/100+year/400 terms, and add 10.] | |
314 | * | |
315 | * This algorithm was first published by Gauss (I think). | |
316 | * | |
317 | * WARNING: this function will overflow on 2106-02-07 06:28:16 on | |
3eb05676 | 318 | * machines where long is 32-bit! (However, as time_t is signed, we |
753be622 TG |
319 | * will already get problems at other places on 2038-01-19 03:14:08) |
320 | */ | |
321 | unsigned long | |
f4818900 IM |
322 | mktime(const unsigned int year0, const unsigned int mon0, |
323 | const unsigned int day, const unsigned int hour, | |
324 | const unsigned int min, const unsigned int sec) | |
753be622 | 325 | { |
f4818900 IM |
326 | unsigned int mon = mon0, year = year0; |
327 | ||
328 | /* 1..12 -> 11,12,1..10 */ | |
329 | if (0 >= (int) (mon -= 2)) { | |
330 | mon += 12; /* Puts Feb last since it has leap day */ | |
753be622 TG |
331 | year -= 1; |
332 | } | |
333 | ||
334 | return ((((unsigned long) | |
335 | (year/4 - year/100 + year/400 + 367*mon/12 + day) + | |
336 | year*365 - 719499 | |
337 | )*24 + hour /* now have hours */ | |
338 | )*60 + min /* now have minutes */ | |
339 | )*60 + sec; /* finally seconds */ | |
340 | } | |
341 | ||
199e7056 AM |
342 | EXPORT_SYMBOL(mktime); |
343 | ||
753be622 TG |
344 | /** |
345 | * set_normalized_timespec - set timespec sec and nsec parts and normalize | |
346 | * | |
347 | * @ts: pointer to timespec variable to be set | |
348 | * @sec: seconds to set | |
349 | * @nsec: nanoseconds to set | |
350 | * | |
351 | * Set seconds and nanoseconds field of a timespec variable and | |
352 | * normalize to the timespec storage format | |
353 | * | |
354 | * Note: The tv_nsec part is always in the range of | |
bdc80787 | 355 | * 0 <= tv_nsec < NSEC_PER_SEC |
753be622 TG |
356 | * For negative values only the tv_sec field is negative ! |
357 | */ | |
12e09337 | 358 | void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) |
753be622 TG |
359 | { |
360 | while (nsec >= NSEC_PER_SEC) { | |
12e09337 TG |
361 | /* |
362 | * The following asm() prevents the compiler from | |
363 | * optimising this loop into a modulo operation. See | |
364 | * also __iter_div_u64_rem() in include/linux/time.h | |
365 | */ | |
366 | asm("" : "+rm"(nsec)); | |
753be622 TG |
367 | nsec -= NSEC_PER_SEC; |
368 | ++sec; | |
369 | } | |
370 | while (nsec < 0) { | |
12e09337 | 371 | asm("" : "+rm"(nsec)); |
753be622 TG |
372 | nsec += NSEC_PER_SEC; |
373 | --sec; | |
374 | } | |
375 | ts->tv_sec = sec; | |
376 | ts->tv_nsec = nsec; | |
377 | } | |
7c3f944e | 378 | EXPORT_SYMBOL(set_normalized_timespec); |
753be622 | 379 | |
f8f46da3 TG |
380 | /** |
381 | * ns_to_timespec - Convert nanoseconds to timespec | |
382 | * @nsec: the nanoseconds value to be converted | |
383 | * | |
384 | * Returns the timespec representation of the nsec parameter. | |
385 | */ | |
df869b63 | 386 | struct timespec ns_to_timespec(const s64 nsec) |
f8f46da3 TG |
387 | { |
388 | struct timespec ts; | |
f8bd2258 | 389 | s32 rem; |
f8f46da3 | 390 | |
88fc3897 GA |
391 | if (!nsec) |
392 | return (struct timespec) {0, 0}; | |
393 | ||
f8bd2258 RZ |
394 | ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); |
395 | if (unlikely(rem < 0)) { | |
396 | ts.tv_sec--; | |
397 | rem += NSEC_PER_SEC; | |
398 | } | |
399 | ts.tv_nsec = rem; | |
f8f46da3 TG |
400 | |
401 | return ts; | |
402 | } | |
85795d64 | 403 | EXPORT_SYMBOL(ns_to_timespec); |
f8f46da3 TG |
404 | |
405 | /** | |
406 | * ns_to_timeval - Convert nanoseconds to timeval | |
407 | * @nsec: the nanoseconds value to be converted | |
408 | * | |
409 | * Returns the timeval representation of the nsec parameter. | |
410 | */ | |
df869b63 | 411 | struct timeval ns_to_timeval(const s64 nsec) |
f8f46da3 TG |
412 | { |
413 | struct timespec ts = ns_to_timespec(nsec); | |
414 | struct timeval tv; | |
415 | ||
416 | tv.tv_sec = ts.tv_sec; | |
417 | tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; | |
418 | ||
419 | return tv; | |
420 | } | |
b7aa0bf7 | 421 | EXPORT_SYMBOL(ns_to_timeval); |
f8f46da3 | 422 | |
41cf5445 IM |
423 | /* |
424 | * When we convert to jiffies then we interpret incoming values | |
425 | * the following way: | |
426 | * | |
427 | * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) | |
428 | * | |
429 | * - 'too large' values [that would result in larger than | |
430 | * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. | |
431 | * | |
432 | * - all other values are converted to jiffies by either multiplying | |
433 | * the input value by a factor or dividing it with a factor | |
434 | * | |
435 | * We must also be careful about 32-bit overflows. | |
436 | */ | |
8b9365d7 IM |
437 | unsigned long msecs_to_jiffies(const unsigned int m) |
438 | { | |
41cf5445 IM |
439 | /* |
440 | * Negative value, means infinite timeout: | |
441 | */ | |
442 | if ((int)m < 0) | |
8b9365d7 | 443 | return MAX_JIFFY_OFFSET; |
41cf5445 | 444 | |
8b9365d7 | 445 | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) |
41cf5445 IM |
446 | /* |
447 | * HZ is equal to or smaller than 1000, and 1000 is a nice | |
448 | * round multiple of HZ, divide with the factor between them, | |
449 | * but round upwards: | |
450 | */ | |
8b9365d7 IM |
451 | return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); |
452 | #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) | |
41cf5445 IM |
453 | /* |
454 | * HZ is larger than 1000, and HZ is a nice round multiple of | |
455 | * 1000 - simply multiply with the factor between them. | |
456 | * | |
457 | * But first make sure the multiplication result cannot | |
458 | * overflow: | |
459 | */ | |
460 | if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | |
461 | return MAX_JIFFY_OFFSET; | |
462 | ||
8b9365d7 IM |
463 | return m * (HZ / MSEC_PER_SEC); |
464 | #else | |
41cf5445 IM |
465 | /* |
466 | * Generic case - multiply, round and divide. But first | |
467 | * check that if we are doing a net multiplication, that | |
bdc80787 | 468 | * we wouldn't overflow: |
41cf5445 IM |
469 | */ |
470 | if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | |
471 | return MAX_JIFFY_OFFSET; | |
472 | ||
b9095fd8 | 473 | return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) |
bdc80787 | 474 | >> MSEC_TO_HZ_SHR32; |
8b9365d7 IM |
475 | #endif |
476 | } | |
477 | EXPORT_SYMBOL(msecs_to_jiffies); | |
478 | ||
479 | unsigned long usecs_to_jiffies(const unsigned int u) | |
480 | { | |
481 | if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) | |
482 | return MAX_JIFFY_OFFSET; | |
483 | #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) | |
484 | return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); | |
485 | #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) | |
486 | return u * (HZ / USEC_PER_SEC); | |
487 | #else | |
b9095fd8 | 488 | return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) |
bdc80787 | 489 | >> USEC_TO_HZ_SHR32; |
8b9365d7 IM |
490 | #endif |
491 | } | |
492 | EXPORT_SYMBOL(usecs_to_jiffies); | |
493 | ||
494 | /* | |
495 | * The TICK_NSEC - 1 rounds up the value to the next resolution. Note | |
496 | * that a remainder subtract here would not do the right thing as the | |
497 | * resolution values don't fall on second boundries. I.e. the line: | |
498 | * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. | |
499 | * | |
500 | * Rather, we just shift the bits off the right. | |
501 | * | |
502 | * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec | |
503 | * value to a scaled second value. | |
504 | */ | |
505 | unsigned long | |
506 | timespec_to_jiffies(const struct timespec *value) | |
507 | { | |
508 | unsigned long sec = value->tv_sec; | |
509 | long nsec = value->tv_nsec + TICK_NSEC - 1; | |
510 | ||
511 | if (sec >= MAX_SEC_IN_JIFFIES){ | |
512 | sec = MAX_SEC_IN_JIFFIES; | |
513 | nsec = 0; | |
514 | } | |
515 | return (((u64)sec * SEC_CONVERSION) + | |
516 | (((u64)nsec * NSEC_CONVERSION) >> | |
517 | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | |
518 | ||
519 | } | |
520 | EXPORT_SYMBOL(timespec_to_jiffies); | |
521 | ||
522 | void | |
523 | jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) | |
524 | { | |
525 | /* | |
526 | * Convert jiffies to nanoseconds and separate with | |
527 | * one divide. | |
528 | */ | |
f8bd2258 RZ |
529 | u32 rem; |
530 | value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, | |
531 | NSEC_PER_SEC, &rem); | |
532 | value->tv_nsec = rem; | |
8b9365d7 IM |
533 | } |
534 | EXPORT_SYMBOL(jiffies_to_timespec); | |
535 | ||
536 | /* Same for "timeval" | |
537 | * | |
538 | * Well, almost. The problem here is that the real system resolution is | |
539 | * in nanoseconds and the value being converted is in micro seconds. | |
540 | * Also for some machines (those that use HZ = 1024, in-particular), | |
541 | * there is a LARGE error in the tick size in microseconds. | |
542 | ||
543 | * The solution we use is to do the rounding AFTER we convert the | |
544 | * microsecond part. Thus the USEC_ROUND, the bits to be shifted off. | |
545 | * Instruction wise, this should cost only an additional add with carry | |
546 | * instruction above the way it was done above. | |
547 | */ | |
548 | unsigned long | |
549 | timeval_to_jiffies(const struct timeval *value) | |
550 | { | |
551 | unsigned long sec = value->tv_sec; | |
552 | long usec = value->tv_usec; | |
553 | ||
554 | if (sec >= MAX_SEC_IN_JIFFIES){ | |
555 | sec = MAX_SEC_IN_JIFFIES; | |
556 | usec = 0; | |
557 | } | |
558 | return (((u64)sec * SEC_CONVERSION) + | |
559 | (((u64)usec * USEC_CONVERSION + USEC_ROUND) >> | |
560 | (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | |
561 | } | |
456a09dc | 562 | EXPORT_SYMBOL(timeval_to_jiffies); |
8b9365d7 IM |
563 | |
564 | void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) | |
565 | { | |
566 | /* | |
567 | * Convert jiffies to nanoseconds and separate with | |
568 | * one divide. | |
569 | */ | |
f8bd2258 | 570 | u32 rem; |
8b9365d7 | 571 | |
f8bd2258 RZ |
572 | value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, |
573 | NSEC_PER_SEC, &rem); | |
574 | value->tv_usec = rem / NSEC_PER_USEC; | |
8b9365d7 | 575 | } |
456a09dc | 576 | EXPORT_SYMBOL(jiffies_to_timeval); |
8b9365d7 IM |
577 | |
578 | /* | |
579 | * Convert jiffies/jiffies_64 to clock_t and back. | |
580 | */ | |
cbbc719f | 581 | clock_t jiffies_to_clock_t(unsigned long x) |
8b9365d7 IM |
582 | { |
583 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | |
6ffc787a DF |
584 | # if HZ < USER_HZ |
585 | return x * (USER_HZ / HZ); | |
586 | # else | |
8b9365d7 | 587 | return x / (HZ / USER_HZ); |
6ffc787a | 588 | # endif |
8b9365d7 | 589 | #else |
71abb3af | 590 | return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); |
8b9365d7 IM |
591 | #endif |
592 | } | |
593 | EXPORT_SYMBOL(jiffies_to_clock_t); | |
594 | ||
595 | unsigned long clock_t_to_jiffies(unsigned long x) | |
596 | { | |
597 | #if (HZ % USER_HZ)==0 | |
598 | if (x >= ~0UL / (HZ / USER_HZ)) | |
599 | return ~0UL; | |
600 | return x * (HZ / USER_HZ); | |
601 | #else | |
8b9365d7 IM |
602 | /* Don't worry about loss of precision here .. */ |
603 | if (x >= ~0UL / HZ * USER_HZ) | |
604 | return ~0UL; | |
605 | ||
606 | /* .. but do try to contain it here */ | |
71abb3af | 607 | return div_u64((u64)x * HZ, USER_HZ); |
8b9365d7 IM |
608 | #endif |
609 | } | |
610 | EXPORT_SYMBOL(clock_t_to_jiffies); | |
611 | ||
612 | u64 jiffies_64_to_clock_t(u64 x) | |
613 | { | |
614 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | |
6ffc787a | 615 | # if HZ < USER_HZ |
71abb3af | 616 | x = div_u64(x * USER_HZ, HZ); |
ec03d707 | 617 | # elif HZ > USER_HZ |
71abb3af | 618 | x = div_u64(x, HZ / USER_HZ); |
ec03d707 AM |
619 | # else |
620 | /* Nothing to do */ | |
6ffc787a | 621 | # endif |
8b9365d7 IM |
622 | #else |
623 | /* | |
624 | * There are better ways that don't overflow early, | |
625 | * but even this doesn't overflow in hundreds of years | |
626 | * in 64 bits, so.. | |
627 | */ | |
71abb3af | 628 | x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); |
8b9365d7 IM |
629 | #endif |
630 | return x; | |
631 | } | |
8b9365d7 IM |
632 | EXPORT_SYMBOL(jiffies_64_to_clock_t); |
633 | ||
634 | u64 nsec_to_clock_t(u64 x) | |
635 | { | |
636 | #if (NSEC_PER_SEC % USER_HZ) == 0 | |
71abb3af | 637 | return div_u64(x, NSEC_PER_SEC / USER_HZ); |
8b9365d7 | 638 | #elif (USER_HZ % 512) == 0 |
71abb3af | 639 | return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); |
8b9365d7 IM |
640 | #else |
641 | /* | |
642 | * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, | |
643 | * overflow after 64.99 years. | |
644 | * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... | |
645 | */ | |
71abb3af | 646 | return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); |
8b9365d7 | 647 | #endif |
8b9365d7 IM |
648 | } |
649 | ||
b7b20df9 | 650 | /** |
a1dabb6b | 651 | * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64 |
b7b20df9 HS |
652 | * |
653 | * @n: nsecs in u64 | |
654 | * | |
655 | * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. | |
656 | * And this doesn't return MAX_JIFFY_OFFSET since this function is designed | |
657 | * for scheduler, not for use in device drivers to calculate timeout value. | |
658 | * | |
659 | * note: | |
660 | * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) | |
661 | * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years | |
662 | */ | |
a1dabb6b | 663 | u64 nsecs_to_jiffies64(u64 n) |
b7b20df9 HS |
664 | { |
665 | #if (NSEC_PER_SEC % HZ) == 0 | |
666 | /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ | |
667 | return div_u64(n, NSEC_PER_SEC / HZ); | |
668 | #elif (HZ % 512) == 0 | |
669 | /* overflow after 292 years if HZ = 1024 */ | |
670 | return div_u64(n * HZ / 512, NSEC_PER_SEC / 512); | |
671 | #else | |
672 | /* | |
673 | * Generic case - optimized for cases where HZ is a multiple of 3. | |
674 | * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc. | |
675 | */ | |
676 | return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ); | |
677 | #endif | |
678 | } | |
679 | ||
a1dabb6b VP |
680 | /** |
681 | * nsecs_to_jiffies - Convert nsecs in u64 to jiffies | |
682 | * | |
683 | * @n: nsecs in u64 | |
684 | * | |
685 | * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. | |
686 | * And this doesn't return MAX_JIFFY_OFFSET since this function is designed | |
687 | * for scheduler, not for use in device drivers to calculate timeout value. | |
688 | * | |
689 | * note: | |
690 | * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) | |
691 | * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years | |
692 | */ | |
693 | unsigned long nsecs_to_jiffies(u64 n) | |
694 | { | |
695 | return (unsigned long)nsecs_to_jiffies64(n); | |
696 | } | |
697 | ||
df0cc053 TG |
698 | /* |
699 | * Add two timespec values and do a safety check for overflow. | |
700 | * It's assumed that both values are valid (>= 0) | |
701 | */ | |
702 | struct timespec timespec_add_safe(const struct timespec lhs, | |
703 | const struct timespec rhs) | |
704 | { | |
705 | struct timespec res; | |
706 | ||
707 | set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec, | |
708 | lhs.tv_nsec + rhs.tv_nsec); | |
709 | ||
710 | if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec) | |
711 | res.tv_sec = TIME_T_MAX; | |
712 | ||
713 | return res; | |
714 | } |