timekeeping: Standardize on ktime_get_*() naming
[linux-2.6-block.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
38b8d208 17#include <linux/nmi.h>
d43c36dc 18#include <linux/sched.h>
4f17722c 19#include <linux/sched/loadavg.h>
e1a85b2c 20#include <linux/syscore_ops.h>
8524070b 21#include <linux/clocksource.h>
22#include <linux/jiffies.h>
23#include <linux/time.h>
24#include <linux/tick.h>
75c5158f 25#include <linux/stop_machine.h>
e0b306fe 26#include <linux/pvclock_gtod.h>
52f5684c 27#include <linux/compiler.h>
8524070b 28
eb93e4d9 29#include "tick-internal.h"
aa6f9c59 30#include "ntp_internal.h"
5c83545f 31#include "timekeeping_internal.h"
155ec602 32
04397fe9
DV
33#define TK_CLEAR_NTP (1 << 0)
34#define TK_MIRROR (1 << 1)
780427f0 35#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 36
3fdb14fd
TG
37/*
38 * The most important data for readout fits into a single 64 byte
39 * cache line.
40 */
41static struct {
42 seqcount_t seq;
43 struct timekeeper timekeeper;
44} tk_core ____cacheline_aligned;
45
9a7a71b1 46static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 47static struct timekeeper shadow_timekeeper;
155ec602 48
4396e058
TG
49/**
50 * struct tk_fast - NMI safe timekeeper
51 * @seq: Sequence counter for protecting updates. The lowest bit
52 * is the index for the tk_read_base array
53 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * @seq.
55 *
56 * See @update_fast_timekeeper() below.
57 */
58struct tk_fast {
59 seqcount_t seq;
60 struct tk_read_base base[2];
61};
62
5df32107
PB
63/* Suspend-time cycles value for halted fast timekeeper. */
64static u64 cycles_at_suspend;
65
66static u64 dummy_clock_read(struct clocksource *cs)
67{
68 return cycles_at_suspend;
69}
70
71static struct clocksource dummy_clock = {
72 .read = dummy_clock_read,
73};
74
75static struct tk_fast tk_fast_mono ____cacheline_aligned = {
76 .base[0] = { .clock = &dummy_clock, },
77 .base[1] = { .clock = &dummy_clock, },
78};
79
80static struct tk_fast tk_fast_raw ____cacheline_aligned = {
81 .base[0] = { .clock = &dummy_clock, },
82 .base[1] = { .clock = &dummy_clock, },
83};
4396e058 84
8fcce546
JS
85/* flag for if timekeeping is suspended */
86int __read_mostly timekeeping_suspended;
87
1e75fa8b
JS
88static inline void tk_normalize_xtime(struct timekeeper *tk)
89{
876e7881
PZ
90 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
91 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
92 tk->xtime_sec++;
93 }
fc6eead7
JS
94 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
95 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
96 tk->raw_sec++;
97 }
1e75fa8b
JS
98}
99
c905fae4
TG
100static inline struct timespec64 tk_xtime(struct timekeeper *tk)
101{
102 struct timespec64 ts;
103
104 ts.tv_sec = tk->xtime_sec;
876e7881 105 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
106 return ts;
107}
108
7d489d15 109static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
110{
111 tk->xtime_sec = ts->tv_sec;
876e7881 112 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
113}
114
7d489d15 115static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
116{
117 tk->xtime_sec += ts->tv_sec;
876e7881 118 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 119 tk_normalize_xtime(tk);
1e75fa8b 120}
8fcce546 121
7d489d15 122static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 123{
7d489d15 124 struct timespec64 tmp;
6d0ef903
JS
125
126 /*
127 * Verify consistency of: offset_real = -wall_to_monotonic
128 * before modifying anything
129 */
7d489d15 130 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 131 -tk->wall_to_monotonic.tv_nsec);
2456e855 132 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
6d0ef903 133 tk->wall_to_monotonic = wtm;
7d489d15
JS
134 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
135 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 136 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
137}
138
47da70d3 139static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 140{
a3ed0e43 141 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
142}
143
ceea5e37
JS
144/*
145 * tk_clock_read - atomic clocksource read() helper
146 *
147 * This helper is necessary to use in the read paths because, while the
148 * seqlock ensures we don't return a bad value while structures are updated,
149 * it doesn't protect from potential crashes. There is the possibility that
150 * the tkr's clocksource may change between the read reference, and the
151 * clock reference passed to the read function. This can cause crashes if
152 * the wrong clocksource is passed to the wrong read function.
153 * This isn't necessary to use when holding the timekeeper_lock or doing
154 * a read of the fast-timekeeper tkrs (which is protected by its own locking
155 * and update logic).
156 */
157static inline u64 tk_clock_read(struct tk_read_base *tkr)
158{
159 struct clocksource *clock = READ_ONCE(tkr->clock);
160
161 return clock->read(clock);
162}
163
3c17ad19 164#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 165#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 166
a5a1d1c2 167static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
3c17ad19
JS
168{
169
a5a1d1c2 170 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
876e7881 171 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
172
173 if (offset > max_cycles) {
a558cd02 174 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 175 offset, name, max_cycles);
a558cd02 176 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
177 } else {
178 if (offset > (max_cycles >> 1)) {
fc4fa6e1 179 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
3c17ad19
JS
180 offset, name, max_cycles >> 1);
181 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
182 }
183 }
4ca22c26 184
57d05a93
JS
185 if (tk->underflow_seen) {
186 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
187 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
188 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
189 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 190 tk->last_warning = jiffies;
4ca22c26 191 }
57d05a93 192 tk->underflow_seen = 0;
4ca22c26
JS
193 }
194
57d05a93
JS
195 if (tk->overflow_seen) {
196 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
197 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
198 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
199 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 200 tk->last_warning = jiffies;
4ca22c26 201 }
57d05a93 202 tk->overflow_seen = 0;
4ca22c26 203 }
3c17ad19 204}
a558cd02 205
a5a1d1c2 206static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
a558cd02 207{
57d05a93 208 struct timekeeper *tk = &tk_core.timekeeper;
a5a1d1c2 209 u64 now, last, mask, max, delta;
4ca22c26 210 unsigned int seq;
a558cd02 211
4ca22c26
JS
212 /*
213 * Since we're called holding a seqlock, the data may shift
214 * under us while we're doing the calculation. This can cause
215 * false positives, since we'd note a problem but throw the
216 * results away. So nest another seqlock here to atomically
217 * grab the points we are checking with.
218 */
219 do {
220 seq = read_seqcount_begin(&tk_core.seq);
ceea5e37 221 now = tk_clock_read(tkr);
4ca22c26
JS
222 last = tkr->cycle_last;
223 mask = tkr->mask;
224 max = tkr->clock->max_cycles;
225 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 226
4ca22c26 227 delta = clocksource_delta(now, last, mask);
a558cd02 228
057b87e3
JS
229 /*
230 * Try to catch underflows by checking if we are seeing small
231 * mask-relative negative values.
232 */
4ca22c26 233 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 234 tk->underflow_seen = 1;
057b87e3 235 delta = 0;
4ca22c26 236 }
057b87e3 237
a558cd02 238 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 239 if (unlikely(delta > max)) {
57d05a93 240 tk->overflow_seen = 1;
a558cd02 241 delta = tkr->clock->max_cycles;
4ca22c26 242 }
a558cd02
JS
243
244 return delta;
245}
3c17ad19 246#else
a5a1d1c2 247static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
3c17ad19
JS
248{
249}
a5a1d1c2 250static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
a558cd02 251{
a5a1d1c2 252 u64 cycle_now, delta;
a558cd02
JS
253
254 /* read clocksource */
ceea5e37 255 cycle_now = tk_clock_read(tkr);
a558cd02
JS
256
257 /* calculate the delta since the last update_wall_time */
258 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
259
260 return delta;
261}
3c17ad19
JS
262#endif
263
155ec602 264/**
d26e4fe0 265 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 266 *
d26e4fe0 267 * @tk: The target timekeeper to setup.
155ec602
MS
268 * @clock: Pointer to clocksource.
269 *
270 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
271 * pair and interval request.
272 *
273 * Unless you're the timekeeping code, you should not be using this!
274 */
f726a697 275static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602 276{
a5a1d1c2 277 u64 interval;
a386b5af 278 u64 tmp, ntpinterval;
1e75fa8b 279 struct clocksource *old_clock;
155ec602 280
2c756feb 281 ++tk->cs_was_changed_seq;
876e7881
PZ
282 old_clock = tk->tkr_mono.clock;
283 tk->tkr_mono.clock = clock;
876e7881 284 tk->tkr_mono.mask = clock->mask;
ceea5e37 285 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
155ec602 286
4a4ad80d 287 tk->tkr_raw.clock = clock;
4a4ad80d
PZ
288 tk->tkr_raw.mask = clock->mask;
289 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
290
155ec602
MS
291 /* Do the ns -> cycle conversion first, using original mult */
292 tmp = NTP_INTERVAL_LENGTH;
293 tmp <<= clock->shift;
a386b5af 294 ntpinterval = tmp;
0a544198
MS
295 tmp += clock->mult/2;
296 do_div(tmp, clock->mult);
155ec602
MS
297 if (tmp == 0)
298 tmp = 1;
299
a5a1d1c2 300 interval = (u64) tmp;
f726a697 301 tk->cycle_interval = interval;
155ec602
MS
302
303 /* Go back from cycles -> shifted ns */
cbd99e3b 304 tk->xtime_interval = interval * clock->mult;
f726a697 305 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
3d88d56c 306 tk->raw_interval = interval * clock->mult;
155ec602 307
1e75fa8b
JS
308 /* if changing clocks, convert xtime_nsec shift units */
309 if (old_clock) {
310 int shift_change = clock->shift - old_clock->shift;
fc6eead7 311 if (shift_change < 0) {
876e7881 312 tk->tkr_mono.xtime_nsec >>= -shift_change;
fc6eead7
JS
313 tk->tkr_raw.xtime_nsec >>= -shift_change;
314 } else {
876e7881 315 tk->tkr_mono.xtime_nsec <<= shift_change;
fc6eead7
JS
316 tk->tkr_raw.xtime_nsec <<= shift_change;
317 }
1e75fa8b 318 }
4a4ad80d 319
876e7881 320 tk->tkr_mono.shift = clock->shift;
4a4ad80d 321 tk->tkr_raw.shift = clock->shift;
155ec602 322
f726a697
JS
323 tk->ntp_error = 0;
324 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 325 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
326
327 /*
328 * The timekeeper keeps its own mult values for the currently
329 * active clocksource. These value will be adjusted via NTP
330 * to counteract clock drifting.
331 */
876e7881 332 tk->tkr_mono.mult = clock->mult;
4a4ad80d 333 tk->tkr_raw.mult = clock->mult;
dc491596 334 tk->ntp_err_mult = 0;
78b98e3c 335 tk->skip_second_overflow = 0;
155ec602 336}
8524070b 337
2ba2a305 338/* Timekeeper helper functions. */
7b1f6207
SW
339
340#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
341static u32 default_arch_gettimeoffset(void) { return 0; }
342u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 343#else
e06fde37 344static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
345#endif
346
a5a1d1c2 347static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
6bd58f09 348{
9c164572 349 u64 nsec;
6bd58f09
CH
350
351 nsec = delta * tkr->mult + tkr->xtime_nsec;
352 nsec >>= tkr->shift;
353
354 /* If arch requires, add in get_arch_timeoffset() */
355 return nsec + arch_gettimeoffset();
356}
357
acc89612 358static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 359{
a5a1d1c2 360 u64 delta;
2ba2a305 361
a558cd02 362 delta = timekeeping_get_delta(tkr);
6bd58f09
CH
363 return timekeeping_delta_to_ns(tkr, delta);
364}
2ba2a305 365
a5a1d1c2 366static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
6bd58f09 367{
a5a1d1c2 368 u64 delta;
f2a5a085 369
6bd58f09
CH
370 /* calculate the delta since the last update_wall_time */
371 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
372 return timekeeping_delta_to_ns(tkr, delta);
2ba2a305
MS
373}
374
4396e058
TG
375/**
376 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 377 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
378 *
379 * We want to use this from any context including NMI and tracing /
380 * instrumenting the timekeeping code itself.
381 *
6695b92a 382 * Employ the latch technique; see @raw_write_seqcount_latch.
4396e058
TG
383 *
384 * So if a NMI hits the update of base[0] then it will use base[1]
385 * which is still consistent. In the worst case this can result is a
386 * slightly wrong timestamp (a few nanoseconds). See
387 * @ktime_get_mono_fast_ns.
388 */
4498e746 389static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 390{
4498e746 391 struct tk_read_base *base = tkf->base;
4396e058
TG
392
393 /* Force readers off to base[1] */
4498e746 394 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
395
396 /* Update base[0] */
affe3e85 397 memcpy(base, tkr, sizeof(*base));
4396e058
TG
398
399 /* Force readers back to base[0] */
4498e746 400 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
401
402 /* Update base[1] */
403 memcpy(base + 1, base, sizeof(*base));
404}
405
406/**
407 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
408 *
409 * This timestamp is not guaranteed to be monotonic across an update.
410 * The timestamp is calculated by:
411 *
412 * now = base_mono + clock_delta * slope
413 *
414 * So if the update lowers the slope, readers who are forced to the
415 * not yet updated second array are still using the old steeper slope.
416 *
417 * tmono
418 * ^
419 * | o n
420 * | o n
421 * | u
422 * | o
423 * |o
424 * |12345678---> reader order
425 *
426 * o = old slope
427 * u = update
428 * n = new slope
429 *
430 * So reader 6 will observe time going backwards versus reader 5.
431 *
432 * While other CPUs are likely to be able observe that, the only way
433 * for a CPU local observation is when an NMI hits in the middle of
434 * the update. Timestamps taken from that NMI context might be ahead
435 * of the following timestamps. Callers need to be aware of that and
436 * deal with it.
437 */
4498e746 438static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
439{
440 struct tk_read_base *tkr;
441 unsigned int seq;
442 u64 now;
443
444 do {
7fc26327 445 seq = raw_read_seqcount_latch(&tkf->seq);
4498e746 446 tkr = tkf->base + (seq & 0x01);
27727df2
JS
447 now = ktime_to_ns(tkr->base);
448
58bfea95
JS
449 now += timekeeping_delta_to_ns(tkr,
450 clocksource_delta(
ceea5e37 451 tk_clock_read(tkr),
58bfea95
JS
452 tkr->cycle_last,
453 tkr->mask));
4498e746 454 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 455
4396e058
TG
456 return now;
457}
4498e746
PZ
458
459u64 ktime_get_mono_fast_ns(void)
460{
461 return __ktime_get_fast_ns(&tk_fast_mono);
462}
4396e058
TG
463EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
464
f09cb9a1
PZ
465u64 ktime_get_raw_fast_ns(void)
466{
467 return __ktime_get_fast_ns(&tk_fast_raw);
468}
469EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
470
a3ed0e43
TG
471/**
472 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
473 *
474 * To keep it NMI safe since we're accessing from tracing, we're not using a
475 * separate timekeeper with updates to monotonic clock and boot offset
476 * protected with seqlocks. This has the following minor side effects:
477 *
478 * (1) Its possible that a timestamp be taken after the boot offset is updated
479 * but before the timekeeper is updated. If this happens, the new boot offset
480 * is added to the old timekeeping making the clock appear to update slightly
481 * earlier:
482 * CPU 0 CPU 1
483 * timekeeping_inject_sleeptime64()
484 * __timekeeping_inject_sleeptime(tk, delta);
485 * timestamp();
486 * timekeeping_update(tk, TK_CLEAR_NTP...);
487 *
488 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
489 * partially updated. Since the tk->offs_boot update is a rare event, this
490 * should be a rare occurrence which postprocessing should be able to handle.
491 */
492u64 notrace ktime_get_boot_fast_ns(void)
493{
494 struct timekeeper *tk = &tk_core.timekeeper;
495
496 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
497}
498EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
499
500
4c3711d7
TG
501/*
502 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
503 */
504static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
505{
506 struct tk_read_base *tkr;
507 unsigned int seq;
508 u64 now;
509
510 do {
511 seq = raw_read_seqcount_latch(&tkf->seq);
512 tkr = tkf->base + (seq & 0x01);
513 now = ktime_to_ns(tkr->base_real);
514
515 now += timekeeping_delta_to_ns(tkr,
516 clocksource_delta(
517 tk_clock_read(tkr),
518 tkr->cycle_last,
519 tkr->mask));
520 } while (read_seqcount_retry(&tkf->seq, seq));
521
522 return now;
523}
524
525/**
526 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
527 */
528u64 ktime_get_real_fast_ns(void)
529{
530 return __ktime_get_real_fast_ns(&tk_fast_mono);
531}
df27067e 532EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
4c3711d7 533
060407ae
RW
534/**
535 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
536 * @tk: Timekeeper to snapshot.
537 *
538 * It generally is unsafe to access the clocksource after timekeeping has been
539 * suspended, so take a snapshot of the readout base of @tk and use it as the
540 * fast timekeeper's readout base while suspended. It will return the same
541 * number of cycles every time until timekeeping is resumed at which time the
542 * proper readout base for the fast timekeeper will be restored automatically.
543 */
544static void halt_fast_timekeeper(struct timekeeper *tk)
545{
546 static struct tk_read_base tkr_dummy;
876e7881 547 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
548
549 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
ceea5e37
JS
550 cycles_at_suspend = tk_clock_read(tkr);
551 tkr_dummy.clock = &dummy_clock;
4c3711d7 552 tkr_dummy.base_real = tkr->base + tk->offs_real;
4498e746 553 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
554
555 tkr = &tk->tkr_raw;
556 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
ceea5e37 557 tkr_dummy.clock = &dummy_clock;
f09cb9a1 558 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
559}
560
e0b306fe
MT
561static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
562
780427f0 563static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 564{
780427f0 565 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
566}
567
568/**
569 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
570 */
571int pvclock_gtod_register_notifier(struct notifier_block *nb)
572{
3fdb14fd 573 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
574 unsigned long flags;
575 int ret;
576
9a7a71b1 577 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 578 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 579 update_pvclock_gtod(tk, true);
9a7a71b1 580 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
581
582 return ret;
583}
584EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
585
586/**
587 * pvclock_gtod_unregister_notifier - unregister a pvclock
588 * timedata update listener
e0b306fe
MT
589 */
590int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
591{
e0b306fe
MT
592 unsigned long flags;
593 int ret;
594
9a7a71b1 595 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 596 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 597 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
598
599 return ret;
600}
601EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
602
833f32d7
JS
603/*
604 * tk_update_leap_state - helper to update the next_leap_ktime
605 */
606static inline void tk_update_leap_state(struct timekeeper *tk)
607{
608 tk->next_leap_ktime = ntp_get_next_leap();
2456e855 609 if (tk->next_leap_ktime != KTIME_MAX)
833f32d7
JS
610 /* Convert to monotonic time */
611 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
612}
613
7c032df5
TG
614/*
615 * Update the ktime_t based scalar nsec members of the timekeeper
616 */
617static inline void tk_update_ktime_data(struct timekeeper *tk)
618{
9e3680b1
HS
619 u64 seconds;
620 u32 nsec;
7c032df5
TG
621
622 /*
623 * The xtime based monotonic readout is:
624 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
625 * The ktime based monotonic readout is:
626 * nsec = base_mono + now();
627 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
628 */
9e3680b1
HS
629 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
630 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 631 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2 632
9e3680b1
HS
633 /*
634 * The sum of the nanoseconds portions of xtime and
635 * wall_to_monotonic can be greater/equal one second. Take
636 * this into account before updating tk->ktime_sec.
637 */
876e7881 638 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
639 if (nsec >= NSEC_PER_SEC)
640 seconds++;
641 tk->ktime_sec = seconds;
fc6eead7
JS
642
643 /* Update the monotonic raw base */
0bcdc098 644 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
7c032df5
TG
645}
646
9a7a71b1 647/* must hold timekeeper_lock */
04397fe9 648static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 649{
04397fe9 650 if (action & TK_CLEAR_NTP) {
f726a697 651 tk->ntp_error = 0;
cc06268c
TG
652 ntp_clear();
653 }
48cdc135 654
833f32d7 655 tk_update_leap_state(tk);
7c032df5
TG
656 tk_update_ktime_data(tk);
657
9bf2419f
TG
658 update_vsyscall(tk);
659 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
660
4c3711d7 661 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
4498e746 662 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 663 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
664
665 if (action & TK_CLOCK_WAS_SET)
666 tk->clock_was_set_seq++;
d1518326
JS
667 /*
668 * The mirroring of the data to the shadow-timekeeper needs
669 * to happen last here to ensure we don't over-write the
670 * timekeeper structure on the next update with stale data
671 */
672 if (action & TK_MIRROR)
673 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
674 sizeof(tk_core.timekeeper));
cc06268c
TG
675}
676
8524070b 677/**
155ec602 678 * timekeeping_forward_now - update clock to the current time
8524070b 679 *
9a055117
RZ
680 * Forward the current clock to update its state since the last call to
681 * update_wall_time(). This is useful before significant clock changes,
682 * as it avoids having to deal with this time offset explicitly.
8524070b 683 */
f726a697 684static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 685{
a5a1d1c2 686 u64 cycle_now, delta;
8524070b 687
ceea5e37 688 cycle_now = tk_clock_read(&tk->tkr_mono);
876e7881
PZ
689 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
690 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 691 tk->tkr_raw.cycle_last = cycle_now;
8524070b 692
876e7881 693 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 694
7b1f6207 695 /* If arch requires, add in get_arch_timeoffset() */
876e7881 696 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 697
2d42244a 698
fc6eead7
JS
699 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
700
701 /* If arch requires, add in get_arch_timeoffset() */
702 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
703
704 tk_normalize_xtime(tk);
8524070b 705}
706
707/**
edca71fe 708 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
8524070b 709 * @ts: pointer to the timespec to be set
710 *
edca71fe 711 * Returns the time of day in a timespec64 (WARN if suspended).
8524070b 712 */
edca71fe 713void ktime_get_real_ts64(struct timespec64 *ts)
8524070b 714{
3fdb14fd 715 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 716 unsigned long seq;
acc89612 717 u64 nsecs;
8524070b 718
edca71fe
AB
719 WARN_ON(timekeeping_suspended);
720
8524070b 721 do {
3fdb14fd 722 seq = read_seqcount_begin(&tk_core.seq);
8524070b 723
4e250fdd 724 ts->tv_sec = tk->xtime_sec;
876e7881 725 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 726
3fdb14fd 727 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 728
ec145bab 729 ts->tv_nsec = 0;
d6d29896 730 timespec64_add_ns(ts, nsecs);
8524070b 731}
edca71fe 732EXPORT_SYMBOL(ktime_get_real_ts64);
8524070b 733
951ed4d3
MS
734ktime_t ktime_get(void)
735{
3fdb14fd 736 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 737 unsigned int seq;
a016a5bd 738 ktime_t base;
acc89612 739 u64 nsecs;
951ed4d3
MS
740
741 WARN_ON(timekeeping_suspended);
742
743 do {
3fdb14fd 744 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
745 base = tk->tkr_mono.base;
746 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 747
3fdb14fd 748 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 749
a016a5bd 750 return ktime_add_ns(base, nsecs);
951ed4d3
MS
751}
752EXPORT_SYMBOL_GPL(ktime_get);
753
6374f912
HG
754u32 ktime_get_resolution_ns(void)
755{
756 struct timekeeper *tk = &tk_core.timekeeper;
757 unsigned int seq;
758 u32 nsecs;
759
760 WARN_ON(timekeeping_suspended);
761
762 do {
763 seq = read_seqcount_begin(&tk_core.seq);
764 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
765 } while (read_seqcount_retry(&tk_core.seq, seq));
766
767 return nsecs;
768}
769EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
770
0077dc60
TG
771static ktime_t *offsets[TK_OFFS_MAX] = {
772 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
a3ed0e43 773 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
0077dc60
TG
774 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
775};
776
777ktime_t ktime_get_with_offset(enum tk_offsets offs)
778{
779 struct timekeeper *tk = &tk_core.timekeeper;
780 unsigned int seq;
781 ktime_t base, *offset = offsets[offs];
acc89612 782 u64 nsecs;
0077dc60
TG
783
784 WARN_ON(timekeeping_suspended);
785
786 do {
787 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
788 base = ktime_add(tk->tkr_mono.base, *offset);
789 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
790
791 } while (read_seqcount_retry(&tk_core.seq, seq));
792
793 return ktime_add_ns(base, nsecs);
794
795}
796EXPORT_SYMBOL_GPL(ktime_get_with_offset);
797
9a6b5197
TG
798/**
799 * ktime_mono_to_any() - convert mononotic time to any other time
800 * @tmono: time to convert.
801 * @offs: which offset to use
802 */
803ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
804{
805 ktime_t *offset = offsets[offs];
806 unsigned long seq;
807 ktime_t tconv;
808
809 do {
810 seq = read_seqcount_begin(&tk_core.seq);
811 tconv = ktime_add(tmono, *offset);
812 } while (read_seqcount_retry(&tk_core.seq, seq));
813
814 return tconv;
815}
816EXPORT_SYMBOL_GPL(ktime_mono_to_any);
817
f519b1a2
TG
818/**
819 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
820 */
821ktime_t ktime_get_raw(void)
822{
823 struct timekeeper *tk = &tk_core.timekeeper;
824 unsigned int seq;
825 ktime_t base;
acc89612 826 u64 nsecs;
f519b1a2
TG
827
828 do {
829 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
830 base = tk->tkr_raw.base;
831 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
832
833 } while (read_seqcount_retry(&tk_core.seq, seq));
834
835 return ktime_add_ns(base, nsecs);
836}
837EXPORT_SYMBOL_GPL(ktime_get_raw);
838
951ed4d3 839/**
d6d29896 840 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
841 * @ts: pointer to timespec variable
842 *
843 * The function calculates the monotonic clock from the realtime
844 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 845 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 846 */
d6d29896 847void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 848{
3fdb14fd 849 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 850 struct timespec64 tomono;
951ed4d3 851 unsigned int seq;
acc89612 852 u64 nsec;
951ed4d3
MS
853
854 WARN_ON(timekeeping_suspended);
855
856 do {
3fdb14fd 857 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 858 ts->tv_sec = tk->xtime_sec;
876e7881 859 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 860 tomono = tk->wall_to_monotonic;
951ed4d3 861
3fdb14fd 862 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 863
d6d29896
TG
864 ts->tv_sec += tomono.tv_sec;
865 ts->tv_nsec = 0;
866 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 867}
d6d29896 868EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 869
9e3680b1
HS
870/**
871 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
872 *
873 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
874 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
875 * works on both 32 and 64 bit systems. On 32 bit systems the readout
876 * covers ~136 years of uptime which should be enough to prevent
877 * premature wrap arounds.
878 */
879time64_t ktime_get_seconds(void)
880{
881 struct timekeeper *tk = &tk_core.timekeeper;
882
883 WARN_ON(timekeeping_suspended);
884 return tk->ktime_sec;
885}
886EXPORT_SYMBOL_GPL(ktime_get_seconds);
887
dbe7aa62
HS
888/**
889 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
890 *
891 * Returns the wall clock seconds since 1970. This replaces the
892 * get_seconds() interface which is not y2038 safe on 32bit systems.
893 *
894 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
895 * 32bit systems the access must be protected with the sequence
896 * counter to provide "atomic" access to the 64bit tk->xtime_sec
897 * value.
898 */
899time64_t ktime_get_real_seconds(void)
900{
901 struct timekeeper *tk = &tk_core.timekeeper;
902 time64_t seconds;
903 unsigned int seq;
904
905 if (IS_ENABLED(CONFIG_64BIT))
906 return tk->xtime_sec;
907
908 do {
909 seq = read_seqcount_begin(&tk_core.seq);
910 seconds = tk->xtime_sec;
911
912 } while (read_seqcount_retry(&tk_core.seq, seq));
913
914 return seconds;
915}
916EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
917
dee36654
D
918/**
919 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
920 * but without the sequence counter protect. This internal function
921 * is called just when timekeeping lock is already held.
922 */
923time64_t __ktime_get_real_seconds(void)
924{
925 struct timekeeper *tk = &tk_core.timekeeper;
926
927 return tk->xtime_sec;
928}
929
9da0f49c
CH
930/**
931 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
932 * @systime_snapshot: pointer to struct receiving the system time snapshot
933 */
934void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
935{
936 struct timekeeper *tk = &tk_core.timekeeper;
937 unsigned long seq;
938 ktime_t base_raw;
939 ktime_t base_real;
acc89612
TG
940 u64 nsec_raw;
941 u64 nsec_real;
a5a1d1c2 942 u64 now;
9da0f49c 943
ba26621e
CH
944 WARN_ON_ONCE(timekeeping_suspended);
945
9da0f49c
CH
946 do {
947 seq = read_seqcount_begin(&tk_core.seq);
ceea5e37 948 now = tk_clock_read(&tk->tkr_mono);
2c756feb
CH
949 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
950 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
9da0f49c
CH
951 base_real = ktime_add(tk->tkr_mono.base,
952 tk_core.timekeeper.offs_real);
953 base_raw = tk->tkr_raw.base;
954 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
955 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
956 } while (read_seqcount_retry(&tk_core.seq, seq));
957
958 systime_snapshot->cycles = now;
959 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
960 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
961}
962EXPORT_SYMBOL_GPL(ktime_get_snapshot);
dee36654 963
2c756feb
CH
964/* Scale base by mult/div checking for overflow */
965static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
966{
967 u64 tmp, rem;
968
969 tmp = div64_u64_rem(*base, div, &rem);
970
971 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
972 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
973 return -EOVERFLOW;
974 tmp *= mult;
975 rem *= mult;
976
977 do_div(rem, div);
978 *base = tmp + rem;
979 return 0;
980}
981
982/**
983 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
984 * @history: Snapshot representing start of history
985 * @partial_history_cycles: Cycle offset into history (fractional part)
986 * @total_history_cycles: Total history length in cycles
987 * @discontinuity: True indicates clock was set on history period
988 * @ts: Cross timestamp that should be adjusted using
989 * partial/total ratio
990 *
991 * Helper function used by get_device_system_crosststamp() to correct the
992 * crosstimestamp corresponding to the start of the current interval to the
993 * system counter value (timestamp point) provided by the driver. The
994 * total_history_* quantities are the total history starting at the provided
995 * reference point and ending at the start of the current interval. The cycle
996 * count between the driver timestamp point and the start of the current
997 * interval is partial_history_cycles.
998 */
999static int adjust_historical_crosststamp(struct system_time_snapshot *history,
a5a1d1c2
TG
1000 u64 partial_history_cycles,
1001 u64 total_history_cycles,
2c756feb
CH
1002 bool discontinuity,
1003 struct system_device_crosststamp *ts)
1004{
1005 struct timekeeper *tk = &tk_core.timekeeper;
1006 u64 corr_raw, corr_real;
1007 bool interp_forward;
1008 int ret;
1009
1010 if (total_history_cycles == 0 || partial_history_cycles == 0)
1011 return 0;
1012
1013 /* Interpolate shortest distance from beginning or end of history */
5fc63f95 1014 interp_forward = partial_history_cycles > total_history_cycles / 2;
2c756feb
CH
1015 partial_history_cycles = interp_forward ?
1016 total_history_cycles - partial_history_cycles :
1017 partial_history_cycles;
1018
1019 /*
1020 * Scale the monotonic raw time delta by:
1021 * partial_history_cycles / total_history_cycles
1022 */
1023 corr_raw = (u64)ktime_to_ns(
1024 ktime_sub(ts->sys_monoraw, history->raw));
1025 ret = scale64_check_overflow(partial_history_cycles,
1026 total_history_cycles, &corr_raw);
1027 if (ret)
1028 return ret;
1029
1030 /*
1031 * If there is a discontinuity in the history, scale monotonic raw
1032 * correction by:
1033 * mult(real)/mult(raw) yielding the realtime correction
1034 * Otherwise, calculate the realtime correction similar to monotonic
1035 * raw calculation
1036 */
1037 if (discontinuity) {
1038 corr_real = mul_u64_u32_div
1039 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1040 } else {
1041 corr_real = (u64)ktime_to_ns(
1042 ktime_sub(ts->sys_realtime, history->real));
1043 ret = scale64_check_overflow(partial_history_cycles,
1044 total_history_cycles, &corr_real);
1045 if (ret)
1046 return ret;
1047 }
1048
1049 /* Fixup monotonic raw and real time time values */
1050 if (interp_forward) {
1051 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1052 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1053 } else {
1054 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1055 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1056 }
1057
1058 return 0;
1059}
1060
1061/*
1062 * cycle_between - true if test occurs chronologically between before and after
1063 */
a5a1d1c2 1064static bool cycle_between(u64 before, u64 test, u64 after)
2c756feb
CH
1065{
1066 if (test > before && test < after)
1067 return true;
1068 if (test < before && before > after)
1069 return true;
1070 return false;
1071}
1072
8006c245
CH
1073/**
1074 * get_device_system_crosststamp - Synchronously capture system/device timestamp
2c756feb 1075 * @get_time_fn: Callback to get simultaneous device time and
8006c245 1076 * system counter from the device driver
2c756feb
CH
1077 * @ctx: Context passed to get_time_fn()
1078 * @history_begin: Historical reference point used to interpolate system
1079 * time when counter provided by the driver is before the current interval
8006c245
CH
1080 * @xtstamp: Receives simultaneously captured system and device time
1081 *
1082 * Reads a timestamp from a device and correlates it to system time
1083 */
1084int get_device_system_crosststamp(int (*get_time_fn)
1085 (ktime_t *device_time,
1086 struct system_counterval_t *sys_counterval,
1087 void *ctx),
1088 void *ctx,
2c756feb 1089 struct system_time_snapshot *history_begin,
8006c245
CH
1090 struct system_device_crosststamp *xtstamp)
1091{
1092 struct system_counterval_t system_counterval;
1093 struct timekeeper *tk = &tk_core.timekeeper;
a5a1d1c2 1094 u64 cycles, now, interval_start;
6436257b 1095 unsigned int clock_was_set_seq = 0;
8006c245 1096 ktime_t base_real, base_raw;
acc89612 1097 u64 nsec_real, nsec_raw;
2c756feb 1098 u8 cs_was_changed_seq;
8006c245 1099 unsigned long seq;
2c756feb 1100 bool do_interp;
8006c245
CH
1101 int ret;
1102
1103 do {
1104 seq = read_seqcount_begin(&tk_core.seq);
1105 /*
1106 * Try to synchronously capture device time and a system
1107 * counter value calling back into the device driver
1108 */
1109 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1110 if (ret)
1111 return ret;
1112
1113 /*
1114 * Verify that the clocksource associated with the captured
1115 * system counter value is the same as the currently installed
1116 * timekeeper clocksource
1117 */
1118 if (tk->tkr_mono.clock != system_counterval.cs)
1119 return -ENODEV;
2c756feb
CH
1120 cycles = system_counterval.cycles;
1121
1122 /*
1123 * Check whether the system counter value provided by the
1124 * device driver is on the current timekeeping interval.
1125 */
ceea5e37 1126 now = tk_clock_read(&tk->tkr_mono);
2c756feb
CH
1127 interval_start = tk->tkr_mono.cycle_last;
1128 if (!cycle_between(interval_start, cycles, now)) {
1129 clock_was_set_seq = tk->clock_was_set_seq;
1130 cs_was_changed_seq = tk->cs_was_changed_seq;
1131 cycles = interval_start;
1132 do_interp = true;
1133 } else {
1134 do_interp = false;
1135 }
8006c245
CH
1136
1137 base_real = ktime_add(tk->tkr_mono.base,
1138 tk_core.timekeeper.offs_real);
1139 base_raw = tk->tkr_raw.base;
1140
1141 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1142 system_counterval.cycles);
1143 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1144 system_counterval.cycles);
1145 } while (read_seqcount_retry(&tk_core.seq, seq));
1146
1147 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1148 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
2c756feb
CH
1149
1150 /*
1151 * Interpolate if necessary, adjusting back from the start of the
1152 * current interval
1153 */
1154 if (do_interp) {
a5a1d1c2 1155 u64 partial_history_cycles, total_history_cycles;
2c756feb
CH
1156 bool discontinuity;
1157
1158 /*
1159 * Check that the counter value occurs after the provided
1160 * history reference and that the history doesn't cross a
1161 * clocksource change
1162 */
1163 if (!history_begin ||
1164 !cycle_between(history_begin->cycles,
1165 system_counterval.cycles, cycles) ||
1166 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1167 return -EINVAL;
1168 partial_history_cycles = cycles - system_counterval.cycles;
1169 total_history_cycles = cycles - history_begin->cycles;
1170 discontinuity =
1171 history_begin->clock_was_set_seq != clock_was_set_seq;
1172
1173 ret = adjust_historical_crosststamp(history_begin,
1174 partial_history_cycles,
1175 total_history_cycles,
1176 discontinuity, xtstamp);
1177 if (ret)
1178 return ret;
1179 }
1180
8006c245
CH
1181 return 0;
1182}
1183EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1184
8524070b 1185/**
1186 * do_gettimeofday - Returns the time of day in a timeval
1187 * @tv: pointer to the timeval to be set
1188 *
efd9ac86 1189 * NOTE: Users should be converted to using getnstimeofday()
8524070b 1190 */
1191void do_gettimeofday(struct timeval *tv)
1192{
d6d29896 1193 struct timespec64 now;
8524070b 1194
d6d29896 1195 getnstimeofday64(&now);
8524070b 1196 tv->tv_sec = now.tv_sec;
1197 tv->tv_usec = now.tv_nsec/1000;
1198}
8524070b 1199EXPORT_SYMBOL(do_gettimeofday);
d239f49d 1200
8524070b 1201/**
21f7eca5 1202 * do_settimeofday64 - Sets the time of day.
1203 * @ts: pointer to the timespec64 variable containing the new time
8524070b 1204 *
1205 * Sets the time of day to the new time and update NTP and notify hrtimers
1206 */
21f7eca5 1207int do_settimeofday64(const struct timespec64 *ts)
8524070b 1208{
3fdb14fd 1209 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 1210 struct timespec64 ts_delta, xt;
92c1d3ed 1211 unsigned long flags;
e1d7ba87 1212 int ret = 0;
8524070b 1213
21f7eca5 1214 if (!timespec64_valid_strict(ts))
8524070b 1215 return -EINVAL;
1216
9a7a71b1 1217 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1218 write_seqcount_begin(&tk_core.seq);
8524070b 1219
4e250fdd 1220 timekeeping_forward_now(tk);
9a055117 1221
4e250fdd 1222 xt = tk_xtime(tk);
21f7eca5 1223 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1224 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 1225
e1d7ba87
WY
1226 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1227 ret = -EINVAL;
1228 goto out;
1229 }
1230
7d489d15 1231 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 1232
21f7eca5 1233 tk_set_xtime(tk, ts);
e1d7ba87 1234out:
780427f0 1235 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 1236
3fdb14fd 1237 write_seqcount_end(&tk_core.seq);
9a7a71b1 1238 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1239
1240 /* signal hrtimers about time change */
1241 clock_was_set();
1242
e1d7ba87 1243 return ret;
8524070b 1244}
21f7eca5 1245EXPORT_SYMBOL(do_settimeofday64);
8524070b 1246
c528f7c6
JS
1247/**
1248 * timekeeping_inject_offset - Adds or subtracts from the current time.
1249 * @tv: pointer to the timespec variable containing the offset
1250 *
1251 * Adds or subtracts an offset value from the current time.
1252 */
1572fa03 1253static int timekeeping_inject_offset(struct timespec64 *ts)
c528f7c6 1254{
3fdb14fd 1255 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1256 unsigned long flags;
1572fa03 1257 struct timespec64 tmp;
4e8b1452 1258 int ret = 0;
c528f7c6 1259
1572fa03 1260 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
c528f7c6
JS
1261 return -EINVAL;
1262
9a7a71b1 1263 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1264 write_seqcount_begin(&tk_core.seq);
c528f7c6 1265
4e250fdd 1266 timekeeping_forward_now(tk);
c528f7c6 1267
4e8b1452 1268 /* Make sure the proposed value is valid */
1572fa03
AB
1269 tmp = timespec64_add(tk_xtime(tk), *ts);
1270 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
e1d7ba87 1271 !timespec64_valid_strict(&tmp)) {
4e8b1452
JS
1272 ret = -EINVAL;
1273 goto error;
1274 }
1e75fa8b 1275
1572fa03
AB
1276 tk_xtime_add(tk, ts);
1277 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
c528f7c6 1278
4e8b1452 1279error: /* even if we error out, we forwarded the time, so call update */
780427f0 1280 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 1281
3fdb14fd 1282 write_seqcount_end(&tk_core.seq);
9a7a71b1 1283 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
1284
1285 /* signal hrtimers about time change */
1286 clock_was_set();
1287
4e8b1452 1288 return ret;
c528f7c6 1289}
e0956dcc
AB
1290
1291/*
1292 * Indicates if there is an offset between the system clock and the hardware
1293 * clock/persistent clock/rtc.
1294 */
1295int persistent_clock_is_local;
1296
1297/*
1298 * Adjust the time obtained from the CMOS to be UTC time instead of
1299 * local time.
1300 *
1301 * This is ugly, but preferable to the alternatives. Otherwise we
1302 * would either need to write a program to do it in /etc/rc (and risk
1303 * confusion if the program gets run more than once; it would also be
1304 * hard to make the program warp the clock precisely n hours) or
1305 * compile in the timezone information into the kernel. Bad, bad....
1306 *
1307 * - TYT, 1992-01-01
1308 *
1309 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1310 * as real UNIX machines always do it. This avoids all headaches about
1311 * daylight saving times and warping kernel clocks.
1312 */
1313void timekeeping_warp_clock(void)
1314{
1315 if (sys_tz.tz_minuteswest != 0) {
1572fa03 1316 struct timespec64 adjust;
e0956dcc
AB
1317
1318 persistent_clock_is_local = 1;
1319 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1320 adjust.tv_nsec = 0;
1321 timekeeping_inject_offset(&adjust);
1322 }
1323}
c528f7c6 1324
cc244dda 1325/**
40d9f827 1326 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
cc244dda
JS
1327 *
1328 */
dd5d70e8 1329static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1330{
1331 tk->tai_offset = tai_offset;
04005f60 1332 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1333}
1334
8524070b 1335/**
1336 * change_clocksource - Swaps clocksources if a new one is available
1337 *
1338 * Accumulates current time interval and initializes new clocksource
1339 */
75c5158f 1340static int change_clocksource(void *data)
8524070b 1341{
3fdb14fd 1342 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1343 struct clocksource *new, *old;
f695cf94 1344 unsigned long flags;
8524070b 1345
75c5158f 1346 new = (struct clocksource *) data;
8524070b 1347
9a7a71b1 1348 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1349 write_seqcount_begin(&tk_core.seq);
f695cf94 1350
4e250fdd 1351 timekeeping_forward_now(tk);
09ac369c
TG
1352 /*
1353 * If the cs is in module, get a module reference. Succeeds
1354 * for built-in code (owner == NULL) as well.
1355 */
1356 if (try_module_get(new->owner)) {
1357 if (!new->enable || new->enable(new) == 0) {
876e7881 1358 old = tk->tkr_mono.clock;
09ac369c
TG
1359 tk_setup_internals(tk, new);
1360 if (old->disable)
1361 old->disable(old);
1362 module_put(old->owner);
1363 } else {
1364 module_put(new->owner);
1365 }
75c5158f 1366 }
780427f0 1367 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1368
3fdb14fd 1369 write_seqcount_end(&tk_core.seq);
9a7a71b1 1370 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1371
75c5158f
MS
1372 return 0;
1373}
8524070b 1374
75c5158f
MS
1375/**
1376 * timekeeping_notify - Install a new clock source
1377 * @clock: pointer to the clock source
1378 *
1379 * This function is called from clocksource.c after a new, better clock
1380 * source has been registered. The caller holds the clocksource_mutex.
1381 */
ba919d1c 1382int timekeeping_notify(struct clocksource *clock)
75c5158f 1383{
3fdb14fd 1384 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1385
876e7881 1386 if (tk->tkr_mono.clock == clock)
ba919d1c 1387 return 0;
75c5158f 1388 stop_machine(change_clocksource, clock, NULL);
8524070b 1389 tick_clock_notify();
876e7881 1390 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1391}
75c5158f 1392
2d42244a 1393/**
fb7fcc96 1394 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
cdba2ec5 1395 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1396 *
1397 * Returns the raw monotonic time (completely un-modified by ntp)
1398 */
fb7fcc96 1399void ktime_get_raw_ts64(struct timespec64 *ts)
2d42244a 1400{
3fdb14fd 1401 struct timekeeper *tk = &tk_core.timekeeper;
2d42244a 1402 unsigned long seq;
acc89612 1403 u64 nsecs;
2d42244a
JS
1404
1405 do {
3fdb14fd 1406 seq = read_seqcount_begin(&tk_core.seq);
fc6eead7 1407 ts->tv_sec = tk->raw_sec;
4a4ad80d 1408 nsecs = timekeeping_get_ns(&tk->tkr_raw);
2d42244a 1409
3fdb14fd 1410 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1411
fc6eead7
JS
1412 ts->tv_nsec = 0;
1413 timespec64_add_ns(ts, nsecs);
2d42244a 1414}
fb7fcc96 1415EXPORT_SYMBOL(ktime_get_raw_ts64);
cdba2ec5 1416
2d42244a 1417
8524070b 1418/**
cf4fc6cb 1419 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1420 */
cf4fc6cb 1421int timekeeping_valid_for_hres(void)
8524070b 1422{
3fdb14fd 1423 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 1424 unsigned long seq;
1425 int ret;
1426
1427 do {
3fdb14fd 1428 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1429
876e7881 1430 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1431
3fdb14fd 1432 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 1433
1434 return ret;
1435}
1436
98962465
JH
1437/**
1438 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1439 */
1440u64 timekeeping_max_deferment(void)
1441{
3fdb14fd 1442 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1443 unsigned long seq;
1444 u64 ret;
42e71e81 1445
70471f2f 1446 do {
3fdb14fd 1447 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1448
876e7881 1449 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1450
3fdb14fd 1451 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1452
1453 return ret;
98962465
JH
1454}
1455
8524070b 1456/**
d4f587c6 1457 * read_persistent_clock - Return time from the persistent clock.
8524070b 1458 *
1459 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1460 * Reads the time from the battery backed persistent clock.
1461 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1462 *
1463 * XXX - Do be sure to remove it once all arches implement it.
1464 */
52f5684c 1465void __weak read_persistent_clock(struct timespec *ts)
8524070b 1466{
d4f587c6
MS
1467 ts->tv_sec = 0;
1468 ts->tv_nsec = 0;
8524070b 1469}
1470
2ee96632
XP
1471void __weak read_persistent_clock64(struct timespec64 *ts64)
1472{
1473 struct timespec ts;
1474
1475 read_persistent_clock(&ts);
1476 *ts64 = timespec_to_timespec64(ts);
1477}
1478
23970e38 1479/**
e83d0a41 1480 * read_boot_clock64 - Return time of the system start.
23970e38
MS
1481 *
1482 * Weak dummy function for arches that do not yet support it.
1483 * Function to read the exact time the system has been started.
e83d0a41 1484 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
23970e38
MS
1485 *
1486 * XXX - Do be sure to remove it once all arches implement it.
1487 */
e83d0a41 1488void __weak read_boot_clock64(struct timespec64 *ts)
23970e38
MS
1489{
1490 ts->tv_sec = 0;
1491 ts->tv_nsec = 0;
1492}
1493
0fa88cb4
XP
1494/* Flag for if timekeeping_resume() has injected sleeptime */
1495static bool sleeptime_injected;
1496
1497/* Flag for if there is a persistent clock on this platform */
1498static bool persistent_clock_exists;
1499
8524070b 1500/*
1501 * timekeeping_init - Initializes the clocksource and common timekeeping values
1502 */
1503void __init timekeeping_init(void)
1504{
3fdb14fd 1505 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1506 struct clocksource *clock;
8524070b 1507 unsigned long flags;
7d489d15 1508 struct timespec64 now, boot, tmp;
31ade306 1509
2ee96632 1510 read_persistent_clock64(&now);
7d489d15 1511 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1512 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1513 " Check your CMOS/BIOS settings.\n");
1514 now.tv_sec = 0;
1515 now.tv_nsec = 0;
31ade306 1516 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1517 persistent_clock_exists = true;
4e8b1452 1518
9a806ddb 1519 read_boot_clock64(&boot);
7d489d15 1520 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1521 pr_warn("WARNING: Boot clock returned invalid value!\n"
1522 " Check your CMOS/BIOS settings.\n");
1523 boot.tv_sec = 0;
1524 boot.tv_nsec = 0;
1525 }
8524070b 1526
9a7a71b1 1527 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1528 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1529 ntp_init();
1530
f1b82746 1531 clock = clocksource_default_clock();
a0f7d48b
MS
1532 if (clock->enable)
1533 clock->enable(clock);
4e250fdd 1534 tk_setup_internals(tk, clock);
8524070b 1535
4e250fdd 1536 tk_set_xtime(tk, &now);
fc6eead7 1537 tk->raw_sec = 0;
1e75fa8b 1538 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1539 boot = tk_xtime(tk);
1e75fa8b 1540
7d489d15 1541 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1542 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1543
56fd16ca 1544 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
48cdc135 1545
3fdb14fd 1546 write_seqcount_end(&tk_core.seq);
9a7a71b1 1547 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1548}
1549
264bb3f7 1550/* time in seconds when suspend began for persistent clock */
7d489d15 1551static struct timespec64 timekeeping_suspend_time;
8524070b 1552
304529b1
JS
1553/**
1554 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1555 * @delta: pointer to a timespec delta value
1556 *
1557 * Takes a timespec offset measuring a suspend interval and properly
1558 * adds the sleep offset to the timekeeping variables.
1559 */
f726a697 1560static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1561 struct timespec64 *delta)
304529b1 1562{
7d489d15 1563 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1564 printk_deferred(KERN_WARNING
1565 "__timekeeping_inject_sleeptime: Invalid "
1566 "sleep delta value!\n");
cb5de2f8
JS
1567 return;
1568 }
f726a697 1569 tk_xtime_add(tk, delta);
a3ed0e43 1570 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1571 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1572 tk_debug_account_sleep_time(delta);
304529b1
JS
1573}
1574
7f298139 1575#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1576/**
1577 * We have three kinds of time sources to use for sleep time
1578 * injection, the preference order is:
1579 * 1) non-stop clocksource
1580 * 2) persistent clock (ie: RTC accessible when irqs are off)
1581 * 3) RTC
1582 *
1583 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1584 * If system has neither 1) nor 2), 3) will be used finally.
1585 *
1586 *
1587 * If timekeeping has injected sleeptime via either 1) or 2),
1588 * 3) becomes needless, so in this case we don't need to call
1589 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1590 * means.
1591 */
1592bool timekeeping_rtc_skipresume(void)
1593{
1594 return sleeptime_injected;
1595}
1596
1597/**
1598 * 1) can be determined whether to use or not only when doing
1599 * timekeeping_resume() which is invoked after rtc_suspend(),
1600 * so we can't skip rtc_suspend() surely if system has 1).
1601 *
1602 * But if system has 2), 2) will definitely be used, so in this
1603 * case we don't need to call rtc_suspend(), and this is what
1604 * timekeeping_rtc_skipsuspend() means.
1605 */
1606bool timekeeping_rtc_skipsuspend(void)
1607{
1608 return persistent_clock_exists;
1609}
1610
304529b1 1611/**
04d90890 1612 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1613 * @delta: pointer to a timespec64 delta value
304529b1 1614 *
2ee96632 1615 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1616 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1617 * and also don't have an effective nonstop clocksource.
304529b1
JS
1618 *
1619 * This function should only be called by rtc_resume(), and allows
1620 * a suspend offset to be injected into the timekeeping values.
1621 */
04d90890 1622void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1623{
3fdb14fd 1624 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1625 unsigned long flags;
304529b1 1626
9a7a71b1 1627 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1628 write_seqcount_begin(&tk_core.seq);
70471f2f 1629
4e250fdd 1630 timekeeping_forward_now(tk);
304529b1 1631
04d90890 1632 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1633
780427f0 1634 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1635
3fdb14fd 1636 write_seqcount_end(&tk_core.seq);
9a7a71b1 1637 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1638
1639 /* signal hrtimers about time change */
1640 clock_was_set();
1641}
7f298139 1642#endif
304529b1 1643
8524070b 1644/**
1645 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1646 */
124cf911 1647void timekeeping_resume(void)
8524070b 1648{
3fdb14fd 1649 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1650 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1651 unsigned long flags;
7d489d15 1652 struct timespec64 ts_new, ts_delta;
a5a1d1c2 1653 u64 cycle_now;
d4f587c6 1654
0fa88cb4 1655 sleeptime_injected = false;
2ee96632 1656 read_persistent_clock64(&ts_new);
8524070b 1657
adc78e6b 1658 clockevents_resume();
d10ff3fb
TG
1659 clocksource_resume();
1660
9a7a71b1 1661 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1662 write_seqcount_begin(&tk_core.seq);
8524070b 1663
e445cf1c
FT
1664 /*
1665 * After system resumes, we need to calculate the suspended time and
1666 * compensate it for the OS time. There are 3 sources that could be
1667 * used: Nonstop clocksource during suspend, persistent clock and rtc
1668 * device.
1669 *
1670 * One specific platform may have 1 or 2 or all of them, and the
1671 * preference will be:
1672 * suspend-nonstop clocksource -> persistent clock -> rtc
1673 * The less preferred source will only be tried if there is no better
1674 * usable source. The rtc part is handled separately in rtc core code.
1675 */
ceea5e37 1676 cycle_now = tk_clock_read(&tk->tkr_mono);
e445cf1c 1677 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1678 cycle_now > tk->tkr_mono.cycle_last) {
c029a2be 1679 u64 nsec, cyc_delta;
e445cf1c 1680
c029a2be
TG
1681 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1682 tk->tkr_mono.mask);
1683 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
7d489d15 1684 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1685 sleeptime_injected = true;
7d489d15
JS
1686 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1687 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1688 sleeptime_injected = true;
8524070b 1689 }
e445cf1c 1690
0fa88cb4 1691 if (sleeptime_injected)
e445cf1c
FT
1692 __timekeeping_inject_sleeptime(tk, &ts_delta);
1693
1694 /* Re-base the last cycle value */
876e7881 1695 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1696 tk->tkr_raw.cycle_last = cycle_now;
1697
4e250fdd 1698 tk->ntp_error = 0;
8524070b 1699 timekeeping_suspended = 0;
780427f0 1700 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1701 write_seqcount_end(&tk_core.seq);
9a7a71b1 1702 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1703
1704 touch_softlockup_watchdog();
1705
4ffee521 1706 tick_resume();
b12a03ce 1707 hrtimers_resume();
8524070b 1708}
1709
124cf911 1710int timekeeping_suspend(void)
8524070b 1711{
3fdb14fd 1712 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1713 unsigned long flags;
7d489d15
JS
1714 struct timespec64 delta, delta_delta;
1715 static struct timespec64 old_delta;
8524070b 1716
2ee96632 1717 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1718
0d6bd995
ZM
1719 /*
1720 * On some systems the persistent_clock can not be detected at
1721 * timekeeping_init by its return value, so if we see a valid
1722 * value returned, update the persistent_clock_exists flag.
1723 */
1724 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1725 persistent_clock_exists = true;
0d6bd995 1726
9a7a71b1 1727 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1728 write_seqcount_begin(&tk_core.seq);
4e250fdd 1729 timekeeping_forward_now(tk);
8524070b 1730 timekeeping_suspended = 1;
cb33217b 1731
0fa88cb4 1732 if (persistent_clock_exists) {
cb33217b 1733 /*
264bb3f7
XP
1734 * To avoid drift caused by repeated suspend/resumes,
1735 * which each can add ~1 second drift error,
1736 * try to compensate so the difference in system time
1737 * and persistent_clock time stays close to constant.
cb33217b 1738 */
264bb3f7
XP
1739 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1740 delta_delta = timespec64_sub(delta, old_delta);
1741 if (abs(delta_delta.tv_sec) >= 2) {
1742 /*
1743 * if delta_delta is too large, assume time correction
1744 * has occurred and set old_delta to the current delta.
1745 */
1746 old_delta = delta;
1747 } else {
1748 /* Otherwise try to adjust old_system to compensate */
1749 timekeeping_suspend_time =
1750 timespec64_add(timekeeping_suspend_time, delta_delta);
1751 }
cb33217b 1752 }
330a1617
JS
1753
1754 timekeeping_update(tk, TK_MIRROR);
060407ae 1755 halt_fast_timekeeper(tk);
3fdb14fd 1756 write_seqcount_end(&tk_core.seq);
9a7a71b1 1757 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1758
4ffee521 1759 tick_suspend();
c54a42b1 1760 clocksource_suspend();
adc78e6b 1761 clockevents_suspend();
8524070b 1762
1763 return 0;
1764}
1765
1766/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1767static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1768 .resume = timekeeping_resume,
1769 .suspend = timekeeping_suspend,
8524070b 1770};
1771
e1a85b2c 1772static int __init timekeeping_init_ops(void)
8524070b 1773{
e1a85b2c
RW
1774 register_syscore_ops(&timekeeping_syscore_ops);
1775 return 0;
8524070b 1776}
e1a85b2c 1777device_initcall(timekeeping_init_ops);
8524070b 1778
1779/*
dc491596 1780 * Apply a multiplier adjustment to the timekeeper
8524070b 1781 */
dc491596
JS
1782static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1783 s64 offset,
78b98e3c 1784 s32 mult_adj)
8524070b 1785{
dc491596 1786 s64 interval = tk->cycle_interval;
8524070b 1787
78b98e3c
ML
1788 if (mult_adj == 0) {
1789 return;
1790 } else if (mult_adj == -1) {
dc491596 1791 interval = -interval;
78b98e3c
ML
1792 offset = -offset;
1793 } else if (mult_adj != 1) {
1794 interval *= mult_adj;
1795 offset *= mult_adj;
1d17d174 1796 }
8524070b 1797
c2bc1111
JS
1798 /*
1799 * So the following can be confusing.
1800 *
dc491596 1801 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1802 *
dc491596 1803 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1804 * have been appropriately scaled so the math is the same.
1805 *
1806 * The basic idea here is that we're increasing the multiplier
1807 * by one, this causes the xtime_interval to be incremented by
1808 * one cycle_interval. This is because:
1809 * xtime_interval = cycle_interval * mult
1810 * So if mult is being incremented by one:
1811 * xtime_interval = cycle_interval * (mult + 1)
1812 * Its the same as:
1813 * xtime_interval = (cycle_interval * mult) + cycle_interval
1814 * Which can be shortened to:
1815 * xtime_interval += cycle_interval
1816 *
1817 * So offset stores the non-accumulated cycles. Thus the current
1818 * time (in shifted nanoseconds) is:
1819 * now = (offset * adj) + xtime_nsec
1820 * Now, even though we're adjusting the clock frequency, we have
1821 * to keep time consistent. In other words, we can't jump back
1822 * in time, and we also want to avoid jumping forward in time.
1823 *
1824 * So given the same offset value, we need the time to be the same
1825 * both before and after the freq adjustment.
1826 * now = (offset * adj_1) + xtime_nsec_1
1827 * now = (offset * adj_2) + xtime_nsec_2
1828 * So:
1829 * (offset * adj_1) + xtime_nsec_1 =
1830 * (offset * adj_2) + xtime_nsec_2
1831 * And we know:
1832 * adj_2 = adj_1 + 1
1833 * So:
1834 * (offset * adj_1) + xtime_nsec_1 =
1835 * (offset * (adj_1+1)) + xtime_nsec_2
1836 * (offset * adj_1) + xtime_nsec_1 =
1837 * (offset * adj_1) + offset + xtime_nsec_2
1838 * Canceling the sides:
1839 * xtime_nsec_1 = offset + xtime_nsec_2
1840 * Which gives us:
1841 * xtime_nsec_2 = xtime_nsec_1 - offset
1842 * Which simplfies to:
1843 * xtime_nsec -= offset
c2bc1111 1844 */
876e7881 1845 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1846 /* NTP adjustment caused clocksource mult overflow */
1847 WARN_ON_ONCE(1);
1848 return;
1849 }
1850
876e7881 1851 tk->tkr_mono.mult += mult_adj;
f726a697 1852 tk->xtime_interval += interval;
876e7881 1853 tk->tkr_mono.xtime_nsec -= offset;
dc491596
JS
1854}
1855
1856/*
78b98e3c
ML
1857 * Adjust the timekeeper's multiplier to the correct frequency
1858 * and also to reduce the accumulated error value.
dc491596 1859 */
78b98e3c 1860static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
dc491596 1861{
78b98e3c 1862 u32 mult;
dc491596 1863
ec02b076 1864 /*
78b98e3c
ML
1865 * Determine the multiplier from the current NTP tick length.
1866 * Avoid expensive division when the tick length doesn't change.
ec02b076 1867 */
78b98e3c
ML
1868 if (likely(tk->ntp_tick == ntp_tick_length())) {
1869 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1870 } else {
1871 tk->ntp_tick = ntp_tick_length();
1872 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1873 tk->xtime_remainder, tk->cycle_interval);
ec02b076 1874 }
dc491596 1875
78b98e3c
ML
1876 /*
1877 * If the clock is behind the NTP time, increase the multiplier by 1
1878 * to catch up with it. If it's ahead and there was a remainder in the
1879 * tick division, the clock will slow down. Otherwise it will stay
1880 * ahead until the tick length changes to a non-divisible value.
1881 */
1882 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1883 mult += tk->ntp_err_mult;
dc491596 1884
78b98e3c 1885 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
dc491596 1886
876e7881
PZ
1887 if (unlikely(tk->tkr_mono.clock->maxadj &&
1888 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1889 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1890 printk_once(KERN_WARNING
1891 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1892 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1893 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1894 }
2a8c0883
JS
1895
1896 /*
1897 * It may be possible that when we entered this function, xtime_nsec
1898 * was very small. Further, if we're slightly speeding the clocksource
1899 * in the code above, its possible the required corrective factor to
1900 * xtime_nsec could cause it to underflow.
1901 *
78b98e3c
ML
1902 * Now, since we have already accumulated the second and the NTP
1903 * subsystem has been notified via second_overflow(), we need to skip
1904 * the next update.
2a8c0883 1905 */
876e7881 1906 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
78b98e3c
ML
1907 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1908 tk->tkr_mono.shift;
1909 tk->xtime_sec--;
1910 tk->skip_second_overflow = 1;
2a8c0883 1911 }
8524070b 1912}
1913
1f4f9487
JS
1914/**
1915 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1916 *
571af55a 1917 * Helper function that accumulates the nsecs greater than a second
1f4f9487
JS
1918 * from the xtime_nsec field to the xtime_secs field.
1919 * It also calls into the NTP code to handle leapsecond processing.
1920 *
1921 */
780427f0 1922static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1923{
876e7881 1924 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1925 unsigned int clock_set = 0;
1f4f9487 1926
876e7881 1927 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1928 int leap;
1929
876e7881 1930 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1931 tk->xtime_sec++;
1932
78b98e3c
ML
1933 /*
1934 * Skip NTP update if this second was accumulated before,
1935 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1936 */
1937 if (unlikely(tk->skip_second_overflow)) {
1938 tk->skip_second_overflow = 0;
1939 continue;
1940 }
1941
1f4f9487
JS
1942 /* Figure out if its a leap sec and apply if needed */
1943 leap = second_overflow(tk->xtime_sec);
6d0ef903 1944 if (unlikely(leap)) {
7d489d15 1945 struct timespec64 ts;
6d0ef903
JS
1946
1947 tk->xtime_sec += leap;
1f4f9487 1948
6d0ef903
JS
1949 ts.tv_sec = leap;
1950 ts.tv_nsec = 0;
1951 tk_set_wall_to_mono(tk,
7d489d15 1952 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1953
cc244dda
JS
1954 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1955
5258d3f2 1956 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1957 }
1f4f9487 1958 }
5258d3f2 1959 return clock_set;
1f4f9487
JS
1960}
1961
a092ff0f 1962/**
1963 * logarithmic_accumulation - shifted accumulation of cycles
1964 *
1965 * This functions accumulates a shifted interval of cycles into
1966 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1967 * loop.
1968 *
1969 * Returns the unconsumed cycles.
1970 */
a5a1d1c2
TG
1971static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1972 u32 shift, unsigned int *clock_set)
a092ff0f 1973{
a5a1d1c2 1974 u64 interval = tk->cycle_interval << shift;
3d88d56c 1975 u64 snsec_per_sec;
a092ff0f 1976
571af55a 1977 /* If the offset is smaller than a shifted interval, do nothing */
23a9537a 1978 if (offset < interval)
a092ff0f 1979 return offset;
1980
1981 /* Accumulate one shifted interval */
23a9537a 1982 offset -= interval;
876e7881 1983 tk->tkr_mono.cycle_last += interval;
4a4ad80d 1984 tk->tkr_raw.cycle_last += interval;
a092ff0f 1985
876e7881 1986 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1987 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1988
deda2e81 1989 /* Accumulate raw time */
3d88d56c
JS
1990 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
1991 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
1992 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
1993 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
fc6eead7 1994 tk->raw_sec++;
a092ff0f 1995 }
1996
1997 /* Accumulate error between NTP and clock interval */
375f45b5 1998 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1999 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2000 (tk->ntp_error_shift + shift);
a092ff0f 2001
2002 return offset;
2003}
2004
8524070b 2005/**
2006 * update_wall_time - Uses the current clocksource to increment the wall time
2007 *
8524070b 2008 */
47a1b796 2009void update_wall_time(void)
8524070b 2010{
3fdb14fd 2011 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 2012 struct timekeeper *tk = &shadow_timekeeper;
a5a1d1c2 2013 u64 offset;
a092ff0f 2014 int shift = 0, maxshift;
5258d3f2 2015 unsigned int clock_set = 0;
70471f2f
JS
2016 unsigned long flags;
2017
9a7a71b1 2018 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 2019
2020 /* Make sure we're fully resumed: */
2021 if (unlikely(timekeeping_suspended))
70471f2f 2022 goto out;
8524070b 2023
592913ec 2024#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 2025 offset = real_tk->cycle_interval;
592913ec 2026#else
ceea5e37 2027 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
876e7881 2028 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 2029#endif
8524070b 2030
bf2ac312 2031 /* Check if there's really nothing to do */
48cdc135 2032 if (offset < real_tk->cycle_interval)
bf2ac312
JS
2033 goto out;
2034
3c17ad19 2035 /* Do some additional sanity checking */
a529bea8 2036 timekeeping_check_update(tk, offset);
3c17ad19 2037
a092ff0f 2038 /*
2039 * With NO_HZ we may have to accumulate many cycle_intervals
2040 * (think "ticks") worth of time at once. To do this efficiently,
2041 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 2042 * that is smaller than the offset. We then accumulate that
a092ff0f 2043 * chunk in one go, and then try to consume the next smaller
2044 * doubled multiple.
8524070b 2045 */
4e250fdd 2046 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 2047 shift = max(0, shift);
88b28adf 2048 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 2049 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 2050 shift = min(shift, maxshift);
4e250fdd 2051 while (offset >= tk->cycle_interval) {
5258d3f2
JS
2052 offset = logarithmic_accumulation(tk, offset, shift,
2053 &clock_set);
4e250fdd 2054 if (offset < tk->cycle_interval<<shift)
830ec045 2055 shift--;
8524070b 2056 }
2057
78b98e3c 2058 /* Adjust the multiplier to correct NTP error */
4e250fdd 2059 timekeeping_adjust(tk, offset);
8524070b 2060
6a867a39
JS
2061 /*
2062 * Finally, make sure that after the rounding
1e75fa8b 2063 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 2064 */
5258d3f2 2065 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 2066
3fdb14fd 2067 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
2068 /*
2069 * Update the real timekeeper.
2070 *
2071 * We could avoid this memcpy by switching pointers, but that
2072 * requires changes to all other timekeeper usage sites as
2073 * well, i.e. move the timekeeper pointer getter into the
2074 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 2075 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
2076 * updating.
2077 */
906c5557 2078 timekeeping_update(tk, clock_set);
48cdc135 2079 memcpy(real_tk, tk, sizeof(*tk));
906c5557 2080 /* The memcpy must come last. Do not put anything here! */
3fdb14fd 2081 write_seqcount_end(&tk_core.seq);
ca4523cd 2082out:
9a7a71b1 2083 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 2084 if (clock_set)
cab5e127
JS
2085 /* Have to call _delayed version, since in irq context*/
2086 clock_was_set_delayed();
8524070b 2087}
7c3f1a57
TJ
2088
2089/**
d08c0cdd
JS
2090 * getboottime64 - Return the real time of system boot.
2091 * @ts: pointer to the timespec64 to be set
7c3f1a57 2092 *
d08c0cdd 2093 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
2094 *
2095 * This is based on the wall_to_monotonic offset and the total suspend
2096 * time. Calls to settimeofday will affect the value returned (which
2097 * basically means that however wrong your real time clock is at boot time,
2098 * you get the right time here).
2099 */
d08c0cdd 2100void getboottime64(struct timespec64 *ts)
7c3f1a57 2101{
3fdb14fd 2102 struct timekeeper *tk = &tk_core.timekeeper;
a3ed0e43 2103 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
02cba159 2104
d08c0cdd 2105 *ts = ktime_to_timespec64(t);
7c3f1a57 2106}
d08c0cdd 2107EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 2108
17c38b74 2109unsigned long get_seconds(void)
2110{
3fdb14fd 2111 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
2112
2113 return tk->xtime_sec;
17c38b74 2114}
2115EXPORT_SYMBOL(get_seconds);
2116
fb7fcc96 2117void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2c6b47de 2118{
3fdb14fd 2119 struct timekeeper *tk = &tk_core.timekeeper;
2c6b47de 2120 unsigned long seq;
2121
2122 do {
3fdb14fd 2123 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2124
fb7fcc96 2125 *ts = tk_xtime(tk);
3fdb14fd 2126 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 2127}
fb7fcc96 2128EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
da15cfda 2129
fb7fcc96 2130void ktime_get_coarse_ts64(struct timespec64 *ts)
da15cfda 2131{
3fdb14fd 2132 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2133 struct timespec64 now, mono;
da15cfda 2134 unsigned long seq;
2135
2136 do {
3fdb14fd 2137 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2138
4e250fdd
JS
2139 now = tk_xtime(tk);
2140 mono = tk->wall_to_monotonic;
3fdb14fd 2141 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 2142
fb7fcc96 2143 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
da15cfda 2144 now.tv_nsec + mono.tv_nsec);
da15cfda 2145}
fb7fcc96 2146EXPORT_SYMBOL(ktime_get_coarse_ts64);
871cf1e5
TH
2147
2148/*
d6ad4187 2149 * Must hold jiffies_lock
871cf1e5
TH
2150 */
2151void do_timer(unsigned long ticks)
2152{
2153 jiffies_64 += ticks;
871cf1e5
TH
2154 calc_global_load(ticks);
2155}
48cf76f7 2156
f6c06abf 2157/**
76f41088 2158 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 2159 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf 2160 * @offs_real: pointer to storage for monotonic -> realtime offset
a3ed0e43 2161 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 2162 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 2163 *
868a3e91
TG
2164 * Returns current monotonic time and updates the offsets if the
2165 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2166 * different.
2167 *
b7bc50e4 2168 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 2169 */
868a3e91 2170ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
a3ed0e43 2171 ktime_t *offs_boot, ktime_t *offs_tai)
f6c06abf 2172{
3fdb14fd 2173 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 2174 unsigned int seq;
a37c0aad
TG
2175 ktime_t base;
2176 u64 nsecs;
f6c06abf
TG
2177
2178 do {
3fdb14fd 2179 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 2180
876e7881
PZ
2181 base = tk->tkr_mono.base;
2182 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833f32d7
JS
2183 base = ktime_add_ns(base, nsecs);
2184
868a3e91
TG
2185 if (*cwsseq != tk->clock_was_set_seq) {
2186 *cwsseq = tk->clock_was_set_seq;
2187 *offs_real = tk->offs_real;
a3ed0e43 2188 *offs_boot = tk->offs_boot;
868a3e91
TG
2189 *offs_tai = tk->offs_tai;
2190 }
833f32d7
JS
2191
2192 /* Handle leapsecond insertion adjustments */
2456e855 2193 if (unlikely(base >= tk->next_leap_ktime))
833f32d7
JS
2194 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2195
3fdb14fd 2196 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 2197
833f32d7 2198 return base;
f6c06abf 2199}
f6c06abf 2200
e0956dcc 2201/**
1572fa03 2202 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
e0956dcc 2203 */
1572fa03 2204static int timekeeping_validate_timex(struct timex *txc)
e0956dcc
AB
2205{
2206 if (txc->modes & ADJ_ADJTIME) {
2207 /* singleshot must not be used with any other mode bits */
2208 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2209 return -EINVAL;
2210 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2211 !capable(CAP_SYS_TIME))
2212 return -EPERM;
2213 } else {
2214 /* In order to modify anything, you gotta be super-user! */
2215 if (txc->modes && !capable(CAP_SYS_TIME))
2216 return -EPERM;
2217 /*
2218 * if the quartz is off by more than 10% then
2219 * something is VERY wrong!
2220 */
2221 if (txc->modes & ADJ_TICK &&
2222 (txc->tick < 900000/USER_HZ ||
2223 txc->tick > 1100000/USER_HZ))
2224 return -EINVAL;
2225 }
2226
2227 if (txc->modes & ADJ_SETOFFSET) {
2228 /* In order to inject time, you gotta be super-user! */
2229 if (!capable(CAP_SYS_TIME))
2230 return -EPERM;
2231
1572fa03
AB
2232 /*
2233 * Validate if a timespec/timeval used to inject a time
2234 * offset is valid. Offsets can be postive or negative, so
2235 * we don't check tv_sec. The value of the timeval/timespec
2236 * is the sum of its fields,but *NOTE*:
2237 * The field tv_usec/tv_nsec must always be non-negative and
2238 * we can't have more nanoseconds/microseconds than a second.
2239 */
2240 if (txc->time.tv_usec < 0)
2241 return -EINVAL;
e0956dcc 2242
1572fa03
AB
2243 if (txc->modes & ADJ_NANO) {
2244 if (txc->time.tv_usec >= NSEC_PER_SEC)
e0956dcc 2245 return -EINVAL;
e0956dcc 2246 } else {
1572fa03 2247 if (txc->time.tv_usec >= USEC_PER_SEC)
e0956dcc
AB
2248 return -EINVAL;
2249 }
2250 }
2251
2252 /*
2253 * Check for potential multiplication overflows that can
2254 * only happen on 64-bit systems:
2255 */
2256 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2257 if (LLONG_MIN / PPM_SCALE > txc->freq)
2258 return -EINVAL;
2259 if (LLONG_MAX / PPM_SCALE < txc->freq)
2260 return -EINVAL;
2261 }
2262
2263 return 0;
2264}
2265
2266
aa6f9c59
JS
2267/**
2268 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2269 */
2270int do_adjtimex(struct timex *txc)
2271{
3fdb14fd 2272 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 2273 unsigned long flags;
7d489d15 2274 struct timespec64 ts;
4e8f8b34 2275 s32 orig_tai, tai;
e4085693
JS
2276 int ret;
2277
2278 /* Validate the data before disabling interrupts */
1572fa03 2279 ret = timekeeping_validate_timex(txc);
e4085693
JS
2280 if (ret)
2281 return ret;
2282
cef90377 2283 if (txc->modes & ADJ_SETOFFSET) {
1572fa03 2284 struct timespec64 delta;
cef90377
JS
2285 delta.tv_sec = txc->time.tv_sec;
2286 delta.tv_nsec = txc->time.tv_usec;
2287 if (!(txc->modes & ADJ_NANO))
2288 delta.tv_nsec *= 1000;
2289 ret = timekeeping_inject_offset(&delta);
2290 if (ret)
2291 return ret;
2292 }
2293
d6d29896 2294 getnstimeofday64(&ts);
87ace39b 2295
06c017fd 2296 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2297 write_seqcount_begin(&tk_core.seq);
06c017fd 2298
4e8f8b34 2299 orig_tai = tai = tk->tai_offset;
87ace39b 2300 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2301
4e8f8b34
JS
2302 if (tai != orig_tai) {
2303 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2304 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2305 }
833f32d7
JS
2306 tk_update_leap_state(tk);
2307
3fdb14fd 2308 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2309 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2310
6fdda9a9
JS
2311 if (tai != orig_tai)
2312 clock_was_set();
2313
7bd36014
JS
2314 ntp_notify_cmos_timer();
2315
87ace39b
JS
2316 return ret;
2317}
aa6f9c59
JS
2318
2319#ifdef CONFIG_NTP_PPS
2320/**
2321 * hardpps() - Accessor function to NTP __hardpps function
2322 */
7ec88e4b 2323void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
aa6f9c59 2324{
06c017fd
JS
2325 unsigned long flags;
2326
2327 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2328 write_seqcount_begin(&tk_core.seq);
06c017fd 2329
aa6f9c59 2330 __hardpps(phase_ts, raw_ts);
06c017fd 2331
3fdb14fd 2332 write_seqcount_end(&tk_core.seq);
06c017fd 2333 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2334}
2335EXPORT_SYMBOL(hardpps);
a2d81803 2336#endif /* CONFIG_NTP_PPS */
aa6f9c59 2337
f0af911a
TH
2338/**
2339 * xtime_update() - advances the timekeeping infrastructure
2340 * @ticks: number of ticks, that have elapsed since the last call.
2341 *
2342 * Must be called with interrupts disabled.
2343 */
2344void xtime_update(unsigned long ticks)
2345{
d6ad4187 2346 write_seqlock(&jiffies_lock);
f0af911a 2347 do_timer(ticks);
d6ad4187 2348 write_sequnlock(&jiffies_lock);
47a1b796 2349 update_wall_time();
f0af911a 2350}