clockevents: Remove unnecessary unlikely()
[linux-2.6-block.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
38b8d208 17#include <linux/nmi.h>
d43c36dc 18#include <linux/sched.h>
4f17722c 19#include <linux/sched/loadavg.h>
3eca9937 20#include <linux/sched/clock.h>
e1a85b2c 21#include <linux/syscore_ops.h>
8524070b 22#include <linux/clocksource.h>
23#include <linux/jiffies.h>
24#include <linux/time.h>
25#include <linux/tick.h>
75c5158f 26#include <linux/stop_machine.h>
e0b306fe 27#include <linux/pvclock_gtod.h>
52f5684c 28#include <linux/compiler.h>
8524070b 29
eb93e4d9 30#include "tick-internal.h"
aa6f9c59 31#include "ntp_internal.h"
5c83545f 32#include "timekeeping_internal.h"
155ec602 33
04397fe9
DV
34#define TK_CLEAR_NTP (1 << 0)
35#define TK_MIRROR (1 << 1)
780427f0 36#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 37
b061c7a5
ML
38enum timekeeping_adv_mode {
39 /* Update timekeeper when a tick has passed */
40 TK_ADV_TICK,
41
42 /* Update timekeeper on a direct frequency change */
43 TK_ADV_FREQ
44};
45
3fdb14fd
TG
46/*
47 * The most important data for readout fits into a single 64 byte
48 * cache line.
49 */
50static struct {
51 seqcount_t seq;
52 struct timekeeper timekeeper;
53} tk_core ____cacheline_aligned;
54
9a7a71b1 55static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 56static struct timekeeper shadow_timekeeper;
155ec602 57
4396e058
TG
58/**
59 * struct tk_fast - NMI safe timekeeper
60 * @seq: Sequence counter for protecting updates. The lowest bit
61 * is the index for the tk_read_base array
62 * @base: tk_read_base array. Access is indexed by the lowest bit of
63 * @seq.
64 *
65 * See @update_fast_timekeeper() below.
66 */
67struct tk_fast {
68 seqcount_t seq;
69 struct tk_read_base base[2];
70};
71
5df32107
PB
72/* Suspend-time cycles value for halted fast timekeeper. */
73static u64 cycles_at_suspend;
74
75static u64 dummy_clock_read(struct clocksource *cs)
76{
77 return cycles_at_suspend;
78}
79
80static struct clocksource dummy_clock = {
81 .read = dummy_clock_read,
82};
83
84static struct tk_fast tk_fast_mono ____cacheline_aligned = {
85 .base[0] = { .clock = &dummy_clock, },
86 .base[1] = { .clock = &dummy_clock, },
87};
88
89static struct tk_fast tk_fast_raw ____cacheline_aligned = {
90 .base[0] = { .clock = &dummy_clock, },
91 .base[1] = { .clock = &dummy_clock, },
92};
4396e058 93
8fcce546
JS
94/* flag for if timekeeping is suspended */
95int __read_mostly timekeeping_suspended;
96
1e75fa8b
JS
97static inline void tk_normalize_xtime(struct timekeeper *tk)
98{
876e7881
PZ
99 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
100 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
101 tk->xtime_sec++;
102 }
fc6eead7
JS
103 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
104 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
105 tk->raw_sec++;
106 }
1e75fa8b
JS
107}
108
985e6950 109static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
c905fae4
TG
110{
111 struct timespec64 ts;
112
113 ts.tv_sec = tk->xtime_sec;
876e7881 114 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
115 return ts;
116}
117
7d489d15 118static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
119{
120 tk->xtime_sec = ts->tv_sec;
876e7881 121 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
122}
123
7d489d15 124static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
125{
126 tk->xtime_sec += ts->tv_sec;
876e7881 127 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 128 tk_normalize_xtime(tk);
1e75fa8b 129}
8fcce546 130
7d489d15 131static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 132{
7d489d15 133 struct timespec64 tmp;
6d0ef903
JS
134
135 /*
136 * Verify consistency of: offset_real = -wall_to_monotonic
137 * before modifying anything
138 */
7d489d15 139 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 140 -tk->wall_to_monotonic.tv_nsec);
2456e855 141 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
6d0ef903 142 tk->wall_to_monotonic = wtm;
7d489d15
JS
143 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
144 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 145 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
146}
147
47da70d3 148static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 149{
a3ed0e43 150 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
151}
152
ceea5e37
JS
153/*
154 * tk_clock_read - atomic clocksource read() helper
155 *
156 * This helper is necessary to use in the read paths because, while the
157 * seqlock ensures we don't return a bad value while structures are updated,
158 * it doesn't protect from potential crashes. There is the possibility that
159 * the tkr's clocksource may change between the read reference, and the
160 * clock reference passed to the read function. This can cause crashes if
161 * the wrong clocksource is passed to the wrong read function.
162 * This isn't necessary to use when holding the timekeeper_lock or doing
163 * a read of the fast-timekeeper tkrs (which is protected by its own locking
164 * and update logic).
165 */
985e6950 166static inline u64 tk_clock_read(const struct tk_read_base *tkr)
ceea5e37
JS
167{
168 struct clocksource *clock = READ_ONCE(tkr->clock);
169
170 return clock->read(clock);
171}
172
3c17ad19 173#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 174#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 175
a5a1d1c2 176static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
3c17ad19
JS
177{
178
a5a1d1c2 179 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
876e7881 180 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
181
182 if (offset > max_cycles) {
a558cd02 183 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 184 offset, name, max_cycles);
a558cd02 185 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
186 } else {
187 if (offset > (max_cycles >> 1)) {
fc4fa6e1 188 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
3c17ad19
JS
189 offset, name, max_cycles >> 1);
190 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
191 }
192 }
4ca22c26 193
57d05a93
JS
194 if (tk->underflow_seen) {
195 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
196 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
197 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
198 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 199 tk->last_warning = jiffies;
4ca22c26 200 }
57d05a93 201 tk->underflow_seen = 0;
4ca22c26
JS
202 }
203
57d05a93
JS
204 if (tk->overflow_seen) {
205 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
206 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
207 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
208 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 209 tk->last_warning = jiffies;
4ca22c26 210 }
57d05a93 211 tk->overflow_seen = 0;
4ca22c26 212 }
3c17ad19 213}
a558cd02 214
985e6950 215static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
a558cd02 216{
57d05a93 217 struct timekeeper *tk = &tk_core.timekeeper;
a5a1d1c2 218 u64 now, last, mask, max, delta;
4ca22c26 219 unsigned int seq;
a558cd02 220
4ca22c26
JS
221 /*
222 * Since we're called holding a seqlock, the data may shift
223 * under us while we're doing the calculation. This can cause
224 * false positives, since we'd note a problem but throw the
225 * results away. So nest another seqlock here to atomically
226 * grab the points we are checking with.
227 */
228 do {
229 seq = read_seqcount_begin(&tk_core.seq);
ceea5e37 230 now = tk_clock_read(tkr);
4ca22c26
JS
231 last = tkr->cycle_last;
232 mask = tkr->mask;
233 max = tkr->clock->max_cycles;
234 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 235
4ca22c26 236 delta = clocksource_delta(now, last, mask);
a558cd02 237
057b87e3
JS
238 /*
239 * Try to catch underflows by checking if we are seeing small
240 * mask-relative negative values.
241 */
4ca22c26 242 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 243 tk->underflow_seen = 1;
057b87e3 244 delta = 0;
4ca22c26 245 }
057b87e3 246
a558cd02 247 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 248 if (unlikely(delta > max)) {
57d05a93 249 tk->overflow_seen = 1;
a558cd02 250 delta = tkr->clock->max_cycles;
4ca22c26 251 }
a558cd02
JS
252
253 return delta;
254}
3c17ad19 255#else
a5a1d1c2 256static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
3c17ad19
JS
257{
258}
985e6950 259static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
a558cd02 260{
a5a1d1c2 261 u64 cycle_now, delta;
a558cd02
JS
262
263 /* read clocksource */
ceea5e37 264 cycle_now = tk_clock_read(tkr);
a558cd02
JS
265
266 /* calculate the delta since the last update_wall_time */
267 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
268
269 return delta;
270}
3c17ad19
JS
271#endif
272
155ec602 273/**
d26e4fe0 274 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 275 *
d26e4fe0 276 * @tk: The target timekeeper to setup.
155ec602
MS
277 * @clock: Pointer to clocksource.
278 *
279 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
280 * pair and interval request.
281 *
282 * Unless you're the timekeeping code, you should not be using this!
283 */
f726a697 284static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602 285{
a5a1d1c2 286 u64 interval;
a386b5af 287 u64 tmp, ntpinterval;
1e75fa8b 288 struct clocksource *old_clock;
155ec602 289
2c756feb 290 ++tk->cs_was_changed_seq;
876e7881
PZ
291 old_clock = tk->tkr_mono.clock;
292 tk->tkr_mono.clock = clock;
876e7881 293 tk->tkr_mono.mask = clock->mask;
ceea5e37 294 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
155ec602 295
4a4ad80d 296 tk->tkr_raw.clock = clock;
4a4ad80d
PZ
297 tk->tkr_raw.mask = clock->mask;
298 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
299
155ec602
MS
300 /* Do the ns -> cycle conversion first, using original mult */
301 tmp = NTP_INTERVAL_LENGTH;
302 tmp <<= clock->shift;
a386b5af 303 ntpinterval = tmp;
0a544198
MS
304 tmp += clock->mult/2;
305 do_div(tmp, clock->mult);
155ec602
MS
306 if (tmp == 0)
307 tmp = 1;
308
a5a1d1c2 309 interval = (u64) tmp;
f726a697 310 tk->cycle_interval = interval;
155ec602
MS
311
312 /* Go back from cycles -> shifted ns */
cbd99e3b 313 tk->xtime_interval = interval * clock->mult;
f726a697 314 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
3d88d56c 315 tk->raw_interval = interval * clock->mult;
155ec602 316
1e75fa8b
JS
317 /* if changing clocks, convert xtime_nsec shift units */
318 if (old_clock) {
319 int shift_change = clock->shift - old_clock->shift;
fc6eead7 320 if (shift_change < 0) {
876e7881 321 tk->tkr_mono.xtime_nsec >>= -shift_change;
fc6eead7
JS
322 tk->tkr_raw.xtime_nsec >>= -shift_change;
323 } else {
876e7881 324 tk->tkr_mono.xtime_nsec <<= shift_change;
fc6eead7
JS
325 tk->tkr_raw.xtime_nsec <<= shift_change;
326 }
1e75fa8b 327 }
4a4ad80d 328
876e7881 329 tk->tkr_mono.shift = clock->shift;
4a4ad80d 330 tk->tkr_raw.shift = clock->shift;
155ec602 331
f726a697
JS
332 tk->ntp_error = 0;
333 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 334 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
335
336 /*
337 * The timekeeper keeps its own mult values for the currently
338 * active clocksource. These value will be adjusted via NTP
339 * to counteract clock drifting.
340 */
876e7881 341 tk->tkr_mono.mult = clock->mult;
4a4ad80d 342 tk->tkr_raw.mult = clock->mult;
dc491596 343 tk->ntp_err_mult = 0;
78b98e3c 344 tk->skip_second_overflow = 0;
155ec602 345}
8524070b 346
2ba2a305 347/* Timekeeper helper functions. */
7b1f6207
SW
348
349#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
350static u32 default_arch_gettimeoffset(void) { return 0; }
351u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 352#else
e06fde37 353static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
354#endif
355
985e6950 356static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
6bd58f09 357{
9c164572 358 u64 nsec;
6bd58f09
CH
359
360 nsec = delta * tkr->mult + tkr->xtime_nsec;
361 nsec >>= tkr->shift;
362
363 /* If arch requires, add in get_arch_timeoffset() */
364 return nsec + arch_gettimeoffset();
365}
366
985e6950 367static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
2ba2a305 368{
a5a1d1c2 369 u64 delta;
2ba2a305 370
a558cd02 371 delta = timekeeping_get_delta(tkr);
6bd58f09
CH
372 return timekeeping_delta_to_ns(tkr, delta);
373}
2ba2a305 374
985e6950 375static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
6bd58f09 376{
a5a1d1c2 377 u64 delta;
f2a5a085 378
6bd58f09
CH
379 /* calculate the delta since the last update_wall_time */
380 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
381 return timekeeping_delta_to_ns(tkr, delta);
2ba2a305
MS
382}
383
4396e058
TG
384/**
385 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 386 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
387 *
388 * We want to use this from any context including NMI and tracing /
389 * instrumenting the timekeeping code itself.
390 *
6695b92a 391 * Employ the latch technique; see @raw_write_seqcount_latch.
4396e058
TG
392 *
393 * So if a NMI hits the update of base[0] then it will use base[1]
394 * which is still consistent. In the worst case this can result is a
395 * slightly wrong timestamp (a few nanoseconds). See
396 * @ktime_get_mono_fast_ns.
397 */
985e6950
OM
398static void update_fast_timekeeper(const struct tk_read_base *tkr,
399 struct tk_fast *tkf)
4396e058 400{
4498e746 401 struct tk_read_base *base = tkf->base;
4396e058
TG
402
403 /* Force readers off to base[1] */
4498e746 404 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
405
406 /* Update base[0] */
affe3e85 407 memcpy(base, tkr, sizeof(*base));
4396e058
TG
408
409 /* Force readers back to base[0] */
4498e746 410 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
411
412 /* Update base[1] */
413 memcpy(base + 1, base, sizeof(*base));
414}
415
416/**
417 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
418 *
419 * This timestamp is not guaranteed to be monotonic across an update.
420 * The timestamp is calculated by:
421 *
422 * now = base_mono + clock_delta * slope
423 *
424 * So if the update lowers the slope, readers who are forced to the
425 * not yet updated second array are still using the old steeper slope.
426 *
427 * tmono
428 * ^
429 * | o n
430 * | o n
431 * | u
432 * | o
433 * |o
434 * |12345678---> reader order
435 *
436 * o = old slope
437 * u = update
438 * n = new slope
439 *
440 * So reader 6 will observe time going backwards versus reader 5.
441 *
442 * While other CPUs are likely to be able observe that, the only way
443 * for a CPU local observation is when an NMI hits in the middle of
444 * the update. Timestamps taken from that NMI context might be ahead
445 * of the following timestamps. Callers need to be aware of that and
446 * deal with it.
447 */
4498e746 448static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
449{
450 struct tk_read_base *tkr;
451 unsigned int seq;
452 u64 now;
453
454 do {
7fc26327 455 seq = raw_read_seqcount_latch(&tkf->seq);
4498e746 456 tkr = tkf->base + (seq & 0x01);
27727df2
JS
457 now = ktime_to_ns(tkr->base);
458
58bfea95
JS
459 now += timekeeping_delta_to_ns(tkr,
460 clocksource_delta(
ceea5e37 461 tk_clock_read(tkr),
58bfea95
JS
462 tkr->cycle_last,
463 tkr->mask));
4498e746 464 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 465
4396e058
TG
466 return now;
467}
4498e746
PZ
468
469u64 ktime_get_mono_fast_ns(void)
470{
471 return __ktime_get_fast_ns(&tk_fast_mono);
472}
4396e058
TG
473EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
474
f09cb9a1
PZ
475u64 ktime_get_raw_fast_ns(void)
476{
477 return __ktime_get_fast_ns(&tk_fast_raw);
478}
479EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
480
a3ed0e43
TG
481/**
482 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
483 *
484 * To keep it NMI safe since we're accessing from tracing, we're not using a
485 * separate timekeeper with updates to monotonic clock and boot offset
486 * protected with seqlocks. This has the following minor side effects:
487 *
488 * (1) Its possible that a timestamp be taken after the boot offset is updated
489 * but before the timekeeper is updated. If this happens, the new boot offset
490 * is added to the old timekeeping making the clock appear to update slightly
491 * earlier:
492 * CPU 0 CPU 1
493 * timekeeping_inject_sleeptime64()
494 * __timekeeping_inject_sleeptime(tk, delta);
495 * timestamp();
496 * timekeeping_update(tk, TK_CLEAR_NTP...);
497 *
498 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
499 * partially updated. Since the tk->offs_boot update is a rare event, this
500 * should be a rare occurrence which postprocessing should be able to handle.
501 */
502u64 notrace ktime_get_boot_fast_ns(void)
503{
504 struct timekeeper *tk = &tk_core.timekeeper;
505
506 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
507}
508EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
509
510
4c3711d7
TG
511/*
512 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
513 */
514static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
515{
516 struct tk_read_base *tkr;
517 unsigned int seq;
518 u64 now;
519
520 do {
521 seq = raw_read_seqcount_latch(&tkf->seq);
522 tkr = tkf->base + (seq & 0x01);
523 now = ktime_to_ns(tkr->base_real);
524
525 now += timekeeping_delta_to_ns(tkr,
526 clocksource_delta(
527 tk_clock_read(tkr),
528 tkr->cycle_last,
529 tkr->mask));
530 } while (read_seqcount_retry(&tkf->seq, seq));
531
532 return now;
533}
534
535/**
536 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
537 */
538u64 ktime_get_real_fast_ns(void)
539{
540 return __ktime_get_real_fast_ns(&tk_fast_mono);
541}
df27067e 542EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
4c3711d7 543
060407ae
RW
544/**
545 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
546 * @tk: Timekeeper to snapshot.
547 *
548 * It generally is unsafe to access the clocksource after timekeeping has been
549 * suspended, so take a snapshot of the readout base of @tk and use it as the
550 * fast timekeeper's readout base while suspended. It will return the same
551 * number of cycles every time until timekeeping is resumed at which time the
552 * proper readout base for the fast timekeeper will be restored automatically.
553 */
985e6950 554static void halt_fast_timekeeper(const struct timekeeper *tk)
060407ae
RW
555{
556 static struct tk_read_base tkr_dummy;
985e6950 557 const struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
558
559 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
ceea5e37
JS
560 cycles_at_suspend = tk_clock_read(tkr);
561 tkr_dummy.clock = &dummy_clock;
4c3711d7 562 tkr_dummy.base_real = tkr->base + tk->offs_real;
4498e746 563 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
564
565 tkr = &tk->tkr_raw;
566 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
ceea5e37 567 tkr_dummy.clock = &dummy_clock;
f09cb9a1 568 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
569}
570
e0b306fe
MT
571static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
572
780427f0 573static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 574{
780427f0 575 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
576}
577
578/**
579 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
580 */
581int pvclock_gtod_register_notifier(struct notifier_block *nb)
582{
3fdb14fd 583 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
584 unsigned long flags;
585 int ret;
586
9a7a71b1 587 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 588 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 589 update_pvclock_gtod(tk, true);
9a7a71b1 590 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
591
592 return ret;
593}
594EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
595
596/**
597 * pvclock_gtod_unregister_notifier - unregister a pvclock
598 * timedata update listener
e0b306fe
MT
599 */
600int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
601{
e0b306fe
MT
602 unsigned long flags;
603 int ret;
604
9a7a71b1 605 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 606 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 607 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
608
609 return ret;
610}
611EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
612
833f32d7
JS
613/*
614 * tk_update_leap_state - helper to update the next_leap_ktime
615 */
616static inline void tk_update_leap_state(struct timekeeper *tk)
617{
618 tk->next_leap_ktime = ntp_get_next_leap();
2456e855 619 if (tk->next_leap_ktime != KTIME_MAX)
833f32d7
JS
620 /* Convert to monotonic time */
621 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
622}
623
7c032df5
TG
624/*
625 * Update the ktime_t based scalar nsec members of the timekeeper
626 */
627static inline void tk_update_ktime_data(struct timekeeper *tk)
628{
9e3680b1
HS
629 u64 seconds;
630 u32 nsec;
7c032df5
TG
631
632 /*
633 * The xtime based monotonic readout is:
634 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
635 * The ktime based monotonic readout is:
636 * nsec = base_mono + now();
637 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
638 */
9e3680b1
HS
639 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
640 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 641 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2 642
9e3680b1
HS
643 /*
644 * The sum of the nanoseconds portions of xtime and
645 * wall_to_monotonic can be greater/equal one second. Take
646 * this into account before updating tk->ktime_sec.
647 */
876e7881 648 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
649 if (nsec >= NSEC_PER_SEC)
650 seconds++;
651 tk->ktime_sec = seconds;
fc6eead7
JS
652
653 /* Update the monotonic raw base */
0bcdc098 654 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
7c032df5
TG
655}
656
9a7a71b1 657/* must hold timekeeper_lock */
04397fe9 658static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 659{
04397fe9 660 if (action & TK_CLEAR_NTP) {
f726a697 661 tk->ntp_error = 0;
cc06268c
TG
662 ntp_clear();
663 }
48cdc135 664
833f32d7 665 tk_update_leap_state(tk);
7c032df5
TG
666 tk_update_ktime_data(tk);
667
9bf2419f
TG
668 update_vsyscall(tk);
669 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
670
4c3711d7 671 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
4498e746 672 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 673 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
674
675 if (action & TK_CLOCK_WAS_SET)
676 tk->clock_was_set_seq++;
d1518326
JS
677 /*
678 * The mirroring of the data to the shadow-timekeeper needs
679 * to happen last here to ensure we don't over-write the
680 * timekeeper structure on the next update with stale data
681 */
682 if (action & TK_MIRROR)
683 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
684 sizeof(tk_core.timekeeper));
cc06268c
TG
685}
686
8524070b 687/**
155ec602 688 * timekeeping_forward_now - update clock to the current time
8524070b 689 *
9a055117
RZ
690 * Forward the current clock to update its state since the last call to
691 * update_wall_time(). This is useful before significant clock changes,
692 * as it avoids having to deal with this time offset explicitly.
8524070b 693 */
f726a697 694static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 695{
a5a1d1c2 696 u64 cycle_now, delta;
8524070b 697
ceea5e37 698 cycle_now = tk_clock_read(&tk->tkr_mono);
876e7881
PZ
699 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
700 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 701 tk->tkr_raw.cycle_last = cycle_now;
8524070b 702
876e7881 703 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 704
7b1f6207 705 /* If arch requires, add in get_arch_timeoffset() */
876e7881 706 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 707
2d42244a 708
fc6eead7
JS
709 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
710
711 /* If arch requires, add in get_arch_timeoffset() */
712 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
713
714 tk_normalize_xtime(tk);
8524070b 715}
716
717/**
edca71fe 718 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
8524070b 719 * @ts: pointer to the timespec to be set
720 *
edca71fe 721 * Returns the time of day in a timespec64 (WARN if suspended).
8524070b 722 */
edca71fe 723void ktime_get_real_ts64(struct timespec64 *ts)
8524070b 724{
3fdb14fd 725 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 726 unsigned long seq;
acc89612 727 u64 nsecs;
8524070b 728
edca71fe
AB
729 WARN_ON(timekeeping_suspended);
730
8524070b 731 do {
3fdb14fd 732 seq = read_seqcount_begin(&tk_core.seq);
8524070b 733
4e250fdd 734 ts->tv_sec = tk->xtime_sec;
876e7881 735 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 736
3fdb14fd 737 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 738
ec145bab 739 ts->tv_nsec = 0;
d6d29896 740 timespec64_add_ns(ts, nsecs);
8524070b 741}
edca71fe 742EXPORT_SYMBOL(ktime_get_real_ts64);
8524070b 743
951ed4d3
MS
744ktime_t ktime_get(void)
745{
3fdb14fd 746 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 747 unsigned int seq;
a016a5bd 748 ktime_t base;
acc89612 749 u64 nsecs;
951ed4d3
MS
750
751 WARN_ON(timekeeping_suspended);
752
753 do {
3fdb14fd 754 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
755 base = tk->tkr_mono.base;
756 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 757
3fdb14fd 758 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 759
a016a5bd 760 return ktime_add_ns(base, nsecs);
951ed4d3
MS
761}
762EXPORT_SYMBOL_GPL(ktime_get);
763
6374f912
HG
764u32 ktime_get_resolution_ns(void)
765{
766 struct timekeeper *tk = &tk_core.timekeeper;
767 unsigned int seq;
768 u32 nsecs;
769
770 WARN_ON(timekeeping_suspended);
771
772 do {
773 seq = read_seqcount_begin(&tk_core.seq);
774 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
775 } while (read_seqcount_retry(&tk_core.seq, seq));
776
777 return nsecs;
778}
779EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
780
0077dc60
TG
781static ktime_t *offsets[TK_OFFS_MAX] = {
782 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
a3ed0e43 783 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
0077dc60
TG
784 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
785};
786
787ktime_t ktime_get_with_offset(enum tk_offsets offs)
788{
789 struct timekeeper *tk = &tk_core.timekeeper;
790 unsigned int seq;
791 ktime_t base, *offset = offsets[offs];
acc89612 792 u64 nsecs;
0077dc60
TG
793
794 WARN_ON(timekeeping_suspended);
795
796 do {
797 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
798 base = ktime_add(tk->tkr_mono.base, *offset);
799 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
800
801 } while (read_seqcount_retry(&tk_core.seq, seq));
802
803 return ktime_add_ns(base, nsecs);
804
805}
806EXPORT_SYMBOL_GPL(ktime_get_with_offset);
807
b9ff604c
AB
808ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
809{
810 struct timekeeper *tk = &tk_core.timekeeper;
811 unsigned int seq;
812 ktime_t base, *offset = offsets[offs];
813
814 WARN_ON(timekeeping_suspended);
815
816 do {
817 seq = read_seqcount_begin(&tk_core.seq);
818 base = ktime_add(tk->tkr_mono.base, *offset);
819
820 } while (read_seqcount_retry(&tk_core.seq, seq));
821
822 return base;
823
824}
825EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
826
9a6b5197
TG
827/**
828 * ktime_mono_to_any() - convert mononotic time to any other time
829 * @tmono: time to convert.
830 * @offs: which offset to use
831 */
832ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
833{
834 ktime_t *offset = offsets[offs];
835 unsigned long seq;
836 ktime_t tconv;
837
838 do {
839 seq = read_seqcount_begin(&tk_core.seq);
840 tconv = ktime_add(tmono, *offset);
841 } while (read_seqcount_retry(&tk_core.seq, seq));
842
843 return tconv;
844}
845EXPORT_SYMBOL_GPL(ktime_mono_to_any);
846
f519b1a2
TG
847/**
848 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
849 */
850ktime_t ktime_get_raw(void)
851{
852 struct timekeeper *tk = &tk_core.timekeeper;
853 unsigned int seq;
854 ktime_t base;
acc89612 855 u64 nsecs;
f519b1a2
TG
856
857 do {
858 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
859 base = tk->tkr_raw.base;
860 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
861
862 } while (read_seqcount_retry(&tk_core.seq, seq));
863
864 return ktime_add_ns(base, nsecs);
865}
866EXPORT_SYMBOL_GPL(ktime_get_raw);
867
951ed4d3 868/**
d6d29896 869 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
870 * @ts: pointer to timespec variable
871 *
872 * The function calculates the monotonic clock from the realtime
873 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 874 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 875 */
d6d29896 876void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 877{
3fdb14fd 878 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 879 struct timespec64 tomono;
951ed4d3 880 unsigned int seq;
acc89612 881 u64 nsec;
951ed4d3
MS
882
883 WARN_ON(timekeeping_suspended);
884
885 do {
3fdb14fd 886 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 887 ts->tv_sec = tk->xtime_sec;
876e7881 888 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 889 tomono = tk->wall_to_monotonic;
951ed4d3 890
3fdb14fd 891 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 892
d6d29896
TG
893 ts->tv_sec += tomono.tv_sec;
894 ts->tv_nsec = 0;
895 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 896}
d6d29896 897EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 898
9e3680b1
HS
899/**
900 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
901 *
902 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
903 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
904 * works on both 32 and 64 bit systems. On 32 bit systems the readout
905 * covers ~136 years of uptime which should be enough to prevent
906 * premature wrap arounds.
907 */
908time64_t ktime_get_seconds(void)
909{
910 struct timekeeper *tk = &tk_core.timekeeper;
911
912 WARN_ON(timekeeping_suspended);
913 return tk->ktime_sec;
914}
915EXPORT_SYMBOL_GPL(ktime_get_seconds);
916
dbe7aa62
HS
917/**
918 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
919 *
920 * Returns the wall clock seconds since 1970. This replaces the
921 * get_seconds() interface which is not y2038 safe on 32bit systems.
922 *
923 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
924 * 32bit systems the access must be protected with the sequence
925 * counter to provide "atomic" access to the 64bit tk->xtime_sec
926 * value.
927 */
928time64_t ktime_get_real_seconds(void)
929{
930 struct timekeeper *tk = &tk_core.timekeeper;
931 time64_t seconds;
932 unsigned int seq;
933
934 if (IS_ENABLED(CONFIG_64BIT))
935 return tk->xtime_sec;
936
937 do {
938 seq = read_seqcount_begin(&tk_core.seq);
939 seconds = tk->xtime_sec;
940
941 } while (read_seqcount_retry(&tk_core.seq, seq));
942
943 return seconds;
944}
945EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
946
dee36654
D
947/**
948 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
949 * but without the sequence counter protect. This internal function
950 * is called just when timekeeping lock is already held.
951 */
952time64_t __ktime_get_real_seconds(void)
953{
954 struct timekeeper *tk = &tk_core.timekeeper;
955
956 return tk->xtime_sec;
957}
958
9da0f49c
CH
959/**
960 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
961 * @systime_snapshot: pointer to struct receiving the system time snapshot
962 */
963void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
964{
965 struct timekeeper *tk = &tk_core.timekeeper;
966 unsigned long seq;
967 ktime_t base_raw;
968 ktime_t base_real;
acc89612
TG
969 u64 nsec_raw;
970 u64 nsec_real;
a5a1d1c2 971 u64 now;
9da0f49c 972
ba26621e
CH
973 WARN_ON_ONCE(timekeeping_suspended);
974
9da0f49c
CH
975 do {
976 seq = read_seqcount_begin(&tk_core.seq);
ceea5e37 977 now = tk_clock_read(&tk->tkr_mono);
2c756feb
CH
978 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
979 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
9da0f49c
CH
980 base_real = ktime_add(tk->tkr_mono.base,
981 tk_core.timekeeper.offs_real);
982 base_raw = tk->tkr_raw.base;
983 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
984 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
985 } while (read_seqcount_retry(&tk_core.seq, seq));
986
987 systime_snapshot->cycles = now;
988 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
989 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
990}
991EXPORT_SYMBOL_GPL(ktime_get_snapshot);
dee36654 992
2c756feb
CH
993/* Scale base by mult/div checking for overflow */
994static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
995{
996 u64 tmp, rem;
997
998 tmp = div64_u64_rem(*base, div, &rem);
999
1000 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1001 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1002 return -EOVERFLOW;
1003 tmp *= mult;
1004 rem *= mult;
1005
1006 do_div(rem, div);
1007 *base = tmp + rem;
1008 return 0;
1009}
1010
1011/**
1012 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1013 * @history: Snapshot representing start of history
1014 * @partial_history_cycles: Cycle offset into history (fractional part)
1015 * @total_history_cycles: Total history length in cycles
1016 * @discontinuity: True indicates clock was set on history period
1017 * @ts: Cross timestamp that should be adjusted using
1018 * partial/total ratio
1019 *
1020 * Helper function used by get_device_system_crosststamp() to correct the
1021 * crosstimestamp corresponding to the start of the current interval to the
1022 * system counter value (timestamp point) provided by the driver. The
1023 * total_history_* quantities are the total history starting at the provided
1024 * reference point and ending at the start of the current interval. The cycle
1025 * count between the driver timestamp point and the start of the current
1026 * interval is partial_history_cycles.
1027 */
1028static int adjust_historical_crosststamp(struct system_time_snapshot *history,
a5a1d1c2
TG
1029 u64 partial_history_cycles,
1030 u64 total_history_cycles,
2c756feb
CH
1031 bool discontinuity,
1032 struct system_device_crosststamp *ts)
1033{
1034 struct timekeeper *tk = &tk_core.timekeeper;
1035 u64 corr_raw, corr_real;
1036 bool interp_forward;
1037 int ret;
1038
1039 if (total_history_cycles == 0 || partial_history_cycles == 0)
1040 return 0;
1041
1042 /* Interpolate shortest distance from beginning or end of history */
5fc63f95 1043 interp_forward = partial_history_cycles > total_history_cycles / 2;
2c756feb
CH
1044 partial_history_cycles = interp_forward ?
1045 total_history_cycles - partial_history_cycles :
1046 partial_history_cycles;
1047
1048 /*
1049 * Scale the monotonic raw time delta by:
1050 * partial_history_cycles / total_history_cycles
1051 */
1052 corr_raw = (u64)ktime_to_ns(
1053 ktime_sub(ts->sys_monoraw, history->raw));
1054 ret = scale64_check_overflow(partial_history_cycles,
1055 total_history_cycles, &corr_raw);
1056 if (ret)
1057 return ret;
1058
1059 /*
1060 * If there is a discontinuity in the history, scale monotonic raw
1061 * correction by:
1062 * mult(real)/mult(raw) yielding the realtime correction
1063 * Otherwise, calculate the realtime correction similar to monotonic
1064 * raw calculation
1065 */
1066 if (discontinuity) {
1067 corr_real = mul_u64_u32_div
1068 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1069 } else {
1070 corr_real = (u64)ktime_to_ns(
1071 ktime_sub(ts->sys_realtime, history->real));
1072 ret = scale64_check_overflow(partial_history_cycles,
1073 total_history_cycles, &corr_real);
1074 if (ret)
1075 return ret;
1076 }
1077
1078 /* Fixup monotonic raw and real time time values */
1079 if (interp_forward) {
1080 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1081 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1082 } else {
1083 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1084 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1085 }
1086
1087 return 0;
1088}
1089
1090/*
1091 * cycle_between - true if test occurs chronologically between before and after
1092 */
a5a1d1c2 1093static bool cycle_between(u64 before, u64 test, u64 after)
2c756feb
CH
1094{
1095 if (test > before && test < after)
1096 return true;
1097 if (test < before && before > after)
1098 return true;
1099 return false;
1100}
1101
8006c245
CH
1102/**
1103 * get_device_system_crosststamp - Synchronously capture system/device timestamp
2c756feb 1104 * @get_time_fn: Callback to get simultaneous device time and
8006c245 1105 * system counter from the device driver
2c756feb
CH
1106 * @ctx: Context passed to get_time_fn()
1107 * @history_begin: Historical reference point used to interpolate system
1108 * time when counter provided by the driver is before the current interval
8006c245
CH
1109 * @xtstamp: Receives simultaneously captured system and device time
1110 *
1111 * Reads a timestamp from a device and correlates it to system time
1112 */
1113int get_device_system_crosststamp(int (*get_time_fn)
1114 (ktime_t *device_time,
1115 struct system_counterval_t *sys_counterval,
1116 void *ctx),
1117 void *ctx,
2c756feb 1118 struct system_time_snapshot *history_begin,
8006c245
CH
1119 struct system_device_crosststamp *xtstamp)
1120{
1121 struct system_counterval_t system_counterval;
1122 struct timekeeper *tk = &tk_core.timekeeper;
a5a1d1c2 1123 u64 cycles, now, interval_start;
6436257b 1124 unsigned int clock_was_set_seq = 0;
8006c245 1125 ktime_t base_real, base_raw;
acc89612 1126 u64 nsec_real, nsec_raw;
2c756feb 1127 u8 cs_was_changed_seq;
8006c245 1128 unsigned long seq;
2c756feb 1129 bool do_interp;
8006c245
CH
1130 int ret;
1131
1132 do {
1133 seq = read_seqcount_begin(&tk_core.seq);
1134 /*
1135 * Try to synchronously capture device time and a system
1136 * counter value calling back into the device driver
1137 */
1138 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1139 if (ret)
1140 return ret;
1141
1142 /*
1143 * Verify that the clocksource associated with the captured
1144 * system counter value is the same as the currently installed
1145 * timekeeper clocksource
1146 */
1147 if (tk->tkr_mono.clock != system_counterval.cs)
1148 return -ENODEV;
2c756feb
CH
1149 cycles = system_counterval.cycles;
1150
1151 /*
1152 * Check whether the system counter value provided by the
1153 * device driver is on the current timekeeping interval.
1154 */
ceea5e37 1155 now = tk_clock_read(&tk->tkr_mono);
2c756feb
CH
1156 interval_start = tk->tkr_mono.cycle_last;
1157 if (!cycle_between(interval_start, cycles, now)) {
1158 clock_was_set_seq = tk->clock_was_set_seq;
1159 cs_was_changed_seq = tk->cs_was_changed_seq;
1160 cycles = interval_start;
1161 do_interp = true;
1162 } else {
1163 do_interp = false;
1164 }
8006c245
CH
1165
1166 base_real = ktime_add(tk->tkr_mono.base,
1167 tk_core.timekeeper.offs_real);
1168 base_raw = tk->tkr_raw.base;
1169
1170 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1171 system_counterval.cycles);
1172 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1173 system_counterval.cycles);
1174 } while (read_seqcount_retry(&tk_core.seq, seq));
1175
1176 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1177 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
2c756feb
CH
1178
1179 /*
1180 * Interpolate if necessary, adjusting back from the start of the
1181 * current interval
1182 */
1183 if (do_interp) {
a5a1d1c2 1184 u64 partial_history_cycles, total_history_cycles;
2c756feb
CH
1185 bool discontinuity;
1186
1187 /*
1188 * Check that the counter value occurs after the provided
1189 * history reference and that the history doesn't cross a
1190 * clocksource change
1191 */
1192 if (!history_begin ||
1193 !cycle_between(history_begin->cycles,
1194 system_counterval.cycles, cycles) ||
1195 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1196 return -EINVAL;
1197 partial_history_cycles = cycles - system_counterval.cycles;
1198 total_history_cycles = cycles - history_begin->cycles;
1199 discontinuity =
1200 history_begin->clock_was_set_seq != clock_was_set_seq;
1201
1202 ret = adjust_historical_crosststamp(history_begin,
1203 partial_history_cycles,
1204 total_history_cycles,
1205 discontinuity, xtstamp);
1206 if (ret)
1207 return ret;
1208 }
1209
8006c245
CH
1210 return 0;
1211}
1212EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1213
8524070b 1214/**
21f7eca5 1215 * do_settimeofday64 - Sets the time of day.
1216 * @ts: pointer to the timespec64 variable containing the new time
8524070b 1217 *
1218 * Sets the time of day to the new time and update NTP and notify hrtimers
1219 */
21f7eca5 1220int do_settimeofday64(const struct timespec64 *ts)
8524070b 1221{
3fdb14fd 1222 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 1223 struct timespec64 ts_delta, xt;
92c1d3ed 1224 unsigned long flags;
e1d7ba87 1225 int ret = 0;
8524070b 1226
21f7eca5 1227 if (!timespec64_valid_strict(ts))
8524070b 1228 return -EINVAL;
1229
9a7a71b1 1230 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1231 write_seqcount_begin(&tk_core.seq);
8524070b 1232
4e250fdd 1233 timekeeping_forward_now(tk);
9a055117 1234
4e250fdd 1235 xt = tk_xtime(tk);
21f7eca5 1236 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1237 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 1238
e1d7ba87
WY
1239 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1240 ret = -EINVAL;
1241 goto out;
1242 }
1243
7d489d15 1244 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 1245
21f7eca5 1246 tk_set_xtime(tk, ts);
e1d7ba87 1247out:
780427f0 1248 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 1249
3fdb14fd 1250 write_seqcount_end(&tk_core.seq);
9a7a71b1 1251 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1252
1253 /* signal hrtimers about time change */
1254 clock_was_set();
1255
e1d7ba87 1256 return ret;
8524070b 1257}
21f7eca5 1258EXPORT_SYMBOL(do_settimeofday64);
8524070b 1259
c528f7c6
JS
1260/**
1261 * timekeeping_inject_offset - Adds or subtracts from the current time.
1262 * @tv: pointer to the timespec variable containing the offset
1263 *
1264 * Adds or subtracts an offset value from the current time.
1265 */
985e6950 1266static int timekeeping_inject_offset(const struct timespec64 *ts)
c528f7c6 1267{
3fdb14fd 1268 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1269 unsigned long flags;
1572fa03 1270 struct timespec64 tmp;
4e8b1452 1271 int ret = 0;
c528f7c6 1272
1572fa03 1273 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
c528f7c6
JS
1274 return -EINVAL;
1275
9a7a71b1 1276 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1277 write_seqcount_begin(&tk_core.seq);
c528f7c6 1278
4e250fdd 1279 timekeeping_forward_now(tk);
c528f7c6 1280
4e8b1452 1281 /* Make sure the proposed value is valid */
1572fa03
AB
1282 tmp = timespec64_add(tk_xtime(tk), *ts);
1283 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
e1d7ba87 1284 !timespec64_valid_strict(&tmp)) {
4e8b1452
JS
1285 ret = -EINVAL;
1286 goto error;
1287 }
1e75fa8b 1288
1572fa03
AB
1289 tk_xtime_add(tk, ts);
1290 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
c528f7c6 1291
4e8b1452 1292error: /* even if we error out, we forwarded the time, so call update */
780427f0 1293 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 1294
3fdb14fd 1295 write_seqcount_end(&tk_core.seq);
9a7a71b1 1296 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
1297
1298 /* signal hrtimers about time change */
1299 clock_was_set();
1300
4e8b1452 1301 return ret;
c528f7c6 1302}
e0956dcc
AB
1303
1304/*
1305 * Indicates if there is an offset between the system clock and the hardware
1306 * clock/persistent clock/rtc.
1307 */
1308int persistent_clock_is_local;
1309
1310/*
1311 * Adjust the time obtained from the CMOS to be UTC time instead of
1312 * local time.
1313 *
1314 * This is ugly, but preferable to the alternatives. Otherwise we
1315 * would either need to write a program to do it in /etc/rc (and risk
1316 * confusion if the program gets run more than once; it would also be
1317 * hard to make the program warp the clock precisely n hours) or
1318 * compile in the timezone information into the kernel. Bad, bad....
1319 *
1320 * - TYT, 1992-01-01
1321 *
1322 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1323 * as real UNIX machines always do it. This avoids all headaches about
1324 * daylight saving times and warping kernel clocks.
1325 */
1326void timekeeping_warp_clock(void)
1327{
1328 if (sys_tz.tz_minuteswest != 0) {
1572fa03 1329 struct timespec64 adjust;
e0956dcc
AB
1330
1331 persistent_clock_is_local = 1;
1332 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1333 adjust.tv_nsec = 0;
1334 timekeeping_inject_offset(&adjust);
1335 }
1336}
c528f7c6 1337
cc244dda 1338/**
40d9f827 1339 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
cc244dda
JS
1340 *
1341 */
dd5d70e8 1342static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1343{
1344 tk->tai_offset = tai_offset;
04005f60 1345 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1346}
1347
8524070b 1348/**
1349 * change_clocksource - Swaps clocksources if a new one is available
1350 *
1351 * Accumulates current time interval and initializes new clocksource
1352 */
75c5158f 1353static int change_clocksource(void *data)
8524070b 1354{
3fdb14fd 1355 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1356 struct clocksource *new, *old;
f695cf94 1357 unsigned long flags;
8524070b 1358
75c5158f 1359 new = (struct clocksource *) data;
8524070b 1360
9a7a71b1 1361 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1362 write_seqcount_begin(&tk_core.seq);
f695cf94 1363
4e250fdd 1364 timekeeping_forward_now(tk);
09ac369c
TG
1365 /*
1366 * If the cs is in module, get a module reference. Succeeds
1367 * for built-in code (owner == NULL) as well.
1368 */
1369 if (try_module_get(new->owner)) {
1370 if (!new->enable || new->enable(new) == 0) {
876e7881 1371 old = tk->tkr_mono.clock;
09ac369c
TG
1372 tk_setup_internals(tk, new);
1373 if (old->disable)
1374 old->disable(old);
1375 module_put(old->owner);
1376 } else {
1377 module_put(new->owner);
1378 }
75c5158f 1379 }
780427f0 1380 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1381
3fdb14fd 1382 write_seqcount_end(&tk_core.seq);
9a7a71b1 1383 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1384
75c5158f
MS
1385 return 0;
1386}
8524070b 1387
75c5158f
MS
1388/**
1389 * timekeeping_notify - Install a new clock source
1390 * @clock: pointer to the clock source
1391 *
1392 * This function is called from clocksource.c after a new, better clock
1393 * source has been registered. The caller holds the clocksource_mutex.
1394 */
ba919d1c 1395int timekeeping_notify(struct clocksource *clock)
75c5158f 1396{
3fdb14fd 1397 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1398
876e7881 1399 if (tk->tkr_mono.clock == clock)
ba919d1c 1400 return 0;
75c5158f 1401 stop_machine(change_clocksource, clock, NULL);
8524070b 1402 tick_clock_notify();
876e7881 1403 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1404}
75c5158f 1405
2d42244a 1406/**
fb7fcc96 1407 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
cdba2ec5 1408 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1409 *
1410 * Returns the raw monotonic time (completely un-modified by ntp)
1411 */
fb7fcc96 1412void ktime_get_raw_ts64(struct timespec64 *ts)
2d42244a 1413{
3fdb14fd 1414 struct timekeeper *tk = &tk_core.timekeeper;
2d42244a 1415 unsigned long seq;
acc89612 1416 u64 nsecs;
2d42244a
JS
1417
1418 do {
3fdb14fd 1419 seq = read_seqcount_begin(&tk_core.seq);
fc6eead7 1420 ts->tv_sec = tk->raw_sec;
4a4ad80d 1421 nsecs = timekeeping_get_ns(&tk->tkr_raw);
2d42244a 1422
3fdb14fd 1423 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1424
fc6eead7
JS
1425 ts->tv_nsec = 0;
1426 timespec64_add_ns(ts, nsecs);
2d42244a 1427}
fb7fcc96 1428EXPORT_SYMBOL(ktime_get_raw_ts64);
cdba2ec5 1429
2d42244a 1430
8524070b 1431/**
cf4fc6cb 1432 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1433 */
cf4fc6cb 1434int timekeeping_valid_for_hres(void)
8524070b 1435{
3fdb14fd 1436 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 1437 unsigned long seq;
1438 int ret;
1439
1440 do {
3fdb14fd 1441 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1442
876e7881 1443 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1444
3fdb14fd 1445 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 1446
1447 return ret;
1448}
1449
98962465
JH
1450/**
1451 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1452 */
1453u64 timekeeping_max_deferment(void)
1454{
3fdb14fd 1455 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1456 unsigned long seq;
1457 u64 ret;
42e71e81 1458
70471f2f 1459 do {
3fdb14fd 1460 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1461
876e7881 1462 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1463
3fdb14fd 1464 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1465
1466 return ret;
98962465
JH
1467}
1468
8524070b 1469/**
d4f587c6 1470 * read_persistent_clock - Return time from the persistent clock.
8524070b 1471 *
1472 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1473 * Reads the time from the battery backed persistent clock.
1474 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1475 *
1476 * XXX - Do be sure to remove it once all arches implement it.
1477 */
52f5684c 1478void __weak read_persistent_clock(struct timespec *ts)
8524070b 1479{
d4f587c6
MS
1480 ts->tv_sec = 0;
1481 ts->tv_nsec = 0;
8524070b 1482}
1483
2ee96632
XP
1484void __weak read_persistent_clock64(struct timespec64 *ts64)
1485{
1486 struct timespec ts;
1487
1488 read_persistent_clock(&ts);
1489 *ts64 = timespec_to_timespec64(ts);
1490}
1491
23970e38 1492/**
3eca9937
PT
1493 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1494 * from the boot.
23970e38
MS
1495 *
1496 * Weak dummy function for arches that do not yet support it.
3eca9937
PT
1497 * wall_time - current time as returned by persistent clock
1498 * boot_offset - offset that is defined as wall_time - boot_time
4b1b7f80
PT
1499 * The default function calculates offset based on the current value of
1500 * local_clock(). This way architectures that support sched_clock() but don't
1501 * support dedicated boot time clock will provide the best estimate of the
1502 * boot time.
23970e38 1503 */
3eca9937
PT
1504void __weak __init
1505read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1506 struct timespec64 *boot_offset)
23970e38 1507{
3eca9937 1508 read_persistent_clock64(wall_time);
4b1b7f80 1509 *boot_offset = ns_to_timespec64(local_clock());
23970e38
MS
1510}
1511
f473e5f4
MO
1512/*
1513 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1514 *
1515 * The flag starts of false and is only set when a suspend reaches
1516 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1517 * timekeeper clocksource is not stopping across suspend and has been
1518 * used to update sleep time. If the timekeeper clocksource has stopped
1519 * then the flag stays true and is used by the RTC resume code to decide
1520 * whether sleeptime must be injected and if so the flag gets false then.
1521 *
1522 * If a suspend fails before reaching timekeeping_resume() then the flag
1523 * stays false and prevents erroneous sleeptime injection.
1524 */
1525static bool suspend_timing_needed;
0fa88cb4
XP
1526
1527/* Flag for if there is a persistent clock on this platform */
1528static bool persistent_clock_exists;
1529
8524070b 1530/*
1531 * timekeeping_init - Initializes the clocksource and common timekeeping values
1532 */
1533void __init timekeeping_init(void)
1534{
3eca9937 1535 struct timespec64 wall_time, boot_offset, wall_to_mono;
3fdb14fd 1536 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1537 struct clocksource *clock;
8524070b 1538 unsigned long flags;
4e8b1452 1539
3eca9937
PT
1540 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1541 if (timespec64_valid_strict(&wall_time) &&
1542 timespec64_to_ns(&wall_time) > 0) {
1543 persistent_clock_exists = true;
684ad537 1544 } else if (timespec64_to_ns(&wall_time) != 0) {
3eca9937
PT
1545 pr_warn("Persistent clock returned invalid value");
1546 wall_time = (struct timespec64){0};
4e8b1452 1547 }
8524070b 1548
3eca9937
PT
1549 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1550 boot_offset = (struct timespec64){0};
1551
1552 /*
1553 * We want set wall_to_mono, so the following is true:
1554 * wall time + wall_to_mono = boot time
1555 */
1556 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1557
9a7a71b1 1558 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1559 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1560 ntp_init();
1561
f1b82746 1562 clock = clocksource_default_clock();
a0f7d48b
MS
1563 if (clock->enable)
1564 clock->enable(clock);
4e250fdd 1565 tk_setup_internals(tk, clock);
8524070b 1566
3eca9937 1567 tk_set_xtime(tk, &wall_time);
fc6eead7 1568 tk->raw_sec = 0;
1e75fa8b 1569
3eca9937 1570 tk_set_wall_to_mono(tk, wall_to_mono);
6d0ef903 1571
56fd16ca 1572 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
48cdc135 1573
3fdb14fd 1574 write_seqcount_end(&tk_core.seq);
9a7a71b1 1575 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1576}
1577
264bb3f7 1578/* time in seconds when suspend began for persistent clock */
7d489d15 1579static struct timespec64 timekeeping_suspend_time;
8524070b 1580
304529b1
JS
1581/**
1582 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1583 * @delta: pointer to a timespec delta value
1584 *
1585 * Takes a timespec offset measuring a suspend interval and properly
1586 * adds the sleep offset to the timekeeping variables.
1587 */
f726a697 1588static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
985e6950 1589 const struct timespec64 *delta)
304529b1 1590{
7d489d15 1591 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1592 printk_deferred(KERN_WARNING
1593 "__timekeeping_inject_sleeptime: Invalid "
1594 "sleep delta value!\n");
cb5de2f8
JS
1595 return;
1596 }
f726a697 1597 tk_xtime_add(tk, delta);
a3ed0e43 1598 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1599 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1600 tk_debug_account_sleep_time(delta);
304529b1
JS
1601}
1602
7f298139 1603#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1604/**
1605 * We have three kinds of time sources to use for sleep time
1606 * injection, the preference order is:
1607 * 1) non-stop clocksource
1608 * 2) persistent clock (ie: RTC accessible when irqs are off)
1609 * 3) RTC
1610 *
1611 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1612 * If system has neither 1) nor 2), 3) will be used finally.
1613 *
1614 *
1615 * If timekeeping has injected sleeptime via either 1) or 2),
1616 * 3) becomes needless, so in this case we don't need to call
1617 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1618 * means.
1619 */
1620bool timekeeping_rtc_skipresume(void)
1621{
f473e5f4 1622 return !suspend_timing_needed;
0fa88cb4
XP
1623}
1624
1625/**
1626 * 1) can be determined whether to use or not only when doing
1627 * timekeeping_resume() which is invoked after rtc_suspend(),
1628 * so we can't skip rtc_suspend() surely if system has 1).
1629 *
1630 * But if system has 2), 2) will definitely be used, so in this
1631 * case we don't need to call rtc_suspend(), and this is what
1632 * timekeeping_rtc_skipsuspend() means.
1633 */
1634bool timekeeping_rtc_skipsuspend(void)
1635{
1636 return persistent_clock_exists;
1637}
1638
304529b1 1639/**
04d90890 1640 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1641 * @delta: pointer to a timespec64 delta value
304529b1 1642 *
2ee96632 1643 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1644 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1645 * and also don't have an effective nonstop clocksource.
304529b1
JS
1646 *
1647 * This function should only be called by rtc_resume(), and allows
1648 * a suspend offset to be injected into the timekeeping values.
1649 */
985e6950 1650void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
304529b1 1651{
3fdb14fd 1652 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1653 unsigned long flags;
304529b1 1654
9a7a71b1 1655 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1656 write_seqcount_begin(&tk_core.seq);
70471f2f 1657
f473e5f4
MO
1658 suspend_timing_needed = false;
1659
4e250fdd 1660 timekeeping_forward_now(tk);
304529b1 1661
04d90890 1662 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1663
780427f0 1664 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1665
3fdb14fd 1666 write_seqcount_end(&tk_core.seq);
9a7a71b1 1667 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1668
1669 /* signal hrtimers about time change */
1670 clock_was_set();
1671}
7f298139 1672#endif
304529b1 1673
8524070b 1674/**
1675 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1676 */
124cf911 1677void timekeeping_resume(void)
8524070b 1678{
3fdb14fd 1679 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1680 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1681 unsigned long flags;
7d489d15 1682 struct timespec64 ts_new, ts_delta;
39232ed5 1683 u64 cycle_now, nsec;
f473e5f4 1684 bool inject_sleeptime = false;
d4f587c6 1685
2ee96632 1686 read_persistent_clock64(&ts_new);
8524070b 1687
adc78e6b 1688 clockevents_resume();
d10ff3fb
TG
1689 clocksource_resume();
1690
9a7a71b1 1691 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1692 write_seqcount_begin(&tk_core.seq);
8524070b 1693
e445cf1c
FT
1694 /*
1695 * After system resumes, we need to calculate the suspended time and
1696 * compensate it for the OS time. There are 3 sources that could be
1697 * used: Nonstop clocksource during suspend, persistent clock and rtc
1698 * device.
1699 *
1700 * One specific platform may have 1 or 2 or all of them, and the
1701 * preference will be:
1702 * suspend-nonstop clocksource -> persistent clock -> rtc
1703 * The less preferred source will only be tried if there is no better
1704 * usable source. The rtc part is handled separately in rtc core code.
1705 */
ceea5e37 1706 cycle_now = tk_clock_read(&tk->tkr_mono);
39232ed5
BW
1707 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1708 if (nsec > 0) {
7d489d15 1709 ts_delta = ns_to_timespec64(nsec);
f473e5f4 1710 inject_sleeptime = true;
7d489d15
JS
1711 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1712 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
f473e5f4 1713 inject_sleeptime = true;
8524070b 1714 }
e445cf1c 1715
f473e5f4
MO
1716 if (inject_sleeptime) {
1717 suspend_timing_needed = false;
e445cf1c 1718 __timekeeping_inject_sleeptime(tk, &ts_delta);
f473e5f4 1719 }
e445cf1c
FT
1720
1721 /* Re-base the last cycle value */
876e7881 1722 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1723 tk->tkr_raw.cycle_last = cycle_now;
1724
4e250fdd 1725 tk->ntp_error = 0;
8524070b 1726 timekeeping_suspended = 0;
780427f0 1727 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1728 write_seqcount_end(&tk_core.seq);
9a7a71b1 1729 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1730
1731 touch_softlockup_watchdog();
1732
4ffee521 1733 tick_resume();
b12a03ce 1734 hrtimers_resume();
8524070b 1735}
1736
124cf911 1737int timekeeping_suspend(void)
8524070b 1738{
3fdb14fd 1739 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1740 unsigned long flags;
7d489d15
JS
1741 struct timespec64 delta, delta_delta;
1742 static struct timespec64 old_delta;
39232ed5
BW
1743 struct clocksource *curr_clock;
1744 u64 cycle_now;
8524070b 1745
2ee96632 1746 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1747
0d6bd995
ZM
1748 /*
1749 * On some systems the persistent_clock can not be detected at
1750 * timekeeping_init by its return value, so if we see a valid
1751 * value returned, update the persistent_clock_exists flag.
1752 */
1753 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1754 persistent_clock_exists = true;
0d6bd995 1755
f473e5f4
MO
1756 suspend_timing_needed = true;
1757
9a7a71b1 1758 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1759 write_seqcount_begin(&tk_core.seq);
4e250fdd 1760 timekeeping_forward_now(tk);
8524070b 1761 timekeeping_suspended = 1;
cb33217b 1762
39232ed5
BW
1763 /*
1764 * Since we've called forward_now, cycle_last stores the value
1765 * just read from the current clocksource. Save this to potentially
1766 * use in suspend timing.
1767 */
1768 curr_clock = tk->tkr_mono.clock;
1769 cycle_now = tk->tkr_mono.cycle_last;
1770 clocksource_start_suspend_timing(curr_clock, cycle_now);
1771
0fa88cb4 1772 if (persistent_clock_exists) {
cb33217b 1773 /*
264bb3f7
XP
1774 * To avoid drift caused by repeated suspend/resumes,
1775 * which each can add ~1 second drift error,
1776 * try to compensate so the difference in system time
1777 * and persistent_clock time stays close to constant.
cb33217b 1778 */
264bb3f7
XP
1779 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1780 delta_delta = timespec64_sub(delta, old_delta);
1781 if (abs(delta_delta.tv_sec) >= 2) {
1782 /*
1783 * if delta_delta is too large, assume time correction
1784 * has occurred and set old_delta to the current delta.
1785 */
1786 old_delta = delta;
1787 } else {
1788 /* Otherwise try to adjust old_system to compensate */
1789 timekeeping_suspend_time =
1790 timespec64_add(timekeeping_suspend_time, delta_delta);
1791 }
cb33217b 1792 }
330a1617
JS
1793
1794 timekeeping_update(tk, TK_MIRROR);
060407ae 1795 halt_fast_timekeeper(tk);
3fdb14fd 1796 write_seqcount_end(&tk_core.seq);
9a7a71b1 1797 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1798
4ffee521 1799 tick_suspend();
c54a42b1 1800 clocksource_suspend();
adc78e6b 1801 clockevents_suspend();
8524070b 1802
1803 return 0;
1804}
1805
1806/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1807static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1808 .resume = timekeeping_resume,
1809 .suspend = timekeeping_suspend,
8524070b 1810};
1811
e1a85b2c 1812static int __init timekeeping_init_ops(void)
8524070b 1813{
e1a85b2c
RW
1814 register_syscore_ops(&timekeeping_syscore_ops);
1815 return 0;
8524070b 1816}
e1a85b2c 1817device_initcall(timekeeping_init_ops);
8524070b 1818
1819/*
dc491596 1820 * Apply a multiplier adjustment to the timekeeper
8524070b 1821 */
dc491596
JS
1822static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1823 s64 offset,
78b98e3c 1824 s32 mult_adj)
8524070b 1825{
dc491596 1826 s64 interval = tk->cycle_interval;
8524070b 1827
78b98e3c
ML
1828 if (mult_adj == 0) {
1829 return;
1830 } else if (mult_adj == -1) {
dc491596 1831 interval = -interval;
78b98e3c
ML
1832 offset = -offset;
1833 } else if (mult_adj != 1) {
1834 interval *= mult_adj;
1835 offset *= mult_adj;
1d17d174 1836 }
8524070b 1837
c2bc1111
JS
1838 /*
1839 * So the following can be confusing.
1840 *
dc491596 1841 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1842 *
dc491596 1843 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1844 * have been appropriately scaled so the math is the same.
1845 *
1846 * The basic idea here is that we're increasing the multiplier
1847 * by one, this causes the xtime_interval to be incremented by
1848 * one cycle_interval. This is because:
1849 * xtime_interval = cycle_interval * mult
1850 * So if mult is being incremented by one:
1851 * xtime_interval = cycle_interval * (mult + 1)
1852 * Its the same as:
1853 * xtime_interval = (cycle_interval * mult) + cycle_interval
1854 * Which can be shortened to:
1855 * xtime_interval += cycle_interval
1856 *
1857 * So offset stores the non-accumulated cycles. Thus the current
1858 * time (in shifted nanoseconds) is:
1859 * now = (offset * adj) + xtime_nsec
1860 * Now, even though we're adjusting the clock frequency, we have
1861 * to keep time consistent. In other words, we can't jump back
1862 * in time, and we also want to avoid jumping forward in time.
1863 *
1864 * So given the same offset value, we need the time to be the same
1865 * both before and after the freq adjustment.
1866 * now = (offset * adj_1) + xtime_nsec_1
1867 * now = (offset * adj_2) + xtime_nsec_2
1868 * So:
1869 * (offset * adj_1) + xtime_nsec_1 =
1870 * (offset * adj_2) + xtime_nsec_2
1871 * And we know:
1872 * adj_2 = adj_1 + 1
1873 * So:
1874 * (offset * adj_1) + xtime_nsec_1 =
1875 * (offset * (adj_1+1)) + xtime_nsec_2
1876 * (offset * adj_1) + xtime_nsec_1 =
1877 * (offset * adj_1) + offset + xtime_nsec_2
1878 * Canceling the sides:
1879 * xtime_nsec_1 = offset + xtime_nsec_2
1880 * Which gives us:
1881 * xtime_nsec_2 = xtime_nsec_1 - offset
1882 * Which simplfies to:
1883 * xtime_nsec -= offset
c2bc1111 1884 */
876e7881 1885 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1886 /* NTP adjustment caused clocksource mult overflow */
1887 WARN_ON_ONCE(1);
1888 return;
1889 }
1890
876e7881 1891 tk->tkr_mono.mult += mult_adj;
f726a697 1892 tk->xtime_interval += interval;
876e7881 1893 tk->tkr_mono.xtime_nsec -= offset;
dc491596
JS
1894}
1895
1896/*
78b98e3c
ML
1897 * Adjust the timekeeper's multiplier to the correct frequency
1898 * and also to reduce the accumulated error value.
dc491596 1899 */
78b98e3c 1900static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
dc491596 1901{
78b98e3c 1902 u32 mult;
dc491596 1903
ec02b076 1904 /*
78b98e3c
ML
1905 * Determine the multiplier from the current NTP tick length.
1906 * Avoid expensive division when the tick length doesn't change.
ec02b076 1907 */
78b98e3c
ML
1908 if (likely(tk->ntp_tick == ntp_tick_length())) {
1909 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1910 } else {
1911 tk->ntp_tick = ntp_tick_length();
1912 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1913 tk->xtime_remainder, tk->cycle_interval);
ec02b076 1914 }
dc491596 1915
78b98e3c
ML
1916 /*
1917 * If the clock is behind the NTP time, increase the multiplier by 1
1918 * to catch up with it. If it's ahead and there was a remainder in the
1919 * tick division, the clock will slow down. Otherwise it will stay
1920 * ahead until the tick length changes to a non-divisible value.
1921 */
1922 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1923 mult += tk->ntp_err_mult;
dc491596 1924
78b98e3c 1925 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
dc491596 1926
876e7881
PZ
1927 if (unlikely(tk->tkr_mono.clock->maxadj &&
1928 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1929 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1930 printk_once(KERN_WARNING
1931 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1932 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1933 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1934 }
2a8c0883
JS
1935
1936 /*
1937 * It may be possible that when we entered this function, xtime_nsec
1938 * was very small. Further, if we're slightly speeding the clocksource
1939 * in the code above, its possible the required corrective factor to
1940 * xtime_nsec could cause it to underflow.
1941 *
78b98e3c
ML
1942 * Now, since we have already accumulated the second and the NTP
1943 * subsystem has been notified via second_overflow(), we need to skip
1944 * the next update.
2a8c0883 1945 */
876e7881 1946 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
78b98e3c
ML
1947 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1948 tk->tkr_mono.shift;
1949 tk->xtime_sec--;
1950 tk->skip_second_overflow = 1;
2a8c0883 1951 }
8524070b 1952}
1953
1f4f9487
JS
1954/**
1955 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1956 *
571af55a 1957 * Helper function that accumulates the nsecs greater than a second
1f4f9487
JS
1958 * from the xtime_nsec field to the xtime_secs field.
1959 * It also calls into the NTP code to handle leapsecond processing.
1960 *
1961 */
780427f0 1962static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1963{
876e7881 1964 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1965 unsigned int clock_set = 0;
1f4f9487 1966
876e7881 1967 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1968 int leap;
1969
876e7881 1970 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1971 tk->xtime_sec++;
1972
78b98e3c
ML
1973 /*
1974 * Skip NTP update if this second was accumulated before,
1975 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1976 */
1977 if (unlikely(tk->skip_second_overflow)) {
1978 tk->skip_second_overflow = 0;
1979 continue;
1980 }
1981
1f4f9487
JS
1982 /* Figure out if its a leap sec and apply if needed */
1983 leap = second_overflow(tk->xtime_sec);
6d0ef903 1984 if (unlikely(leap)) {
7d489d15 1985 struct timespec64 ts;
6d0ef903
JS
1986
1987 tk->xtime_sec += leap;
1f4f9487 1988
6d0ef903
JS
1989 ts.tv_sec = leap;
1990 ts.tv_nsec = 0;
1991 tk_set_wall_to_mono(tk,
7d489d15 1992 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1993
cc244dda
JS
1994 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1995
5258d3f2 1996 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1997 }
1f4f9487 1998 }
5258d3f2 1999 return clock_set;
1f4f9487
JS
2000}
2001
a092ff0f 2002/**
2003 * logarithmic_accumulation - shifted accumulation of cycles
2004 *
2005 * This functions accumulates a shifted interval of cycles into
2006 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2007 * loop.
2008 *
2009 * Returns the unconsumed cycles.
2010 */
a5a1d1c2
TG
2011static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2012 u32 shift, unsigned int *clock_set)
a092ff0f 2013{
a5a1d1c2 2014 u64 interval = tk->cycle_interval << shift;
3d88d56c 2015 u64 snsec_per_sec;
a092ff0f 2016
571af55a 2017 /* If the offset is smaller than a shifted interval, do nothing */
23a9537a 2018 if (offset < interval)
a092ff0f 2019 return offset;
2020
2021 /* Accumulate one shifted interval */
23a9537a 2022 offset -= interval;
876e7881 2023 tk->tkr_mono.cycle_last += interval;
4a4ad80d 2024 tk->tkr_raw.cycle_last += interval;
a092ff0f 2025
876e7881 2026 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 2027 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 2028
deda2e81 2029 /* Accumulate raw time */
3d88d56c
JS
2030 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2031 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2032 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2033 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
fc6eead7 2034 tk->raw_sec++;
a092ff0f 2035 }
2036
2037 /* Accumulate error between NTP and clock interval */
375f45b5 2038 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
2039 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2040 (tk->ntp_error_shift + shift);
a092ff0f 2041
2042 return offset;
2043}
2044
b061c7a5
ML
2045/*
2046 * timekeeping_advance - Updates the timekeeper to the current time and
2047 * current NTP tick length
8524070b 2048 */
b061c7a5 2049static void timekeeping_advance(enum timekeeping_adv_mode mode)
8524070b 2050{
3fdb14fd 2051 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 2052 struct timekeeper *tk = &shadow_timekeeper;
a5a1d1c2 2053 u64 offset;
a092ff0f 2054 int shift = 0, maxshift;
5258d3f2 2055 unsigned int clock_set = 0;
70471f2f
JS
2056 unsigned long flags;
2057
9a7a71b1 2058 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 2059
2060 /* Make sure we're fully resumed: */
2061 if (unlikely(timekeeping_suspended))
70471f2f 2062 goto out;
8524070b 2063
592913ec 2064#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 2065 offset = real_tk->cycle_interval;
b061c7a5
ML
2066
2067 if (mode != TK_ADV_TICK)
2068 goto out;
592913ec 2069#else
ceea5e37 2070 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
876e7881 2071 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 2072
bf2ac312 2073 /* Check if there's really nothing to do */
b061c7a5 2074 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
bf2ac312 2075 goto out;
b061c7a5 2076#endif
bf2ac312 2077
3c17ad19 2078 /* Do some additional sanity checking */
a529bea8 2079 timekeeping_check_update(tk, offset);
3c17ad19 2080
a092ff0f 2081 /*
2082 * With NO_HZ we may have to accumulate many cycle_intervals
2083 * (think "ticks") worth of time at once. To do this efficiently,
2084 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 2085 * that is smaller than the offset. We then accumulate that
a092ff0f 2086 * chunk in one go, and then try to consume the next smaller
2087 * doubled multiple.
8524070b 2088 */
4e250fdd 2089 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 2090 shift = max(0, shift);
88b28adf 2091 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 2092 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 2093 shift = min(shift, maxshift);
4e250fdd 2094 while (offset >= tk->cycle_interval) {
5258d3f2
JS
2095 offset = logarithmic_accumulation(tk, offset, shift,
2096 &clock_set);
4e250fdd 2097 if (offset < tk->cycle_interval<<shift)
830ec045 2098 shift--;
8524070b 2099 }
2100
78b98e3c 2101 /* Adjust the multiplier to correct NTP error */
4e250fdd 2102 timekeeping_adjust(tk, offset);
8524070b 2103
6a867a39
JS
2104 /*
2105 * Finally, make sure that after the rounding
1e75fa8b 2106 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 2107 */
5258d3f2 2108 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 2109
3fdb14fd 2110 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
2111 /*
2112 * Update the real timekeeper.
2113 *
2114 * We could avoid this memcpy by switching pointers, but that
2115 * requires changes to all other timekeeper usage sites as
2116 * well, i.e. move the timekeeper pointer getter into the
2117 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 2118 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
2119 * updating.
2120 */
906c5557 2121 timekeeping_update(tk, clock_set);
48cdc135 2122 memcpy(real_tk, tk, sizeof(*tk));
906c5557 2123 /* The memcpy must come last. Do not put anything here! */
3fdb14fd 2124 write_seqcount_end(&tk_core.seq);
ca4523cd 2125out:
9a7a71b1 2126 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 2127 if (clock_set)
cab5e127
JS
2128 /* Have to call _delayed version, since in irq context*/
2129 clock_was_set_delayed();
8524070b 2130}
7c3f1a57 2131
b061c7a5
ML
2132/**
2133 * update_wall_time - Uses the current clocksource to increment the wall time
2134 *
2135 */
2136void update_wall_time(void)
2137{
2138 timekeeping_advance(TK_ADV_TICK);
2139}
2140
7c3f1a57 2141/**
d08c0cdd
JS
2142 * getboottime64 - Return the real time of system boot.
2143 * @ts: pointer to the timespec64 to be set
7c3f1a57 2144 *
d08c0cdd 2145 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
2146 *
2147 * This is based on the wall_to_monotonic offset and the total suspend
2148 * time. Calls to settimeofday will affect the value returned (which
2149 * basically means that however wrong your real time clock is at boot time,
2150 * you get the right time here).
2151 */
d08c0cdd 2152void getboottime64(struct timespec64 *ts)
7c3f1a57 2153{
3fdb14fd 2154 struct timekeeper *tk = &tk_core.timekeeper;
a3ed0e43 2155 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
02cba159 2156
d08c0cdd 2157 *ts = ktime_to_timespec64(t);
7c3f1a57 2158}
d08c0cdd 2159EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 2160
fb7fcc96 2161void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2c6b47de 2162{
3fdb14fd 2163 struct timekeeper *tk = &tk_core.timekeeper;
2c6b47de 2164 unsigned long seq;
2165
2166 do {
3fdb14fd 2167 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2168
fb7fcc96 2169 *ts = tk_xtime(tk);
3fdb14fd 2170 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 2171}
fb7fcc96 2172EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
da15cfda 2173
fb7fcc96 2174void ktime_get_coarse_ts64(struct timespec64 *ts)
da15cfda 2175{
3fdb14fd 2176 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2177 struct timespec64 now, mono;
da15cfda 2178 unsigned long seq;
2179
2180 do {
3fdb14fd 2181 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2182
4e250fdd
JS
2183 now = tk_xtime(tk);
2184 mono = tk->wall_to_monotonic;
3fdb14fd 2185 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 2186
fb7fcc96 2187 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
da15cfda 2188 now.tv_nsec + mono.tv_nsec);
da15cfda 2189}
fb7fcc96 2190EXPORT_SYMBOL(ktime_get_coarse_ts64);
871cf1e5
TH
2191
2192/*
d6ad4187 2193 * Must hold jiffies_lock
871cf1e5
TH
2194 */
2195void do_timer(unsigned long ticks)
2196{
2197 jiffies_64 += ticks;
871cf1e5
TH
2198 calc_global_load(ticks);
2199}
48cf76f7 2200
f6c06abf 2201/**
76f41088 2202 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 2203 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf 2204 * @offs_real: pointer to storage for monotonic -> realtime offset
a3ed0e43 2205 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 2206 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 2207 *
868a3e91
TG
2208 * Returns current monotonic time and updates the offsets if the
2209 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2210 * different.
2211 *
b7bc50e4 2212 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 2213 */
868a3e91 2214ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
a3ed0e43 2215 ktime_t *offs_boot, ktime_t *offs_tai)
f6c06abf 2216{
3fdb14fd 2217 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 2218 unsigned int seq;
a37c0aad
TG
2219 ktime_t base;
2220 u64 nsecs;
f6c06abf
TG
2221
2222 do {
3fdb14fd 2223 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 2224
876e7881
PZ
2225 base = tk->tkr_mono.base;
2226 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833f32d7
JS
2227 base = ktime_add_ns(base, nsecs);
2228
868a3e91
TG
2229 if (*cwsseq != tk->clock_was_set_seq) {
2230 *cwsseq = tk->clock_was_set_seq;
2231 *offs_real = tk->offs_real;
a3ed0e43 2232 *offs_boot = tk->offs_boot;
868a3e91
TG
2233 *offs_tai = tk->offs_tai;
2234 }
833f32d7
JS
2235
2236 /* Handle leapsecond insertion adjustments */
2456e855 2237 if (unlikely(base >= tk->next_leap_ktime))
833f32d7
JS
2238 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2239
3fdb14fd 2240 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 2241
833f32d7 2242 return base;
f6c06abf 2243}
f6c06abf 2244
e0956dcc 2245/**
1572fa03 2246 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
e0956dcc 2247 */
985e6950 2248static int timekeeping_validate_timex(const struct timex *txc)
e0956dcc
AB
2249{
2250 if (txc->modes & ADJ_ADJTIME) {
2251 /* singleshot must not be used with any other mode bits */
2252 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2253 return -EINVAL;
2254 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2255 !capable(CAP_SYS_TIME))
2256 return -EPERM;
2257 } else {
2258 /* In order to modify anything, you gotta be super-user! */
2259 if (txc->modes && !capable(CAP_SYS_TIME))
2260 return -EPERM;
2261 /*
2262 * if the quartz is off by more than 10% then
2263 * something is VERY wrong!
2264 */
2265 if (txc->modes & ADJ_TICK &&
2266 (txc->tick < 900000/USER_HZ ||
2267 txc->tick > 1100000/USER_HZ))
2268 return -EINVAL;
2269 }
2270
2271 if (txc->modes & ADJ_SETOFFSET) {
2272 /* In order to inject time, you gotta be super-user! */
2273 if (!capable(CAP_SYS_TIME))
2274 return -EPERM;
2275
1572fa03
AB
2276 /*
2277 * Validate if a timespec/timeval used to inject a time
2278 * offset is valid. Offsets can be postive or negative, so
2279 * we don't check tv_sec. The value of the timeval/timespec
2280 * is the sum of its fields,but *NOTE*:
2281 * The field tv_usec/tv_nsec must always be non-negative and
2282 * we can't have more nanoseconds/microseconds than a second.
2283 */
2284 if (txc->time.tv_usec < 0)
2285 return -EINVAL;
e0956dcc 2286
1572fa03
AB
2287 if (txc->modes & ADJ_NANO) {
2288 if (txc->time.tv_usec >= NSEC_PER_SEC)
e0956dcc 2289 return -EINVAL;
e0956dcc 2290 } else {
1572fa03 2291 if (txc->time.tv_usec >= USEC_PER_SEC)
e0956dcc
AB
2292 return -EINVAL;
2293 }
2294 }
2295
2296 /*
2297 * Check for potential multiplication overflows that can
2298 * only happen on 64-bit systems:
2299 */
2300 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2301 if (LLONG_MIN / PPM_SCALE > txc->freq)
2302 return -EINVAL;
2303 if (LLONG_MAX / PPM_SCALE < txc->freq)
2304 return -EINVAL;
2305 }
2306
2307 return 0;
2308}
2309
2310
aa6f9c59
JS
2311/**
2312 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2313 */
2314int do_adjtimex(struct timex *txc)
2315{
3fdb14fd 2316 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 2317 unsigned long flags;
7d489d15 2318 struct timespec64 ts;
4e8f8b34 2319 s32 orig_tai, tai;
e4085693
JS
2320 int ret;
2321
2322 /* Validate the data before disabling interrupts */
1572fa03 2323 ret = timekeeping_validate_timex(txc);
e4085693
JS
2324 if (ret)
2325 return ret;
2326
cef90377 2327 if (txc->modes & ADJ_SETOFFSET) {
1572fa03 2328 struct timespec64 delta;
cef90377
JS
2329 delta.tv_sec = txc->time.tv_sec;
2330 delta.tv_nsec = txc->time.tv_usec;
2331 if (!(txc->modes & ADJ_NANO))
2332 delta.tv_nsec *= 1000;
2333 ret = timekeeping_inject_offset(&delta);
2334 if (ret)
2335 return ret;
2336 }
2337
d30faff9 2338 ktime_get_real_ts64(&ts);
87ace39b 2339
06c017fd 2340 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2341 write_seqcount_begin(&tk_core.seq);
06c017fd 2342
4e8f8b34 2343 orig_tai = tai = tk->tai_offset;
87ace39b 2344 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2345
4e8f8b34
JS
2346 if (tai != orig_tai) {
2347 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2348 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2349 }
833f32d7
JS
2350 tk_update_leap_state(tk);
2351
3fdb14fd 2352 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2353 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2354
b061c7a5
ML
2355 /* Update the multiplier immediately if frequency was set directly */
2356 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2357 timekeeping_advance(TK_ADV_FREQ);
2358
6fdda9a9
JS
2359 if (tai != orig_tai)
2360 clock_was_set();
2361
7bd36014
JS
2362 ntp_notify_cmos_timer();
2363
87ace39b
JS
2364 return ret;
2365}
aa6f9c59
JS
2366
2367#ifdef CONFIG_NTP_PPS
2368/**
2369 * hardpps() - Accessor function to NTP __hardpps function
2370 */
7ec88e4b 2371void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
aa6f9c59 2372{
06c017fd
JS
2373 unsigned long flags;
2374
2375 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2376 write_seqcount_begin(&tk_core.seq);
06c017fd 2377
aa6f9c59 2378 __hardpps(phase_ts, raw_ts);
06c017fd 2379
3fdb14fd 2380 write_seqcount_end(&tk_core.seq);
06c017fd 2381 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2382}
2383EXPORT_SYMBOL(hardpps);
a2d81803 2384#endif /* CONFIG_NTP_PPS */
aa6f9c59 2385
f0af911a
TH
2386/**
2387 * xtime_update() - advances the timekeeping infrastructure
2388 * @ticks: number of ticks, that have elapsed since the last call.
2389 *
2390 * Must be called with interrupts disabled.
2391 */
2392void xtime_update(unsigned long ticks)
2393{
d6ad4187 2394 write_seqlock(&jiffies_lock);
f0af911a 2395 do_timer(ticks);
d6ad4187 2396 write_sequnlock(&jiffies_lock);
47a1b796 2397 update_wall_time();
f0af911a 2398}