Merge tag 'mips_4.17' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan/mips
[linux-2.6-block.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
38b8d208 17#include <linux/nmi.h>
d43c36dc 18#include <linux/sched.h>
4f17722c 19#include <linux/sched/loadavg.h>
e1a85b2c 20#include <linux/syscore_ops.h>
8524070b 21#include <linux/clocksource.h>
22#include <linux/jiffies.h>
23#include <linux/time.h>
24#include <linux/tick.h>
75c5158f 25#include <linux/stop_machine.h>
e0b306fe 26#include <linux/pvclock_gtod.h>
52f5684c 27#include <linux/compiler.h>
8524070b 28
eb93e4d9 29#include "tick-internal.h"
aa6f9c59 30#include "ntp_internal.h"
5c83545f 31#include "timekeeping_internal.h"
155ec602 32
04397fe9
DV
33#define TK_CLEAR_NTP (1 << 0)
34#define TK_MIRROR (1 << 1)
780427f0 35#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 36
3fdb14fd
TG
37/*
38 * The most important data for readout fits into a single 64 byte
39 * cache line.
40 */
41static struct {
42 seqcount_t seq;
43 struct timekeeper timekeeper;
44} tk_core ____cacheline_aligned;
45
9a7a71b1 46static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 47static struct timekeeper shadow_timekeeper;
155ec602 48
4396e058
TG
49/**
50 * struct tk_fast - NMI safe timekeeper
51 * @seq: Sequence counter for protecting updates. The lowest bit
52 * is the index for the tk_read_base array
53 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * @seq.
55 *
56 * See @update_fast_timekeeper() below.
57 */
58struct tk_fast {
59 seqcount_t seq;
60 struct tk_read_base base[2];
61};
62
5df32107
PB
63/* Suspend-time cycles value for halted fast timekeeper. */
64static u64 cycles_at_suspend;
65
66static u64 dummy_clock_read(struct clocksource *cs)
67{
68 return cycles_at_suspend;
69}
70
71static struct clocksource dummy_clock = {
72 .read = dummy_clock_read,
73};
74
75static struct tk_fast tk_fast_mono ____cacheline_aligned = {
76 .base[0] = { .clock = &dummy_clock, },
77 .base[1] = { .clock = &dummy_clock, },
78};
79
80static struct tk_fast tk_fast_raw ____cacheline_aligned = {
81 .base[0] = { .clock = &dummy_clock, },
82 .base[1] = { .clock = &dummy_clock, },
83};
4396e058 84
8fcce546
JS
85/* flag for if timekeeping is suspended */
86int __read_mostly timekeeping_suspended;
87
1e75fa8b
JS
88static inline void tk_normalize_xtime(struct timekeeper *tk)
89{
876e7881
PZ
90 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
91 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
92 tk->xtime_sec++;
93 }
fc6eead7
JS
94 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
95 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
96 tk->raw_sec++;
97 }
1e75fa8b
JS
98}
99
c905fae4
TG
100static inline struct timespec64 tk_xtime(struct timekeeper *tk)
101{
102 struct timespec64 ts;
103
104 ts.tv_sec = tk->xtime_sec;
876e7881 105 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
106 return ts;
107}
108
7d489d15 109static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
110{
111 tk->xtime_sec = ts->tv_sec;
876e7881 112 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
113}
114
7d489d15 115static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
116{
117 tk->xtime_sec += ts->tv_sec;
876e7881 118 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 119 tk_normalize_xtime(tk);
1e75fa8b 120}
8fcce546 121
7d489d15 122static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 123{
7d489d15 124 struct timespec64 tmp;
6d0ef903
JS
125
126 /*
127 * Verify consistency of: offset_real = -wall_to_monotonic
128 * before modifying anything
129 */
7d489d15 130 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 131 -tk->wall_to_monotonic.tv_nsec);
2456e855 132 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
6d0ef903 133 tk->wall_to_monotonic = wtm;
7d489d15
JS
134 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
135 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 136 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
137}
138
47da70d3 139static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 140{
d6ed449a
TG
141 /* Update both bases so mono and raw stay coupled. */
142 tk->tkr_mono.base += delta;
143 tk->tkr_raw.base += delta;
72199320
TG
144
145 /* Accumulate time spent in suspend */
146 tk->time_suspended += delta;
6d0ef903
JS
147}
148
ceea5e37
JS
149/*
150 * tk_clock_read - atomic clocksource read() helper
151 *
152 * This helper is necessary to use in the read paths because, while the
153 * seqlock ensures we don't return a bad value while structures are updated,
154 * it doesn't protect from potential crashes. There is the possibility that
155 * the tkr's clocksource may change between the read reference, and the
156 * clock reference passed to the read function. This can cause crashes if
157 * the wrong clocksource is passed to the wrong read function.
158 * This isn't necessary to use when holding the timekeeper_lock or doing
159 * a read of the fast-timekeeper tkrs (which is protected by its own locking
160 * and update logic).
161 */
162static inline u64 tk_clock_read(struct tk_read_base *tkr)
163{
164 struct clocksource *clock = READ_ONCE(tkr->clock);
165
166 return clock->read(clock);
167}
168
3c17ad19 169#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 170#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 171
a5a1d1c2 172static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
3c17ad19
JS
173{
174
a5a1d1c2 175 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
876e7881 176 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
177
178 if (offset > max_cycles) {
a558cd02 179 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 180 offset, name, max_cycles);
a558cd02 181 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
182 } else {
183 if (offset > (max_cycles >> 1)) {
fc4fa6e1 184 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
3c17ad19
JS
185 offset, name, max_cycles >> 1);
186 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
187 }
188 }
4ca22c26 189
57d05a93
JS
190 if (tk->underflow_seen) {
191 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
192 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
193 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
194 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 195 tk->last_warning = jiffies;
4ca22c26 196 }
57d05a93 197 tk->underflow_seen = 0;
4ca22c26
JS
198 }
199
57d05a93
JS
200 if (tk->overflow_seen) {
201 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
202 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
203 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
204 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 205 tk->last_warning = jiffies;
4ca22c26 206 }
57d05a93 207 tk->overflow_seen = 0;
4ca22c26 208 }
3c17ad19 209}
a558cd02 210
a5a1d1c2 211static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
a558cd02 212{
57d05a93 213 struct timekeeper *tk = &tk_core.timekeeper;
a5a1d1c2 214 u64 now, last, mask, max, delta;
4ca22c26 215 unsigned int seq;
a558cd02 216
4ca22c26
JS
217 /*
218 * Since we're called holding a seqlock, the data may shift
219 * under us while we're doing the calculation. This can cause
220 * false positives, since we'd note a problem but throw the
221 * results away. So nest another seqlock here to atomically
222 * grab the points we are checking with.
223 */
224 do {
225 seq = read_seqcount_begin(&tk_core.seq);
ceea5e37 226 now = tk_clock_read(tkr);
4ca22c26
JS
227 last = tkr->cycle_last;
228 mask = tkr->mask;
229 max = tkr->clock->max_cycles;
230 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 231
4ca22c26 232 delta = clocksource_delta(now, last, mask);
a558cd02 233
057b87e3
JS
234 /*
235 * Try to catch underflows by checking if we are seeing small
236 * mask-relative negative values.
237 */
4ca22c26 238 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 239 tk->underflow_seen = 1;
057b87e3 240 delta = 0;
4ca22c26 241 }
057b87e3 242
a558cd02 243 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 244 if (unlikely(delta > max)) {
57d05a93 245 tk->overflow_seen = 1;
a558cd02 246 delta = tkr->clock->max_cycles;
4ca22c26 247 }
a558cd02
JS
248
249 return delta;
250}
3c17ad19 251#else
a5a1d1c2 252static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
3c17ad19
JS
253{
254}
a5a1d1c2 255static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
a558cd02 256{
a5a1d1c2 257 u64 cycle_now, delta;
a558cd02
JS
258
259 /* read clocksource */
ceea5e37 260 cycle_now = tk_clock_read(tkr);
a558cd02
JS
261
262 /* calculate the delta since the last update_wall_time */
263 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
264
265 return delta;
266}
3c17ad19
JS
267#endif
268
155ec602 269/**
d26e4fe0 270 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 271 *
d26e4fe0 272 * @tk: The target timekeeper to setup.
155ec602
MS
273 * @clock: Pointer to clocksource.
274 *
275 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
276 * pair and interval request.
277 *
278 * Unless you're the timekeeping code, you should not be using this!
279 */
f726a697 280static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602 281{
a5a1d1c2 282 u64 interval;
a386b5af 283 u64 tmp, ntpinterval;
1e75fa8b 284 struct clocksource *old_clock;
155ec602 285
2c756feb 286 ++tk->cs_was_changed_seq;
876e7881
PZ
287 old_clock = tk->tkr_mono.clock;
288 tk->tkr_mono.clock = clock;
876e7881 289 tk->tkr_mono.mask = clock->mask;
ceea5e37 290 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
155ec602 291
4a4ad80d 292 tk->tkr_raw.clock = clock;
4a4ad80d
PZ
293 tk->tkr_raw.mask = clock->mask;
294 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
295
155ec602
MS
296 /* Do the ns -> cycle conversion first, using original mult */
297 tmp = NTP_INTERVAL_LENGTH;
298 tmp <<= clock->shift;
a386b5af 299 ntpinterval = tmp;
0a544198
MS
300 tmp += clock->mult/2;
301 do_div(tmp, clock->mult);
155ec602
MS
302 if (tmp == 0)
303 tmp = 1;
304
a5a1d1c2 305 interval = (u64) tmp;
f726a697 306 tk->cycle_interval = interval;
155ec602
MS
307
308 /* Go back from cycles -> shifted ns */
cbd99e3b 309 tk->xtime_interval = interval * clock->mult;
f726a697 310 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
3d88d56c 311 tk->raw_interval = interval * clock->mult;
155ec602 312
1e75fa8b
JS
313 /* if changing clocks, convert xtime_nsec shift units */
314 if (old_clock) {
315 int shift_change = clock->shift - old_clock->shift;
fc6eead7 316 if (shift_change < 0) {
876e7881 317 tk->tkr_mono.xtime_nsec >>= -shift_change;
fc6eead7
JS
318 tk->tkr_raw.xtime_nsec >>= -shift_change;
319 } else {
876e7881 320 tk->tkr_mono.xtime_nsec <<= shift_change;
fc6eead7
JS
321 tk->tkr_raw.xtime_nsec <<= shift_change;
322 }
1e75fa8b 323 }
4a4ad80d 324
876e7881 325 tk->tkr_mono.shift = clock->shift;
4a4ad80d 326 tk->tkr_raw.shift = clock->shift;
155ec602 327
f726a697
JS
328 tk->ntp_error = 0;
329 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 330 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
331
332 /*
333 * The timekeeper keeps its own mult values for the currently
334 * active clocksource. These value will be adjusted via NTP
335 * to counteract clock drifting.
336 */
876e7881 337 tk->tkr_mono.mult = clock->mult;
4a4ad80d 338 tk->tkr_raw.mult = clock->mult;
dc491596 339 tk->ntp_err_mult = 0;
78b98e3c 340 tk->skip_second_overflow = 0;
155ec602 341}
8524070b 342
2ba2a305 343/* Timekeeper helper functions. */
7b1f6207
SW
344
345#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
346static u32 default_arch_gettimeoffset(void) { return 0; }
347u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 348#else
e06fde37 349static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
350#endif
351
a5a1d1c2 352static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
6bd58f09 353{
9c164572 354 u64 nsec;
6bd58f09
CH
355
356 nsec = delta * tkr->mult + tkr->xtime_nsec;
357 nsec >>= tkr->shift;
358
359 /* If arch requires, add in get_arch_timeoffset() */
360 return nsec + arch_gettimeoffset();
361}
362
acc89612 363static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 364{
a5a1d1c2 365 u64 delta;
2ba2a305 366
a558cd02 367 delta = timekeeping_get_delta(tkr);
6bd58f09
CH
368 return timekeeping_delta_to_ns(tkr, delta);
369}
2ba2a305 370
a5a1d1c2 371static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
6bd58f09 372{
a5a1d1c2 373 u64 delta;
f2a5a085 374
6bd58f09
CH
375 /* calculate the delta since the last update_wall_time */
376 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
377 return timekeeping_delta_to_ns(tkr, delta);
2ba2a305
MS
378}
379
4396e058
TG
380/**
381 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 382 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
383 *
384 * We want to use this from any context including NMI and tracing /
385 * instrumenting the timekeeping code itself.
386 *
6695b92a 387 * Employ the latch technique; see @raw_write_seqcount_latch.
4396e058
TG
388 *
389 * So if a NMI hits the update of base[0] then it will use base[1]
390 * which is still consistent. In the worst case this can result is a
391 * slightly wrong timestamp (a few nanoseconds). See
392 * @ktime_get_mono_fast_ns.
393 */
4498e746 394static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 395{
4498e746 396 struct tk_read_base *base = tkf->base;
4396e058
TG
397
398 /* Force readers off to base[1] */
4498e746 399 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
400
401 /* Update base[0] */
affe3e85 402 memcpy(base, tkr, sizeof(*base));
4396e058
TG
403
404 /* Force readers back to base[0] */
4498e746 405 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
406
407 /* Update base[1] */
408 memcpy(base + 1, base, sizeof(*base));
409}
410
411/**
412 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
413 *
414 * This timestamp is not guaranteed to be monotonic across an update.
415 * The timestamp is calculated by:
416 *
417 * now = base_mono + clock_delta * slope
418 *
419 * So if the update lowers the slope, readers who are forced to the
420 * not yet updated second array are still using the old steeper slope.
421 *
422 * tmono
423 * ^
424 * | o n
425 * | o n
426 * | u
427 * | o
428 * |o
429 * |12345678---> reader order
430 *
431 * o = old slope
432 * u = update
433 * n = new slope
434 *
435 * So reader 6 will observe time going backwards versus reader 5.
436 *
437 * While other CPUs are likely to be able observe that, the only way
438 * for a CPU local observation is when an NMI hits in the middle of
439 * the update. Timestamps taken from that NMI context might be ahead
440 * of the following timestamps. Callers need to be aware of that and
441 * deal with it.
442 */
4498e746 443static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
444{
445 struct tk_read_base *tkr;
446 unsigned int seq;
447 u64 now;
448
449 do {
7fc26327 450 seq = raw_read_seqcount_latch(&tkf->seq);
4498e746 451 tkr = tkf->base + (seq & 0x01);
27727df2
JS
452 now = ktime_to_ns(tkr->base);
453
58bfea95
JS
454 now += timekeeping_delta_to_ns(tkr,
455 clocksource_delta(
ceea5e37 456 tk_clock_read(tkr),
58bfea95
JS
457 tkr->cycle_last,
458 tkr->mask));
4498e746 459 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 460
4396e058
TG
461 return now;
462}
4498e746
PZ
463
464u64 ktime_get_mono_fast_ns(void)
465{
466 return __ktime_get_fast_ns(&tk_fast_mono);
467}
4396e058
TG
468EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
469
f09cb9a1
PZ
470u64 ktime_get_raw_fast_ns(void)
471{
472 return __ktime_get_fast_ns(&tk_fast_raw);
473}
474EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
475
4c3711d7
TG
476/*
477 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
478 */
479static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
480{
481 struct tk_read_base *tkr;
482 unsigned int seq;
483 u64 now;
484
485 do {
486 seq = raw_read_seqcount_latch(&tkf->seq);
487 tkr = tkf->base + (seq & 0x01);
488 now = ktime_to_ns(tkr->base_real);
489
490 now += timekeeping_delta_to_ns(tkr,
491 clocksource_delta(
492 tk_clock_read(tkr),
493 tkr->cycle_last,
494 tkr->mask));
495 } while (read_seqcount_retry(&tkf->seq, seq));
496
497 return now;
498}
499
500/**
501 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
502 */
503u64 ktime_get_real_fast_ns(void)
504{
505 return __ktime_get_real_fast_ns(&tk_fast_mono);
506}
df27067e 507EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
4c3711d7 508
060407ae
RW
509/**
510 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
511 * @tk: Timekeeper to snapshot.
512 *
513 * It generally is unsafe to access the clocksource after timekeeping has been
514 * suspended, so take a snapshot of the readout base of @tk and use it as the
515 * fast timekeeper's readout base while suspended. It will return the same
516 * number of cycles every time until timekeeping is resumed at which time the
517 * proper readout base for the fast timekeeper will be restored automatically.
518 */
519static void halt_fast_timekeeper(struct timekeeper *tk)
520{
521 static struct tk_read_base tkr_dummy;
876e7881 522 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
523
524 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
ceea5e37
JS
525 cycles_at_suspend = tk_clock_read(tkr);
526 tkr_dummy.clock = &dummy_clock;
4c3711d7 527 tkr_dummy.base_real = tkr->base + tk->offs_real;
4498e746 528 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
529
530 tkr = &tk->tkr_raw;
531 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
ceea5e37 532 tkr_dummy.clock = &dummy_clock;
f09cb9a1 533 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
534}
535
e0b306fe
MT
536static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
537
780427f0 538static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 539{
780427f0 540 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
541}
542
543/**
544 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
545 */
546int pvclock_gtod_register_notifier(struct notifier_block *nb)
547{
3fdb14fd 548 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
549 unsigned long flags;
550 int ret;
551
9a7a71b1 552 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 553 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 554 update_pvclock_gtod(tk, true);
9a7a71b1 555 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
556
557 return ret;
558}
559EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
560
561/**
562 * pvclock_gtod_unregister_notifier - unregister a pvclock
563 * timedata update listener
e0b306fe
MT
564 */
565int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
566{
e0b306fe
MT
567 unsigned long flags;
568 int ret;
569
9a7a71b1 570 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 571 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 572 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
573
574 return ret;
575}
576EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
577
833f32d7
JS
578/*
579 * tk_update_leap_state - helper to update the next_leap_ktime
580 */
581static inline void tk_update_leap_state(struct timekeeper *tk)
582{
583 tk->next_leap_ktime = ntp_get_next_leap();
2456e855 584 if (tk->next_leap_ktime != KTIME_MAX)
833f32d7
JS
585 /* Convert to monotonic time */
586 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
587}
588
7c032df5
TG
589/*
590 * Update the ktime_t based scalar nsec members of the timekeeper
591 */
592static inline void tk_update_ktime_data(struct timekeeper *tk)
593{
9e3680b1
HS
594 u64 seconds;
595 u32 nsec;
7c032df5
TG
596
597 /*
598 * The xtime based monotonic readout is:
599 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
600 * The ktime based monotonic readout is:
601 * nsec = base_mono + now();
602 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
603 */
9e3680b1
HS
604 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
605 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 606 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2 607
9e3680b1
HS
608 /*
609 * The sum of the nanoseconds portions of xtime and
610 * wall_to_monotonic can be greater/equal one second. Take
611 * this into account before updating tk->ktime_sec.
612 */
876e7881 613 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
614 if (nsec >= NSEC_PER_SEC)
615 seconds++;
616 tk->ktime_sec = seconds;
fc6eead7
JS
617
618 /* Update the monotonic raw base */
0bcdc098 619 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
7c032df5
TG
620}
621
9a7a71b1 622/* must hold timekeeper_lock */
04397fe9 623static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 624{
04397fe9 625 if (action & TK_CLEAR_NTP) {
f726a697 626 tk->ntp_error = 0;
cc06268c
TG
627 ntp_clear();
628 }
48cdc135 629
833f32d7 630 tk_update_leap_state(tk);
7c032df5
TG
631 tk_update_ktime_data(tk);
632
9bf2419f
TG
633 update_vsyscall(tk);
634 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
635
4c3711d7 636 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
4498e746 637 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 638 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
639
640 if (action & TK_CLOCK_WAS_SET)
641 tk->clock_was_set_seq++;
d1518326
JS
642 /*
643 * The mirroring of the data to the shadow-timekeeper needs
644 * to happen last here to ensure we don't over-write the
645 * timekeeper structure on the next update with stale data
646 */
647 if (action & TK_MIRROR)
648 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
649 sizeof(tk_core.timekeeper));
cc06268c
TG
650}
651
8524070b 652/**
155ec602 653 * timekeeping_forward_now - update clock to the current time
8524070b 654 *
9a055117
RZ
655 * Forward the current clock to update its state since the last call to
656 * update_wall_time(). This is useful before significant clock changes,
657 * as it avoids having to deal with this time offset explicitly.
8524070b 658 */
f726a697 659static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 660{
a5a1d1c2 661 u64 cycle_now, delta;
8524070b 662
ceea5e37 663 cycle_now = tk_clock_read(&tk->tkr_mono);
876e7881
PZ
664 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
665 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 666 tk->tkr_raw.cycle_last = cycle_now;
8524070b 667
876e7881 668 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 669
7b1f6207 670 /* If arch requires, add in get_arch_timeoffset() */
876e7881 671 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 672
2d42244a 673
fc6eead7
JS
674 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
675
676 /* If arch requires, add in get_arch_timeoffset() */
677 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
678
679 tk_normalize_xtime(tk);
8524070b 680}
681
682/**
d6d29896 683 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b 684 * @ts: pointer to the timespec to be set
685 *
1e817fb6
KC
686 * Updates the time of day in the timespec.
687 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 688 */
d6d29896 689int __getnstimeofday64(struct timespec64 *ts)
8524070b 690{
3fdb14fd 691 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 692 unsigned long seq;
acc89612 693 u64 nsecs;
8524070b 694
695 do {
3fdb14fd 696 seq = read_seqcount_begin(&tk_core.seq);
8524070b 697
4e250fdd 698 ts->tv_sec = tk->xtime_sec;
876e7881 699 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 700
3fdb14fd 701 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 702
ec145bab 703 ts->tv_nsec = 0;
d6d29896 704 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
705
706 /*
707 * Do not bail out early, in case there were callers still using
708 * the value, even in the face of the WARN_ON.
709 */
710 if (unlikely(timekeeping_suspended))
711 return -EAGAIN;
712 return 0;
713}
d6d29896 714EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
715
716/**
d6d29896 717 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 718 * @ts: pointer to the timespec64 to be set
1e817fb6 719 *
5322e4c2 720 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 721 */
d6d29896 722void getnstimeofday64(struct timespec64 *ts)
1e817fb6 723{
d6d29896 724 WARN_ON(__getnstimeofday64(ts));
8524070b 725}
d6d29896 726EXPORT_SYMBOL(getnstimeofday64);
8524070b 727
951ed4d3
MS
728ktime_t ktime_get(void)
729{
3fdb14fd 730 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 731 unsigned int seq;
a016a5bd 732 ktime_t base;
acc89612 733 u64 nsecs;
951ed4d3
MS
734
735 WARN_ON(timekeeping_suspended);
736
737 do {
3fdb14fd 738 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
739 base = tk->tkr_mono.base;
740 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 741
3fdb14fd 742 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 743
a016a5bd 744 return ktime_add_ns(base, nsecs);
951ed4d3
MS
745}
746EXPORT_SYMBOL_GPL(ktime_get);
747
6374f912
HG
748u32 ktime_get_resolution_ns(void)
749{
750 struct timekeeper *tk = &tk_core.timekeeper;
751 unsigned int seq;
752 u32 nsecs;
753
754 WARN_ON(timekeeping_suspended);
755
756 do {
757 seq = read_seqcount_begin(&tk_core.seq);
758 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
759 } while (read_seqcount_retry(&tk_core.seq, seq));
760
761 return nsecs;
762}
763EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
764
0077dc60
TG
765static ktime_t *offsets[TK_OFFS_MAX] = {
766 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
0077dc60
TG
767 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
768};
769
770ktime_t ktime_get_with_offset(enum tk_offsets offs)
771{
772 struct timekeeper *tk = &tk_core.timekeeper;
773 unsigned int seq;
774 ktime_t base, *offset = offsets[offs];
acc89612 775 u64 nsecs;
0077dc60
TG
776
777 WARN_ON(timekeeping_suspended);
778
779 do {
780 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
781 base = ktime_add(tk->tkr_mono.base, *offset);
782 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
783
784 } while (read_seqcount_retry(&tk_core.seq, seq));
785
786 return ktime_add_ns(base, nsecs);
787
788}
789EXPORT_SYMBOL_GPL(ktime_get_with_offset);
790
9a6b5197
TG
791/**
792 * ktime_mono_to_any() - convert mononotic time to any other time
793 * @tmono: time to convert.
794 * @offs: which offset to use
795 */
796ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
797{
798 ktime_t *offset = offsets[offs];
799 unsigned long seq;
800 ktime_t tconv;
801
802 do {
803 seq = read_seqcount_begin(&tk_core.seq);
804 tconv = ktime_add(tmono, *offset);
805 } while (read_seqcount_retry(&tk_core.seq, seq));
806
807 return tconv;
808}
809EXPORT_SYMBOL_GPL(ktime_mono_to_any);
810
f519b1a2
TG
811/**
812 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
813 */
814ktime_t ktime_get_raw(void)
815{
816 struct timekeeper *tk = &tk_core.timekeeper;
817 unsigned int seq;
818 ktime_t base;
acc89612 819 u64 nsecs;
f519b1a2
TG
820
821 do {
822 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
823 base = tk->tkr_raw.base;
824 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
825
826 } while (read_seqcount_retry(&tk_core.seq, seq));
827
828 return ktime_add_ns(base, nsecs);
829}
830EXPORT_SYMBOL_GPL(ktime_get_raw);
831
951ed4d3 832/**
d6d29896 833 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
834 * @ts: pointer to timespec variable
835 *
836 * The function calculates the monotonic clock from the realtime
837 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 838 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 839 */
d6d29896 840void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 841{
3fdb14fd 842 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 843 struct timespec64 tomono;
951ed4d3 844 unsigned int seq;
acc89612 845 u64 nsec;
951ed4d3
MS
846
847 WARN_ON(timekeeping_suspended);
848
849 do {
3fdb14fd 850 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 851 ts->tv_sec = tk->xtime_sec;
876e7881 852 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 853 tomono = tk->wall_to_monotonic;
951ed4d3 854
3fdb14fd 855 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 856
d6d29896
TG
857 ts->tv_sec += tomono.tv_sec;
858 ts->tv_nsec = 0;
859 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 860}
d6d29896 861EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 862
72199320
TG
863/**
864 * ktime_get_active_ts64 - Get the active non-suspended monotonic clock
865 * @ts: pointer to timespec variable
866 *
867 * The function calculates the monotonic clock from the realtime clock and
868 * the wall_to_monotonic offset, subtracts the accumulated suspend time and
869 * stores the result in normalized timespec64 format in the variable
870 * pointed to by @ts.
871 */
872void ktime_get_active_ts64(struct timespec64 *ts)
873{
874 struct timekeeper *tk = &tk_core.timekeeper;
875 struct timespec64 tomono, tsusp;
876 u64 nsec, nssusp;
877 unsigned int seq;
878
879 WARN_ON(timekeeping_suspended);
880
881 do {
882 seq = read_seqcount_begin(&tk_core.seq);
883 ts->tv_sec = tk->xtime_sec;
884 nsec = timekeeping_get_ns(&tk->tkr_mono);
885 tomono = tk->wall_to_monotonic;
886 nssusp = tk->time_suspended;
887 } while (read_seqcount_retry(&tk_core.seq, seq));
888
889 ts->tv_sec += tomono.tv_sec;
890 ts->tv_nsec = 0;
891 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
892 tsusp = ns_to_timespec64(nssusp);
893 *ts = timespec64_sub(*ts, tsusp);
894}
895
9e3680b1
HS
896/**
897 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
898 *
899 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
900 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
901 * works on both 32 and 64 bit systems. On 32 bit systems the readout
902 * covers ~136 years of uptime which should be enough to prevent
903 * premature wrap arounds.
904 */
905time64_t ktime_get_seconds(void)
906{
907 struct timekeeper *tk = &tk_core.timekeeper;
908
909 WARN_ON(timekeeping_suspended);
910 return tk->ktime_sec;
911}
912EXPORT_SYMBOL_GPL(ktime_get_seconds);
913
dbe7aa62
HS
914/**
915 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
916 *
917 * Returns the wall clock seconds since 1970. This replaces the
918 * get_seconds() interface which is not y2038 safe on 32bit systems.
919 *
920 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
921 * 32bit systems the access must be protected with the sequence
922 * counter to provide "atomic" access to the 64bit tk->xtime_sec
923 * value.
924 */
925time64_t ktime_get_real_seconds(void)
926{
927 struct timekeeper *tk = &tk_core.timekeeper;
928 time64_t seconds;
929 unsigned int seq;
930
931 if (IS_ENABLED(CONFIG_64BIT))
932 return tk->xtime_sec;
933
934 do {
935 seq = read_seqcount_begin(&tk_core.seq);
936 seconds = tk->xtime_sec;
937
938 } while (read_seqcount_retry(&tk_core.seq, seq));
939
940 return seconds;
941}
942EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
943
dee36654
D
944/**
945 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
946 * but without the sequence counter protect. This internal function
947 * is called just when timekeeping lock is already held.
948 */
949time64_t __ktime_get_real_seconds(void)
950{
951 struct timekeeper *tk = &tk_core.timekeeper;
952
953 return tk->xtime_sec;
954}
955
9da0f49c
CH
956/**
957 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
958 * @systime_snapshot: pointer to struct receiving the system time snapshot
959 */
960void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
961{
962 struct timekeeper *tk = &tk_core.timekeeper;
963 unsigned long seq;
964 ktime_t base_raw;
965 ktime_t base_real;
acc89612
TG
966 u64 nsec_raw;
967 u64 nsec_real;
a5a1d1c2 968 u64 now;
9da0f49c 969
ba26621e
CH
970 WARN_ON_ONCE(timekeeping_suspended);
971
9da0f49c
CH
972 do {
973 seq = read_seqcount_begin(&tk_core.seq);
ceea5e37 974 now = tk_clock_read(&tk->tkr_mono);
2c756feb
CH
975 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
976 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
9da0f49c
CH
977 base_real = ktime_add(tk->tkr_mono.base,
978 tk_core.timekeeper.offs_real);
979 base_raw = tk->tkr_raw.base;
980 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
981 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
982 } while (read_seqcount_retry(&tk_core.seq, seq));
983
984 systime_snapshot->cycles = now;
985 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
986 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
987}
988EXPORT_SYMBOL_GPL(ktime_get_snapshot);
dee36654 989
2c756feb
CH
990/* Scale base by mult/div checking for overflow */
991static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
992{
993 u64 tmp, rem;
994
995 tmp = div64_u64_rem(*base, div, &rem);
996
997 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
998 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
999 return -EOVERFLOW;
1000 tmp *= mult;
1001 rem *= mult;
1002
1003 do_div(rem, div);
1004 *base = tmp + rem;
1005 return 0;
1006}
1007
1008/**
1009 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1010 * @history: Snapshot representing start of history
1011 * @partial_history_cycles: Cycle offset into history (fractional part)
1012 * @total_history_cycles: Total history length in cycles
1013 * @discontinuity: True indicates clock was set on history period
1014 * @ts: Cross timestamp that should be adjusted using
1015 * partial/total ratio
1016 *
1017 * Helper function used by get_device_system_crosststamp() to correct the
1018 * crosstimestamp corresponding to the start of the current interval to the
1019 * system counter value (timestamp point) provided by the driver. The
1020 * total_history_* quantities are the total history starting at the provided
1021 * reference point and ending at the start of the current interval. The cycle
1022 * count between the driver timestamp point and the start of the current
1023 * interval is partial_history_cycles.
1024 */
1025static int adjust_historical_crosststamp(struct system_time_snapshot *history,
a5a1d1c2
TG
1026 u64 partial_history_cycles,
1027 u64 total_history_cycles,
2c756feb
CH
1028 bool discontinuity,
1029 struct system_device_crosststamp *ts)
1030{
1031 struct timekeeper *tk = &tk_core.timekeeper;
1032 u64 corr_raw, corr_real;
1033 bool interp_forward;
1034 int ret;
1035
1036 if (total_history_cycles == 0 || partial_history_cycles == 0)
1037 return 0;
1038
1039 /* Interpolate shortest distance from beginning or end of history */
5fc63f95 1040 interp_forward = partial_history_cycles > total_history_cycles / 2;
2c756feb
CH
1041 partial_history_cycles = interp_forward ?
1042 total_history_cycles - partial_history_cycles :
1043 partial_history_cycles;
1044
1045 /*
1046 * Scale the monotonic raw time delta by:
1047 * partial_history_cycles / total_history_cycles
1048 */
1049 corr_raw = (u64)ktime_to_ns(
1050 ktime_sub(ts->sys_monoraw, history->raw));
1051 ret = scale64_check_overflow(partial_history_cycles,
1052 total_history_cycles, &corr_raw);
1053 if (ret)
1054 return ret;
1055
1056 /*
1057 * If there is a discontinuity in the history, scale monotonic raw
1058 * correction by:
1059 * mult(real)/mult(raw) yielding the realtime correction
1060 * Otherwise, calculate the realtime correction similar to monotonic
1061 * raw calculation
1062 */
1063 if (discontinuity) {
1064 corr_real = mul_u64_u32_div
1065 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1066 } else {
1067 corr_real = (u64)ktime_to_ns(
1068 ktime_sub(ts->sys_realtime, history->real));
1069 ret = scale64_check_overflow(partial_history_cycles,
1070 total_history_cycles, &corr_real);
1071 if (ret)
1072 return ret;
1073 }
1074
1075 /* Fixup monotonic raw and real time time values */
1076 if (interp_forward) {
1077 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1078 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1079 } else {
1080 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1081 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1082 }
1083
1084 return 0;
1085}
1086
1087/*
1088 * cycle_between - true if test occurs chronologically between before and after
1089 */
a5a1d1c2 1090static bool cycle_between(u64 before, u64 test, u64 after)
2c756feb
CH
1091{
1092 if (test > before && test < after)
1093 return true;
1094 if (test < before && before > after)
1095 return true;
1096 return false;
1097}
1098
8006c245
CH
1099/**
1100 * get_device_system_crosststamp - Synchronously capture system/device timestamp
2c756feb 1101 * @get_time_fn: Callback to get simultaneous device time and
8006c245 1102 * system counter from the device driver
2c756feb
CH
1103 * @ctx: Context passed to get_time_fn()
1104 * @history_begin: Historical reference point used to interpolate system
1105 * time when counter provided by the driver is before the current interval
8006c245
CH
1106 * @xtstamp: Receives simultaneously captured system and device time
1107 *
1108 * Reads a timestamp from a device and correlates it to system time
1109 */
1110int get_device_system_crosststamp(int (*get_time_fn)
1111 (ktime_t *device_time,
1112 struct system_counterval_t *sys_counterval,
1113 void *ctx),
1114 void *ctx,
2c756feb 1115 struct system_time_snapshot *history_begin,
8006c245
CH
1116 struct system_device_crosststamp *xtstamp)
1117{
1118 struct system_counterval_t system_counterval;
1119 struct timekeeper *tk = &tk_core.timekeeper;
a5a1d1c2 1120 u64 cycles, now, interval_start;
6436257b 1121 unsigned int clock_was_set_seq = 0;
8006c245 1122 ktime_t base_real, base_raw;
acc89612 1123 u64 nsec_real, nsec_raw;
2c756feb 1124 u8 cs_was_changed_seq;
8006c245 1125 unsigned long seq;
2c756feb 1126 bool do_interp;
8006c245
CH
1127 int ret;
1128
1129 do {
1130 seq = read_seqcount_begin(&tk_core.seq);
1131 /*
1132 * Try to synchronously capture device time and a system
1133 * counter value calling back into the device driver
1134 */
1135 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1136 if (ret)
1137 return ret;
1138
1139 /*
1140 * Verify that the clocksource associated with the captured
1141 * system counter value is the same as the currently installed
1142 * timekeeper clocksource
1143 */
1144 if (tk->tkr_mono.clock != system_counterval.cs)
1145 return -ENODEV;
2c756feb
CH
1146 cycles = system_counterval.cycles;
1147
1148 /*
1149 * Check whether the system counter value provided by the
1150 * device driver is on the current timekeeping interval.
1151 */
ceea5e37 1152 now = tk_clock_read(&tk->tkr_mono);
2c756feb
CH
1153 interval_start = tk->tkr_mono.cycle_last;
1154 if (!cycle_between(interval_start, cycles, now)) {
1155 clock_was_set_seq = tk->clock_was_set_seq;
1156 cs_was_changed_seq = tk->cs_was_changed_seq;
1157 cycles = interval_start;
1158 do_interp = true;
1159 } else {
1160 do_interp = false;
1161 }
8006c245
CH
1162
1163 base_real = ktime_add(tk->tkr_mono.base,
1164 tk_core.timekeeper.offs_real);
1165 base_raw = tk->tkr_raw.base;
1166
1167 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1168 system_counterval.cycles);
1169 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1170 system_counterval.cycles);
1171 } while (read_seqcount_retry(&tk_core.seq, seq));
1172
1173 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1174 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
2c756feb
CH
1175
1176 /*
1177 * Interpolate if necessary, adjusting back from the start of the
1178 * current interval
1179 */
1180 if (do_interp) {
a5a1d1c2 1181 u64 partial_history_cycles, total_history_cycles;
2c756feb
CH
1182 bool discontinuity;
1183
1184 /*
1185 * Check that the counter value occurs after the provided
1186 * history reference and that the history doesn't cross a
1187 * clocksource change
1188 */
1189 if (!history_begin ||
1190 !cycle_between(history_begin->cycles,
1191 system_counterval.cycles, cycles) ||
1192 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1193 return -EINVAL;
1194 partial_history_cycles = cycles - system_counterval.cycles;
1195 total_history_cycles = cycles - history_begin->cycles;
1196 discontinuity =
1197 history_begin->clock_was_set_seq != clock_was_set_seq;
1198
1199 ret = adjust_historical_crosststamp(history_begin,
1200 partial_history_cycles,
1201 total_history_cycles,
1202 discontinuity, xtstamp);
1203 if (ret)
1204 return ret;
1205 }
1206
8006c245
CH
1207 return 0;
1208}
1209EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1210
8524070b 1211/**
1212 * do_gettimeofday - Returns the time of day in a timeval
1213 * @tv: pointer to the timeval to be set
1214 *
efd9ac86 1215 * NOTE: Users should be converted to using getnstimeofday()
8524070b 1216 */
1217void do_gettimeofday(struct timeval *tv)
1218{
d6d29896 1219 struct timespec64 now;
8524070b 1220
d6d29896 1221 getnstimeofday64(&now);
8524070b 1222 tv->tv_sec = now.tv_sec;
1223 tv->tv_usec = now.tv_nsec/1000;
1224}
8524070b 1225EXPORT_SYMBOL(do_gettimeofday);
d239f49d 1226
8524070b 1227/**
21f7eca5 1228 * do_settimeofday64 - Sets the time of day.
1229 * @ts: pointer to the timespec64 variable containing the new time
8524070b 1230 *
1231 * Sets the time of day to the new time and update NTP and notify hrtimers
1232 */
21f7eca5 1233int do_settimeofday64(const struct timespec64 *ts)
8524070b 1234{
3fdb14fd 1235 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 1236 struct timespec64 ts_delta, xt;
92c1d3ed 1237 unsigned long flags;
e1d7ba87 1238 int ret = 0;
8524070b 1239
21f7eca5 1240 if (!timespec64_valid_strict(ts))
8524070b 1241 return -EINVAL;
1242
9a7a71b1 1243 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1244 write_seqcount_begin(&tk_core.seq);
8524070b 1245
4e250fdd 1246 timekeeping_forward_now(tk);
9a055117 1247
4e250fdd 1248 xt = tk_xtime(tk);
21f7eca5 1249 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1250 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 1251
e1d7ba87
WY
1252 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1253 ret = -EINVAL;
1254 goto out;
1255 }
1256
7d489d15 1257 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 1258
21f7eca5 1259 tk_set_xtime(tk, ts);
e1d7ba87 1260out:
780427f0 1261 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 1262
3fdb14fd 1263 write_seqcount_end(&tk_core.seq);
9a7a71b1 1264 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1265
1266 /* signal hrtimers about time change */
1267 clock_was_set();
1268
e1d7ba87 1269 return ret;
8524070b 1270}
21f7eca5 1271EXPORT_SYMBOL(do_settimeofday64);
8524070b 1272
c528f7c6
JS
1273/**
1274 * timekeeping_inject_offset - Adds or subtracts from the current time.
1275 * @tv: pointer to the timespec variable containing the offset
1276 *
1277 * Adds or subtracts an offset value from the current time.
1278 */
1572fa03 1279static int timekeeping_inject_offset(struct timespec64 *ts)
c528f7c6 1280{
3fdb14fd 1281 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1282 unsigned long flags;
1572fa03 1283 struct timespec64 tmp;
4e8b1452 1284 int ret = 0;
c528f7c6 1285
1572fa03 1286 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
c528f7c6
JS
1287 return -EINVAL;
1288
9a7a71b1 1289 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1290 write_seqcount_begin(&tk_core.seq);
c528f7c6 1291
4e250fdd 1292 timekeeping_forward_now(tk);
c528f7c6 1293
4e8b1452 1294 /* Make sure the proposed value is valid */
1572fa03
AB
1295 tmp = timespec64_add(tk_xtime(tk), *ts);
1296 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
e1d7ba87 1297 !timespec64_valid_strict(&tmp)) {
4e8b1452
JS
1298 ret = -EINVAL;
1299 goto error;
1300 }
1e75fa8b 1301
1572fa03
AB
1302 tk_xtime_add(tk, ts);
1303 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
c528f7c6 1304
4e8b1452 1305error: /* even if we error out, we forwarded the time, so call update */
780427f0 1306 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 1307
3fdb14fd 1308 write_seqcount_end(&tk_core.seq);
9a7a71b1 1309 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
1310
1311 /* signal hrtimers about time change */
1312 clock_was_set();
1313
4e8b1452 1314 return ret;
c528f7c6 1315}
e0956dcc
AB
1316
1317/*
1318 * Indicates if there is an offset between the system clock and the hardware
1319 * clock/persistent clock/rtc.
1320 */
1321int persistent_clock_is_local;
1322
1323/*
1324 * Adjust the time obtained from the CMOS to be UTC time instead of
1325 * local time.
1326 *
1327 * This is ugly, but preferable to the alternatives. Otherwise we
1328 * would either need to write a program to do it in /etc/rc (and risk
1329 * confusion if the program gets run more than once; it would also be
1330 * hard to make the program warp the clock precisely n hours) or
1331 * compile in the timezone information into the kernel. Bad, bad....
1332 *
1333 * - TYT, 1992-01-01
1334 *
1335 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1336 * as real UNIX machines always do it. This avoids all headaches about
1337 * daylight saving times and warping kernel clocks.
1338 */
1339void timekeeping_warp_clock(void)
1340{
1341 if (sys_tz.tz_minuteswest != 0) {
1572fa03 1342 struct timespec64 adjust;
e0956dcc
AB
1343
1344 persistent_clock_is_local = 1;
1345 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1346 adjust.tv_nsec = 0;
1347 timekeeping_inject_offset(&adjust);
1348 }
1349}
c528f7c6 1350
cc244dda 1351/**
40d9f827 1352 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
cc244dda
JS
1353 *
1354 */
dd5d70e8 1355static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1356{
1357 tk->tai_offset = tai_offset;
04005f60 1358 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1359}
1360
8524070b 1361/**
1362 * change_clocksource - Swaps clocksources if a new one is available
1363 *
1364 * Accumulates current time interval and initializes new clocksource
1365 */
75c5158f 1366static int change_clocksource(void *data)
8524070b 1367{
3fdb14fd 1368 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1369 struct clocksource *new, *old;
f695cf94 1370 unsigned long flags;
8524070b 1371
75c5158f 1372 new = (struct clocksource *) data;
8524070b 1373
9a7a71b1 1374 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1375 write_seqcount_begin(&tk_core.seq);
f695cf94 1376
4e250fdd 1377 timekeeping_forward_now(tk);
09ac369c
TG
1378 /*
1379 * If the cs is in module, get a module reference. Succeeds
1380 * for built-in code (owner == NULL) as well.
1381 */
1382 if (try_module_get(new->owner)) {
1383 if (!new->enable || new->enable(new) == 0) {
876e7881 1384 old = tk->tkr_mono.clock;
09ac369c
TG
1385 tk_setup_internals(tk, new);
1386 if (old->disable)
1387 old->disable(old);
1388 module_put(old->owner);
1389 } else {
1390 module_put(new->owner);
1391 }
75c5158f 1392 }
780427f0 1393 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1394
3fdb14fd 1395 write_seqcount_end(&tk_core.seq);
9a7a71b1 1396 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1397
75c5158f
MS
1398 return 0;
1399}
8524070b 1400
75c5158f
MS
1401/**
1402 * timekeeping_notify - Install a new clock source
1403 * @clock: pointer to the clock source
1404 *
1405 * This function is called from clocksource.c after a new, better clock
1406 * source has been registered. The caller holds the clocksource_mutex.
1407 */
ba919d1c 1408int timekeeping_notify(struct clocksource *clock)
75c5158f 1409{
3fdb14fd 1410 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1411
876e7881 1412 if (tk->tkr_mono.clock == clock)
ba919d1c 1413 return 0;
75c5158f 1414 stop_machine(change_clocksource, clock, NULL);
8524070b 1415 tick_clock_notify();
876e7881 1416 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1417}
75c5158f 1418
2d42244a 1419/**
cdba2ec5
JS
1420 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1421 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1422 *
1423 * Returns the raw monotonic time (completely un-modified by ntp)
1424 */
cdba2ec5 1425void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1426{
3fdb14fd 1427 struct timekeeper *tk = &tk_core.timekeeper;
2d42244a 1428 unsigned long seq;
acc89612 1429 u64 nsecs;
2d42244a
JS
1430
1431 do {
3fdb14fd 1432 seq = read_seqcount_begin(&tk_core.seq);
fc6eead7 1433 ts->tv_sec = tk->raw_sec;
4a4ad80d 1434 nsecs = timekeeping_get_ns(&tk->tkr_raw);
2d42244a 1435
3fdb14fd 1436 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1437
fc6eead7
JS
1438 ts->tv_nsec = 0;
1439 timespec64_add_ns(ts, nsecs);
2d42244a 1440}
cdba2ec5
JS
1441EXPORT_SYMBOL(getrawmonotonic64);
1442
2d42244a 1443
8524070b 1444/**
cf4fc6cb 1445 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1446 */
cf4fc6cb 1447int timekeeping_valid_for_hres(void)
8524070b 1448{
3fdb14fd 1449 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 1450 unsigned long seq;
1451 int ret;
1452
1453 do {
3fdb14fd 1454 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1455
876e7881 1456 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1457
3fdb14fd 1458 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 1459
1460 return ret;
1461}
1462
98962465
JH
1463/**
1464 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1465 */
1466u64 timekeeping_max_deferment(void)
1467{
3fdb14fd 1468 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1469 unsigned long seq;
1470 u64 ret;
42e71e81 1471
70471f2f 1472 do {
3fdb14fd 1473 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1474
876e7881 1475 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1476
3fdb14fd 1477 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1478
1479 return ret;
98962465
JH
1480}
1481
8524070b 1482/**
d4f587c6 1483 * read_persistent_clock - Return time from the persistent clock.
8524070b 1484 *
1485 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1486 * Reads the time from the battery backed persistent clock.
1487 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1488 *
1489 * XXX - Do be sure to remove it once all arches implement it.
1490 */
52f5684c 1491void __weak read_persistent_clock(struct timespec *ts)
8524070b 1492{
d4f587c6
MS
1493 ts->tv_sec = 0;
1494 ts->tv_nsec = 0;
8524070b 1495}
1496
2ee96632
XP
1497void __weak read_persistent_clock64(struct timespec64 *ts64)
1498{
1499 struct timespec ts;
1500
1501 read_persistent_clock(&ts);
1502 *ts64 = timespec_to_timespec64(ts);
1503}
1504
23970e38 1505/**
e83d0a41 1506 * read_boot_clock64 - Return time of the system start.
23970e38
MS
1507 *
1508 * Weak dummy function for arches that do not yet support it.
1509 * Function to read the exact time the system has been started.
e83d0a41 1510 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
23970e38
MS
1511 *
1512 * XXX - Do be sure to remove it once all arches implement it.
1513 */
e83d0a41 1514void __weak read_boot_clock64(struct timespec64 *ts)
23970e38
MS
1515{
1516 ts->tv_sec = 0;
1517 ts->tv_nsec = 0;
1518}
1519
0fa88cb4
XP
1520/* Flag for if timekeeping_resume() has injected sleeptime */
1521static bool sleeptime_injected;
1522
1523/* Flag for if there is a persistent clock on this platform */
1524static bool persistent_clock_exists;
1525
8524070b 1526/*
1527 * timekeeping_init - Initializes the clocksource and common timekeeping values
1528 */
1529void __init timekeeping_init(void)
1530{
3fdb14fd 1531 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1532 struct clocksource *clock;
8524070b 1533 unsigned long flags;
7d489d15 1534 struct timespec64 now, boot, tmp;
31ade306 1535
2ee96632 1536 read_persistent_clock64(&now);
7d489d15 1537 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1538 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1539 " Check your CMOS/BIOS settings.\n");
1540 now.tv_sec = 0;
1541 now.tv_nsec = 0;
31ade306 1542 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1543 persistent_clock_exists = true;
4e8b1452 1544
9a806ddb 1545 read_boot_clock64(&boot);
7d489d15 1546 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1547 pr_warn("WARNING: Boot clock returned invalid value!\n"
1548 " Check your CMOS/BIOS settings.\n");
1549 boot.tv_sec = 0;
1550 boot.tv_nsec = 0;
1551 }
8524070b 1552
9a7a71b1 1553 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1554 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1555 ntp_init();
1556
f1b82746 1557 clock = clocksource_default_clock();
a0f7d48b
MS
1558 if (clock->enable)
1559 clock->enable(clock);
4e250fdd 1560 tk_setup_internals(tk, clock);
8524070b 1561
4e250fdd 1562 tk_set_xtime(tk, &now);
fc6eead7 1563 tk->raw_sec = 0;
1e75fa8b 1564 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1565 boot = tk_xtime(tk);
1e75fa8b 1566
7d489d15 1567 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1568 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1569
56fd16ca 1570 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
48cdc135 1571
3fdb14fd 1572 write_seqcount_end(&tk_core.seq);
9a7a71b1 1573 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1574}
1575
264bb3f7 1576/* time in seconds when suspend began for persistent clock */
7d489d15 1577static struct timespec64 timekeeping_suspend_time;
8524070b 1578
304529b1
JS
1579/**
1580 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1581 * @delta: pointer to a timespec delta value
1582 *
1583 * Takes a timespec offset measuring a suspend interval and properly
1584 * adds the sleep offset to the timekeeping variables.
1585 */
f726a697 1586static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1587 struct timespec64 *delta)
304529b1 1588{
7d489d15 1589 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1590 printk_deferred(KERN_WARNING
1591 "__timekeeping_inject_sleeptime: Invalid "
1592 "sleep delta value!\n");
cb5de2f8
JS
1593 return;
1594 }
f726a697 1595 tk_xtime_add(tk, delta);
47da70d3 1596 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1597 tk_debug_account_sleep_time(delta);
304529b1
JS
1598}
1599
7f298139 1600#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1601/**
1602 * We have three kinds of time sources to use for sleep time
1603 * injection, the preference order is:
1604 * 1) non-stop clocksource
1605 * 2) persistent clock (ie: RTC accessible when irqs are off)
1606 * 3) RTC
1607 *
1608 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1609 * If system has neither 1) nor 2), 3) will be used finally.
1610 *
1611 *
1612 * If timekeeping has injected sleeptime via either 1) or 2),
1613 * 3) becomes needless, so in this case we don't need to call
1614 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1615 * means.
1616 */
1617bool timekeeping_rtc_skipresume(void)
1618{
1619 return sleeptime_injected;
1620}
1621
1622/**
1623 * 1) can be determined whether to use or not only when doing
1624 * timekeeping_resume() which is invoked after rtc_suspend(),
1625 * so we can't skip rtc_suspend() surely if system has 1).
1626 *
1627 * But if system has 2), 2) will definitely be used, so in this
1628 * case we don't need to call rtc_suspend(), and this is what
1629 * timekeeping_rtc_skipsuspend() means.
1630 */
1631bool timekeeping_rtc_skipsuspend(void)
1632{
1633 return persistent_clock_exists;
1634}
1635
304529b1 1636/**
04d90890 1637 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1638 * @delta: pointer to a timespec64 delta value
304529b1 1639 *
2ee96632 1640 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1641 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1642 * and also don't have an effective nonstop clocksource.
304529b1
JS
1643 *
1644 * This function should only be called by rtc_resume(), and allows
1645 * a suspend offset to be injected into the timekeeping values.
1646 */
04d90890 1647void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1648{
3fdb14fd 1649 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1650 unsigned long flags;
304529b1 1651
9a7a71b1 1652 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1653 write_seqcount_begin(&tk_core.seq);
70471f2f 1654
4e250fdd 1655 timekeeping_forward_now(tk);
304529b1 1656
04d90890 1657 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1658
780427f0 1659 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1660
3fdb14fd 1661 write_seqcount_end(&tk_core.seq);
9a7a71b1 1662 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1663
1664 /* signal hrtimers about time change */
1665 clock_was_set();
1666}
7f298139 1667#endif
304529b1 1668
8524070b 1669/**
1670 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1671 */
124cf911 1672void timekeeping_resume(void)
8524070b 1673{
3fdb14fd 1674 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1675 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1676 unsigned long flags;
7d489d15 1677 struct timespec64 ts_new, ts_delta;
a5a1d1c2 1678 u64 cycle_now;
d4f587c6 1679
0fa88cb4 1680 sleeptime_injected = false;
2ee96632 1681 read_persistent_clock64(&ts_new);
8524070b 1682
adc78e6b 1683 clockevents_resume();
d10ff3fb
TG
1684 clocksource_resume();
1685
9a7a71b1 1686 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1687 write_seqcount_begin(&tk_core.seq);
8524070b 1688
e445cf1c
FT
1689 /*
1690 * After system resumes, we need to calculate the suspended time and
1691 * compensate it for the OS time. There are 3 sources that could be
1692 * used: Nonstop clocksource during suspend, persistent clock and rtc
1693 * device.
1694 *
1695 * One specific platform may have 1 or 2 or all of them, and the
1696 * preference will be:
1697 * suspend-nonstop clocksource -> persistent clock -> rtc
1698 * The less preferred source will only be tried if there is no better
1699 * usable source. The rtc part is handled separately in rtc core code.
1700 */
ceea5e37 1701 cycle_now = tk_clock_read(&tk->tkr_mono);
e445cf1c 1702 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1703 cycle_now > tk->tkr_mono.cycle_last) {
c029a2be 1704 u64 nsec, cyc_delta;
e445cf1c 1705
c029a2be
TG
1706 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1707 tk->tkr_mono.mask);
1708 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
7d489d15 1709 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1710 sleeptime_injected = true;
7d489d15
JS
1711 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1712 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1713 sleeptime_injected = true;
8524070b 1714 }
e445cf1c 1715
0fa88cb4 1716 if (sleeptime_injected)
e445cf1c
FT
1717 __timekeeping_inject_sleeptime(tk, &ts_delta);
1718
1719 /* Re-base the last cycle value */
876e7881 1720 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1721 tk->tkr_raw.cycle_last = cycle_now;
1722
4e250fdd 1723 tk->ntp_error = 0;
8524070b 1724 timekeeping_suspended = 0;
780427f0 1725 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1726 write_seqcount_end(&tk_core.seq);
9a7a71b1 1727 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1728
1729 touch_softlockup_watchdog();
1730
4ffee521 1731 tick_resume();
b12a03ce 1732 hrtimers_resume();
8524070b 1733}
1734
124cf911 1735int timekeeping_suspend(void)
8524070b 1736{
3fdb14fd 1737 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1738 unsigned long flags;
7d489d15
JS
1739 struct timespec64 delta, delta_delta;
1740 static struct timespec64 old_delta;
8524070b 1741
2ee96632 1742 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1743
0d6bd995
ZM
1744 /*
1745 * On some systems the persistent_clock can not be detected at
1746 * timekeeping_init by its return value, so if we see a valid
1747 * value returned, update the persistent_clock_exists flag.
1748 */
1749 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1750 persistent_clock_exists = true;
0d6bd995 1751
9a7a71b1 1752 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1753 write_seqcount_begin(&tk_core.seq);
4e250fdd 1754 timekeeping_forward_now(tk);
8524070b 1755 timekeeping_suspended = 1;
cb33217b 1756
0fa88cb4 1757 if (persistent_clock_exists) {
cb33217b 1758 /*
264bb3f7
XP
1759 * To avoid drift caused by repeated suspend/resumes,
1760 * which each can add ~1 second drift error,
1761 * try to compensate so the difference in system time
1762 * and persistent_clock time stays close to constant.
cb33217b 1763 */
264bb3f7
XP
1764 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1765 delta_delta = timespec64_sub(delta, old_delta);
1766 if (abs(delta_delta.tv_sec) >= 2) {
1767 /*
1768 * if delta_delta is too large, assume time correction
1769 * has occurred and set old_delta to the current delta.
1770 */
1771 old_delta = delta;
1772 } else {
1773 /* Otherwise try to adjust old_system to compensate */
1774 timekeeping_suspend_time =
1775 timespec64_add(timekeeping_suspend_time, delta_delta);
1776 }
cb33217b 1777 }
330a1617
JS
1778
1779 timekeeping_update(tk, TK_MIRROR);
060407ae 1780 halt_fast_timekeeper(tk);
3fdb14fd 1781 write_seqcount_end(&tk_core.seq);
9a7a71b1 1782 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1783
4ffee521 1784 tick_suspend();
c54a42b1 1785 clocksource_suspend();
adc78e6b 1786 clockevents_suspend();
8524070b 1787
1788 return 0;
1789}
1790
1791/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1792static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1793 .resume = timekeeping_resume,
1794 .suspend = timekeeping_suspend,
8524070b 1795};
1796
e1a85b2c 1797static int __init timekeeping_init_ops(void)
8524070b 1798{
e1a85b2c
RW
1799 register_syscore_ops(&timekeeping_syscore_ops);
1800 return 0;
8524070b 1801}
e1a85b2c 1802device_initcall(timekeeping_init_ops);
8524070b 1803
1804/*
dc491596 1805 * Apply a multiplier adjustment to the timekeeper
8524070b 1806 */
dc491596
JS
1807static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1808 s64 offset,
78b98e3c 1809 s32 mult_adj)
8524070b 1810{
dc491596 1811 s64 interval = tk->cycle_interval;
8524070b 1812
78b98e3c
ML
1813 if (mult_adj == 0) {
1814 return;
1815 } else if (mult_adj == -1) {
dc491596 1816 interval = -interval;
78b98e3c
ML
1817 offset = -offset;
1818 } else if (mult_adj != 1) {
1819 interval *= mult_adj;
1820 offset *= mult_adj;
1d17d174 1821 }
8524070b 1822
c2bc1111
JS
1823 /*
1824 * So the following can be confusing.
1825 *
dc491596 1826 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1827 *
dc491596 1828 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1829 * have been appropriately scaled so the math is the same.
1830 *
1831 * The basic idea here is that we're increasing the multiplier
1832 * by one, this causes the xtime_interval to be incremented by
1833 * one cycle_interval. This is because:
1834 * xtime_interval = cycle_interval * mult
1835 * So if mult is being incremented by one:
1836 * xtime_interval = cycle_interval * (mult + 1)
1837 * Its the same as:
1838 * xtime_interval = (cycle_interval * mult) + cycle_interval
1839 * Which can be shortened to:
1840 * xtime_interval += cycle_interval
1841 *
1842 * So offset stores the non-accumulated cycles. Thus the current
1843 * time (in shifted nanoseconds) is:
1844 * now = (offset * adj) + xtime_nsec
1845 * Now, even though we're adjusting the clock frequency, we have
1846 * to keep time consistent. In other words, we can't jump back
1847 * in time, and we also want to avoid jumping forward in time.
1848 *
1849 * So given the same offset value, we need the time to be the same
1850 * both before and after the freq adjustment.
1851 * now = (offset * adj_1) + xtime_nsec_1
1852 * now = (offset * adj_2) + xtime_nsec_2
1853 * So:
1854 * (offset * adj_1) + xtime_nsec_1 =
1855 * (offset * adj_2) + xtime_nsec_2
1856 * And we know:
1857 * adj_2 = adj_1 + 1
1858 * So:
1859 * (offset * adj_1) + xtime_nsec_1 =
1860 * (offset * (adj_1+1)) + xtime_nsec_2
1861 * (offset * adj_1) + xtime_nsec_1 =
1862 * (offset * adj_1) + offset + xtime_nsec_2
1863 * Canceling the sides:
1864 * xtime_nsec_1 = offset + xtime_nsec_2
1865 * Which gives us:
1866 * xtime_nsec_2 = xtime_nsec_1 - offset
1867 * Which simplfies to:
1868 * xtime_nsec -= offset
c2bc1111 1869 */
876e7881 1870 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1871 /* NTP adjustment caused clocksource mult overflow */
1872 WARN_ON_ONCE(1);
1873 return;
1874 }
1875
876e7881 1876 tk->tkr_mono.mult += mult_adj;
f726a697 1877 tk->xtime_interval += interval;
876e7881 1878 tk->tkr_mono.xtime_nsec -= offset;
dc491596
JS
1879}
1880
1881/*
78b98e3c
ML
1882 * Adjust the timekeeper's multiplier to the correct frequency
1883 * and also to reduce the accumulated error value.
dc491596 1884 */
78b98e3c 1885static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
dc491596 1886{
78b98e3c 1887 u32 mult;
dc491596 1888
ec02b076 1889 /*
78b98e3c
ML
1890 * Determine the multiplier from the current NTP tick length.
1891 * Avoid expensive division when the tick length doesn't change.
ec02b076 1892 */
78b98e3c
ML
1893 if (likely(tk->ntp_tick == ntp_tick_length())) {
1894 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1895 } else {
1896 tk->ntp_tick = ntp_tick_length();
1897 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1898 tk->xtime_remainder, tk->cycle_interval);
ec02b076 1899 }
dc491596 1900
78b98e3c
ML
1901 /*
1902 * If the clock is behind the NTP time, increase the multiplier by 1
1903 * to catch up with it. If it's ahead and there was a remainder in the
1904 * tick division, the clock will slow down. Otherwise it will stay
1905 * ahead until the tick length changes to a non-divisible value.
1906 */
1907 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1908 mult += tk->ntp_err_mult;
dc491596 1909
78b98e3c 1910 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
dc491596 1911
876e7881
PZ
1912 if (unlikely(tk->tkr_mono.clock->maxadj &&
1913 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1914 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1915 printk_once(KERN_WARNING
1916 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1917 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1918 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1919 }
2a8c0883
JS
1920
1921 /*
1922 * It may be possible that when we entered this function, xtime_nsec
1923 * was very small. Further, if we're slightly speeding the clocksource
1924 * in the code above, its possible the required corrective factor to
1925 * xtime_nsec could cause it to underflow.
1926 *
78b98e3c
ML
1927 * Now, since we have already accumulated the second and the NTP
1928 * subsystem has been notified via second_overflow(), we need to skip
1929 * the next update.
2a8c0883 1930 */
876e7881 1931 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
78b98e3c
ML
1932 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1933 tk->tkr_mono.shift;
1934 tk->xtime_sec--;
1935 tk->skip_second_overflow = 1;
2a8c0883 1936 }
8524070b 1937}
1938
1f4f9487
JS
1939/**
1940 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1941 *
571af55a 1942 * Helper function that accumulates the nsecs greater than a second
1f4f9487
JS
1943 * from the xtime_nsec field to the xtime_secs field.
1944 * It also calls into the NTP code to handle leapsecond processing.
1945 *
1946 */
780427f0 1947static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1948{
876e7881 1949 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1950 unsigned int clock_set = 0;
1f4f9487 1951
876e7881 1952 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1953 int leap;
1954
876e7881 1955 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1956 tk->xtime_sec++;
1957
78b98e3c
ML
1958 /*
1959 * Skip NTP update if this second was accumulated before,
1960 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1961 */
1962 if (unlikely(tk->skip_second_overflow)) {
1963 tk->skip_second_overflow = 0;
1964 continue;
1965 }
1966
1f4f9487
JS
1967 /* Figure out if its a leap sec and apply if needed */
1968 leap = second_overflow(tk->xtime_sec);
6d0ef903 1969 if (unlikely(leap)) {
7d489d15 1970 struct timespec64 ts;
6d0ef903
JS
1971
1972 tk->xtime_sec += leap;
1f4f9487 1973
6d0ef903
JS
1974 ts.tv_sec = leap;
1975 ts.tv_nsec = 0;
1976 tk_set_wall_to_mono(tk,
7d489d15 1977 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1978
cc244dda
JS
1979 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1980
5258d3f2 1981 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1982 }
1f4f9487 1983 }
5258d3f2 1984 return clock_set;
1f4f9487
JS
1985}
1986
a092ff0f 1987/**
1988 * logarithmic_accumulation - shifted accumulation of cycles
1989 *
1990 * This functions accumulates a shifted interval of cycles into
1991 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1992 * loop.
1993 *
1994 * Returns the unconsumed cycles.
1995 */
a5a1d1c2
TG
1996static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1997 u32 shift, unsigned int *clock_set)
a092ff0f 1998{
a5a1d1c2 1999 u64 interval = tk->cycle_interval << shift;
3d88d56c 2000 u64 snsec_per_sec;
a092ff0f 2001
571af55a 2002 /* If the offset is smaller than a shifted interval, do nothing */
23a9537a 2003 if (offset < interval)
a092ff0f 2004 return offset;
2005
2006 /* Accumulate one shifted interval */
23a9537a 2007 offset -= interval;
876e7881 2008 tk->tkr_mono.cycle_last += interval;
4a4ad80d 2009 tk->tkr_raw.cycle_last += interval;
a092ff0f 2010
876e7881 2011 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 2012 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 2013
deda2e81 2014 /* Accumulate raw time */
3d88d56c
JS
2015 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2016 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2017 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2018 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
fc6eead7 2019 tk->raw_sec++;
a092ff0f 2020 }
2021
2022 /* Accumulate error between NTP and clock interval */
375f45b5 2023 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
2024 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2025 (tk->ntp_error_shift + shift);
a092ff0f 2026
2027 return offset;
2028}
2029
8524070b 2030/**
2031 * update_wall_time - Uses the current clocksource to increment the wall time
2032 *
8524070b 2033 */
47a1b796 2034void update_wall_time(void)
8524070b 2035{
3fdb14fd 2036 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 2037 struct timekeeper *tk = &shadow_timekeeper;
a5a1d1c2 2038 u64 offset;
a092ff0f 2039 int shift = 0, maxshift;
5258d3f2 2040 unsigned int clock_set = 0;
70471f2f
JS
2041 unsigned long flags;
2042
9a7a71b1 2043 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 2044
2045 /* Make sure we're fully resumed: */
2046 if (unlikely(timekeeping_suspended))
70471f2f 2047 goto out;
8524070b 2048
592913ec 2049#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 2050 offset = real_tk->cycle_interval;
592913ec 2051#else
ceea5e37 2052 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
876e7881 2053 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 2054#endif
8524070b 2055
bf2ac312 2056 /* Check if there's really nothing to do */
48cdc135 2057 if (offset < real_tk->cycle_interval)
bf2ac312
JS
2058 goto out;
2059
3c17ad19 2060 /* Do some additional sanity checking */
a529bea8 2061 timekeeping_check_update(tk, offset);
3c17ad19 2062
a092ff0f 2063 /*
2064 * With NO_HZ we may have to accumulate many cycle_intervals
2065 * (think "ticks") worth of time at once. To do this efficiently,
2066 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 2067 * that is smaller than the offset. We then accumulate that
a092ff0f 2068 * chunk in one go, and then try to consume the next smaller
2069 * doubled multiple.
8524070b 2070 */
4e250fdd 2071 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 2072 shift = max(0, shift);
88b28adf 2073 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 2074 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 2075 shift = min(shift, maxshift);
4e250fdd 2076 while (offset >= tk->cycle_interval) {
5258d3f2
JS
2077 offset = logarithmic_accumulation(tk, offset, shift,
2078 &clock_set);
4e250fdd 2079 if (offset < tk->cycle_interval<<shift)
830ec045 2080 shift--;
8524070b 2081 }
2082
78b98e3c 2083 /* Adjust the multiplier to correct NTP error */
4e250fdd 2084 timekeeping_adjust(tk, offset);
8524070b 2085
6a867a39
JS
2086 /*
2087 * Finally, make sure that after the rounding
1e75fa8b 2088 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 2089 */
5258d3f2 2090 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 2091
3fdb14fd 2092 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
2093 /*
2094 * Update the real timekeeper.
2095 *
2096 * We could avoid this memcpy by switching pointers, but that
2097 * requires changes to all other timekeeper usage sites as
2098 * well, i.e. move the timekeeper pointer getter into the
2099 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 2100 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
2101 * updating.
2102 */
906c5557 2103 timekeeping_update(tk, clock_set);
48cdc135 2104 memcpy(real_tk, tk, sizeof(*tk));
906c5557 2105 /* The memcpy must come last. Do not put anything here! */
3fdb14fd 2106 write_seqcount_end(&tk_core.seq);
ca4523cd 2107out:
9a7a71b1 2108 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 2109 if (clock_set)
cab5e127
JS
2110 /* Have to call _delayed version, since in irq context*/
2111 clock_was_set_delayed();
8524070b 2112}
7c3f1a57
TJ
2113
2114/**
d08c0cdd
JS
2115 * getboottime64 - Return the real time of system boot.
2116 * @ts: pointer to the timespec64 to be set
7c3f1a57 2117 *
d08c0cdd 2118 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
2119 *
2120 * This is based on the wall_to_monotonic offset and the total suspend
2121 * time. Calls to settimeofday will affect the value returned (which
2122 * basically means that however wrong your real time clock is at boot time,
2123 * you get the right time here).
2124 */
d08c0cdd 2125void getboottime64(struct timespec64 *ts)
7c3f1a57 2126{
3fdb14fd 2127 struct timekeeper *tk = &tk_core.timekeeper;
d6ed449a 2128 ktime_t t = ktime_sub(tk->offs_real, tk->time_suspended);
02cba159 2129
d08c0cdd 2130 *ts = ktime_to_timespec64(t);
7c3f1a57 2131}
d08c0cdd 2132EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 2133
17c38b74 2134unsigned long get_seconds(void)
2135{
3fdb14fd 2136 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
2137
2138 return tk->xtime_sec;
17c38b74 2139}
2140EXPORT_SYMBOL(get_seconds);
2141
da15cfda 2142struct timespec __current_kernel_time(void)
2143{
3fdb14fd 2144 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 2145
7d489d15 2146 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 2147}
17c38b74 2148
8758a240 2149struct timespec64 current_kernel_time64(void)
2c6b47de 2150{
3fdb14fd 2151 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2152 struct timespec64 now;
2c6b47de 2153 unsigned long seq;
2154
2155 do {
3fdb14fd 2156 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2157
4e250fdd 2158 now = tk_xtime(tk);
3fdb14fd 2159 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 2160
8758a240 2161 return now;
2c6b47de 2162}
8758a240 2163EXPORT_SYMBOL(current_kernel_time64);
da15cfda 2164
334334b5 2165struct timespec64 get_monotonic_coarse64(void)
da15cfda 2166{
3fdb14fd 2167 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2168 struct timespec64 now, mono;
da15cfda 2169 unsigned long seq;
2170
2171 do {
3fdb14fd 2172 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2173
4e250fdd
JS
2174 now = tk_xtime(tk);
2175 mono = tk->wall_to_monotonic;
3fdb14fd 2176 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 2177
7d489d15 2178 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 2179 now.tv_nsec + mono.tv_nsec);
7d489d15 2180
334334b5 2181 return now;
da15cfda 2182}
eaaa7ec7 2183EXPORT_SYMBOL(get_monotonic_coarse64);
871cf1e5
TH
2184
2185/*
d6ad4187 2186 * Must hold jiffies_lock
871cf1e5
TH
2187 */
2188void do_timer(unsigned long ticks)
2189{
2190 jiffies_64 += ticks;
871cf1e5
TH
2191 calc_global_load(ticks);
2192}
48cf76f7 2193
f6c06abf 2194/**
76f41088 2195 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 2196 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf 2197 * @offs_real: pointer to storage for monotonic -> realtime offset
b7bc50e4 2198 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 2199 *
868a3e91
TG
2200 * Returns current monotonic time and updates the offsets if the
2201 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2202 * different.
2203 *
b7bc50e4 2204 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 2205 */
868a3e91 2206ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
127bfa5f 2207 ktime_t *offs_tai)
f6c06abf 2208{
3fdb14fd 2209 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 2210 unsigned int seq;
a37c0aad
TG
2211 ktime_t base;
2212 u64 nsecs;
f6c06abf
TG
2213
2214 do {
3fdb14fd 2215 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 2216
876e7881
PZ
2217 base = tk->tkr_mono.base;
2218 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833f32d7
JS
2219 base = ktime_add_ns(base, nsecs);
2220
868a3e91
TG
2221 if (*cwsseq != tk->clock_was_set_seq) {
2222 *cwsseq = tk->clock_was_set_seq;
2223 *offs_real = tk->offs_real;
868a3e91
TG
2224 *offs_tai = tk->offs_tai;
2225 }
833f32d7
JS
2226
2227 /* Handle leapsecond insertion adjustments */
2456e855 2228 if (unlikely(base >= tk->next_leap_ktime))
833f32d7
JS
2229 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2230
3fdb14fd 2231 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 2232
833f32d7 2233 return base;
f6c06abf 2234}
f6c06abf 2235
e0956dcc 2236/**
1572fa03 2237 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
e0956dcc 2238 */
1572fa03 2239static int timekeeping_validate_timex(struct timex *txc)
e0956dcc
AB
2240{
2241 if (txc->modes & ADJ_ADJTIME) {
2242 /* singleshot must not be used with any other mode bits */
2243 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2244 return -EINVAL;
2245 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2246 !capable(CAP_SYS_TIME))
2247 return -EPERM;
2248 } else {
2249 /* In order to modify anything, you gotta be super-user! */
2250 if (txc->modes && !capable(CAP_SYS_TIME))
2251 return -EPERM;
2252 /*
2253 * if the quartz is off by more than 10% then
2254 * something is VERY wrong!
2255 */
2256 if (txc->modes & ADJ_TICK &&
2257 (txc->tick < 900000/USER_HZ ||
2258 txc->tick > 1100000/USER_HZ))
2259 return -EINVAL;
2260 }
2261
2262 if (txc->modes & ADJ_SETOFFSET) {
2263 /* In order to inject time, you gotta be super-user! */
2264 if (!capable(CAP_SYS_TIME))
2265 return -EPERM;
2266
1572fa03
AB
2267 /*
2268 * Validate if a timespec/timeval used to inject a time
2269 * offset is valid. Offsets can be postive or negative, so
2270 * we don't check tv_sec. The value of the timeval/timespec
2271 * is the sum of its fields,but *NOTE*:
2272 * The field tv_usec/tv_nsec must always be non-negative and
2273 * we can't have more nanoseconds/microseconds than a second.
2274 */
2275 if (txc->time.tv_usec < 0)
2276 return -EINVAL;
e0956dcc 2277
1572fa03
AB
2278 if (txc->modes & ADJ_NANO) {
2279 if (txc->time.tv_usec >= NSEC_PER_SEC)
e0956dcc 2280 return -EINVAL;
e0956dcc 2281 } else {
1572fa03 2282 if (txc->time.tv_usec >= USEC_PER_SEC)
e0956dcc
AB
2283 return -EINVAL;
2284 }
2285 }
2286
2287 /*
2288 * Check for potential multiplication overflows that can
2289 * only happen on 64-bit systems:
2290 */
2291 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2292 if (LLONG_MIN / PPM_SCALE > txc->freq)
2293 return -EINVAL;
2294 if (LLONG_MAX / PPM_SCALE < txc->freq)
2295 return -EINVAL;
2296 }
2297
2298 return 0;
2299}
2300
2301
aa6f9c59
JS
2302/**
2303 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2304 */
2305int do_adjtimex(struct timex *txc)
2306{
3fdb14fd 2307 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 2308 unsigned long flags;
7d489d15 2309 struct timespec64 ts;
4e8f8b34 2310 s32 orig_tai, tai;
e4085693
JS
2311 int ret;
2312
2313 /* Validate the data before disabling interrupts */
1572fa03 2314 ret = timekeeping_validate_timex(txc);
e4085693
JS
2315 if (ret)
2316 return ret;
2317
cef90377 2318 if (txc->modes & ADJ_SETOFFSET) {
1572fa03 2319 struct timespec64 delta;
cef90377
JS
2320 delta.tv_sec = txc->time.tv_sec;
2321 delta.tv_nsec = txc->time.tv_usec;
2322 if (!(txc->modes & ADJ_NANO))
2323 delta.tv_nsec *= 1000;
2324 ret = timekeeping_inject_offset(&delta);
2325 if (ret)
2326 return ret;
2327 }
2328
d6d29896 2329 getnstimeofday64(&ts);
87ace39b 2330
06c017fd 2331 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2332 write_seqcount_begin(&tk_core.seq);
06c017fd 2333
4e8f8b34 2334 orig_tai = tai = tk->tai_offset;
87ace39b 2335 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2336
4e8f8b34
JS
2337 if (tai != orig_tai) {
2338 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2339 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2340 }
833f32d7
JS
2341 tk_update_leap_state(tk);
2342
3fdb14fd 2343 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2344 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2345
6fdda9a9
JS
2346 if (tai != orig_tai)
2347 clock_was_set();
2348
7bd36014
JS
2349 ntp_notify_cmos_timer();
2350
87ace39b
JS
2351 return ret;
2352}
aa6f9c59
JS
2353
2354#ifdef CONFIG_NTP_PPS
2355/**
2356 * hardpps() - Accessor function to NTP __hardpps function
2357 */
7ec88e4b 2358void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
aa6f9c59 2359{
06c017fd
JS
2360 unsigned long flags;
2361
2362 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2363 write_seqcount_begin(&tk_core.seq);
06c017fd 2364
aa6f9c59 2365 __hardpps(phase_ts, raw_ts);
06c017fd 2366
3fdb14fd 2367 write_seqcount_end(&tk_core.seq);
06c017fd 2368 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2369}
2370EXPORT_SYMBOL(hardpps);
a2d81803 2371#endif /* CONFIG_NTP_PPS */
aa6f9c59 2372
f0af911a
TH
2373/**
2374 * xtime_update() - advances the timekeeping infrastructure
2375 * @ticks: number of ticks, that have elapsed since the last call.
2376 *
2377 * Must be called with interrupts disabled.
2378 */
2379void xtime_update(unsigned long ticks)
2380{
d6ad4187 2381 write_seqlock(&jiffies_lock);
f0af911a 2382 do_timer(ticks);
d6ad4187 2383 write_sequnlock(&jiffies_lock);
47a1b796 2384 update_wall_time();
f0af911a 2385}