dm-crypt: use __bio_add_page to add single page to clone bio
[linux-block.git] / kernel / time / time.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 *
58c5fc2b
TG
5 * This file contains the interface functions for the various time related
6 * system calls: time, stime, gettimeofday, settimeofday, adjtime
7 *
8 * Modification history:
6fa6c3b1 9 *
1da177e4 10 * 1993-09-02 Philip Gladstone
0a0fca9d 11 * Created file with time related functions from sched/core.c and adjtimex()
1da177e4
LT
12 * 1993-10-08 Torsten Duwe
13 * adjtime interface update and CMOS clock write code
14 * 1995-08-13 Torsten Duwe
15 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
16 * 1999-01-16 Ulrich Windl
17 * Introduced error checking for many cases in adjtimex().
18 * Updated NTP code according to technical memorandum Jan '96
19 * "A Kernel Model for Precision Timekeeping" by Dave Mills
20 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21 * (Even though the technical memorandum forbids it)
22 * 2004-07-14 Christoph Lameter
23 * Added getnstimeofday to allow the posix timer functions to return
24 * with nanosecond accuracy
25 */
26
9984de1a 27#include <linux/export.h>
abcbcb80 28#include <linux/kernel.h>
1da177e4 29#include <linux/timex.h>
c59ede7b 30#include <linux/capability.h>
189374ae 31#include <linux/timekeeper_internal.h>
1da177e4 32#include <linux/errno.h>
1da177e4
LT
33#include <linux/syscalls.h>
34#include <linux/security.h>
35#include <linux/fs.h>
71abb3af 36#include <linux/math64.h>
e3d5a27d 37#include <linux/ptrace.h>
1da177e4 38
7c0f6ba6 39#include <linux/uaccess.h>
3a4d44b6 40#include <linux/compat.h>
1da177e4
LT
41#include <asm/unistd.h>
42
0a227985 43#include <generated/timeconst.h>
8b094cd0 44#include "timekeeping.h"
bdc80787 45
6fa6c3b1 46/*
1da177e4
LT
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50struct timezone sys_tz;
51
52EXPORT_SYMBOL(sys_tz);
53
54#ifdef __ARCH_WANT_SYS_TIME
55
56/*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
2a785996 62SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
1da177e4 63{
2a785996 64 __kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
1da177e4
LT
65
66 if (tloc) {
20082208 67 if (put_user(i,tloc))
e3d5a27d 68 return -EFAULT;
1da177e4 69 }
e3d5a27d 70 force_successful_syscall_return();
1da177e4
LT
71 return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
6fa6c3b1 80
2a785996 81SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
1da177e4 82{
4eb1bca1 83 struct timespec64 tv;
1da177e4
LT
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
4eb1bca1 91 err = security_settime64(&tv, NULL);
1da177e4
LT
92 if (err)
93 return err;
94
4eb1bca1 95 do_settimeofday64(&tv);
1da177e4
LT
96 return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
8dabe724 101#ifdef CONFIG_COMPAT_32BIT_TIME
d33c577c 102#ifdef __ARCH_WANT_SYS_TIME32
b180db2c 103
9afc5eee 104/* old_time32_t is a 32 bit "long" and needs to get converted. */
8dabe724 105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
b180db2c 106{
9afc5eee 107 old_time32_t i;
b180db2c 108
9afc5eee 109 i = (old_time32_t)ktime_get_real_seconds();
b180db2c
AV
110
111 if (tloc) {
112 if (put_user(i,tloc))
113 return -EFAULT;
114 }
115 force_successful_syscall_return();
116 return i;
117}
118
8dabe724 119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
b180db2c 120{
4eb1bca1 121 struct timespec64 tv;
b180db2c
AV
122 int err;
123
124 if (get_user(tv.tv_sec, tptr))
125 return -EFAULT;
126
127 tv.tv_nsec = 0;
128
4eb1bca1 129 err = security_settime64(&tv, NULL);
b180db2c
AV
130 if (err)
131 return err;
132
4eb1bca1 133 do_settimeofday64(&tv);
b180db2c
AV
134 return 0;
135}
136
d33c577c 137#endif /* __ARCH_WANT_SYS_TIME32 */
b180db2c
AV
138#endif
139
75d319c0 140SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
58fd3aa2 141 struct timezone __user *, tz)
1da177e4
LT
142{
143 if (likely(tv != NULL)) {
33e26418
AB
144 struct timespec64 ts;
145
146 ktime_get_real_ts64(&ts);
147 if (put_user(ts.tv_sec, &tv->tv_sec) ||
148 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
1da177e4
LT
149 return -EFAULT;
150 }
151 if (unlikely(tz != NULL)) {
152 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153 return -EFAULT;
154 }
155 return 0;
156}
157
1da177e4
LT
158/*
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
86d34732 169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
1da177e4
LT
170{
171 static int firsttime = 1;
172 int error = 0;
173
7a8e61f8 174 if (tv && !timespec64_valid_settod(tv))
718bcceb
TG
175 return -EINVAL;
176
86d34732 177 error = security_settime64(tv, tz);
1da177e4
LT
178 if (error)
179 return error;
180
181 if (tz) {
1d6acc18 182 /* Verify we're within the +-15 hrs range */
6f7d7984
SL
183 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184 return -EINVAL;
185
1da177e4 186 sys_tz = *tz;
2c622148 187 update_vsyscall_tz();
1da177e4
LT
188 if (firsttime) {
189 firsttime = 0;
190 if (!tv)
e0956dcc 191 timekeeping_warp_clock();
1da177e4
LT
192 }
193 }
194 if (tv)
86d34732 195 return do_settimeofday64(tv);
1da177e4
LT
196 return 0;
197}
198
5e0fb1b5 199SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
58fd3aa2 200 struct timezone __user *, tz)
1da177e4 201{
2ac00f17 202 struct timespec64 new_ts;
1da177e4
LT
203 struct timezone new_tz;
204
205 if (tv) {
5e0fb1b5
AB
206 if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
207 get_user(new_ts.tv_nsec, &tv->tv_usec))
1da177e4 208 return -EFAULT;
6ada1fc0 209
5e0fb1b5 210 if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
6ada1fc0
SL
211 return -EINVAL;
212
5e0fb1b5 213 new_ts.tv_nsec *= NSEC_PER_USEC;
1da177e4
LT
214 }
215 if (tz) {
216 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
217 return -EFAULT;
218 }
219
2ac00f17 220 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
1da177e4
LT
221}
222
2b2d0285 223#ifdef CONFIG_COMPAT
9afc5eee 224COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
2b2d0285
AV
225 struct timezone __user *, tz)
226{
227 if (tv) {
33e26418 228 struct timespec64 ts;
2b2d0285 229
33e26418
AB
230 ktime_get_real_ts64(&ts);
231 if (put_user(ts.tv_sec, &tv->tv_sec) ||
232 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
2b2d0285
AV
233 return -EFAULT;
234 }
235 if (tz) {
236 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
237 return -EFAULT;
238 }
239
240 return 0;
241}
242
9afc5eee 243COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
2b2d0285
AV
244 struct timezone __user *, tz)
245{
246 struct timespec64 new_ts;
2b2d0285
AV
247 struct timezone new_tz;
248
249 if (tv) {
5e0fb1b5
AB
250 if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
251 get_user(new_ts.tv_nsec, &tv->tv_usec))
2b2d0285 252 return -EFAULT;
9176ab1b 253
5e0fb1b5 254 if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
9176ab1b 255 return -EINVAL;
256
5e0fb1b5 257 new_ts.tv_nsec *= NSEC_PER_USEC;
2b2d0285
AV
258 }
259 if (tz) {
260 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
261 return -EFAULT;
262 }
263
264 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
265}
266#endif
267
3ca47e95 268#ifdef CONFIG_64BIT
3876ced4 269SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
1da177e4 270{
ead25417 271 struct __kernel_timex txc; /* Local copy of parameter */
1da177e4
LT
272 int ret;
273
274 /* Copy the user data space into the kernel copy
275 * structure. But bear in mind that the structures
276 * may change
277 */
ead25417 278 if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
1da177e4
LT
279 return -EFAULT;
280 ret = do_adjtimex(&txc);
ead25417 281 return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
1da177e4 282}
3876ced4 283#endif
1da177e4 284
4d5f007e 285#ifdef CONFIG_COMPAT_32BIT_TIME
ead25417 286int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
4d5f007e
AB
287{
288 struct old_timex32 tx32;
289
ead25417 290 memset(txc, 0, sizeof(struct __kernel_timex));
4d5f007e
AB
291 if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
292 return -EFAULT;
293
294 txc->modes = tx32.modes;
295 txc->offset = tx32.offset;
296 txc->freq = tx32.freq;
297 txc->maxerror = tx32.maxerror;
298 txc->esterror = tx32.esterror;
299 txc->status = tx32.status;
300 txc->constant = tx32.constant;
301 txc->precision = tx32.precision;
302 txc->tolerance = tx32.tolerance;
303 txc->time.tv_sec = tx32.time.tv_sec;
304 txc->time.tv_usec = tx32.time.tv_usec;
305 txc->tick = tx32.tick;
306 txc->ppsfreq = tx32.ppsfreq;
307 txc->jitter = tx32.jitter;
308 txc->shift = tx32.shift;
309 txc->stabil = tx32.stabil;
310 txc->jitcnt = tx32.jitcnt;
311 txc->calcnt = tx32.calcnt;
312 txc->errcnt = tx32.errcnt;
313 txc->stbcnt = tx32.stbcnt;
314
315 return 0;
316}
317
ead25417 318int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
4d5f007e
AB
319{
320 struct old_timex32 tx32;
321
322 memset(&tx32, 0, sizeof(struct old_timex32));
323 tx32.modes = txc->modes;
324 tx32.offset = txc->offset;
325 tx32.freq = txc->freq;
326 tx32.maxerror = txc->maxerror;
327 tx32.esterror = txc->esterror;
328 tx32.status = txc->status;
329 tx32.constant = txc->constant;
330 tx32.precision = txc->precision;
331 tx32.tolerance = txc->tolerance;
332 tx32.time.tv_sec = txc->time.tv_sec;
333 tx32.time.tv_usec = txc->time.tv_usec;
334 tx32.tick = txc->tick;
335 tx32.ppsfreq = txc->ppsfreq;
336 tx32.jitter = txc->jitter;
337 tx32.shift = txc->shift;
338 tx32.stabil = txc->stabil;
339 tx32.jitcnt = txc->jitcnt;
340 tx32.calcnt = txc->calcnt;
341 tx32.errcnt = txc->errcnt;
342 tx32.stbcnt = txc->stbcnt;
343 tx32.tai = txc->tai;
344 if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
345 return -EFAULT;
346 return 0;
347}
3a4d44b6 348
8dabe724 349SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
3a4d44b6 350{
ead25417 351 struct __kernel_timex txc;
3a4d44b6
AV
352 int err, ret;
353
4d5f007e 354 err = get_old_timex32(&txc, utp);
3a4d44b6
AV
355 if (err)
356 return err;
357
358 ret = do_adjtimex(&txc);
359
4d5f007e 360 err = put_old_timex32(utp, &txc);
3a4d44b6
AV
361 if (err)
362 return err;
363
364 return ret;
365}
366#endif
367
753e9c5c
ED
368/*
369 * Convert jiffies to milliseconds and back.
370 *
371 * Avoid unnecessary multiplications/divisions in the
372 * two most common HZ cases:
373 */
af3b5628 374unsigned int jiffies_to_msecs(const unsigned long j)
753e9c5c
ED
375{
376#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
377 return (MSEC_PER_SEC / HZ) * j;
378#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
379 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
380#else
bdc80787 381# if BITS_PER_LONG == 32
abcbcb80
GU
382 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
383 HZ_TO_MSEC_SHR32;
bdc80787 384# else
abcbcb80 385 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
bdc80787 386# endif
753e9c5c
ED
387#endif
388}
389EXPORT_SYMBOL(jiffies_to_msecs);
390
af3b5628 391unsigned int jiffies_to_usecs(const unsigned long j)
753e9c5c 392{
e0758676
FW
393 /*
394 * Hz usually doesn't go much further MSEC_PER_SEC.
395 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
396 */
397 BUILD_BUG_ON(HZ > USEC_PER_SEC);
398
399#if !(USEC_PER_SEC % HZ)
753e9c5c 400 return (USEC_PER_SEC / HZ) * j;
753e9c5c 401#else
bdc80787 402# if BITS_PER_LONG == 32
b9095fd8 403 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
404# else
405 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
406# endif
753e9c5c
ED
407#endif
408}
409EXPORT_SYMBOL(jiffies_to_usecs);
410
90b6ce9c 411/*
412 * mktime64 - Converts date to seconds.
413 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
753be622
TG
414 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
415 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
416 *
417 * [For the Julian calendar (which was used in Russia before 1917,
418 * Britain & colonies before 1752, anywhere else before 1582,
419 * and is still in use by some communities) leave out the
420 * -year/100+year/400 terms, and add 10.]
421 *
422 * This algorithm was first published by Gauss (I think).
ede5147d
DH
423 *
424 * A leap second can be indicated by calling this function with sec as
425 * 60 (allowable under ISO 8601). The leap second is treated the same
426 * as the following second since they don't exist in UNIX time.
427 *
428 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
429 * tomorrow - (allowable under ISO 8601) is supported.
753be622 430 */
90b6ce9c 431time64_t mktime64(const unsigned int year0, const unsigned int mon0,
432 const unsigned int day, const unsigned int hour,
433 const unsigned int min, const unsigned int sec)
753be622 434{
f4818900
IM
435 unsigned int mon = mon0, year = year0;
436
437 /* 1..12 -> 11,12,1..10 */
438 if (0 >= (int) (mon -= 2)) {
439 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
440 year -= 1;
441 }
442
90b6ce9c 443 return ((((time64_t)
753be622
TG
444 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
445 year*365 - 719499
ede5147d 446 )*24 + hour /* now have hours - midnight tomorrow handled here */
753be622
TG
447 )*60 + min /* now have minutes */
448 )*60 + sec; /* finally seconds */
449}
90b6ce9c 450EXPORT_SYMBOL(mktime64);
199e7056 451
46dae32f 452struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec)
a84d1169
AB
453{
454 struct timespec64 ts = ns_to_timespec64(nsec);
455 struct __kernel_old_timeval tv;
456
457 tv.tv_sec = ts.tv_sec;
458 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
459
460 return tv;
461}
462EXPORT_SYMBOL(ns_to_kernel_old_timeval);
463
49cd6f86 464/**
f3cb8080 465 * set_normalized_timespec64 - set timespec sec and nsec parts and normalize
49cd6f86
JS
466 *
467 * @ts: pointer to timespec variable to be set
468 * @sec: seconds to set
469 * @nsec: nanoseconds to set
470 *
471 * Set seconds and nanoseconds field of a timespec variable and
472 * normalize to the timespec storage format
473 *
474 * Note: The tv_nsec part is always in the range of
475 * 0 <= tv_nsec < NSEC_PER_SEC
476 * For negative values only the tv_sec field is negative !
477 */
478void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
479{
480 while (nsec >= NSEC_PER_SEC) {
481 /*
482 * The following asm() prevents the compiler from
483 * optimising this loop into a modulo operation. See
484 * also __iter_div_u64_rem() in include/linux/time.h
485 */
486 asm("" : "+rm"(nsec));
487 nsec -= NSEC_PER_SEC;
488 ++sec;
489 }
490 while (nsec < 0) {
491 asm("" : "+rm"(nsec));
492 nsec += NSEC_PER_SEC;
493 --sec;
494 }
495 ts->tv_sec = sec;
496 ts->tv_nsec = nsec;
497}
498EXPORT_SYMBOL(set_normalized_timespec64);
499
500/**
501 * ns_to_timespec64 - Convert nanoseconds to timespec64
502 * @nsec: the nanoseconds value to be converted
503 *
504 * Returns the timespec64 representation of the nsec parameter.
505 */
46dae32f 506struct timespec64 ns_to_timespec64(s64 nsec)
49cd6f86 507{
20d08736 508 struct timespec64 ts = { 0, 0 };
49cd6f86
JS
509 s32 rem;
510
20d08736
AB
511 if (likely(nsec > 0)) {
512 ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
513 ts.tv_nsec = rem;
514 } else if (nsec < 0) {
515 /*
516 * With negative times, tv_sec points to the earlier
517 * second, and tv_nsec counts the nanoseconds since
518 * then, so tv_nsec is always a positive number.
519 */
520 ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
521 ts.tv_nsec = NSEC_PER_SEC - rem - 1;
49cd6f86 522 }
49cd6f86
JS
523
524 return ts;
525}
526EXPORT_SYMBOL(ns_to_timespec64);
abc8f96e 527
ca42aaf0 528/**
f3cb8080 529 * __msecs_to_jiffies: - convert milliseconds to jiffies
ca42aaf0
NMG
530 * @m: time in milliseconds
531 *
532 * conversion is done as follows:
41cf5445
IM
533 *
534 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
535 *
536 * - 'too large' values [that would result in larger than
537 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
538 *
539 * - all other values are converted to jiffies by either multiplying
ca42aaf0
NMG
540 * the input value by a factor or dividing it with a factor and
541 * handling any 32-bit overflows.
542 * for the details see __msecs_to_jiffies()
41cf5445 543 *
f3cb8080 544 * __msecs_to_jiffies() checks for the passed in value being a constant
ca42aaf0
NMG
545 * via __builtin_constant_p() allowing gcc to eliminate most of the
546 * code, __msecs_to_jiffies() is called if the value passed does not
547 * allow constant folding and the actual conversion must be done at
548 * runtime.
f3cb8080 549 * The _msecs_to_jiffies helpers are the HZ dependent conversion
ca42aaf0 550 * routines found in include/linux/jiffies.h
41cf5445 551 */
ca42aaf0 552unsigned long __msecs_to_jiffies(const unsigned int m)
8b9365d7 553{
41cf5445
IM
554 /*
555 * Negative value, means infinite timeout:
556 */
557 if ((int)m < 0)
8b9365d7 558 return MAX_JIFFY_OFFSET;
ca42aaf0 559 return _msecs_to_jiffies(m);
8b9365d7 560}
ca42aaf0 561EXPORT_SYMBOL(__msecs_to_jiffies);
8b9365d7 562
ae60d6a0 563unsigned long __usecs_to_jiffies(const unsigned int u)
8b9365d7
IM
564{
565 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
566 return MAX_JIFFY_OFFSET;
ae60d6a0 567 return _usecs_to_jiffies(u);
8b9365d7 568}
ae60d6a0 569EXPORT_SYMBOL(__usecs_to_jiffies);
8b9365d7
IM
570
571/*
572 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
573 * that a remainder subtract here would not do the right thing as the
4bf07f65 574 * resolution values don't fall on second boundaries. I.e. the line:
8b9365d7 575 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
d78c9300
AH
576 * Note that due to the small error in the multiplier here, this
577 * rounding is incorrect for sufficiently large values of tv_nsec, but
578 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
579 * OK.
8b9365d7
IM
580 *
581 * Rather, we just shift the bits off the right.
582 *
583 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
584 * value to a scaled second value.
585 */
751addac
AB
586
587unsigned long
588timespec64_to_jiffies(const struct timespec64 *value)
8b9365d7 589{
751addac
AB
590 u64 sec = value->tv_sec;
591 long nsec = value->tv_nsec + TICK_NSEC - 1;
8b9365d7
IM
592
593 if (sec >= MAX_SEC_IN_JIFFIES){
594 sec = MAX_SEC_IN_JIFFIES;
595 nsec = 0;
596 }
9ca30850 597 return ((sec * SEC_CONVERSION) +
8b9365d7
IM
598 (((u64)nsec * NSEC_CONVERSION) >>
599 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
600
601}
9ca30850 602EXPORT_SYMBOL(timespec64_to_jiffies);
8b9365d7
IM
603
604void
9ca30850 605jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
8b9365d7
IM
606{
607 /*
608 * Convert jiffies to nanoseconds and separate with
609 * one divide.
610 */
f8bd2258
RZ
611 u32 rem;
612 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
613 NSEC_PER_SEC, &rem);
614 value->tv_nsec = rem;
8b9365d7 615}
9ca30850 616EXPORT_SYMBOL(jiffies_to_timespec64);
8b9365d7 617
8b9365d7
IM
618/*
619 * Convert jiffies/jiffies_64 to clock_t and back.
620 */
cbbc719f 621clock_t jiffies_to_clock_t(unsigned long x)
8b9365d7
IM
622{
623#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
624# if HZ < USER_HZ
625 return x * (USER_HZ / HZ);
626# else
8b9365d7 627 return x / (HZ / USER_HZ);
6ffc787a 628# endif
8b9365d7 629#else
71abb3af 630 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
631#endif
632}
633EXPORT_SYMBOL(jiffies_to_clock_t);
634
635unsigned long clock_t_to_jiffies(unsigned long x)
636{
637#if (HZ % USER_HZ)==0
638 if (x >= ~0UL / (HZ / USER_HZ))
639 return ~0UL;
640 return x * (HZ / USER_HZ);
641#else
8b9365d7
IM
642 /* Don't worry about loss of precision here .. */
643 if (x >= ~0UL / HZ * USER_HZ)
644 return ~0UL;
645
646 /* .. but do try to contain it here */
71abb3af 647 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
648#endif
649}
650EXPORT_SYMBOL(clock_t_to_jiffies);
651
652u64 jiffies_64_to_clock_t(u64 x)
653{
654#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 655# if HZ < USER_HZ
71abb3af 656 x = div_u64(x * USER_HZ, HZ);
ec03d707 657# elif HZ > USER_HZ
71abb3af 658 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
659# else
660 /* Nothing to do */
6ffc787a 661# endif
8b9365d7
IM
662#else
663 /*
664 * There are better ways that don't overflow early,
665 * but even this doesn't overflow in hundreds of years
666 * in 64 bits, so..
667 */
71abb3af 668 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
669#endif
670 return x;
671}
8b9365d7
IM
672EXPORT_SYMBOL(jiffies_64_to_clock_t);
673
674u64 nsec_to_clock_t(u64 x)
675{
676#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 677 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 678#elif (USER_HZ % 512) == 0
71abb3af 679 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
680#else
681 /*
682 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
683 * overflow after 64.99 years.
684 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
685 */
71abb3af 686 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 687#endif
8b9365d7
IM
688}
689
07e5f5e3
FW
690u64 jiffies64_to_nsecs(u64 j)
691{
692#if !(NSEC_PER_SEC % HZ)
693 return (NSEC_PER_SEC / HZ) * j;
694# else
695 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
696#endif
697}
698EXPORT_SYMBOL(jiffies64_to_nsecs);
699
3b15d09f
LR
700u64 jiffies64_to_msecs(const u64 j)
701{
702#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
703 return (MSEC_PER_SEC / HZ) * j;
704#else
705 return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
706#endif
707}
708EXPORT_SYMBOL(jiffies64_to_msecs);
709
b7b20df9 710/**
a1dabb6b 711 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
b7b20df9
HS
712 *
713 * @n: nsecs in u64
714 *
715 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
716 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
717 * for scheduler, not for use in device drivers to calculate timeout value.
718 *
719 * note:
720 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
721 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
722 */
a1dabb6b 723u64 nsecs_to_jiffies64(u64 n)
b7b20df9
HS
724{
725#if (NSEC_PER_SEC % HZ) == 0
726 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
727 return div_u64(n, NSEC_PER_SEC / HZ);
728#elif (HZ % 512) == 0
729 /* overflow after 292 years if HZ = 1024 */
730 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
731#else
732 /*
733 * Generic case - optimized for cases where HZ is a multiple of 3.
734 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
735 */
736 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
737#endif
738}
7bd0e226 739EXPORT_SYMBOL(nsecs_to_jiffies64);
b7b20df9 740
a1dabb6b
VP
741/**
742 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
743 *
744 * @n: nsecs in u64
745 *
746 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
747 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
748 * for scheduler, not for use in device drivers to calculate timeout value.
749 *
750 * note:
751 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
752 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
753 */
754unsigned long nsecs_to_jiffies(u64 n)
755{
756 return (unsigned long)nsecs_to_jiffies64(n);
757}
d560fed6 758EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
a1dabb6b 759
bc2c53e5
DD
760/*
761 * Add two timespec64 values and do a safety check for overflow.
762 * It's assumed that both values are valid (>= 0).
763 * And, each timespec64 is in normalized form.
764 */
765struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
766 const struct timespec64 rhs)
767{
768 struct timespec64 res;
769
469e857f 770 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
bc2c53e5
DD
771 lhs.tv_nsec + rhs.tv_nsec);
772
773 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
774 res.tv_sec = TIME64_MAX;
775 res.tv_nsec = 0;
776 }
777
778 return res;
779}
f59dd9c8
DD
780
781int get_timespec64(struct timespec64 *ts,
ea2ce8f3 782 const struct __kernel_timespec __user *uts)
f59dd9c8 783{
ea2ce8f3 784 struct __kernel_timespec kts;
f59dd9c8
DD
785 int ret;
786
787 ret = copy_from_user(&kts, uts, sizeof(kts));
788 if (ret)
789 return -EFAULT;
790
791 ts->tv_sec = kts.tv_sec;
ea2ce8f3 792
043cf468 793 /* Zero out the padding in compat mode */
3ca47e95 794 if (in_compat_syscall())
ea2ce8f3
DD
795 kts.tv_nsec &= 0xFFFFFFFFUL;
796
043cf468 797 /* In 32-bit mode, this drops the padding */
f59dd9c8
DD
798 ts->tv_nsec = kts.tv_nsec;
799
800 return 0;
801}
802EXPORT_SYMBOL_GPL(get_timespec64);
803
804int put_timespec64(const struct timespec64 *ts,
ea2ce8f3 805 struct __kernel_timespec __user *uts)
f59dd9c8 806{
ea2ce8f3 807 struct __kernel_timespec kts = {
f59dd9c8
DD
808 .tv_sec = ts->tv_sec,
809 .tv_nsec = ts->tv_nsec
810 };
ea2ce8f3 811
f59dd9c8
DD
812 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
813}
814EXPORT_SYMBOL_GPL(put_timespec64);
d5b7ffbf 815
743f5cdb 816static int __get_old_timespec32(struct timespec64 *ts64,
9afc5eee 817 const struct old_timespec32 __user *cts)
1c68adf6 818{
9afc5eee 819 struct old_timespec32 ts;
1c68adf6
DD
820 int ret;
821
822 ret = copy_from_user(&ts, cts, sizeof(ts));
823 if (ret)
824 return -EFAULT;
825
826 ts64->tv_sec = ts.tv_sec;
827 ts64->tv_nsec = ts.tv_nsec;
828
829 return 0;
830}
831
743f5cdb 832static int __put_old_timespec32(const struct timespec64 *ts64,
9afc5eee 833 struct old_timespec32 __user *cts)
1c68adf6 834{
9afc5eee 835 struct old_timespec32 ts = {
1c68adf6
DD
836 .tv_sec = ts64->tv_sec,
837 .tv_nsec = ts64->tv_nsec
838 };
839 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
840}
841
9afc5eee 842int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
1c68adf6
DD
843{
844 if (COMPAT_USE_64BIT_TIME)
845 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
846 else
9afc5eee 847 return __get_old_timespec32(ts, uts);
1c68adf6 848}
9afc5eee 849EXPORT_SYMBOL_GPL(get_old_timespec32);
1c68adf6 850
9afc5eee 851int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
1c68adf6
DD
852{
853 if (COMPAT_USE_64BIT_TIME)
854 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
855 else
9afc5eee 856 return __put_old_timespec32(ts, uts);
1c68adf6 857}
9afc5eee 858EXPORT_SYMBOL_GPL(put_old_timespec32);
1c68adf6 859
d5b7ffbf 860int get_itimerspec64(struct itimerspec64 *it,
d0dd63a8 861 const struct __kernel_itimerspec __user *uit)
d5b7ffbf
DD
862{
863 int ret;
864
865 ret = get_timespec64(&it->it_interval, &uit->it_interval);
866 if (ret)
867 return ret;
868
869 ret = get_timespec64(&it->it_value, &uit->it_value);
870
871 return ret;
872}
873EXPORT_SYMBOL_GPL(get_itimerspec64);
874
875int put_itimerspec64(const struct itimerspec64 *it,
d0dd63a8 876 struct __kernel_itimerspec __user *uit)
d5b7ffbf
DD
877{
878 int ret;
879
880 ret = put_timespec64(&it->it_interval, &uit->it_interval);
881 if (ret)
882 return ret;
883
884 ret = put_timespec64(&it->it_value, &uit->it_value);
885
886 return ret;
887}
888EXPORT_SYMBOL_GPL(put_itimerspec64);
afef05cf 889
9afc5eee
AB
890int get_old_itimerspec32(struct itimerspec64 *its,
891 const struct old_itimerspec32 __user *uits)
afef05cf
DD
892{
893
9afc5eee
AB
894 if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
895 __get_old_timespec32(&its->it_value, &uits->it_value))
afef05cf
DD
896 return -EFAULT;
897 return 0;
898}
9afc5eee 899EXPORT_SYMBOL_GPL(get_old_itimerspec32);
afef05cf 900
9afc5eee
AB
901int put_old_itimerspec32(const struct itimerspec64 *its,
902 struct old_itimerspec32 __user *uits)
afef05cf 903{
9afc5eee
AB
904 if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
905 __put_old_timespec32(&its->it_value, &uits->it_value))
afef05cf
DD
906 return -EFAULT;
907 return 0;
908}
9afc5eee 909EXPORT_SYMBOL_GPL(put_old_itimerspec32);