staging:rtl8192u: Add SPDX-License-Identifier tag - Style
[linux-2.6-block.git] / kernel / time / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
6fa6c3b1 12 *
1da177e4 13 * 1993-09-02 Philip Gladstone
0a0fca9d 14 * Created file with time related functions from sched/core.c and adjtimex()
1da177e4
LT
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
9984de1a 30#include <linux/export.h>
abcbcb80 31#include <linux/kernel.h>
1da177e4 32#include <linux/timex.h>
c59ede7b 33#include <linux/capability.h>
189374ae 34#include <linux/timekeeper_internal.h>
1da177e4 35#include <linux/errno.h>
1da177e4
LT
36#include <linux/syscalls.h>
37#include <linux/security.h>
38#include <linux/fs.h>
71abb3af 39#include <linux/math64.h>
e3d5a27d 40#include <linux/ptrace.h>
1da177e4 41
7c0f6ba6 42#include <linux/uaccess.h>
3a4d44b6 43#include <linux/compat.h>
1da177e4
LT
44#include <asm/unistd.h>
45
0a227985 46#include <generated/timeconst.h>
8b094cd0 47#include "timekeeping.h"
bdc80787 48
6fa6c3b1 49/*
1da177e4
LT
50 * The timezone where the local system is located. Used as a default by some
51 * programs who obtain this value by using gettimeofday.
52 */
53struct timezone sys_tz;
54
55EXPORT_SYMBOL(sys_tz);
56
57#ifdef __ARCH_WANT_SYS_TIME
58
59/*
60 * sys_time() can be implemented in user-level using
61 * sys_gettimeofday(). Is this for backwards compatibility? If so,
62 * why not move it into the appropriate arch directory (for those
63 * architectures that need it).
64 */
58fd3aa2 65SYSCALL_DEFINE1(time, time_t __user *, tloc)
1da177e4 66{
f5a89295 67 time_t i = (time_t)ktime_get_real_seconds();
1da177e4
LT
68
69 if (tloc) {
20082208 70 if (put_user(i,tloc))
e3d5a27d 71 return -EFAULT;
1da177e4 72 }
e3d5a27d 73 force_successful_syscall_return();
1da177e4
LT
74 return i;
75}
76
77/*
78 * sys_stime() can be implemented in user-level using
79 * sys_settimeofday(). Is this for backwards compatibility? If so,
80 * why not move it into the appropriate arch directory (for those
81 * architectures that need it).
82 */
6fa6c3b1 83
58fd3aa2 84SYSCALL_DEFINE1(stime, time_t __user *, tptr)
1da177e4 85{
4eb1bca1 86 struct timespec64 tv;
1da177e4
LT
87 int err;
88
89 if (get_user(tv.tv_sec, tptr))
90 return -EFAULT;
91
92 tv.tv_nsec = 0;
93
4eb1bca1 94 err = security_settime64(&tv, NULL);
1da177e4
LT
95 if (err)
96 return err;
97
4eb1bca1 98 do_settimeofday64(&tv);
1da177e4
LT
99 return 0;
100}
101
102#endif /* __ARCH_WANT_SYS_TIME */
103
b180db2c
AV
104#ifdef CONFIG_COMPAT
105#ifdef __ARCH_WANT_COMPAT_SYS_TIME
106
107/* compat_time_t is a 32 bit "long" and needs to get converted. */
108COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
109{
b180db2c
AV
110 compat_time_t i;
111
f5a89295 112 i = (compat_time_t)ktime_get_real_seconds();
b180db2c
AV
113
114 if (tloc) {
115 if (put_user(i,tloc))
116 return -EFAULT;
117 }
118 force_successful_syscall_return();
119 return i;
120}
121
122COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
123{
4eb1bca1 124 struct timespec64 tv;
b180db2c
AV
125 int err;
126
127 if (get_user(tv.tv_sec, tptr))
128 return -EFAULT;
129
130 tv.tv_nsec = 0;
131
4eb1bca1 132 err = security_settime64(&tv, NULL);
b180db2c
AV
133 if (err)
134 return err;
135
4eb1bca1 136 do_settimeofday64(&tv);
b180db2c
AV
137 return 0;
138}
139
140#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
141#endif
142
58fd3aa2
HC
143SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
144 struct timezone __user *, tz)
1da177e4
LT
145{
146 if (likely(tv != NULL)) {
147 struct timeval ktv;
148 do_gettimeofday(&ktv);
149 if (copy_to_user(tv, &ktv, sizeof(ktv)))
150 return -EFAULT;
151 }
152 if (unlikely(tz != NULL)) {
153 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
154 return -EFAULT;
155 }
156 return 0;
157}
158
1da177e4
LT
159/*
160 * In case for some reason the CMOS clock has not already been running
161 * in UTC, but in some local time: The first time we set the timezone,
162 * we will warp the clock so that it is ticking UTC time instead of
163 * local time. Presumably, if someone is setting the timezone then we
164 * are running in an environment where the programs understand about
165 * timezones. This should be done at boot time in the /etc/rc script,
166 * as soon as possible, so that the clock can be set right. Otherwise,
167 * various programs will get confused when the clock gets warped.
168 */
169
86d34732 170int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
1da177e4
LT
171{
172 static int firsttime = 1;
173 int error = 0;
174
86d34732 175 if (tv && !timespec64_valid(tv))
718bcceb
TG
176 return -EINVAL;
177
86d34732 178 error = security_settime64(tv, tz);
1da177e4
LT
179 if (error)
180 return error;
181
182 if (tz) {
6f7d7984
SL
183 /* Verify we're witin the +-15 hrs range */
184 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
185 return -EINVAL;
186
1da177e4 187 sys_tz = *tz;
2c622148 188 update_vsyscall_tz();
1da177e4
LT
189 if (firsttime) {
190 firsttime = 0;
191 if (!tv)
e0956dcc 192 timekeeping_warp_clock();
1da177e4
LT
193 }
194 }
195 if (tv)
86d34732 196 return do_settimeofday64(tv);
1da177e4
LT
197 return 0;
198}
199
58fd3aa2
HC
200SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
201 struct timezone __user *, tz)
1da177e4 202{
2ac00f17 203 struct timespec64 new_ts;
1da177e4 204 struct timeval user_tv;
1da177e4
LT
205 struct timezone new_tz;
206
207 if (tv) {
208 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
209 return -EFAULT;
6ada1fc0
SL
210
211 if (!timeval_valid(&user_tv))
212 return -EINVAL;
213
1da177e4
LT
214 new_ts.tv_sec = user_tv.tv_sec;
215 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
216 }
217 if (tz) {
218 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
219 return -EFAULT;
220 }
221
2ac00f17 222 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
1da177e4
LT
223}
224
2b2d0285
AV
225#ifdef CONFIG_COMPAT
226COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
227 struct timezone __user *, tz)
228{
229 if (tv) {
230 struct timeval ktv;
231
232 do_gettimeofday(&ktv);
233 if (compat_put_timeval(&ktv, tv))
234 return -EFAULT;
235 }
236 if (tz) {
237 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
238 return -EFAULT;
239 }
240
241 return 0;
242}
243
244COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
245 struct timezone __user *, tz)
246{
247 struct timespec64 new_ts;
248 struct timeval user_tv;
249 struct timezone new_tz;
250
251 if (tv) {
252 if (compat_get_timeval(&user_tv, tv))
253 return -EFAULT;
254 new_ts.tv_sec = user_tv.tv_sec;
255 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
256 }
257 if (tz) {
258 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
259 return -EFAULT;
260 }
261
262 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
263}
264#endif
265
58fd3aa2 266SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
1da177e4
LT
267{
268 struct timex txc; /* Local copy of parameter */
269 int ret;
270
271 /* Copy the user data space into the kernel copy
272 * structure. But bear in mind that the structures
273 * may change
274 */
3a4d44b6 275 if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
1da177e4
LT
276 return -EFAULT;
277 ret = do_adjtimex(&txc);
278 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
279}
280
3a4d44b6
AV
281#ifdef CONFIG_COMPAT
282
283COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
284{
285 struct timex txc;
286 int err, ret;
287
288 err = compat_get_timex(&txc, utp);
289 if (err)
290 return err;
291
292 ret = do_adjtimex(&txc);
293
294 err = compat_put_timex(utp, &txc);
295 if (err)
296 return err;
297
298 return ret;
299}
300#endif
301
753e9c5c
ED
302/*
303 * Convert jiffies to milliseconds and back.
304 *
305 * Avoid unnecessary multiplications/divisions in the
306 * two most common HZ cases:
307 */
af3b5628 308unsigned int jiffies_to_msecs(const unsigned long j)
753e9c5c
ED
309{
310#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
311 return (MSEC_PER_SEC / HZ) * j;
312#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
313 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
314#else
bdc80787 315# if BITS_PER_LONG == 32
abcbcb80
GU
316 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
317 HZ_TO_MSEC_SHR32;
bdc80787 318# else
abcbcb80 319 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
bdc80787 320# endif
753e9c5c
ED
321#endif
322}
323EXPORT_SYMBOL(jiffies_to_msecs);
324
af3b5628 325unsigned int jiffies_to_usecs(const unsigned long j)
753e9c5c 326{
e0758676
FW
327 /*
328 * Hz usually doesn't go much further MSEC_PER_SEC.
329 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
330 */
331 BUILD_BUG_ON(HZ > USEC_PER_SEC);
332
333#if !(USEC_PER_SEC % HZ)
753e9c5c 334 return (USEC_PER_SEC / HZ) * j;
753e9c5c 335#else
bdc80787 336# if BITS_PER_LONG == 32
b9095fd8 337 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
338# else
339 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
340# endif
753e9c5c
ED
341#endif
342}
343EXPORT_SYMBOL(jiffies_to_usecs);
344
1da177e4 345/**
8ba8e95e 346 * timespec_trunc - Truncate timespec to a granularity
1da177e4 347 * @t: Timespec
8ba8e95e 348 * @gran: Granularity in ns.
1da177e4 349 *
de4a95fa
KB
350 * Truncate a timespec to a granularity. Always rounds down. gran must
351 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
1da177e4
LT
352 */
353struct timespec timespec_trunc(struct timespec t, unsigned gran)
354{
de4a95fa
KB
355 /* Avoid division in the common cases 1 ns and 1 s. */
356 if (gran == 1) {
1da177e4 357 /* nothing */
de4a95fa 358 } else if (gran == NSEC_PER_SEC) {
1da177e4 359 t.tv_nsec = 0;
de4a95fa 360 } else if (gran > 1 && gran < NSEC_PER_SEC) {
1da177e4 361 t.tv_nsec -= t.tv_nsec % gran;
de4a95fa
KB
362 } else {
363 WARN(1, "illegal file time granularity: %u", gran);
1da177e4
LT
364 }
365 return t;
366}
367EXPORT_SYMBOL(timespec_trunc);
368
90b6ce9c 369/*
370 * mktime64 - Converts date to seconds.
371 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
753be622
TG
372 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
373 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
374 *
375 * [For the Julian calendar (which was used in Russia before 1917,
376 * Britain & colonies before 1752, anywhere else before 1582,
377 * and is still in use by some communities) leave out the
378 * -year/100+year/400 terms, and add 10.]
379 *
380 * This algorithm was first published by Gauss (I think).
ede5147d
DH
381 *
382 * A leap second can be indicated by calling this function with sec as
383 * 60 (allowable under ISO 8601). The leap second is treated the same
384 * as the following second since they don't exist in UNIX time.
385 *
386 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
387 * tomorrow - (allowable under ISO 8601) is supported.
753be622 388 */
90b6ce9c 389time64_t mktime64(const unsigned int year0, const unsigned int mon0,
390 const unsigned int day, const unsigned int hour,
391 const unsigned int min, const unsigned int sec)
753be622 392{
f4818900
IM
393 unsigned int mon = mon0, year = year0;
394
395 /* 1..12 -> 11,12,1..10 */
396 if (0 >= (int) (mon -= 2)) {
397 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
398 year -= 1;
399 }
400
90b6ce9c 401 return ((((time64_t)
753be622
TG
402 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
403 year*365 - 719499
ede5147d 404 )*24 + hour /* now have hours - midnight tomorrow handled here */
753be622
TG
405 )*60 + min /* now have minutes */
406 )*60 + sec; /* finally seconds */
407}
90b6ce9c 408EXPORT_SYMBOL(mktime64);
199e7056 409
753be622
TG
410/**
411 * set_normalized_timespec - set timespec sec and nsec parts and normalize
412 *
413 * @ts: pointer to timespec variable to be set
414 * @sec: seconds to set
415 * @nsec: nanoseconds to set
416 *
417 * Set seconds and nanoseconds field of a timespec variable and
418 * normalize to the timespec storage format
419 *
420 * Note: The tv_nsec part is always in the range of
bdc80787 421 * 0 <= tv_nsec < NSEC_PER_SEC
753be622
TG
422 * For negative values only the tv_sec field is negative !
423 */
12e09337 424void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
753be622
TG
425{
426 while (nsec >= NSEC_PER_SEC) {
12e09337
TG
427 /*
428 * The following asm() prevents the compiler from
429 * optimising this loop into a modulo operation. See
430 * also __iter_div_u64_rem() in include/linux/time.h
431 */
432 asm("" : "+rm"(nsec));
753be622
TG
433 nsec -= NSEC_PER_SEC;
434 ++sec;
435 }
436 while (nsec < 0) {
12e09337 437 asm("" : "+rm"(nsec));
753be622
TG
438 nsec += NSEC_PER_SEC;
439 --sec;
440 }
441 ts->tv_sec = sec;
442 ts->tv_nsec = nsec;
443}
7c3f944e 444EXPORT_SYMBOL(set_normalized_timespec);
753be622 445
f8f46da3
TG
446/**
447 * ns_to_timespec - Convert nanoseconds to timespec
448 * @nsec: the nanoseconds value to be converted
449 *
450 * Returns the timespec representation of the nsec parameter.
451 */
df869b63 452struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
453{
454 struct timespec ts;
f8bd2258 455 s32 rem;
f8f46da3 456
88fc3897
GA
457 if (!nsec)
458 return (struct timespec) {0, 0};
459
f8bd2258
RZ
460 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
461 if (unlikely(rem < 0)) {
462 ts.tv_sec--;
463 rem += NSEC_PER_SEC;
464 }
465 ts.tv_nsec = rem;
f8f46da3
TG
466
467 return ts;
468}
85795d64 469EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
470
471/**
472 * ns_to_timeval - Convert nanoseconds to timeval
473 * @nsec: the nanoseconds value to be converted
474 *
475 * Returns the timeval representation of the nsec parameter.
476 */
df869b63 477struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
478{
479 struct timespec ts = ns_to_timespec(nsec);
480 struct timeval tv;
481
482 tv.tv_sec = ts.tv_sec;
483 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
484
485 return tv;
486}
b7aa0bf7 487EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 488
a84d1169
AB
489struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
490{
491 struct timespec64 ts = ns_to_timespec64(nsec);
492 struct __kernel_old_timeval tv;
493
494 tv.tv_sec = ts.tv_sec;
495 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
496
497 return tv;
498}
499EXPORT_SYMBOL(ns_to_kernel_old_timeval);
500
49cd6f86
JS
501/**
502 * set_normalized_timespec - set timespec sec and nsec parts and normalize
503 *
504 * @ts: pointer to timespec variable to be set
505 * @sec: seconds to set
506 * @nsec: nanoseconds to set
507 *
508 * Set seconds and nanoseconds field of a timespec variable and
509 * normalize to the timespec storage format
510 *
511 * Note: The tv_nsec part is always in the range of
512 * 0 <= tv_nsec < NSEC_PER_SEC
513 * For negative values only the tv_sec field is negative !
514 */
515void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
516{
517 while (nsec >= NSEC_PER_SEC) {
518 /*
519 * The following asm() prevents the compiler from
520 * optimising this loop into a modulo operation. See
521 * also __iter_div_u64_rem() in include/linux/time.h
522 */
523 asm("" : "+rm"(nsec));
524 nsec -= NSEC_PER_SEC;
525 ++sec;
526 }
527 while (nsec < 0) {
528 asm("" : "+rm"(nsec));
529 nsec += NSEC_PER_SEC;
530 --sec;
531 }
532 ts->tv_sec = sec;
533 ts->tv_nsec = nsec;
534}
535EXPORT_SYMBOL(set_normalized_timespec64);
536
537/**
538 * ns_to_timespec64 - Convert nanoseconds to timespec64
539 * @nsec: the nanoseconds value to be converted
540 *
541 * Returns the timespec64 representation of the nsec parameter.
542 */
543struct timespec64 ns_to_timespec64(const s64 nsec)
544{
545 struct timespec64 ts;
546 s32 rem;
547
548 if (!nsec)
549 return (struct timespec64) {0, 0};
550
551 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
552 if (unlikely(rem < 0)) {
553 ts.tv_sec--;
554 rem += NSEC_PER_SEC;
555 }
556 ts.tv_nsec = rem;
557
558 return ts;
559}
560EXPORT_SYMBOL(ns_to_timespec64);
abc8f96e 561
ca42aaf0
NMG
562/**
563 * msecs_to_jiffies: - convert milliseconds to jiffies
564 * @m: time in milliseconds
565 *
566 * conversion is done as follows:
41cf5445
IM
567 *
568 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
569 *
570 * - 'too large' values [that would result in larger than
571 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
572 *
573 * - all other values are converted to jiffies by either multiplying
ca42aaf0
NMG
574 * the input value by a factor or dividing it with a factor and
575 * handling any 32-bit overflows.
576 * for the details see __msecs_to_jiffies()
41cf5445 577 *
ca42aaf0
NMG
578 * msecs_to_jiffies() checks for the passed in value being a constant
579 * via __builtin_constant_p() allowing gcc to eliminate most of the
580 * code, __msecs_to_jiffies() is called if the value passed does not
581 * allow constant folding and the actual conversion must be done at
582 * runtime.
583 * the _msecs_to_jiffies helpers are the HZ dependent conversion
584 * routines found in include/linux/jiffies.h
41cf5445 585 */
ca42aaf0 586unsigned long __msecs_to_jiffies(const unsigned int m)
8b9365d7 587{
41cf5445
IM
588 /*
589 * Negative value, means infinite timeout:
590 */
591 if ((int)m < 0)
8b9365d7 592 return MAX_JIFFY_OFFSET;
ca42aaf0 593 return _msecs_to_jiffies(m);
8b9365d7 594}
ca42aaf0 595EXPORT_SYMBOL(__msecs_to_jiffies);
8b9365d7 596
ae60d6a0 597unsigned long __usecs_to_jiffies(const unsigned int u)
8b9365d7
IM
598{
599 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
600 return MAX_JIFFY_OFFSET;
ae60d6a0 601 return _usecs_to_jiffies(u);
8b9365d7 602}
ae60d6a0 603EXPORT_SYMBOL(__usecs_to_jiffies);
8b9365d7
IM
604
605/*
606 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
607 * that a remainder subtract here would not do the right thing as the
608 * resolution values don't fall on second boundries. I.e. the line:
609 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
d78c9300
AH
610 * Note that due to the small error in the multiplier here, this
611 * rounding is incorrect for sufficiently large values of tv_nsec, but
612 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
613 * OK.
8b9365d7
IM
614 *
615 * Rather, we just shift the bits off the right.
616 *
617 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
618 * value to a scaled second value.
619 */
d78c9300 620static unsigned long
9ca30850 621__timespec64_to_jiffies(u64 sec, long nsec)
8b9365d7 622{
d78c9300 623 nsec = nsec + TICK_NSEC - 1;
8b9365d7
IM
624
625 if (sec >= MAX_SEC_IN_JIFFIES){
626 sec = MAX_SEC_IN_JIFFIES;
627 nsec = 0;
628 }
9ca30850 629 return ((sec * SEC_CONVERSION) +
8b9365d7
IM
630 (((u64)nsec * NSEC_CONVERSION) >>
631 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
632
633}
d78c9300 634
9ca30850
BW
635static unsigned long
636__timespec_to_jiffies(unsigned long sec, long nsec)
d78c9300 637{
9ca30850 638 return __timespec64_to_jiffies((u64)sec, nsec);
d78c9300
AH
639}
640
9ca30850
BW
641unsigned long
642timespec64_to_jiffies(const struct timespec64 *value)
643{
644 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
645}
646EXPORT_SYMBOL(timespec64_to_jiffies);
8b9365d7
IM
647
648void
9ca30850 649jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
8b9365d7
IM
650{
651 /*
652 * Convert jiffies to nanoseconds and separate with
653 * one divide.
654 */
f8bd2258
RZ
655 u32 rem;
656 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
657 NSEC_PER_SEC, &rem);
658 value->tv_nsec = rem;
8b9365d7 659}
9ca30850 660EXPORT_SYMBOL(jiffies_to_timespec64);
8b9365d7 661
d78c9300
AH
662/*
663 * We could use a similar algorithm to timespec_to_jiffies (with a
664 * different multiplier for usec instead of nsec). But this has a
665 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
666 * usec value, since it's not necessarily integral.
667 *
668 * We could instead round in the intermediate scaled representation
669 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
670 * perilous: the scaling introduces a small positive error, which
671 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
672 * units to the intermediate before shifting) leads to accidental
673 * overflow and overestimates.
8b9365d7 674 *
d78c9300
AH
675 * At the cost of one additional multiplication by a constant, just
676 * use the timespec implementation.
8b9365d7
IM
677 */
678unsigned long
679timeval_to_jiffies(const struct timeval *value)
680{
d78c9300
AH
681 return __timespec_to_jiffies(value->tv_sec,
682 value->tv_usec * NSEC_PER_USEC);
8b9365d7 683}
456a09dc 684EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
685
686void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
687{
688 /*
689 * Convert jiffies to nanoseconds and separate with
690 * one divide.
691 */
f8bd2258 692 u32 rem;
8b9365d7 693
f8bd2258
RZ
694 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
695 NSEC_PER_SEC, &rem);
696 value->tv_usec = rem / NSEC_PER_USEC;
8b9365d7 697}
456a09dc 698EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
699
700/*
701 * Convert jiffies/jiffies_64 to clock_t and back.
702 */
cbbc719f 703clock_t jiffies_to_clock_t(unsigned long x)
8b9365d7
IM
704{
705#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
706# if HZ < USER_HZ
707 return x * (USER_HZ / HZ);
708# else
8b9365d7 709 return x / (HZ / USER_HZ);
6ffc787a 710# endif
8b9365d7 711#else
71abb3af 712 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
713#endif
714}
715EXPORT_SYMBOL(jiffies_to_clock_t);
716
717unsigned long clock_t_to_jiffies(unsigned long x)
718{
719#if (HZ % USER_HZ)==0
720 if (x >= ~0UL / (HZ / USER_HZ))
721 return ~0UL;
722 return x * (HZ / USER_HZ);
723#else
8b9365d7
IM
724 /* Don't worry about loss of precision here .. */
725 if (x >= ~0UL / HZ * USER_HZ)
726 return ~0UL;
727
728 /* .. but do try to contain it here */
71abb3af 729 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
730#endif
731}
732EXPORT_SYMBOL(clock_t_to_jiffies);
733
734u64 jiffies_64_to_clock_t(u64 x)
735{
736#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 737# if HZ < USER_HZ
71abb3af 738 x = div_u64(x * USER_HZ, HZ);
ec03d707 739# elif HZ > USER_HZ
71abb3af 740 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
741# else
742 /* Nothing to do */
6ffc787a 743# endif
8b9365d7
IM
744#else
745 /*
746 * There are better ways that don't overflow early,
747 * but even this doesn't overflow in hundreds of years
748 * in 64 bits, so..
749 */
71abb3af 750 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
751#endif
752 return x;
753}
8b9365d7
IM
754EXPORT_SYMBOL(jiffies_64_to_clock_t);
755
756u64 nsec_to_clock_t(u64 x)
757{
758#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 759 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 760#elif (USER_HZ % 512) == 0
71abb3af 761 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
762#else
763 /*
764 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
765 * overflow after 64.99 years.
766 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
767 */
71abb3af 768 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 769#endif
8b9365d7
IM
770}
771
07e5f5e3
FW
772u64 jiffies64_to_nsecs(u64 j)
773{
774#if !(NSEC_PER_SEC % HZ)
775 return (NSEC_PER_SEC / HZ) * j;
776# else
777 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
778#endif
779}
780EXPORT_SYMBOL(jiffies64_to_nsecs);
781
b7b20df9 782/**
a1dabb6b 783 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
b7b20df9
HS
784 *
785 * @n: nsecs in u64
786 *
787 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
788 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
789 * for scheduler, not for use in device drivers to calculate timeout value.
790 *
791 * note:
792 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
793 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
794 */
a1dabb6b 795u64 nsecs_to_jiffies64(u64 n)
b7b20df9
HS
796{
797#if (NSEC_PER_SEC % HZ) == 0
798 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
799 return div_u64(n, NSEC_PER_SEC / HZ);
800#elif (HZ % 512) == 0
801 /* overflow after 292 years if HZ = 1024 */
802 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
803#else
804 /*
805 * Generic case - optimized for cases where HZ is a multiple of 3.
806 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
807 */
808 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
809#endif
810}
7bd0e226 811EXPORT_SYMBOL(nsecs_to_jiffies64);
b7b20df9 812
a1dabb6b
VP
813/**
814 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
815 *
816 * @n: nsecs in u64
817 *
818 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
819 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
820 * for scheduler, not for use in device drivers to calculate timeout value.
821 *
822 * note:
823 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
824 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
825 */
826unsigned long nsecs_to_jiffies(u64 n)
827{
828 return (unsigned long)nsecs_to_jiffies64(n);
829}
d560fed6 830EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
a1dabb6b 831
bc2c53e5
DD
832/*
833 * Add two timespec64 values and do a safety check for overflow.
834 * It's assumed that both values are valid (>= 0).
835 * And, each timespec64 is in normalized form.
836 */
837struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
838 const struct timespec64 rhs)
839{
840 struct timespec64 res;
841
469e857f 842 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
bc2c53e5
DD
843 lhs.tv_nsec + rhs.tv_nsec);
844
845 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
846 res.tv_sec = TIME64_MAX;
847 res.tv_nsec = 0;
848 }
849
850 return res;
851}
f59dd9c8
DD
852
853int get_timespec64(struct timespec64 *ts,
ea2ce8f3 854 const struct __kernel_timespec __user *uts)
f59dd9c8 855{
ea2ce8f3 856 struct __kernel_timespec kts;
f59dd9c8
DD
857 int ret;
858
859 ret = copy_from_user(&kts, uts, sizeof(kts));
860 if (ret)
861 return -EFAULT;
862
863 ts->tv_sec = kts.tv_sec;
ea2ce8f3
DD
864
865 /* Zero out the padding for 32 bit systems or in compat mode */
866 if (IS_ENABLED(CONFIG_64BIT_TIME) && (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()))
867 kts.tv_nsec &= 0xFFFFFFFFUL;
868
f59dd9c8
DD
869 ts->tv_nsec = kts.tv_nsec;
870
871 return 0;
872}
873EXPORT_SYMBOL_GPL(get_timespec64);
874
875int put_timespec64(const struct timespec64 *ts,
ea2ce8f3 876 struct __kernel_timespec __user *uts)
f59dd9c8 877{
ea2ce8f3 878 struct __kernel_timespec kts = {
f59dd9c8
DD
879 .tv_sec = ts->tv_sec,
880 .tv_nsec = ts->tv_nsec
881 };
ea2ce8f3 882
f59dd9c8
DD
883 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
884}
885EXPORT_SYMBOL_GPL(put_timespec64);
d5b7ffbf 886
1c68adf6
DD
887int __compat_get_timespec64(struct timespec64 *ts64,
888 const struct compat_timespec __user *cts)
889{
890 struct compat_timespec ts;
891 int ret;
892
893 ret = copy_from_user(&ts, cts, sizeof(ts));
894 if (ret)
895 return -EFAULT;
896
897 ts64->tv_sec = ts.tv_sec;
898 ts64->tv_nsec = ts.tv_nsec;
899
900 return 0;
901}
902
903int __compat_put_timespec64(const struct timespec64 *ts64,
904 struct compat_timespec __user *cts)
905{
906 struct compat_timespec ts = {
907 .tv_sec = ts64->tv_sec,
908 .tv_nsec = ts64->tv_nsec
909 };
910 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
911}
912
913int compat_get_timespec64(struct timespec64 *ts, const void __user *uts)
914{
915 if (COMPAT_USE_64BIT_TIME)
916 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
917 else
918 return __compat_get_timespec64(ts, uts);
919}
920EXPORT_SYMBOL_GPL(compat_get_timespec64);
921
922int compat_put_timespec64(const struct timespec64 *ts, void __user *uts)
923{
924 if (COMPAT_USE_64BIT_TIME)
925 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
926 else
927 return __compat_put_timespec64(ts, uts);
928}
929EXPORT_SYMBOL_GPL(compat_put_timespec64);
930
d5b7ffbf 931int get_itimerspec64(struct itimerspec64 *it,
d0dd63a8 932 const struct __kernel_itimerspec __user *uit)
d5b7ffbf
DD
933{
934 int ret;
935
936 ret = get_timespec64(&it->it_interval, &uit->it_interval);
937 if (ret)
938 return ret;
939
940 ret = get_timespec64(&it->it_value, &uit->it_value);
941
942 return ret;
943}
944EXPORT_SYMBOL_GPL(get_itimerspec64);
945
946int put_itimerspec64(const struct itimerspec64 *it,
d0dd63a8 947 struct __kernel_itimerspec __user *uit)
d5b7ffbf
DD
948{
949 int ret;
950
951 ret = put_timespec64(&it->it_interval, &uit->it_interval);
952 if (ret)
953 return ret;
954
955 ret = put_timespec64(&it->it_value, &uit->it_value);
956
957 return ret;
958}
959EXPORT_SYMBOL_GPL(put_itimerspec64);
afef05cf
DD
960
961int get_compat_itimerspec64(struct itimerspec64 *its,
962 const struct compat_itimerspec __user *uits)
963{
964
965 if (__compat_get_timespec64(&its->it_interval, &uits->it_interval) ||
966 __compat_get_timespec64(&its->it_value, &uits->it_value))
967 return -EFAULT;
968 return 0;
969}
970EXPORT_SYMBOL_GPL(get_compat_itimerspec64);
971
972int put_compat_itimerspec64(const struct itimerspec64 *its,
973 struct compat_itimerspec __user *uits)
974{
975 if (__compat_put_timespec64(&its->it_interval, &uits->it_interval) ||
976 __compat_put_timespec64(&its->it_value, &uits->it_value))
977 return -EFAULT;
978 return 0;
979}
980EXPORT_SYMBOL_GPL(put_compat_itimerspec64);