Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-block.git] / kernel / time / time.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 *
58c5fc2b
TG
5 * This file contains the interface functions for the various time related
6 * system calls: time, stime, gettimeofday, settimeofday, adjtime
7 *
8 * Modification history:
6fa6c3b1 9 *
1da177e4 10 * 1993-09-02 Philip Gladstone
0a0fca9d 11 * Created file with time related functions from sched/core.c and adjtimex()
1da177e4
LT
12 * 1993-10-08 Torsten Duwe
13 * adjtime interface update and CMOS clock write code
14 * 1995-08-13 Torsten Duwe
15 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
16 * 1999-01-16 Ulrich Windl
17 * Introduced error checking for many cases in adjtimex().
18 * Updated NTP code according to technical memorandum Jan '96
19 * "A Kernel Model for Precision Timekeeping" by Dave Mills
20 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21 * (Even though the technical memorandum forbids it)
22 * 2004-07-14 Christoph Lameter
23 * Added getnstimeofday to allow the posix timer functions to return
24 * with nanosecond accuracy
25 */
26
9984de1a 27#include <linux/export.h>
abcbcb80 28#include <linux/kernel.h>
1da177e4 29#include <linux/timex.h>
c59ede7b 30#include <linux/capability.h>
189374ae 31#include <linux/timekeeper_internal.h>
1da177e4 32#include <linux/errno.h>
1da177e4
LT
33#include <linux/syscalls.h>
34#include <linux/security.h>
35#include <linux/fs.h>
71abb3af 36#include <linux/math64.h>
e3d5a27d 37#include <linux/ptrace.h>
1da177e4 38
7c0f6ba6 39#include <linux/uaccess.h>
3a4d44b6 40#include <linux/compat.h>
1da177e4
LT
41#include <asm/unistd.h>
42
0a227985 43#include <generated/timeconst.h>
8b094cd0 44#include "timekeeping.h"
bdc80787 45
6fa6c3b1 46/*
1da177e4
LT
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50struct timezone sys_tz;
51
52EXPORT_SYMBOL(sys_tz);
53
54#ifdef __ARCH_WANT_SYS_TIME
55
56/*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
58fd3aa2 62SYSCALL_DEFINE1(time, time_t __user *, tloc)
1da177e4 63{
f5a89295 64 time_t i = (time_t)ktime_get_real_seconds();
1da177e4
LT
65
66 if (tloc) {
20082208 67 if (put_user(i,tloc))
e3d5a27d 68 return -EFAULT;
1da177e4 69 }
e3d5a27d 70 force_successful_syscall_return();
1da177e4
LT
71 return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
6fa6c3b1 80
58fd3aa2 81SYSCALL_DEFINE1(stime, time_t __user *, tptr)
1da177e4 82{
4eb1bca1 83 struct timespec64 tv;
1da177e4
LT
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
4eb1bca1 91 err = security_settime64(&tv, NULL);
1da177e4
LT
92 if (err)
93 return err;
94
4eb1bca1 95 do_settimeofday64(&tv);
1da177e4
LT
96 return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
8dabe724 101#ifdef CONFIG_COMPAT_32BIT_TIME
d33c577c 102#ifdef __ARCH_WANT_SYS_TIME32
b180db2c 103
9afc5eee 104/* old_time32_t is a 32 bit "long" and needs to get converted. */
8dabe724 105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
b180db2c 106{
9afc5eee 107 old_time32_t i;
b180db2c 108
9afc5eee 109 i = (old_time32_t)ktime_get_real_seconds();
b180db2c
AV
110
111 if (tloc) {
112 if (put_user(i,tloc))
113 return -EFAULT;
114 }
115 force_successful_syscall_return();
116 return i;
117}
118
8dabe724 119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
b180db2c 120{
4eb1bca1 121 struct timespec64 tv;
b180db2c
AV
122 int err;
123
124 if (get_user(tv.tv_sec, tptr))
125 return -EFAULT;
126
127 tv.tv_nsec = 0;
128
4eb1bca1 129 err = security_settime64(&tv, NULL);
b180db2c
AV
130 if (err)
131 return err;
132
4eb1bca1 133 do_settimeofday64(&tv);
b180db2c
AV
134 return 0;
135}
136
d33c577c 137#endif /* __ARCH_WANT_SYS_TIME32 */
b180db2c
AV
138#endif
139
58fd3aa2
HC
140SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
141 struct timezone __user *, tz)
1da177e4
LT
142{
143 if (likely(tv != NULL)) {
33e26418
AB
144 struct timespec64 ts;
145
146 ktime_get_real_ts64(&ts);
147 if (put_user(ts.tv_sec, &tv->tv_sec) ||
148 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
1da177e4
LT
149 return -EFAULT;
150 }
151 if (unlikely(tz != NULL)) {
152 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153 return -EFAULT;
154 }
155 return 0;
156}
157
1da177e4
LT
158/*
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
86d34732 169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
1da177e4
LT
170{
171 static int firsttime = 1;
172 int error = 0;
173
7a8e61f8 174 if (tv && !timespec64_valid_settod(tv))
718bcceb
TG
175 return -EINVAL;
176
86d34732 177 error = security_settime64(tv, tz);
1da177e4
LT
178 if (error)
179 return error;
180
181 if (tz) {
6f7d7984
SL
182 /* Verify we're witin the +-15 hrs range */
183 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184 return -EINVAL;
185
1da177e4 186 sys_tz = *tz;
2c622148 187 update_vsyscall_tz();
1da177e4
LT
188 if (firsttime) {
189 firsttime = 0;
190 if (!tv)
e0956dcc 191 timekeeping_warp_clock();
1da177e4
LT
192 }
193 }
194 if (tv)
86d34732 195 return do_settimeofday64(tv);
1da177e4
LT
196 return 0;
197}
198
58fd3aa2
HC
199SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
200 struct timezone __user *, tz)
1da177e4 201{
2ac00f17 202 struct timespec64 new_ts;
1da177e4 203 struct timeval user_tv;
1da177e4
LT
204 struct timezone new_tz;
205
206 if (tv) {
207 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
208 return -EFAULT;
6ada1fc0
SL
209
210 if (!timeval_valid(&user_tv))
211 return -EINVAL;
212
1da177e4
LT
213 new_ts.tv_sec = user_tv.tv_sec;
214 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
215 }
216 if (tz) {
217 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
218 return -EFAULT;
219 }
220
2ac00f17 221 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
1da177e4
LT
222}
223
2b2d0285 224#ifdef CONFIG_COMPAT
9afc5eee 225COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
2b2d0285
AV
226 struct timezone __user *, tz)
227{
228 if (tv) {
33e26418 229 struct timespec64 ts;
2b2d0285 230
33e26418
AB
231 ktime_get_real_ts64(&ts);
232 if (put_user(ts.tv_sec, &tv->tv_sec) ||
233 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
2b2d0285
AV
234 return -EFAULT;
235 }
236 if (tz) {
237 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
238 return -EFAULT;
239 }
240
241 return 0;
242}
243
9afc5eee 244COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
2b2d0285
AV
245 struct timezone __user *, tz)
246{
247 struct timespec64 new_ts;
248 struct timeval user_tv;
249 struct timezone new_tz;
250
251 if (tv) {
252 if (compat_get_timeval(&user_tv, tv))
253 return -EFAULT;
254 new_ts.tv_sec = user_tv.tv_sec;
255 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
256 }
257 if (tz) {
258 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
259 return -EFAULT;
260 }
261
262 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
263}
264#endif
265
3876ced4
DD
266#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
267SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
1da177e4 268{
ead25417 269 struct __kernel_timex txc; /* Local copy of parameter */
1da177e4
LT
270 int ret;
271
272 /* Copy the user data space into the kernel copy
273 * structure. But bear in mind that the structures
274 * may change
275 */
ead25417 276 if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
1da177e4
LT
277 return -EFAULT;
278 ret = do_adjtimex(&txc);
ead25417 279 return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
1da177e4 280}
3876ced4 281#endif
1da177e4 282
4d5f007e 283#ifdef CONFIG_COMPAT_32BIT_TIME
ead25417 284int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
4d5f007e
AB
285{
286 struct old_timex32 tx32;
287
ead25417 288 memset(txc, 0, sizeof(struct __kernel_timex));
4d5f007e
AB
289 if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
290 return -EFAULT;
291
292 txc->modes = tx32.modes;
293 txc->offset = tx32.offset;
294 txc->freq = tx32.freq;
295 txc->maxerror = tx32.maxerror;
296 txc->esterror = tx32.esterror;
297 txc->status = tx32.status;
298 txc->constant = tx32.constant;
299 txc->precision = tx32.precision;
300 txc->tolerance = tx32.tolerance;
301 txc->time.tv_sec = tx32.time.tv_sec;
302 txc->time.tv_usec = tx32.time.tv_usec;
303 txc->tick = tx32.tick;
304 txc->ppsfreq = tx32.ppsfreq;
305 txc->jitter = tx32.jitter;
306 txc->shift = tx32.shift;
307 txc->stabil = tx32.stabil;
308 txc->jitcnt = tx32.jitcnt;
309 txc->calcnt = tx32.calcnt;
310 txc->errcnt = tx32.errcnt;
311 txc->stbcnt = tx32.stbcnt;
312
313 return 0;
314}
315
ead25417 316int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
4d5f007e
AB
317{
318 struct old_timex32 tx32;
319
320 memset(&tx32, 0, sizeof(struct old_timex32));
321 tx32.modes = txc->modes;
322 tx32.offset = txc->offset;
323 tx32.freq = txc->freq;
324 tx32.maxerror = txc->maxerror;
325 tx32.esterror = txc->esterror;
326 tx32.status = txc->status;
327 tx32.constant = txc->constant;
328 tx32.precision = txc->precision;
329 tx32.tolerance = txc->tolerance;
330 tx32.time.tv_sec = txc->time.tv_sec;
331 tx32.time.tv_usec = txc->time.tv_usec;
332 tx32.tick = txc->tick;
333 tx32.ppsfreq = txc->ppsfreq;
334 tx32.jitter = txc->jitter;
335 tx32.shift = txc->shift;
336 tx32.stabil = txc->stabil;
337 tx32.jitcnt = txc->jitcnt;
338 tx32.calcnt = txc->calcnt;
339 tx32.errcnt = txc->errcnt;
340 tx32.stbcnt = txc->stbcnt;
341 tx32.tai = txc->tai;
342 if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
343 return -EFAULT;
344 return 0;
345}
3a4d44b6 346
8dabe724 347SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
3a4d44b6 348{
ead25417 349 struct __kernel_timex txc;
3a4d44b6
AV
350 int err, ret;
351
4d5f007e 352 err = get_old_timex32(&txc, utp);
3a4d44b6
AV
353 if (err)
354 return err;
355
356 ret = do_adjtimex(&txc);
357
4d5f007e 358 err = put_old_timex32(utp, &txc);
3a4d44b6
AV
359 if (err)
360 return err;
361
362 return ret;
363}
364#endif
365
753e9c5c
ED
366/*
367 * Convert jiffies to milliseconds and back.
368 *
369 * Avoid unnecessary multiplications/divisions in the
370 * two most common HZ cases:
371 */
af3b5628 372unsigned int jiffies_to_msecs(const unsigned long j)
753e9c5c
ED
373{
374#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
375 return (MSEC_PER_SEC / HZ) * j;
376#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
377 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
378#else
bdc80787 379# if BITS_PER_LONG == 32
abcbcb80
GU
380 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
381 HZ_TO_MSEC_SHR32;
bdc80787 382# else
abcbcb80 383 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
bdc80787 384# endif
753e9c5c
ED
385#endif
386}
387EXPORT_SYMBOL(jiffies_to_msecs);
388
af3b5628 389unsigned int jiffies_to_usecs(const unsigned long j)
753e9c5c 390{
e0758676
FW
391 /*
392 * Hz usually doesn't go much further MSEC_PER_SEC.
393 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
394 */
395 BUILD_BUG_ON(HZ > USEC_PER_SEC);
396
397#if !(USEC_PER_SEC % HZ)
753e9c5c 398 return (USEC_PER_SEC / HZ) * j;
753e9c5c 399#else
bdc80787 400# if BITS_PER_LONG == 32
b9095fd8 401 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
402# else
403 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
404# endif
753e9c5c
ED
405#endif
406}
407EXPORT_SYMBOL(jiffies_to_usecs);
408
90b6ce9c 409/*
410 * mktime64 - Converts date to seconds.
411 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
753be622
TG
412 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
413 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
414 *
415 * [For the Julian calendar (which was used in Russia before 1917,
416 * Britain & colonies before 1752, anywhere else before 1582,
417 * and is still in use by some communities) leave out the
418 * -year/100+year/400 terms, and add 10.]
419 *
420 * This algorithm was first published by Gauss (I think).
ede5147d
DH
421 *
422 * A leap second can be indicated by calling this function with sec as
423 * 60 (allowable under ISO 8601). The leap second is treated the same
424 * as the following second since they don't exist in UNIX time.
425 *
426 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
427 * tomorrow - (allowable under ISO 8601) is supported.
753be622 428 */
90b6ce9c 429time64_t mktime64(const unsigned int year0, const unsigned int mon0,
430 const unsigned int day, const unsigned int hour,
431 const unsigned int min, const unsigned int sec)
753be622 432{
f4818900
IM
433 unsigned int mon = mon0, year = year0;
434
435 /* 1..12 -> 11,12,1..10 */
436 if (0 >= (int) (mon -= 2)) {
437 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
438 year -= 1;
439 }
440
90b6ce9c 441 return ((((time64_t)
753be622
TG
442 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
443 year*365 - 719499
ede5147d 444 )*24 + hour /* now have hours - midnight tomorrow handled here */
753be622
TG
445 )*60 + min /* now have minutes */
446 )*60 + sec; /* finally seconds */
447}
90b6ce9c 448EXPORT_SYMBOL(mktime64);
199e7056 449
f8f46da3
TG
450/**
451 * ns_to_timespec - Convert nanoseconds to timespec
452 * @nsec: the nanoseconds value to be converted
453 *
454 * Returns the timespec representation of the nsec parameter.
455 */
df869b63 456struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
457{
458 struct timespec ts;
f8bd2258 459 s32 rem;
f8f46da3 460
88fc3897
GA
461 if (!nsec)
462 return (struct timespec) {0, 0};
463
f8bd2258
RZ
464 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
465 if (unlikely(rem < 0)) {
466 ts.tv_sec--;
467 rem += NSEC_PER_SEC;
468 }
469 ts.tv_nsec = rem;
f8f46da3
TG
470
471 return ts;
472}
85795d64 473EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
474
475/**
476 * ns_to_timeval - Convert nanoseconds to timeval
477 * @nsec: the nanoseconds value to be converted
478 *
479 * Returns the timeval representation of the nsec parameter.
480 */
df869b63 481struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
482{
483 struct timespec ts = ns_to_timespec(nsec);
484 struct timeval tv;
485
486 tv.tv_sec = ts.tv_sec;
487 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
488
489 return tv;
490}
b7aa0bf7 491EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 492
a84d1169
AB
493struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
494{
495 struct timespec64 ts = ns_to_timespec64(nsec);
496 struct __kernel_old_timeval tv;
497
498 tv.tv_sec = ts.tv_sec;
499 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
500
501 return tv;
502}
503EXPORT_SYMBOL(ns_to_kernel_old_timeval);
504
49cd6f86
JS
505/**
506 * set_normalized_timespec - set timespec sec and nsec parts and normalize
507 *
508 * @ts: pointer to timespec variable to be set
509 * @sec: seconds to set
510 * @nsec: nanoseconds to set
511 *
512 * Set seconds and nanoseconds field of a timespec variable and
513 * normalize to the timespec storage format
514 *
515 * Note: The tv_nsec part is always in the range of
516 * 0 <= tv_nsec < NSEC_PER_SEC
517 * For negative values only the tv_sec field is negative !
518 */
519void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
520{
521 while (nsec >= NSEC_PER_SEC) {
522 /*
523 * The following asm() prevents the compiler from
524 * optimising this loop into a modulo operation. See
525 * also __iter_div_u64_rem() in include/linux/time.h
526 */
527 asm("" : "+rm"(nsec));
528 nsec -= NSEC_PER_SEC;
529 ++sec;
530 }
531 while (nsec < 0) {
532 asm("" : "+rm"(nsec));
533 nsec += NSEC_PER_SEC;
534 --sec;
535 }
536 ts->tv_sec = sec;
537 ts->tv_nsec = nsec;
538}
539EXPORT_SYMBOL(set_normalized_timespec64);
540
541/**
542 * ns_to_timespec64 - Convert nanoseconds to timespec64
543 * @nsec: the nanoseconds value to be converted
544 *
545 * Returns the timespec64 representation of the nsec parameter.
546 */
547struct timespec64 ns_to_timespec64(const s64 nsec)
548{
549 struct timespec64 ts;
550 s32 rem;
551
552 if (!nsec)
553 return (struct timespec64) {0, 0};
554
555 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
556 if (unlikely(rem < 0)) {
557 ts.tv_sec--;
558 rem += NSEC_PER_SEC;
559 }
560 ts.tv_nsec = rem;
561
562 return ts;
563}
564EXPORT_SYMBOL(ns_to_timespec64);
abc8f96e 565
ca42aaf0
NMG
566/**
567 * msecs_to_jiffies: - convert milliseconds to jiffies
568 * @m: time in milliseconds
569 *
570 * conversion is done as follows:
41cf5445
IM
571 *
572 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
573 *
574 * - 'too large' values [that would result in larger than
575 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
576 *
577 * - all other values are converted to jiffies by either multiplying
ca42aaf0
NMG
578 * the input value by a factor or dividing it with a factor and
579 * handling any 32-bit overflows.
580 * for the details see __msecs_to_jiffies()
41cf5445 581 *
ca42aaf0
NMG
582 * msecs_to_jiffies() checks for the passed in value being a constant
583 * via __builtin_constant_p() allowing gcc to eliminate most of the
584 * code, __msecs_to_jiffies() is called if the value passed does not
585 * allow constant folding and the actual conversion must be done at
586 * runtime.
587 * the _msecs_to_jiffies helpers are the HZ dependent conversion
588 * routines found in include/linux/jiffies.h
41cf5445 589 */
ca42aaf0 590unsigned long __msecs_to_jiffies(const unsigned int m)
8b9365d7 591{
41cf5445
IM
592 /*
593 * Negative value, means infinite timeout:
594 */
595 if ((int)m < 0)
8b9365d7 596 return MAX_JIFFY_OFFSET;
ca42aaf0 597 return _msecs_to_jiffies(m);
8b9365d7 598}
ca42aaf0 599EXPORT_SYMBOL(__msecs_to_jiffies);
8b9365d7 600
ae60d6a0 601unsigned long __usecs_to_jiffies(const unsigned int u)
8b9365d7
IM
602{
603 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
604 return MAX_JIFFY_OFFSET;
ae60d6a0 605 return _usecs_to_jiffies(u);
8b9365d7 606}
ae60d6a0 607EXPORT_SYMBOL(__usecs_to_jiffies);
8b9365d7
IM
608
609/*
610 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
611 * that a remainder subtract here would not do the right thing as the
612 * resolution values don't fall on second boundries. I.e. the line:
613 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
d78c9300
AH
614 * Note that due to the small error in the multiplier here, this
615 * rounding is incorrect for sufficiently large values of tv_nsec, but
616 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
617 * OK.
8b9365d7
IM
618 *
619 * Rather, we just shift the bits off the right.
620 *
621 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
622 * value to a scaled second value.
623 */
d78c9300 624static unsigned long
9ca30850 625__timespec64_to_jiffies(u64 sec, long nsec)
8b9365d7 626{
d78c9300 627 nsec = nsec + TICK_NSEC - 1;
8b9365d7
IM
628
629 if (sec >= MAX_SEC_IN_JIFFIES){
630 sec = MAX_SEC_IN_JIFFIES;
631 nsec = 0;
632 }
9ca30850 633 return ((sec * SEC_CONVERSION) +
8b9365d7
IM
634 (((u64)nsec * NSEC_CONVERSION) >>
635 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
636
637}
d78c9300 638
9ca30850
BW
639static unsigned long
640__timespec_to_jiffies(unsigned long sec, long nsec)
d78c9300 641{
9ca30850 642 return __timespec64_to_jiffies((u64)sec, nsec);
d78c9300
AH
643}
644
9ca30850
BW
645unsigned long
646timespec64_to_jiffies(const struct timespec64 *value)
647{
648 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
649}
650EXPORT_SYMBOL(timespec64_to_jiffies);
8b9365d7
IM
651
652void
9ca30850 653jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
8b9365d7
IM
654{
655 /*
656 * Convert jiffies to nanoseconds and separate with
657 * one divide.
658 */
f8bd2258
RZ
659 u32 rem;
660 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
661 NSEC_PER_SEC, &rem);
662 value->tv_nsec = rem;
8b9365d7 663}
9ca30850 664EXPORT_SYMBOL(jiffies_to_timespec64);
8b9365d7 665
d78c9300
AH
666/*
667 * We could use a similar algorithm to timespec_to_jiffies (with a
668 * different multiplier for usec instead of nsec). But this has a
669 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
670 * usec value, since it's not necessarily integral.
671 *
672 * We could instead round in the intermediate scaled representation
673 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
674 * perilous: the scaling introduces a small positive error, which
675 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
676 * units to the intermediate before shifting) leads to accidental
677 * overflow and overestimates.
8b9365d7 678 *
d78c9300
AH
679 * At the cost of one additional multiplication by a constant, just
680 * use the timespec implementation.
8b9365d7
IM
681 */
682unsigned long
683timeval_to_jiffies(const struct timeval *value)
684{
d78c9300
AH
685 return __timespec_to_jiffies(value->tv_sec,
686 value->tv_usec * NSEC_PER_USEC);
8b9365d7 687}
456a09dc 688EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
689
690void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
691{
692 /*
693 * Convert jiffies to nanoseconds and separate with
694 * one divide.
695 */
f8bd2258 696 u32 rem;
8b9365d7 697
f8bd2258
RZ
698 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
699 NSEC_PER_SEC, &rem);
700 value->tv_usec = rem / NSEC_PER_USEC;
8b9365d7 701}
456a09dc 702EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
703
704/*
705 * Convert jiffies/jiffies_64 to clock_t and back.
706 */
cbbc719f 707clock_t jiffies_to_clock_t(unsigned long x)
8b9365d7
IM
708{
709#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
710# if HZ < USER_HZ
711 return x * (USER_HZ / HZ);
712# else
8b9365d7 713 return x / (HZ / USER_HZ);
6ffc787a 714# endif
8b9365d7 715#else
71abb3af 716 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
717#endif
718}
719EXPORT_SYMBOL(jiffies_to_clock_t);
720
721unsigned long clock_t_to_jiffies(unsigned long x)
722{
723#if (HZ % USER_HZ)==0
724 if (x >= ~0UL / (HZ / USER_HZ))
725 return ~0UL;
726 return x * (HZ / USER_HZ);
727#else
8b9365d7
IM
728 /* Don't worry about loss of precision here .. */
729 if (x >= ~0UL / HZ * USER_HZ)
730 return ~0UL;
731
732 /* .. but do try to contain it here */
71abb3af 733 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
734#endif
735}
736EXPORT_SYMBOL(clock_t_to_jiffies);
737
738u64 jiffies_64_to_clock_t(u64 x)
739{
740#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 741# if HZ < USER_HZ
71abb3af 742 x = div_u64(x * USER_HZ, HZ);
ec03d707 743# elif HZ > USER_HZ
71abb3af 744 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
745# else
746 /* Nothing to do */
6ffc787a 747# endif
8b9365d7
IM
748#else
749 /*
750 * There are better ways that don't overflow early,
751 * but even this doesn't overflow in hundreds of years
752 * in 64 bits, so..
753 */
71abb3af 754 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
755#endif
756 return x;
757}
8b9365d7
IM
758EXPORT_SYMBOL(jiffies_64_to_clock_t);
759
760u64 nsec_to_clock_t(u64 x)
761{
762#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 763 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 764#elif (USER_HZ % 512) == 0
71abb3af 765 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
766#else
767 /*
768 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
769 * overflow after 64.99 years.
770 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
771 */
71abb3af 772 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 773#endif
8b9365d7
IM
774}
775
07e5f5e3
FW
776u64 jiffies64_to_nsecs(u64 j)
777{
778#if !(NSEC_PER_SEC % HZ)
779 return (NSEC_PER_SEC / HZ) * j;
780# else
781 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
782#endif
783}
784EXPORT_SYMBOL(jiffies64_to_nsecs);
785
3b15d09f
LR
786u64 jiffies64_to_msecs(const u64 j)
787{
788#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
789 return (MSEC_PER_SEC / HZ) * j;
790#else
791 return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
792#endif
793}
794EXPORT_SYMBOL(jiffies64_to_msecs);
795
b7b20df9 796/**
a1dabb6b 797 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
b7b20df9
HS
798 *
799 * @n: nsecs in u64
800 *
801 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
802 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
803 * for scheduler, not for use in device drivers to calculate timeout value.
804 *
805 * note:
806 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
807 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
808 */
a1dabb6b 809u64 nsecs_to_jiffies64(u64 n)
b7b20df9
HS
810{
811#if (NSEC_PER_SEC % HZ) == 0
812 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
813 return div_u64(n, NSEC_PER_SEC / HZ);
814#elif (HZ % 512) == 0
815 /* overflow after 292 years if HZ = 1024 */
816 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
817#else
818 /*
819 * Generic case - optimized for cases where HZ is a multiple of 3.
820 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
821 */
822 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
823#endif
824}
7bd0e226 825EXPORT_SYMBOL(nsecs_to_jiffies64);
b7b20df9 826
a1dabb6b
VP
827/**
828 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
829 *
830 * @n: nsecs in u64
831 *
832 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
833 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
834 * for scheduler, not for use in device drivers to calculate timeout value.
835 *
836 * note:
837 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
838 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
839 */
840unsigned long nsecs_to_jiffies(u64 n)
841{
842 return (unsigned long)nsecs_to_jiffies64(n);
843}
d560fed6 844EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
a1dabb6b 845
bc2c53e5
DD
846/*
847 * Add two timespec64 values and do a safety check for overflow.
848 * It's assumed that both values are valid (>= 0).
849 * And, each timespec64 is in normalized form.
850 */
851struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
852 const struct timespec64 rhs)
853{
854 struct timespec64 res;
855
469e857f 856 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
bc2c53e5
DD
857 lhs.tv_nsec + rhs.tv_nsec);
858
859 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
860 res.tv_sec = TIME64_MAX;
861 res.tv_nsec = 0;
862 }
863
864 return res;
865}
f59dd9c8
DD
866
867int get_timespec64(struct timespec64 *ts,
ea2ce8f3 868 const struct __kernel_timespec __user *uts)
f59dd9c8 869{
ea2ce8f3 870 struct __kernel_timespec kts;
f59dd9c8
DD
871 int ret;
872
873 ret = copy_from_user(&kts, uts, sizeof(kts));
874 if (ret)
875 return -EFAULT;
876
877 ts->tv_sec = kts.tv_sec;
ea2ce8f3
DD
878
879 /* Zero out the padding for 32 bit systems or in compat mode */
98f76206 880 if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall())
ea2ce8f3
DD
881 kts.tv_nsec &= 0xFFFFFFFFUL;
882
f59dd9c8
DD
883 ts->tv_nsec = kts.tv_nsec;
884
885 return 0;
886}
887EXPORT_SYMBOL_GPL(get_timespec64);
888
889int put_timespec64(const struct timespec64 *ts,
ea2ce8f3 890 struct __kernel_timespec __user *uts)
f59dd9c8 891{
ea2ce8f3 892 struct __kernel_timespec kts = {
f59dd9c8
DD
893 .tv_sec = ts->tv_sec,
894 .tv_nsec = ts->tv_nsec
895 };
ea2ce8f3 896
f59dd9c8
DD
897 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
898}
899EXPORT_SYMBOL_GPL(put_timespec64);
d5b7ffbf 900
743f5cdb 901static int __get_old_timespec32(struct timespec64 *ts64,
9afc5eee 902 const struct old_timespec32 __user *cts)
1c68adf6 903{
9afc5eee 904 struct old_timespec32 ts;
1c68adf6
DD
905 int ret;
906
907 ret = copy_from_user(&ts, cts, sizeof(ts));
908 if (ret)
909 return -EFAULT;
910
911 ts64->tv_sec = ts.tv_sec;
912 ts64->tv_nsec = ts.tv_nsec;
913
914 return 0;
915}
916
743f5cdb 917static int __put_old_timespec32(const struct timespec64 *ts64,
9afc5eee 918 struct old_timespec32 __user *cts)
1c68adf6 919{
9afc5eee 920 struct old_timespec32 ts = {
1c68adf6
DD
921 .tv_sec = ts64->tv_sec,
922 .tv_nsec = ts64->tv_nsec
923 };
924 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
925}
926
9afc5eee 927int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
1c68adf6
DD
928{
929 if (COMPAT_USE_64BIT_TIME)
930 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
931 else
9afc5eee 932 return __get_old_timespec32(ts, uts);
1c68adf6 933}
9afc5eee 934EXPORT_SYMBOL_GPL(get_old_timespec32);
1c68adf6 935
9afc5eee 936int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
1c68adf6
DD
937{
938 if (COMPAT_USE_64BIT_TIME)
939 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
940 else
9afc5eee 941 return __put_old_timespec32(ts, uts);
1c68adf6 942}
9afc5eee 943EXPORT_SYMBOL_GPL(put_old_timespec32);
1c68adf6 944
d5b7ffbf 945int get_itimerspec64(struct itimerspec64 *it,
d0dd63a8 946 const struct __kernel_itimerspec __user *uit)
d5b7ffbf
DD
947{
948 int ret;
949
950 ret = get_timespec64(&it->it_interval, &uit->it_interval);
951 if (ret)
952 return ret;
953
954 ret = get_timespec64(&it->it_value, &uit->it_value);
955
956 return ret;
957}
958EXPORT_SYMBOL_GPL(get_itimerspec64);
959
960int put_itimerspec64(const struct itimerspec64 *it,
d0dd63a8 961 struct __kernel_itimerspec __user *uit)
d5b7ffbf
DD
962{
963 int ret;
964
965 ret = put_timespec64(&it->it_interval, &uit->it_interval);
966 if (ret)
967 return ret;
968
969 ret = put_timespec64(&it->it_value, &uit->it_value);
970
971 return ret;
972}
973EXPORT_SYMBOL_GPL(put_itimerspec64);
afef05cf 974
9afc5eee
AB
975int get_old_itimerspec32(struct itimerspec64 *its,
976 const struct old_itimerspec32 __user *uits)
afef05cf
DD
977{
978
9afc5eee
AB
979 if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
980 __get_old_timespec32(&its->it_value, &uits->it_value))
afef05cf
DD
981 return -EFAULT;
982 return 0;
983}
9afc5eee 984EXPORT_SYMBOL_GPL(get_old_itimerspec32);
afef05cf 985
9afc5eee
AB
986int put_old_itimerspec32(const struct itimerspec64 *its,
987 struct old_itimerspec32 __user *uits)
afef05cf 988{
9afc5eee
AB
989 if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
990 __put_old_timespec32(&its->it_value, &uits->it_value))
afef05cf
DD
991 return -EFAULT;
992 return 0;
993}
9afc5eee 994EXPORT_SYMBOL_GPL(put_old_itimerspec32);