Merge tag 'pm-4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-block.git] / kernel / time / tick-sched.c
CommitLineData
79bf2bb3
TG
1/*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
b10db7f0 12 * Distribute under GPLv2.
79bf2bb3
TG
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/kernel_stat.h>
19#include <linux/percpu.h>
38b8d208 20#include <linux/nmi.h>
79bf2bb3 21#include <linux/profile.h>
3f07c014 22#include <linux/sched/signal.h>
e6017571 23#include <linux/sched/clock.h>
03441a34 24#include <linux/sched/stat.h>
370c9135 25#include <linux/sched/nohz.h>
8083e4ad 26#include <linux/module.h>
00b42959 27#include <linux/irq_work.h>
9014c45d 28#include <linux/posix-timers.h>
2e709338 29#include <linux/context_tracking.h>
62cb1188 30#include <linux/mm.h>
79bf2bb3 31
9e203bcc
DM
32#include <asm/irq_regs.h>
33
79bf2bb3
TG
34#include "tick-internal.h"
35
cb41a290
FW
36#include <trace/events/timer.h>
37
79bf2bb3 38/*
0de7611a 39 * Per-CPU nohz control structure
79bf2bb3 40 */
c1797baf 41static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
79bf2bb3 42
289f480a
IM
43struct tick_sched *tick_get_tick_sched(int cpu)
44{
45 return &per_cpu(tick_cpu_sched, cpu);
46}
47
7809998a
AB
48#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
49/*
50 * The time, when the last jiffy update happened. Protected by jiffies_lock.
51 */
52static ktime_t last_jiffies_update;
53
79bf2bb3
TG
54/*
55 * Must be called with interrupts disabled !
56 */
57static void tick_do_update_jiffies64(ktime_t now)
58{
59 unsigned long ticks = 0;
60 ktime_t delta;
61
7a14ce1d 62 /*
d6ad4187 63 * Do a quick check without holding jiffies_lock:
7a14ce1d
IM
64 */
65 delta = ktime_sub(now, last_jiffies_update);
2456e855 66 if (delta < tick_period)
7a14ce1d
IM
67 return;
68
6168f8ed 69 /* Reevaluate with jiffies_lock held */
d6ad4187 70 write_seqlock(&jiffies_lock);
79bf2bb3
TG
71
72 delta = ktime_sub(now, last_jiffies_update);
2456e855 73 if (delta >= tick_period) {
79bf2bb3
TG
74
75 delta = ktime_sub(delta, tick_period);
76 last_jiffies_update = ktime_add(last_jiffies_update,
77 tick_period);
78
79 /* Slow path for long timeouts */
2456e855 80 if (unlikely(delta >= tick_period)) {
79bf2bb3
TG
81 s64 incr = ktime_to_ns(tick_period);
82
83 ticks = ktime_divns(delta, incr);
84
85 last_jiffies_update = ktime_add_ns(last_jiffies_update,
86 incr * ticks);
87 }
88 do_timer(++ticks);
49d670fb
TG
89
90 /* Keep the tick_next_period variable up to date */
91 tick_next_period = ktime_add(last_jiffies_update, tick_period);
03e6bdc5
VK
92 } else {
93 write_sequnlock(&jiffies_lock);
94 return;
79bf2bb3 95 }
d6ad4187 96 write_sequnlock(&jiffies_lock);
47a1b796 97 update_wall_time();
79bf2bb3
TG
98}
99
100/*
101 * Initialize and return retrieve the jiffies update.
102 */
103static ktime_t tick_init_jiffy_update(void)
104{
105 ktime_t period;
106
d6ad4187 107 write_seqlock(&jiffies_lock);
79bf2bb3 108 /* Did we start the jiffies update yet ? */
2456e855 109 if (last_jiffies_update == 0)
79bf2bb3
TG
110 last_jiffies_update = tick_next_period;
111 period = last_jiffies_update;
d6ad4187 112 write_sequnlock(&jiffies_lock);
79bf2bb3
TG
113 return period;
114}
115
5bb96226
FW
116
117static void tick_sched_do_timer(ktime_t now)
118{
119 int cpu = smp_processor_id();
120
3451d024 121#ifdef CONFIG_NO_HZ_COMMON
5bb96226
FW
122 /*
123 * Check if the do_timer duty was dropped. We don't care about
0de7611a
IM
124 * concurrency: This happens only when the CPU in charge went
125 * into a long sleep. If two CPUs happen to assign themselves to
5bb96226 126 * this duty, then the jiffies update is still serialized by
9c3f9e28 127 * jiffies_lock.
5bb96226 128 */
a382bf93 129 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
c5bfece2 130 && !tick_nohz_full_cpu(cpu))
5bb96226
FW
131 tick_do_timer_cpu = cpu;
132#endif
133
134 /* Check, if the jiffies need an update */
135 if (tick_do_timer_cpu == cpu)
136 tick_do_update_jiffies64(now);
137}
138
9e8f559b
FW
139static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
140{
3451d024 141#ifdef CONFIG_NO_HZ_COMMON
9e8f559b
FW
142 /*
143 * When we are idle and the tick is stopped, we have to touch
144 * the watchdog as we might not schedule for a really long
145 * time. This happens on complete idle SMP systems while
146 * waiting on the login prompt. We also increment the "start of
147 * idle" jiffy stamp so the idle accounting adjustment we do
148 * when we go busy again does not account too much ticks.
149 */
150 if (ts->tick_stopped) {
03e0d461 151 touch_softlockup_watchdog_sched();
9e8f559b
FW
152 if (is_idle_task(current))
153 ts->idle_jiffies++;
411fe24e
FW
154 /*
155 * In case the current tick fired too early past its expected
156 * expiration, make sure we don't bypass the next clock reprogramming
157 * to the same deadline.
158 */
159 ts->next_tick = 0;
9e8f559b 160 }
94a57140 161#endif
9e8f559b
FW
162 update_process_times(user_mode(regs));
163 profile_tick(CPU_PROFILING);
164}
7809998a 165#endif
9e8f559b 166
c5bfece2 167#ifdef CONFIG_NO_HZ_FULL
460775df 168cpumask_var_t tick_nohz_full_mask;
73867dcd 169bool tick_nohz_full_running;
f009a7a7 170static atomic_t tick_dep_mask;
a831881b 171
f009a7a7 172static bool check_tick_dependency(atomic_t *dep)
d027d45d 173{
f009a7a7
FW
174 int val = atomic_read(dep);
175
176 if (val & TICK_DEP_MASK_POSIX_TIMER) {
e6e6cc22 177 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
f009a7a7 178 return true;
d027d45d
FW
179 }
180
f009a7a7 181 if (val & TICK_DEP_MASK_PERF_EVENTS) {
e6e6cc22 182 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
f009a7a7 183 return true;
d027d45d
FW
184 }
185
f009a7a7 186 if (val & TICK_DEP_MASK_SCHED) {
e6e6cc22 187 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
f009a7a7 188 return true;
d027d45d
FW
189 }
190
f009a7a7 191 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
e6e6cc22 192 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
f009a7a7
FW
193 return true;
194 }
195
196 return false;
d027d45d
FW
197}
198
57ccdf44 199static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
9014c45d 200{
ebf3adba 201 lockdep_assert_irqs_disabled();
9014c45d 202
57ccdf44
WL
203 if (unlikely(!cpu_online(cpu)))
204 return false;
205
f009a7a7 206 if (check_tick_dependency(&tick_dep_mask))
d027d45d 207 return false;
d027d45d 208
f009a7a7 209 if (check_tick_dependency(&ts->tick_dep_mask))
d027d45d 210 return false;
d027d45d 211
f009a7a7 212 if (check_tick_dependency(&current->tick_dep_mask))
d027d45d 213 return false;
d027d45d 214
f009a7a7 215 if (check_tick_dependency(&current->signal->tick_dep_mask))
d027d45d 216 return false;
d027d45d 217
9014c45d
FW
218 return true;
219}
220
d027d45d 221static void nohz_full_kick_func(struct irq_work *work)
76c24fb0 222{
73738a95 223 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
76c24fb0
FW
224}
225
226static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
d027d45d 227 .func = nohz_full_kick_func,
76c24fb0
FW
228};
229
40bea039
FW
230/*
231 * Kick this CPU if it's full dynticks in order to force it to
232 * re-evaluate its dependency on the tick and restart it if necessary.
233 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
234 * is NMI safe.
235 */
555e0c1e 236static void tick_nohz_full_kick(void)
40bea039
FW
237{
238 if (!tick_nohz_full_cpu(smp_processor_id()))
239 return;
240
56e4dea8 241 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
40bea039
FW
242}
243
76c24fb0 244/*
3d36aebc 245 * Kick the CPU if it's full dynticks in order to force it to
76c24fb0
FW
246 * re-evaluate its dependency on the tick and restart it if necessary.
247 */
3d36aebc 248void tick_nohz_full_kick_cpu(int cpu)
76c24fb0 249{
3d36aebc
FW
250 if (!tick_nohz_full_cpu(cpu))
251 return;
252
253 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
76c24fb0
FW
254}
255
76c24fb0
FW
256/*
257 * Kick all full dynticks CPUs in order to force these to re-evaluate
258 * their dependency on the tick and restart it if necessary.
259 */
b7878300 260static void tick_nohz_full_kick_all(void)
76c24fb0 261{
8537bb95
FW
262 int cpu;
263
73867dcd 264 if (!tick_nohz_full_running)
76c24fb0
FW
265 return;
266
267 preempt_disable();
8537bb95
FW
268 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
269 tick_nohz_full_kick_cpu(cpu);
76c24fb0
FW
270 preempt_enable();
271}
272
f009a7a7 273static void tick_nohz_dep_set_all(atomic_t *dep,
d027d45d
FW
274 enum tick_dep_bits bit)
275{
f009a7a7 276 int prev;
d027d45d 277
a1cc5bcf 278 prev = atomic_fetch_or(BIT(bit), dep);
d027d45d
FW
279 if (!prev)
280 tick_nohz_full_kick_all();
281}
282
283/*
284 * Set a global tick dependency. Used by perf events that rely on freq and
285 * by unstable clock.
286 */
287void tick_nohz_dep_set(enum tick_dep_bits bit)
288{
289 tick_nohz_dep_set_all(&tick_dep_mask, bit);
290}
291
292void tick_nohz_dep_clear(enum tick_dep_bits bit)
293{
f009a7a7 294 atomic_andnot(BIT(bit), &tick_dep_mask);
d027d45d
FW
295}
296
297/*
298 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
299 * manage events throttling.
300 */
301void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
302{
f009a7a7 303 int prev;
d027d45d
FW
304 struct tick_sched *ts;
305
306 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
307
a1cc5bcf 308 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
309 if (!prev) {
310 preempt_disable();
311 /* Perf needs local kick that is NMI safe */
312 if (cpu == smp_processor_id()) {
313 tick_nohz_full_kick();
314 } else {
315 /* Remote irq work not NMI-safe */
316 if (!WARN_ON_ONCE(in_nmi()))
317 tick_nohz_full_kick_cpu(cpu);
318 }
319 preempt_enable();
320 }
321}
322
323void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
324{
325 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
326
f009a7a7 327 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
328}
329
330/*
331 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
332 * per task timers.
333 */
334void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
335{
336 /*
337 * We could optimize this with just kicking the target running the task
338 * if that noise matters for nohz full users.
339 */
340 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
341}
342
343void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
344{
f009a7a7 345 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
d027d45d
FW
346}
347
348/*
349 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
350 * per process timers.
351 */
352void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
353{
354 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
355}
356
357void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358{
f009a7a7 359 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
d027d45d
FW
360}
361
99e5ada9
FW
362/*
363 * Re-evaluate the need for the tick as we switch the current task.
364 * It might need the tick due to per task/process properties:
0de7611a 365 * perf events, posix CPU timers, ...
99e5ada9 366 */
de734f89 367void __tick_nohz_task_switch(void)
99e5ada9
FW
368{
369 unsigned long flags;
d027d45d 370 struct tick_sched *ts;
99e5ada9 371
99e5ada9
FW
372 local_irq_save(flags);
373
6296ace4
LZ
374 if (!tick_nohz_full_cpu(smp_processor_id()))
375 goto out;
376
d027d45d 377 ts = this_cpu_ptr(&tick_cpu_sched);
99e5ada9 378
d027d45d 379 if (ts->tick_stopped) {
f009a7a7
FW
380 if (atomic_read(&current->tick_dep_mask) ||
381 atomic_read(&current->signal->tick_dep_mask))
d027d45d
FW
382 tick_nohz_full_kick();
383 }
6296ace4 384out:
99e5ada9
FW
385 local_irq_restore(flags);
386}
387
6f1982fe
FW
388/* Get the boot-time nohz CPU list from the kernel parameters. */
389void __init tick_nohz_full_setup(cpumask_var_t cpumask)
a831881b 390{
73867dcd 391 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
6f1982fe 392 cpumask_copy(tick_nohz_full_mask, cpumask);
73867dcd 393 tick_nohz_full_running = true;
a831881b 394}
a831881b 395
31eff243 396static int tick_nohz_cpu_down(unsigned int cpu)
a382bf93 397{
31eff243
SAS
398 /*
399 * The boot CPU handles housekeeping duty (unbound timers,
400 * workqueues, timekeeping, ...) on behalf of full dynticks
401 * CPUs. It must remain online when nohz full is enabled.
402 */
403 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
404 return -EBUSY;
405 return 0;
a382bf93
FW
406}
407
d1e43fa5 408void __init tick_nohz_init(void)
a831881b 409{
31eff243 410 int cpu, ret;
d1e43fa5 411
a7c8655b
PM
412 if (!tick_nohz_full_running)
413 return;
d1e43fa5 414
9b01f5bf
FW
415 /*
416 * Full dynticks uses irq work to drive the tick rescheduling on safe
417 * locking contexts. But then we need irq work to raise its own
418 * interrupts to avoid circular dependency on the tick
419 */
420 if (!arch_irq_work_has_interrupt()) {
a395d6a7 421 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
9b01f5bf 422 cpumask_clear(tick_nohz_full_mask);
9b01f5bf
FW
423 tick_nohz_full_running = false;
424 return;
425 }
426
4327b15f
FW
427 cpu = smp_processor_id();
428
429 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
a395d6a7
JP
430 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
431 cpu);
4327b15f
FW
432 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
433 }
434
73867dcd 435 for_each_cpu(cpu, tick_nohz_full_mask)
2e709338
FW
436 context_tracking_cpu_set(cpu);
437
31eff243
SAS
438 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
439 "kernel/nohz:predown", NULL,
440 tick_nohz_cpu_down);
441 WARN_ON(ret < 0);
ffda22c1
TH
442 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
443 cpumask_pr_args(tick_nohz_full_mask));
a831881b 444}
a831881b
FW
445#endif
446
79bf2bb3
TG
447/*
448 * NOHZ - aka dynamic tick functionality
449 */
3451d024 450#ifdef CONFIG_NO_HZ_COMMON
79bf2bb3
TG
451/*
452 * NO HZ enabled ?
453 */
4cc7ecb7 454bool tick_nohz_enabled __read_mostly = true;
bc7a34b8 455unsigned long tick_nohz_active __read_mostly;
79bf2bb3
TG
456/*
457 * Enable / Disable tickless mode
458 */
459static int __init setup_tick_nohz(char *str)
460{
4cc7ecb7 461 return (kstrtobool(str, &tick_nohz_enabled) == 0);
79bf2bb3
TG
462}
463
464__setup("nohz=", setup_tick_nohz);
465
a3642983 466bool tick_nohz_tick_stopped(void)
c1797baf
TG
467{
468 return __this_cpu_read(tick_cpu_sched.tick_stopped);
469}
470
22ab8bc0
FW
471bool tick_nohz_tick_stopped_cpu(int cpu)
472{
473 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
474
475 return ts->tick_stopped;
476}
477
79bf2bb3
TG
478/**
479 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
480 *
481 * Called from interrupt entry when the CPU was idle
482 *
483 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
484 * must be updated. Otherwise an interrupt handler could use a stale jiffy
0de7611a
IM
485 * value. We do this unconditionally on any CPU, as we don't know whether the
486 * CPU, which has the update task assigned is in a long sleep.
79bf2bb3 487 */
eed3b9cf 488static void tick_nohz_update_jiffies(ktime_t now)
79bf2bb3 489{
79bf2bb3 490 unsigned long flags;
79bf2bb3 491
e8fcaa5c 492 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
79bf2bb3
TG
493
494 local_irq_save(flags);
495 tick_do_update_jiffies64(now);
496 local_irq_restore(flags);
02ff3755 497
03e0d461 498 touch_softlockup_watchdog_sched();
79bf2bb3
TG
499}
500
595aac48 501/*
0de7611a 502 * Updates the per-CPU time idle statistics counters
595aac48 503 */
8d63bf94 504static void
8c215bd3 505update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
6378ddb5 506{
eed3b9cf 507 ktime_t delta;
6378ddb5 508
595aac48
AV
509 if (ts->idle_active) {
510 delta = ktime_sub(now, ts->idle_entrytime);
8c215bd3 511 if (nr_iowait_cpu(cpu) > 0)
0224cf4c 512 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
6beea0cd
MH
513 else
514 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
8c7b09f4 515 ts->idle_entrytime = now;
595aac48 516 }
8d63bf94 517
e0e37c20 518 if (last_update_time)
8d63bf94
AV
519 *last_update_time = ktime_to_us(now);
520
595aac48
AV
521}
522
e8fcaa5c 523static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
595aac48 524{
e8fcaa5c 525 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
eed3b9cf 526 ts->idle_active = 0;
56c7426b 527
ac1e843f 528 sched_clock_idle_wakeup_event();
6378ddb5
VP
529}
530
e8fcaa5c 531static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
6378ddb5 532{
430ee881 533 ktime_t now = ktime_get();
595aac48 534
6378ddb5
VP
535 ts->idle_entrytime = now;
536 ts->idle_active = 1;
56c7426b 537 sched_clock_idle_sleep_event();
6378ddb5
VP
538 return now;
539}
540
b1f724c3 541/**
0de7611a 542 * get_cpu_idle_time_us - get the total idle time of a CPU
b1f724c3 543 * @cpu: CPU number to query
09a1d34f
MH
544 * @last_update_time: variable to store update time in. Do not update
545 * counters if NULL.
b1f724c3 546 *
6168f8ed 547 * Return the cumulative idle time (since boot) for a given
6beea0cd 548 * CPU, in microseconds.
b1f724c3
AV
549 *
550 * This time is measured via accounting rather than sampling,
551 * and is as accurate as ktime_get() is.
552 *
553 * This function returns -1 if NOHZ is not enabled.
554 */
6378ddb5
VP
555u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
556{
557 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 558 ktime_t now, idle;
6378ddb5 559
d689fe22 560 if (!tick_nohz_active)
8083e4ad 561 return -1;
562
09a1d34f
MH
563 now = ktime_get();
564 if (last_update_time) {
565 update_ts_time_stats(cpu, ts, now, last_update_time);
566 idle = ts->idle_sleeptime;
567 } else {
568 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
569 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
570
571 idle = ktime_add(ts->idle_sleeptime, delta);
572 } else {
573 idle = ts->idle_sleeptime;
574 }
575 }
576
577 return ktime_to_us(idle);
8083e4ad 578
6378ddb5 579}
8083e4ad 580EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
6378ddb5 581
6beea0cd 582/**
0de7611a 583 * get_cpu_iowait_time_us - get the total iowait time of a CPU
0224cf4c 584 * @cpu: CPU number to query
09a1d34f
MH
585 * @last_update_time: variable to store update time in. Do not update
586 * counters if NULL.
0224cf4c 587 *
6168f8ed 588 * Return the cumulative iowait time (since boot) for a given
0224cf4c
AV
589 * CPU, in microseconds.
590 *
591 * This time is measured via accounting rather than sampling,
592 * and is as accurate as ktime_get() is.
593 *
594 * This function returns -1 if NOHZ is not enabled.
595 */
596u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
597{
598 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 599 ktime_t now, iowait;
0224cf4c 600
d689fe22 601 if (!tick_nohz_active)
0224cf4c
AV
602 return -1;
603
09a1d34f
MH
604 now = ktime_get();
605 if (last_update_time) {
606 update_ts_time_stats(cpu, ts, now, last_update_time);
607 iowait = ts->iowait_sleeptime;
608 } else {
609 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
610 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
0224cf4c 611
09a1d34f
MH
612 iowait = ktime_add(ts->iowait_sleeptime, delta);
613 } else {
614 iowait = ts->iowait_sleeptime;
615 }
616 }
0224cf4c 617
09a1d34f 618 return ktime_to_us(iowait);
0224cf4c
AV
619}
620EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
621
0ff53d09
TG
622static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
623{
624 hrtimer_cancel(&ts->sched_timer);
625 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
626
627 /* Forward the time to expire in the future */
628 hrtimer_forward(&ts->sched_timer, now, tick_period);
629
630 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
631 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
632 else
633 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
411fe24e
FW
634
635 /*
636 * Reset to make sure next tick stop doesn't get fooled by past
637 * cached clock deadline.
638 */
639 ts->next_tick = 0;
0ff53d09
TG
640}
641
5d62c183
TG
642static inline bool local_timer_softirq_pending(void)
643{
644 return local_softirq_pending() & TIMER_SOFTIRQ;
645}
646
84bf1bcc
FW
647static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
648 ktime_t now, int cpu)
79bf2bb3 649{
22127e93 650 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
c1ad348b
TG
651 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
652 unsigned long seq, basejiff;
653 ktime_t tick;
855a0fc3 654
79bf2bb3
TG
655 /* Read jiffies and the time when jiffies were updated last */
656 do {
d6ad4187 657 seq = read_seqbegin(&jiffies_lock);
2456e855 658 basemono = last_jiffies_update;
c1ad348b 659 basejiff = jiffies;
d6ad4187 660 } while (read_seqretry(&jiffies_lock, seq));
c1ad348b 661 ts->last_jiffies = basejiff;
79bf2bb3 662
5d62c183
TG
663 /*
664 * Keep the periodic tick, when RCU, architecture or irq_work
665 * requests it.
666 * Aside of that check whether the local timer softirq is
667 * pending. If so its a bad idea to call get_next_timer_interrupt()
668 * because there is an already expired timer, so it will request
669 * immeditate expiry, which rearms the hardware timer with a
670 * minimal delta which brings us back to this place
671 * immediately. Lather, rinse and repeat...
672 */
673 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
674 irq_work_needs_cpu() || local_timer_softirq_pending()) {
c1ad348b 675 next_tick = basemono + TICK_NSEC;
3c5d92a0 676 } else {
c1ad348b
TG
677 /*
678 * Get the next pending timer. If high resolution
679 * timers are enabled this only takes the timer wheel
680 * timers into account. If high resolution timers are
681 * disabled this also looks at the next expiring
682 * hrtimer.
683 */
684 next_tmr = get_next_timer_interrupt(basejiff, basemono);
685 ts->next_timer = next_tmr;
686 /* Take the next rcu event into account */
687 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
3c5d92a0 688 }
47aa8b6c 689
c1ad348b
TG
690 /*
691 * If the tick is due in the next period, keep it ticking or
82bbe34b 692 * force prod the timer.
c1ad348b
TG
693 */
694 delta = next_tick - basemono;
695 if (delta <= (u64)TICK_NSEC) {
a683f390
TG
696 /*
697 * Tell the timer code that the base is not idle, i.e. undo
698 * the effect of get_next_timer_interrupt():
699 */
700 timer_clear_idle();
82bbe34b
PZ
701 /*
702 * We've not stopped the tick yet, and there's a timer in the
703 * next period, so no point in stopping it either, bail.
704 */
f99973e1
FW
705 if (!ts->tick_stopped) {
706 tick = 0;
157d29e1
TG
707 goto out;
708 }
709 }
710
79bf2bb3 711 /*
0de7611a
IM
712 * If this CPU is the one which updates jiffies, then give up
713 * the assignment and let it be taken by the CPU which runs
714 * the tick timer next, which might be this CPU as well. If we
157d29e1
TG
715 * don't drop this here the jiffies might be stale and
716 * do_timer() never invoked. Keep track of the fact that it
0de7611a 717 * was the one which had the do_timer() duty last. If this CPU
157d29e1 718 * is the one which had the do_timer() duty last, we limit the
6168f8ed 719 * sleep time to the timekeeping max_deferment value.
c1ad348b 720 * Otherwise we can sleep as long as we want.
79bf2bb3 721 */
c1ad348b 722 delta = timekeeping_max_deferment();
157d29e1
TG
723 if (cpu == tick_do_timer_cpu) {
724 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
725 ts->do_timer_last = 1;
726 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
c1ad348b 727 delta = KTIME_MAX;
157d29e1
TG
728 ts->do_timer_last = 0;
729 } else if (!ts->do_timer_last) {
c1ad348b 730 delta = KTIME_MAX;
157d29e1 731 }
27185016 732
c1ad348b
TG
733 /* Calculate the next expiry time */
734 if (delta < (KTIME_MAX - basemono))
735 expires = basemono + delta;
157d29e1 736 else
c1ad348b
TG
737 expires = KTIME_MAX;
738
739 expires = min_t(u64, expires, next_tick);
2456e855 740 tick = expires;
00147449 741
157d29e1 742 /* Skip reprogram of event if its not changed */
411fe24e
FW
743 if (ts->tick_stopped && (expires == ts->next_tick)) {
744 /* Sanity check: make sure clockevent is actually programmed */
d4af6d93 745 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
ce6cf9a1 746 goto out;
411fe24e
FW
747
748 WARN_ON_ONCE(1);
749 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
750 basemono, ts->next_tick, dev->next_event,
751 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
ce6cf9a1 752 }
84bf1bcc 753
157d29e1
TG
754 /*
755 * nohz_stop_sched_tick can be called several times before
756 * the nohz_restart_sched_tick is called. This happens when
757 * interrupts arrive which do not cause a reschedule. In the
758 * first call we save the current tick time, so we can restart
759 * the scheduler tick in nohz_restart_sched_tick.
760 */
761 if (!ts->tick_stopped) {
3c85d6db 762 calc_load_nohz_start();
1f41906a 763 cpu_load_update_nohz_start();
62cb1188 764 quiet_vmstat();
d3ed7824 765
157d29e1
TG
766 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
767 ts->tick_stopped = 1;
e6e6cc22 768 trace_tick_stop(1, TICK_DEP_MASK_NONE);
157d29e1 769 }
eaad084b 770
411fe24e
FW
771 ts->next_tick = tick;
772
157d29e1 773 /*
c1ad348b
TG
774 * If the expiration time == KTIME_MAX, then we simply stop
775 * the tick timer.
157d29e1 776 */
c1ad348b 777 if (unlikely(expires == KTIME_MAX)) {
157d29e1
TG
778 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
779 hrtimer_cancel(&ts->sched_timer);
780 goto out;
79bf2bb3 781 }
0ff53d09 782
d4af6d93
FW
783 hrtimer_set_expires(&ts->sched_timer, tick);
784
157d29e1 785 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
d4af6d93 786 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
157d29e1 787 else
c1ad348b 788 tick_program_event(tick, 1);
79bf2bb3 789out:
411fe24e
FW
790 /*
791 * Update the estimated sleep length until the next timer
792 * (not only the tick).
793 */
4f86d3a8 794 ts->sleep_length = ktime_sub(dev->next_event, now);
c1ad348b 795 return tick;
280f0677
FW
796}
797
1f41906a 798static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
59d2c7ca
FW
799{
800 /* Update jiffies first */
801 tick_do_update_jiffies64(now);
1f41906a 802 cpu_load_update_nohz_stop();
59d2c7ca 803
a683f390
TG
804 /*
805 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
806 * the clock forward checks in the enqueue path:
807 */
808 timer_clear_idle();
809
3c85d6db 810 calc_load_nohz_stop();
03e0d461 811 touch_softlockup_watchdog_sched();
59d2c7ca
FW
812 /*
813 * Cancel the scheduled timer and restore the tick
814 */
815 ts->tick_stopped = 0;
816 ts->idle_exittime = now;
817
818 tick_nohz_restart(ts, now);
819}
73738a95
FW
820
821static void tick_nohz_full_update_tick(struct tick_sched *ts)
5811d996
FW
822{
823#ifdef CONFIG_NO_HZ_FULL
e9a2eb40 824 int cpu = smp_processor_id();
5811d996 825
59449359 826 if (!tick_nohz_full_cpu(cpu))
e9a2eb40 827 return;
5811d996 828
e9a2eb40
AS
829 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
830 return;
5811d996 831
57ccdf44 832 if (can_stop_full_tick(cpu, ts))
73738a95
FW
833 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
834 else if (ts->tick_stopped)
1f41906a 835 tick_nohz_restart_sched_tick(ts, ktime_get());
5811d996
FW
836#endif
837}
838
5b39939a
FW
839static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
840{
841 /*
0de7611a 842 * If this CPU is offline and it is the one which updates
5b39939a 843 * jiffies, then give up the assignment and let it be taken by
0de7611a 844 * the CPU which runs the tick timer next. If we don't drop
5b39939a
FW
845 * this here the jiffies might be stale and do_timer() never
846 * invoked.
847 */
848 if (unlikely(!cpu_online(cpu))) {
849 if (cpu == tick_do_timer_cpu)
850 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
411fe24e
FW
851 /*
852 * Make sure the CPU doesn't get fooled by obsolete tick
853 * deadline if it comes back online later.
854 */
855 ts->next_tick = 0;
f7ea0fd6 856 return false;
5b39939a
FW
857 }
858
0e576acb 859 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
2456e855 860 ts->sleep_length = NSEC_PER_SEC / HZ;
5b39939a 861 return false;
0e576acb 862 }
5b39939a
FW
863
864 if (need_resched())
865 return false;
866
867 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
868 static int ratelimit;
869
803b0eba
PM
870 if (ratelimit < 10 &&
871 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
cfea7d7e
RV
872 pr_warn("NOHZ: local_softirq_pending %02x\n",
873 (unsigned int) local_softirq_pending());
5b39939a
FW
874 ratelimit++;
875 }
876 return false;
877 }
878
460775df 879 if (tick_nohz_full_enabled()) {
a382bf93
FW
880 /*
881 * Keep the tick alive to guarantee timekeeping progression
882 * if there are full dynticks CPUs around
883 */
884 if (tick_do_timer_cpu == cpu)
885 return false;
886 /*
887 * Boot safety: make sure the timekeeping duty has been
888 * assigned before entering dyntick-idle mode,
889 */
890 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
891 return false;
892 }
893
5b39939a
FW
894 return true;
895}
896
19f5f736
FW
897static void __tick_nohz_idle_enter(struct tick_sched *ts)
898{
84bf1bcc 899 ktime_t now, expires;
5b39939a 900 int cpu = smp_processor_id();
19f5f736 901
08d07259
WL
902 now = tick_nohz_start_idle(ts);
903
5b39939a
FW
904 if (can_stop_idle_tick(cpu, ts)) {
905 int was_stopped = ts->tick_stopped;
906
907 ts->idle_calls++;
84bf1bcc
FW
908
909 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
2456e855 910 if (expires > 0LL) {
84bf1bcc
FW
911 ts->idle_sleeps++;
912 ts->idle_expires = expires;
913 }
5b39939a 914
a0db971e 915 if (!was_stopped && ts->tick_stopped) {
5b39939a 916 ts->idle_jiffies = ts->last_jiffies;
a0db971e
FW
917 nohz_balance_enter_idle(cpu);
918 }
5b39939a 919 }
280f0677
FW
920}
921
922/**
923 * tick_nohz_idle_enter - stop the idle tick from the idle task
924 *
925 * When the next event is more than a tick into the future, stop the idle tick
926 * Called when we start the idle loop.
2bbb6817 927 *
1268fbc7 928 * The arch is responsible of calling:
2bbb6817
FW
929 *
930 * - rcu_idle_enter() after its last use of RCU before the CPU is put
931 * to sleep.
932 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
280f0677 933 */
1268fbc7 934void tick_nohz_idle_enter(void)
280f0677
FW
935{
936 struct tick_sched *ts;
937
ebf3adba 938 lockdep_assert_irqs_enabled();
0db49b72 939
1268fbc7
FW
940 local_irq_disable();
941
22127e93 942 ts = this_cpu_ptr(&tick_cpu_sched);
280f0677 943 ts->inidle = 1;
19f5f736 944 __tick_nohz_idle_enter(ts);
1268fbc7
FW
945
946 local_irq_enable();
280f0677
FW
947}
948
949/**
950 * tick_nohz_irq_exit - update next tick event from interrupt exit
951 *
952 * When an interrupt fires while we are idle and it doesn't cause
953 * a reschedule, it may still add, modify or delete a timer, enqueue
954 * an RCU callback, etc...
955 * So we need to re-calculate and reprogram the next tick event.
956 */
957void tick_nohz_irq_exit(void)
958{
22127e93 959 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
280f0677 960
14851912 961 if (ts->inidle)
5811d996 962 __tick_nohz_idle_enter(ts);
14851912 963 else
73738a95 964 tick_nohz_full_update_tick(ts);
79bf2bb3
TG
965}
966
4f86d3a8
LB
967/**
968 * tick_nohz_get_sleep_length - return the length of the current sleep
969 *
970 * Called from power state control code with interrupts disabled
971 */
972ktime_t tick_nohz_get_sleep_length(void)
973{
22127e93 974 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
4f86d3a8
LB
975
976 return ts->sleep_length;
977}
978
466a2b42
JF
979/**
980 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
981 * for a particular CPU.
982 *
983 * Called from the schedutil frequency scaling governor in scheduler context.
984 */
985unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
986{
987 struct tick_sched *ts = tick_get_tick_sched(cpu);
988
989 return ts->idle_calls;
990}
991
b7eaf1aa
RW
992/**
993 * tick_nohz_get_idle_calls - return the current idle calls counter value
994 *
995 * Called from the schedutil frequency scaling governor in scheduler context.
996 */
997unsigned long tick_nohz_get_idle_calls(void)
998{
999 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1000
1001 return ts->idle_calls;
1002}
1003
2ac0d98f
FW
1004static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1005{
3f4724ea 1006#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
2ac0d98f 1007 unsigned long ticks;
3f4724ea 1008
55dbdcfa 1009 if (vtime_accounting_cpu_enabled())
3f4724ea 1010 return;
79bf2bb3
TG
1011 /*
1012 * We stopped the tick in idle. Update process times would miss the
1013 * time we slept as update_process_times does only a 1 tick
1014 * accounting. Enforce that this is accounted to idle !
1015 */
1016 ticks = jiffies - ts->idle_jiffies;
1017 /*
1018 * We might be one off. Do not randomly account a huge number of ticks!
1019 */
79741dd3
MS
1020 if (ticks && ticks < LONG_MAX)
1021 account_idle_ticks(ticks);
1022#endif
19f5f736
FW
1023}
1024
79bf2bb3 1025/**
280f0677 1026 * tick_nohz_idle_exit - restart the idle tick from the idle task
79bf2bb3
TG
1027 *
1028 * Restart the idle tick when the CPU is woken up from idle
280f0677
FW
1029 * This also exit the RCU extended quiescent state. The CPU
1030 * can use RCU again after this function is called.
79bf2bb3 1031 */
280f0677 1032void tick_nohz_idle_exit(void)
79bf2bb3 1033{
4a32fea9 1034 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
6378ddb5 1035 ktime_t now;
79bf2bb3 1036
6378ddb5 1037 local_irq_disable();
2bbb6817 1038
15f827be
FW
1039 WARN_ON_ONCE(!ts->inidle);
1040
1041 ts->inidle = 0;
1042
1043 if (ts->idle_active || ts->tick_stopped)
eed3b9cf
MS
1044 now = ktime_get();
1045
1046 if (ts->idle_active)
e8fcaa5c 1047 tick_nohz_stop_idle(ts, now);
6378ddb5 1048
2ac0d98f 1049 if (ts->tick_stopped) {
1f41906a 1050 tick_nohz_restart_sched_tick(ts, now);
2ac0d98f 1051 tick_nohz_account_idle_ticks(ts);
6378ddb5 1052 }
79bf2bb3 1053
79bf2bb3
TG
1054 local_irq_enable();
1055}
1056
79bf2bb3
TG
1057/*
1058 * The nohz low res interrupt handler
1059 */
1060static void tick_nohz_handler(struct clock_event_device *dev)
1061{
22127e93 1062 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1063 struct pt_regs *regs = get_irq_regs();
1064 ktime_t now = ktime_get();
1065
2456e855 1066 dev->next_event = KTIME_MAX;
79bf2bb3 1067
5bb96226 1068 tick_sched_do_timer(now);
9e8f559b 1069 tick_sched_handle(ts, regs);
79bf2bb3 1070
b5e995e6
VK
1071 /* No need to reprogram if we are running tickless */
1072 if (unlikely(ts->tick_stopped))
1073 return;
1074
0ff53d09
TG
1075 hrtimer_forward(&ts->sched_timer, now, tick_period);
1076 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
79bf2bb3
TG
1077}
1078
bc7a34b8
TG
1079static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1080{
1081 if (!tick_nohz_enabled)
1082 return;
1083 ts->nohz_mode = mode;
1084 /* One update is enough */
1085 if (!test_and_set_bit(0, &tick_nohz_active))
ae67bada 1086 timers_update_nohz();
bc7a34b8
TG
1087}
1088
79bf2bb3
TG
1089/**
1090 * tick_nohz_switch_to_nohz - switch to nohz mode
1091 */
1092static void tick_nohz_switch_to_nohz(void)
1093{
22127e93 1094 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1095 ktime_t next;
1096
27630532 1097 if (!tick_nohz_enabled)
79bf2bb3
TG
1098 return;
1099
6b442bc8 1100 if (tick_switch_to_oneshot(tick_nohz_handler))
79bf2bb3 1101 return;
6b442bc8 1102
79bf2bb3
TG
1103 /*
1104 * Recycle the hrtimer in ts, so we can share the
1105 * hrtimer_forward with the highres code.
1106 */
1107 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1108 /* Get the next period */
1109 next = tick_init_jiffy_update();
1110
0ff53d09 1111 hrtimer_set_expires(&ts->sched_timer, next);
1ca8ec53
WL
1112 hrtimer_forward_now(&ts->sched_timer, tick_period);
1113 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
bc7a34b8 1114 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
79bf2bb3
TG
1115}
1116
5acac1be 1117static inline void tick_nohz_irq_enter(void)
eed3b9cf 1118{
4a32fea9 1119 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
eed3b9cf
MS
1120 ktime_t now;
1121
1122 if (!ts->idle_active && !ts->tick_stopped)
1123 return;
1124 now = ktime_get();
1125 if (ts->idle_active)
e8fcaa5c 1126 tick_nohz_stop_idle(ts, now);
ff006732 1127 if (ts->tick_stopped)
eed3b9cf 1128 tick_nohz_update_jiffies(now);
eed3b9cf
MS
1129}
1130
79bf2bb3
TG
1131#else
1132
1133static inline void tick_nohz_switch_to_nohz(void) { }
5acac1be 1134static inline void tick_nohz_irq_enter(void) { }
bc7a34b8 1135static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
79bf2bb3 1136
3451d024 1137#endif /* CONFIG_NO_HZ_COMMON */
79bf2bb3 1138
719254fa
TG
1139/*
1140 * Called from irq_enter to notify about the possible interruption of idle()
1141 */
5acac1be 1142void tick_irq_enter(void)
719254fa 1143{
e8fcaa5c 1144 tick_check_oneshot_broadcast_this_cpu();
5acac1be 1145 tick_nohz_irq_enter();
719254fa
TG
1146}
1147
79bf2bb3
TG
1148/*
1149 * High resolution timer specific code
1150 */
1151#ifdef CONFIG_HIGH_RES_TIMERS
1152/*
4c9dc641 1153 * We rearm the timer until we get disabled by the idle code.
351f181f 1154 * Called with interrupts disabled.
79bf2bb3
TG
1155 */
1156static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1157{
1158 struct tick_sched *ts =
1159 container_of(timer, struct tick_sched, sched_timer);
79bf2bb3
TG
1160 struct pt_regs *regs = get_irq_regs();
1161 ktime_t now = ktime_get();
d3ed7824 1162
5bb96226 1163 tick_sched_do_timer(now);
79bf2bb3
TG
1164
1165 /*
1166 * Do not call, when we are not in irq context and have
1167 * no valid regs pointer
1168 */
9e8f559b
FW
1169 if (regs)
1170 tick_sched_handle(ts, regs);
7c259045
FW
1171 else
1172 ts->next_tick = 0;
79bf2bb3 1173
2a16fc93
VK
1174 /* No need to reprogram if we are in idle or full dynticks mode */
1175 if (unlikely(ts->tick_stopped))
1176 return HRTIMER_NORESTART;
1177
79bf2bb3
TG
1178 hrtimer_forward(timer, now, tick_period);
1179
1180 return HRTIMER_RESTART;
1181}
1182
5307c955
MG
1183static int sched_skew_tick;
1184
62cf20b3
TG
1185static int __init skew_tick(char *str)
1186{
1187 get_option(&str, &sched_skew_tick);
1188
1189 return 0;
1190}
1191early_param("skew_tick", skew_tick);
1192
79bf2bb3
TG
1193/**
1194 * tick_setup_sched_timer - setup the tick emulation timer
1195 */
1196void tick_setup_sched_timer(void)
1197{
22127e93 1198 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1199 ktime_t now = ktime_get();
1200
1201 /*
1202 * Emulate tick processing via per-CPU hrtimers:
1203 */
1204 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1205 ts->sched_timer.function = tick_sched_timer;
79bf2bb3 1206
0de7611a 1207 /* Get the next period (per-CPU) */
cc584b21 1208 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
79bf2bb3 1209
9c3f9e28 1210 /* Offset the tick to avert jiffies_lock contention. */
5307c955
MG
1211 if (sched_skew_tick) {
1212 u64 offset = ktime_to_ns(tick_period) >> 1;
1213 do_div(offset, num_possible_cpus());
1214 offset *= smp_processor_id();
1215 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1216 }
1217
afc08b15
TG
1218 hrtimer_forward(&ts->sched_timer, now, tick_period);
1219 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
bc7a34b8 1220 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
79bf2bb3 1221}
3c4fbe5e 1222#endif /* HIGH_RES_TIMERS */
79bf2bb3 1223
3451d024 1224#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1225void tick_cancel_sched_timer(int cpu)
1226{
1227 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1228
3c4fbe5e 1229# ifdef CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1230 if (ts->sched_timer.base)
1231 hrtimer_cancel(&ts->sched_timer);
3c4fbe5e 1232# endif
a7901766 1233
4b0c0f29 1234 memset(ts, 0, sizeof(*ts));
79bf2bb3 1235}
3c4fbe5e 1236#endif
79bf2bb3
TG
1237
1238/**
1239 * Async notification about clocksource changes
1240 */
1241void tick_clock_notify(void)
1242{
1243 int cpu;
1244
1245 for_each_possible_cpu(cpu)
1246 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1247}
1248
1249/*
1250 * Async notification about clock event changes
1251 */
1252void tick_oneshot_notify(void)
1253{
22127e93 1254 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1255
1256 set_bit(0, &ts->check_clocks);
1257}
1258
1259/**
1260 * Check, if a change happened, which makes oneshot possible.
1261 *
1262 * Called cyclic from the hrtimer softirq (driven by the timer
1263 * softirq) allow_nohz signals, that we can switch into low-res nohz
1264 * mode, because high resolution timers are disabled (either compile
6b442bc8 1265 * or runtime). Called with interrupts disabled.
79bf2bb3
TG
1266 */
1267int tick_check_oneshot_change(int allow_nohz)
1268{
22127e93 1269 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1270
1271 if (!test_and_clear_bit(0, &ts->check_clocks))
1272 return 0;
1273
1274 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1275 return 0;
1276
cf4fc6cb 1277 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
79bf2bb3
TG
1278 return 0;
1279
1280 if (!allow_nohz)
1281 return 1;
1282
1283 tick_nohz_switch_to_nohz();
1284 return 0;
1285}