tick/nohz: Use WARN_ON_ONCE() to prevent console saturation
[linux-2.6-block.git] / kernel / time / tick-sched.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
79bf2bb3 2/*
79bf2bb3
TG
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
79bf2bb3
TG
10 */
11#include <linux/cpu.h>
12#include <linux/err.h>
13#include <linux/hrtimer.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/percpu.h>
38b8d208 17#include <linux/nmi.h>
79bf2bb3 18#include <linux/profile.h>
3f07c014 19#include <linux/sched/signal.h>
e6017571 20#include <linux/sched/clock.h>
03441a34 21#include <linux/sched/stat.h>
370c9135 22#include <linux/sched/nohz.h>
896b969e 23#include <linux/sched/loadavg.h>
8083e4ad 24#include <linux/module.h>
00b42959 25#include <linux/irq_work.h>
9014c45d 26#include <linux/posix-timers.h>
2e709338 27#include <linux/context_tracking.h>
62cb1188 28#include <linux/mm.h>
79bf2bb3 29
9e203bcc
DM
30#include <asm/irq_regs.h>
31
79bf2bb3
TG
32#include "tick-internal.h"
33
cb41a290
FW
34#include <trace/events/timer.h>
35
79bf2bb3 36/*
0de7611a 37 * Per-CPU nohz control structure
79bf2bb3 38 */
c1797baf 39static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
79bf2bb3 40
289f480a
IM
41struct tick_sched *tick_get_tick_sched(int cpu)
42{
43 return &per_cpu(tick_cpu_sched, cpu);
44}
45
7809998a
AB
46#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47/*
c398960c
TG
48 * The time, when the last jiffy update happened. Write access must hold
49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50 * consistent view of jiffies and last_jiffies_update.
7809998a
AB
51 */
52static ktime_t last_jiffies_update;
53
79bf2bb3
TG
54/*
55 * Must be called with interrupts disabled !
56 */
57static void tick_do_update_jiffies64(ktime_t now)
58{
7a35bf2a 59 unsigned long ticks = 1;
aa3b66f4 60 ktime_t delta, nextp;
79bf2bb3 61
7a14ce1d 62 /*
aa3b66f4
TG
63 * 64bit can do a quick check without holding jiffies lock and
64 * without looking at the sequence count. The smp_load_acquire()
372acbba
TG
65 * pairs with the update done later in this function.
66 *
aa3b66f4
TG
67 * 32bit cannot do that because the store of tick_next_period
68 * consists of two 32bit stores and the first store could move it
69 * to a random point in the future.
7a14ce1d 70 */
aa3b66f4
TG
71 if (IS_ENABLED(CONFIG_64BIT)) {
72 if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73 return;
74 } else {
75 unsigned int seq;
76
77 /*
78 * Avoid contention on jiffies_lock and protect the quick
79 * check with the sequence count.
80 */
81 do {
82 seq = read_seqcount_begin(&jiffies_seq);
83 nextp = tick_next_period;
84 } while (read_seqcount_retry(&jiffies_seq, seq));
85
86 if (ktime_before(now, nextp))
87 return;
88 }
7a14ce1d 89
aa3b66f4 90 /* Quick check failed, i.e. update is required. */
e5d4d175 91 raw_spin_lock(&jiffies_lock);
aa3b66f4
TG
92 /*
93 * Reevaluate with the lock held. Another CPU might have done the
94 * update already.
95 */
94ad2e3c 96 if (ktime_before(now, tick_next_period)) {
e5d4d175 97 raw_spin_unlock(&jiffies_lock);
03e6bdc5 98 return;
79bf2bb3 99 }
94ad2e3c
YY
100
101 write_seqcount_begin(&jiffies_seq);
102
94ad2e3c 103 delta = ktime_sub(now, tick_next_period);
b9965449 104 if (unlikely(delta >= TICK_NSEC)) {
94ad2e3c 105 /* Slow path for long idle sleep times */
b9965449 106 s64 incr = TICK_NSEC;
94ad2e3c 107
7a35bf2a 108 ticks += ktime_divns(delta, incr);
94ad2e3c
YY
109
110 last_jiffies_update = ktime_add_ns(last_jiffies_update,
111 incr * ticks);
7a35bf2a 112 } else {
b9965449
TG
113 last_jiffies_update = ktime_add_ns(last_jiffies_update,
114 TICK_NSEC);
94ad2e3c
YY
115 }
116
896b969e
YY
117 /* Advance jiffies to complete the jiffies_seq protected job */
118 jiffies_64 += ticks;
94ad2e3c
YY
119
120 /*
aa3b66f4 121 * Keep the tick_next_period variable up to date.
94ad2e3c 122 */
aa3b66f4
TG
123 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124
125 if (IS_ENABLED(CONFIG_64BIT)) {
126 /*
127 * Pairs with smp_load_acquire() in the lockless quick
128 * check above and ensures that the update to jiffies_64 is
129 * not reordered vs. the store to tick_next_period, neither
130 * by the compiler nor by the CPU.
131 */
132 smp_store_release(&tick_next_period, nextp);
133 } else {
134 /*
135 * A plain store is good enough on 32bit as the quick check
136 * above is protected by the sequence count.
137 */
138 tick_next_period = nextp;
139 }
94ad2e3c 140
896b969e
YY
141 /*
142 * Release the sequence count. calc_global_load() below is not
143 * protected by it, but jiffies_lock needs to be held to prevent
144 * concurrent invocations.
145 */
e5d4d175 146 write_seqcount_end(&jiffies_seq);
896b969e
YY
147
148 calc_global_load();
149
e5d4d175 150 raw_spin_unlock(&jiffies_lock);
47a1b796 151 update_wall_time();
79bf2bb3
TG
152}
153
154/*
155 * Initialize and return retrieve the jiffies update.
156 */
157static ktime_t tick_init_jiffy_update(void)
158{
159 ktime_t period;
160
e5d4d175
TG
161 raw_spin_lock(&jiffies_lock);
162 write_seqcount_begin(&jiffies_seq);
79bf2bb3 163 /* Did we start the jiffies update yet ? */
2456e855 164 if (last_jiffies_update == 0)
79bf2bb3
TG
165 last_jiffies_update = tick_next_period;
166 period = last_jiffies_update;
e5d4d175
TG
167 write_seqcount_end(&jiffies_seq);
168 raw_spin_unlock(&jiffies_lock);
79bf2bb3
TG
169 return period;
170}
171
a1ff03cd
FW
172#define MAX_STALLED_JIFFIES 5
173
ff7de620 174static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
5bb96226
FW
175{
176 int cpu = smp_processor_id();
177
3451d024 178#ifdef CONFIG_NO_HZ_COMMON
5bb96226
FW
179 /*
180 * Check if the do_timer duty was dropped. We don't care about
0de7611a
IM
181 * concurrency: This happens only when the CPU in charge went
182 * into a long sleep. If two CPUs happen to assign themselves to
5bb96226 183 * this duty, then the jiffies update is still serialized by
9c3f9e28 184 * jiffies_lock.
08ae95f4
NP
185 *
186 * If nohz_full is enabled, this should not happen because the
187 * tick_do_timer_cpu never relinquishes.
5bb96226 188 */
08ae95f4
NP
189 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
190#ifdef CONFIG_NO_HZ_FULL
40e97e42 191 WARN_ON_ONCE(tick_nohz_full_running);
08ae95f4 192#endif
5bb96226 193 tick_do_timer_cpu = cpu;
08ae95f4 194 }
5bb96226
FW
195#endif
196
197 /* Check, if the jiffies need an update */
198 if (tick_do_timer_cpu == cpu)
199 tick_do_update_jiffies64(now);
ff7de620 200
a1ff03cd
FW
201 /*
202 * If jiffies update stalled for too long (timekeeper in stop_machine()
203 * or VMEXIT'ed for several msecs), force an update.
204 */
205 if (ts->last_tick_jiffies != jiffies) {
206 ts->stalled_jiffies = 0;
207 ts->last_tick_jiffies = READ_ONCE(jiffies);
208 } else {
209 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
210 tick_do_update_jiffies64(now);
211 ts->stalled_jiffies = 0;
212 ts->last_tick_jiffies = READ_ONCE(jiffies);
213 }
214 }
215
ff7de620
RW
216 if (ts->inidle)
217 ts->got_idle_tick = 1;
5bb96226
FW
218}
219
9e8f559b
FW
220static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
221{
3451d024 222#ifdef CONFIG_NO_HZ_COMMON
9e8f559b
FW
223 /*
224 * When we are idle and the tick is stopped, we have to touch
225 * the watchdog as we might not schedule for a really long
226 * time. This happens on complete idle SMP systems while
227 * waiting on the login prompt. We also increment the "start of
228 * idle" jiffy stamp so the idle accounting adjustment we do
229 * when we go busy again does not account too much ticks.
230 */
231 if (ts->tick_stopped) {
03e0d461 232 touch_softlockup_watchdog_sched();
9e8f559b
FW
233 if (is_idle_task(current))
234 ts->idle_jiffies++;
411fe24e
FW
235 /*
236 * In case the current tick fired too early past its expected
237 * expiration, make sure we don't bypass the next clock reprogramming
238 * to the same deadline.
239 */
240 ts->next_tick = 0;
9e8f559b 241 }
94a57140 242#endif
9e8f559b
FW
243 update_process_times(user_mode(regs));
244 profile_tick(CPU_PROFILING);
245}
7809998a 246#endif
9e8f559b 247
c5bfece2 248#ifdef CONFIG_NO_HZ_FULL
460775df 249cpumask_var_t tick_nohz_full_mask;
f268c373 250EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
73867dcd 251bool tick_nohz_full_running;
ae9e557b 252EXPORT_SYMBOL_GPL(tick_nohz_full_running);
f009a7a7 253static atomic_t tick_dep_mask;
a831881b 254
f009a7a7 255static bool check_tick_dependency(atomic_t *dep)
d027d45d 256{
f009a7a7
FW
257 int val = atomic_read(dep);
258
259 if (val & TICK_DEP_MASK_POSIX_TIMER) {
e6e6cc22 260 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
f009a7a7 261 return true;
d027d45d
FW
262 }
263
f009a7a7 264 if (val & TICK_DEP_MASK_PERF_EVENTS) {
e6e6cc22 265 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
f009a7a7 266 return true;
d027d45d
FW
267 }
268
f009a7a7 269 if (val & TICK_DEP_MASK_SCHED) {
e6e6cc22 270 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
f009a7a7 271 return true;
d027d45d
FW
272 }
273
f009a7a7 274 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
e6e6cc22 275 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
f009a7a7
FW
276 return true;
277 }
278
01b4c399
FW
279 if (val & TICK_DEP_MASK_RCU) {
280 trace_tick_stop(0, TICK_DEP_MASK_RCU);
281 return true;
282 }
283
f009a7a7 284 return false;
d027d45d
FW
285}
286
57ccdf44 287static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
9014c45d 288{
ebf3adba 289 lockdep_assert_irqs_disabled();
9014c45d 290
57ccdf44
WL
291 if (unlikely(!cpu_online(cpu)))
292 return false;
293
f009a7a7 294 if (check_tick_dependency(&tick_dep_mask))
d027d45d 295 return false;
d027d45d 296
f009a7a7 297 if (check_tick_dependency(&ts->tick_dep_mask))
d027d45d 298 return false;
d027d45d 299
f009a7a7 300 if (check_tick_dependency(&current->tick_dep_mask))
d027d45d 301 return false;
d027d45d 302
f009a7a7 303 if (check_tick_dependency(&current->signal->tick_dep_mask))
d027d45d 304 return false;
d027d45d 305
9014c45d
FW
306 return true;
307}
308
d027d45d 309static void nohz_full_kick_func(struct irq_work *work)
76c24fb0 310{
73738a95 311 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
76c24fb0
FW
312}
313
7a9f50a0
PZ
314static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
315 IRQ_WORK_INIT_HARD(nohz_full_kick_func);
76c24fb0 316
40bea039
FW
317/*
318 * Kick this CPU if it's full dynticks in order to force it to
319 * re-evaluate its dependency on the tick and restart it if necessary.
320 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
321 * is NMI safe.
322 */
555e0c1e 323static void tick_nohz_full_kick(void)
40bea039
FW
324{
325 if (!tick_nohz_full_cpu(smp_processor_id()))
326 return;
327
56e4dea8 328 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
40bea039
FW
329}
330
76c24fb0 331/*
3d36aebc 332 * Kick the CPU if it's full dynticks in order to force it to
76c24fb0
FW
333 * re-evaluate its dependency on the tick and restart it if necessary.
334 */
3d36aebc 335void tick_nohz_full_kick_cpu(int cpu)
76c24fb0 336{
3d36aebc
FW
337 if (!tick_nohz_full_cpu(cpu))
338 return;
339
340 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
76c24fb0
FW
341}
342
29721b85
FW
343static void tick_nohz_kick_task(struct task_struct *tsk)
344{
a1dfb631
MT
345 int cpu;
346
347 /*
348 * If the task is not running, run_posix_cpu_timers()
349 * has nothing to elapse, IPI can then be spared.
350 *
351 * activate_task() STORE p->tick_dep_mask
352 * STORE p->on_rq
353 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
354 * LOCK rq->lock LOAD p->on_rq
355 * smp_mb__after_spin_lock()
356 * tick_nohz_task_switch()
357 * LOAD p->tick_dep_mask
358 */
359 if (!sched_task_on_rq(tsk))
360 return;
29721b85
FW
361
362 /*
363 * If the task concurrently migrates to another CPU,
364 * we guarantee it sees the new tick dependency upon
365 * schedule.
366 *
29721b85
FW
367 * set_task_cpu(p, cpu);
368 * STORE p->cpu = @cpu
369 * __schedule() (switch to task 'p')
370 * LOCK rq->lock
371 * smp_mb__after_spin_lock() STORE p->tick_dep_mask
372 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
373 * LOAD p->tick_dep_mask LOAD p->cpu
374 */
a1dfb631 375 cpu = task_cpu(tsk);
29721b85
FW
376
377 preempt_disable();
378 if (cpu_online(cpu))
379 tick_nohz_full_kick_cpu(cpu);
380 preempt_enable();
381}
382
76c24fb0
FW
383/*
384 * Kick all full dynticks CPUs in order to force these to re-evaluate
385 * their dependency on the tick and restart it if necessary.
386 */
b7878300 387static void tick_nohz_full_kick_all(void)
76c24fb0 388{
8537bb95
FW
389 int cpu;
390
73867dcd 391 if (!tick_nohz_full_running)
76c24fb0
FW
392 return;
393
394 preempt_disable();
8537bb95
FW
395 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
396 tick_nohz_full_kick_cpu(cpu);
76c24fb0
FW
397 preempt_enable();
398}
399
f009a7a7 400static void tick_nohz_dep_set_all(atomic_t *dep,
d027d45d
FW
401 enum tick_dep_bits bit)
402{
f009a7a7 403 int prev;
d027d45d 404
a1cc5bcf 405 prev = atomic_fetch_or(BIT(bit), dep);
d027d45d
FW
406 if (!prev)
407 tick_nohz_full_kick_all();
408}
409
410/*
411 * Set a global tick dependency. Used by perf events that rely on freq and
412 * by unstable clock.
413 */
414void tick_nohz_dep_set(enum tick_dep_bits bit)
415{
416 tick_nohz_dep_set_all(&tick_dep_mask, bit);
417}
418
419void tick_nohz_dep_clear(enum tick_dep_bits bit)
420{
f009a7a7 421 atomic_andnot(BIT(bit), &tick_dep_mask);
d027d45d
FW
422}
423
424/*
425 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
426 * manage events throttling.
427 */
428void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
429{
f009a7a7 430 int prev;
d027d45d
FW
431 struct tick_sched *ts;
432
433 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
434
a1cc5bcf 435 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
436 if (!prev) {
437 preempt_disable();
438 /* Perf needs local kick that is NMI safe */
439 if (cpu == smp_processor_id()) {
440 tick_nohz_full_kick();
441 } else {
442 /* Remote irq work not NMI-safe */
443 if (!WARN_ON_ONCE(in_nmi()))
444 tick_nohz_full_kick_cpu(cpu);
445 }
446 preempt_enable();
447 }
448}
01b4c399 449EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
d027d45d
FW
450
451void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
452{
453 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
454
f009a7a7 455 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
d027d45d 456}
01b4c399 457EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
d027d45d
FW
458
459/*
3c8920e2
FW
460 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
461 * in order to elapse per task timers.
d027d45d
FW
462 */
463void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
464{
29721b85
FW
465 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
466 tick_nohz_kick_task(tsk);
d027d45d 467}
ae9e557b 468EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
d027d45d
FW
469
470void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
471{
f009a7a7 472 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
d027d45d 473}
ae9e557b 474EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
d027d45d
FW
475
476/*
477 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
478 * per process timers.
479 */
1e4ca26d
MT
480void tick_nohz_dep_set_signal(struct task_struct *tsk,
481 enum tick_dep_bits bit)
d027d45d 482{
1e4ca26d
MT
483 int prev;
484 struct signal_struct *sig = tsk->signal;
485
486 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
487 if (!prev) {
488 struct task_struct *t;
489
490 lockdep_assert_held(&tsk->sighand->siglock);
491 __for_each_thread(sig, t)
492 tick_nohz_kick_task(t);
493 }
d027d45d
FW
494}
495
496void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
497{
f009a7a7 498 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
d027d45d
FW
499}
500
99e5ada9
FW
501/*
502 * Re-evaluate the need for the tick as we switch the current task.
503 * It might need the tick due to per task/process properties:
0de7611a 504 * perf events, posix CPU timers, ...
99e5ada9 505 */
de734f89 506void __tick_nohz_task_switch(void)
99e5ada9 507{
d027d45d 508 struct tick_sched *ts;
99e5ada9 509
6296ace4 510 if (!tick_nohz_full_cpu(smp_processor_id()))
0fdcccfa 511 return;
6296ace4 512
d027d45d 513 ts = this_cpu_ptr(&tick_cpu_sched);
99e5ada9 514
d027d45d 515 if (ts->tick_stopped) {
f009a7a7
FW
516 if (atomic_read(&current->tick_dep_mask) ||
517 atomic_read(&current->signal->tick_dep_mask))
d027d45d
FW
518 tick_nohz_full_kick();
519 }
99e5ada9
FW
520}
521
6f1982fe
FW
522/* Get the boot-time nohz CPU list from the kernel parameters. */
523void __init tick_nohz_full_setup(cpumask_var_t cpumask)
a831881b 524{
73867dcd 525 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
6f1982fe 526 cpumask_copy(tick_nohz_full_mask, cpumask);
73867dcd 527 tick_nohz_full_running = true;
a831881b 528}
ae9e557b 529EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
a831881b 530
31eff243 531static int tick_nohz_cpu_down(unsigned int cpu)
a382bf93 532{
31eff243 533 /*
08ae95f4
NP
534 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
535 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
31eff243
SAS
536 * CPUs. It must remain online when nohz full is enabled.
537 */
538 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
539 return -EBUSY;
540 return 0;
a382bf93
FW
541}
542
d1e43fa5 543void __init tick_nohz_init(void)
a831881b 544{
31eff243 545 int cpu, ret;
d1e43fa5 546
a7c8655b
PM
547 if (!tick_nohz_full_running)
548 return;
d1e43fa5 549
9b01f5bf
FW
550 /*
551 * Full dynticks uses irq work to drive the tick rescheduling on safe
552 * locking contexts. But then we need irq work to raise its own
553 * interrupts to avoid circular dependency on the tick
554 */
555 if (!arch_irq_work_has_interrupt()) {
a395d6a7 556 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
9b01f5bf 557 cpumask_clear(tick_nohz_full_mask);
9b01f5bf
FW
558 tick_nohz_full_running = false;
559 return;
560 }
561
08ae95f4
NP
562 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
563 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
564 cpu = smp_processor_id();
4327b15f 565
08ae95f4
NP
566 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
567 pr_warn("NO_HZ: Clearing %d from nohz_full range "
568 "for timekeeping\n", cpu);
569 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
570 }
4327b15f
FW
571 }
572
73867dcd 573 for_each_cpu(cpu, tick_nohz_full_mask)
2e709338
FW
574 context_tracking_cpu_set(cpu);
575
31eff243
SAS
576 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
577 "kernel/nohz:predown", NULL,
578 tick_nohz_cpu_down);
579 WARN_ON(ret < 0);
ffda22c1
TH
580 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
581 cpumask_pr_args(tick_nohz_full_mask));
a831881b 582}
a831881b
FW
583#endif
584
79bf2bb3
TG
585/*
586 * NOHZ - aka dynamic tick functionality
587 */
3451d024 588#ifdef CONFIG_NO_HZ_COMMON
79bf2bb3
TG
589/*
590 * NO HZ enabled ?
591 */
4cc7ecb7 592bool tick_nohz_enabled __read_mostly = true;
bc7a34b8 593unsigned long tick_nohz_active __read_mostly;
79bf2bb3
TG
594/*
595 * Enable / Disable tickless mode
596 */
597static int __init setup_tick_nohz(char *str)
598{
4cc7ecb7 599 return (kstrtobool(str, &tick_nohz_enabled) == 0);
79bf2bb3
TG
600}
601
602__setup("nohz=", setup_tick_nohz);
603
a3642983 604bool tick_nohz_tick_stopped(void)
c1797baf 605{
2bc629a6
FW
606 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
607
608 return ts->tick_stopped;
c1797baf
TG
609}
610
22ab8bc0
FW
611bool tick_nohz_tick_stopped_cpu(int cpu)
612{
613 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
614
615 return ts->tick_stopped;
616}
617
79bf2bb3
TG
618/**
619 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
620 *
621 * Called from interrupt entry when the CPU was idle
622 *
623 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
624 * must be updated. Otherwise an interrupt handler could use a stale jiffy
0de7611a
IM
625 * value. We do this unconditionally on any CPU, as we don't know whether the
626 * CPU, which has the update task assigned is in a long sleep.
79bf2bb3 627 */
eed3b9cf 628static void tick_nohz_update_jiffies(ktime_t now)
79bf2bb3 629{
79bf2bb3 630 unsigned long flags;
79bf2bb3 631
e8fcaa5c 632 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
79bf2bb3
TG
633
634 local_irq_save(flags);
635 tick_do_update_jiffies64(now);
636 local_irq_restore(flags);
02ff3755 637
03e0d461 638 touch_softlockup_watchdog_sched();
79bf2bb3
TG
639}
640
595aac48 641/*
0de7611a 642 * Updates the per-CPU time idle statistics counters
595aac48 643 */
8d63bf94 644static void
8c215bd3 645update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
6378ddb5 646{
eed3b9cf 647 ktime_t delta;
6378ddb5 648
595aac48
AV
649 if (ts->idle_active) {
650 delta = ktime_sub(now, ts->idle_entrytime);
8c215bd3 651 if (nr_iowait_cpu(cpu) > 0)
0224cf4c 652 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
6beea0cd
MH
653 else
654 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
8c7b09f4 655 ts->idle_entrytime = now;
595aac48 656 }
8d63bf94 657
e0e37c20 658 if (last_update_time)
8d63bf94
AV
659 *last_update_time = ktime_to_us(now);
660
595aac48
AV
661}
662
e8fcaa5c 663static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
595aac48 664{
e8fcaa5c 665 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
eed3b9cf 666 ts->idle_active = 0;
56c7426b 667
ac1e843f 668 sched_clock_idle_wakeup_event();
6378ddb5
VP
669}
670
0e776768 671static void tick_nohz_start_idle(struct tick_sched *ts)
6378ddb5 672{
0e776768 673 ts->idle_entrytime = ktime_get();
6378ddb5 674 ts->idle_active = 1;
56c7426b 675 sched_clock_idle_sleep_event();
6378ddb5
VP
676}
677
b1f724c3 678/**
0de7611a 679 * get_cpu_idle_time_us - get the total idle time of a CPU
b1f724c3 680 * @cpu: CPU number to query
09a1d34f
MH
681 * @last_update_time: variable to store update time in. Do not update
682 * counters if NULL.
b1f724c3 683 *
6168f8ed 684 * Return the cumulative idle time (since boot) for a given
6beea0cd 685 * CPU, in microseconds.
b1f724c3
AV
686 *
687 * This time is measured via accounting rather than sampling,
688 * and is as accurate as ktime_get() is.
689 *
690 * This function returns -1 if NOHZ is not enabled.
691 */
6378ddb5
VP
692u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
693{
694 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 695 ktime_t now, idle;
6378ddb5 696
d689fe22 697 if (!tick_nohz_active)
8083e4ad 698 return -1;
699
09a1d34f
MH
700 now = ktime_get();
701 if (last_update_time) {
702 update_ts_time_stats(cpu, ts, now, last_update_time);
703 idle = ts->idle_sleeptime;
704 } else {
705 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
706 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
707
708 idle = ktime_add(ts->idle_sleeptime, delta);
709 } else {
710 idle = ts->idle_sleeptime;
711 }
712 }
713
714 return ktime_to_us(idle);
8083e4ad 715
6378ddb5 716}
8083e4ad 717EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
6378ddb5 718
6beea0cd 719/**
0de7611a 720 * get_cpu_iowait_time_us - get the total iowait time of a CPU
0224cf4c 721 * @cpu: CPU number to query
09a1d34f
MH
722 * @last_update_time: variable to store update time in. Do not update
723 * counters if NULL.
0224cf4c 724 *
6168f8ed 725 * Return the cumulative iowait time (since boot) for a given
0224cf4c
AV
726 * CPU, in microseconds.
727 *
728 * This time is measured via accounting rather than sampling,
729 * and is as accurate as ktime_get() is.
730 *
731 * This function returns -1 if NOHZ is not enabled.
732 */
733u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
734{
735 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 736 ktime_t now, iowait;
0224cf4c 737
d689fe22 738 if (!tick_nohz_active)
0224cf4c
AV
739 return -1;
740
09a1d34f
MH
741 now = ktime_get();
742 if (last_update_time) {
743 update_ts_time_stats(cpu, ts, now, last_update_time);
744 iowait = ts->iowait_sleeptime;
745 } else {
746 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
747 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
0224cf4c 748
09a1d34f
MH
749 iowait = ktime_add(ts->iowait_sleeptime, delta);
750 } else {
751 iowait = ts->iowait_sleeptime;
752 }
753 }
0224cf4c 754
09a1d34f 755 return ktime_to_us(iowait);
0224cf4c
AV
756}
757EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
758
0ff53d09
TG
759static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
760{
761 hrtimer_cancel(&ts->sched_timer);
762 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
763
764 /* Forward the time to expire in the future */
b9965449 765 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
0ff53d09 766
902a9f9c
SAS
767 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
768 hrtimer_start_expires(&ts->sched_timer,
769 HRTIMER_MODE_ABS_PINNED_HARD);
770 } else {
0ff53d09 771 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
902a9f9c 772 }
411fe24e
FW
773
774 /*
775 * Reset to make sure next tick stop doesn't get fooled by past
776 * cached clock deadline.
777 */
778 ts->next_tick = 0;
0ff53d09
TG
779}
780
5d62c183
TG
781static inline bool local_timer_softirq_pending(void)
782{
80d20d35 783 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
5d62c183
TG
784}
785
23a8d888 786static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
79bf2bb3 787{
29845399 788 u64 basemono, next_tick, delta, expires;
e1e41b6c
RV
789 unsigned long basejiff;
790 unsigned int seq;
855a0fc3 791
79bf2bb3
TG
792 /* Read jiffies and the time when jiffies were updated last */
793 do {
e5d4d175 794 seq = read_seqcount_begin(&jiffies_seq);
2456e855 795 basemono = last_jiffies_update;
c1ad348b 796 basejiff = jiffies;
e5d4d175 797 } while (read_seqcount_retry(&jiffies_seq, seq));
c1ad348b 798 ts->last_jiffies = basejiff;
23a8d888 799 ts->timer_expires_base = basemono;
79bf2bb3 800
5d62c183
TG
801 /*
802 * Keep the periodic tick, when RCU, architecture or irq_work
803 * requests it.
804 * Aside of that check whether the local timer softirq is
805 * pending. If so its a bad idea to call get_next_timer_interrupt()
806 * because there is an already expired timer, so it will request
4bf07f65 807 * immediate expiry, which rearms the hardware timer with a
5d62c183
TG
808 * minimal delta which brings us back to this place
809 * immediately. Lather, rinse and repeat...
810 */
29845399 811 if (rcu_needs_cpu() || arch_needs_cpu() ||
5d62c183 812 irq_work_needs_cpu() || local_timer_softirq_pending()) {
c1ad348b 813 next_tick = basemono + TICK_NSEC;
3c5d92a0 814 } else {
c1ad348b
TG
815 /*
816 * Get the next pending timer. If high resolution
817 * timers are enabled this only takes the timer wheel
818 * timers into account. If high resolution timers are
819 * disabled this also looks at the next expiring
820 * hrtimer.
821 */
29845399
FW
822 next_tick = get_next_timer_interrupt(basejiff, basemono);
823 ts->next_timer = next_tick;
3c5d92a0 824 }
47aa8b6c 825
c1ad348b
TG
826 /*
827 * If the tick is due in the next period, keep it ticking or
82bbe34b 828 * force prod the timer.
c1ad348b
TG
829 */
830 delta = next_tick - basemono;
831 if (delta <= (u64)TICK_NSEC) {
a683f390
TG
832 /*
833 * Tell the timer code that the base is not idle, i.e. undo
834 * the effect of get_next_timer_interrupt():
835 */
836 timer_clear_idle();
82bbe34b
PZ
837 /*
838 * We've not stopped the tick yet, and there's a timer in the
839 * next period, so no point in stopping it either, bail.
840 */
f99973e1 841 if (!ts->tick_stopped) {
23a8d888 842 ts->timer_expires = 0;
157d29e1
TG
843 goto out;
844 }
845 }
846
23a8d888
RW
847 /*
848 * If this CPU is the one which had the do_timer() duty last, we limit
849 * the sleep time to the timekeeping max_deferment value.
850 * Otherwise we can sleep as long as we want.
851 */
852 delta = timekeeping_max_deferment();
853 if (cpu != tick_do_timer_cpu &&
854 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
855 delta = KTIME_MAX;
856
857 /* Calculate the next expiry time */
858 if (delta < (KTIME_MAX - basemono))
859 expires = basemono + delta;
860 else
861 expires = KTIME_MAX;
862
863 ts->timer_expires = min_t(u64, expires, next_tick);
864
865out:
866 return ts->timer_expires;
867}
868
869static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
870{
871 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
872 u64 basemono = ts->timer_expires_base;
873 u64 expires = ts->timer_expires;
874 ktime_t tick = expires;
875
876 /* Make sure we won't be trying to stop it twice in a row. */
877 ts->timer_expires_base = 0;
878
79bf2bb3 879 /*
0de7611a
IM
880 * If this CPU is the one which updates jiffies, then give up
881 * the assignment and let it be taken by the CPU which runs
882 * the tick timer next, which might be this CPU as well. If we
157d29e1
TG
883 * don't drop this here the jiffies might be stale and
884 * do_timer() never invoked. Keep track of the fact that it
23a8d888 885 * was the one which had the do_timer() duty last.
79bf2bb3 886 */
157d29e1
TG
887 if (cpu == tick_do_timer_cpu) {
888 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
889 ts->do_timer_last = 1;
890 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
157d29e1 891 ts->do_timer_last = 0;
157d29e1 892 }
27185016 893
157d29e1 894 /* Skip reprogram of event if its not changed */
411fe24e
FW
895 if (ts->tick_stopped && (expires == ts->next_tick)) {
896 /* Sanity check: make sure clockevent is actually programmed */
d4af6d93 897 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
23a8d888 898 return;
411fe24e
FW
899
900 WARN_ON_ONCE(1);
901 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
902 basemono, ts->next_tick, dev->next_event,
903 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
ce6cf9a1 904 }
84bf1bcc 905
157d29e1
TG
906 /*
907 * nohz_stop_sched_tick can be called several times before
908 * the nohz_restart_sched_tick is called. This happens when
909 * interrupts arrive which do not cause a reschedule. In the
910 * first call we save the current tick time, so we can restart
911 * the scheduler tick in nohz_restart_sched_tick.
912 */
913 if (!ts->tick_stopped) {
3c85d6db 914 calc_load_nohz_start();
62cb1188 915 quiet_vmstat();
d3ed7824 916
157d29e1
TG
917 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
918 ts->tick_stopped = 1;
e6e6cc22 919 trace_tick_stop(1, TICK_DEP_MASK_NONE);
157d29e1 920 }
eaad084b 921
411fe24e
FW
922 ts->next_tick = tick;
923
157d29e1 924 /*
c1ad348b
TG
925 * If the expiration time == KTIME_MAX, then we simply stop
926 * the tick timer.
157d29e1 927 */
c1ad348b 928 if (unlikely(expires == KTIME_MAX)) {
157d29e1
TG
929 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
930 hrtimer_cancel(&ts->sched_timer);
23a8d888 931 return;
79bf2bb3 932 }
0ff53d09 933
1f71addd 934 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
902a9f9c
SAS
935 hrtimer_start(&ts->sched_timer, tick,
936 HRTIMER_MODE_ABS_PINNED_HARD);
1f71addd
TG
937 } else {
938 hrtimer_set_expires(&ts->sched_timer, tick);
c1ad348b 939 tick_program_event(tick, 1);
1f71addd 940 }
280f0677
FW
941}
942
23a8d888
RW
943static void tick_nohz_retain_tick(struct tick_sched *ts)
944{
945 ts->timer_expires_base = 0;
946}
947
948#ifdef CONFIG_NO_HZ_FULL
949static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
950{
951 if (tick_nohz_next_event(ts, cpu))
952 tick_nohz_stop_tick(ts, cpu);
953 else
954 tick_nohz_retain_tick(ts);
955}
956#endif /* CONFIG_NO_HZ_FULL */
957
1f41906a 958static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
59d2c7ca
FW
959{
960 /* Update jiffies first */
961 tick_do_update_jiffies64(now);
59d2c7ca 962
a683f390
TG
963 /*
964 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
965 * the clock forward checks in the enqueue path:
966 */
967 timer_clear_idle();
968
3c85d6db 969 calc_load_nohz_stop();
03e0d461 970 touch_softlockup_watchdog_sched();
59d2c7ca
FW
971 /*
972 * Cancel the scheduled timer and restore the tick
973 */
974 ts->tick_stopped = 0;
59d2c7ca
FW
975 tick_nohz_restart(ts, now);
976}
73738a95 977
a5183862
YY
978static void __tick_nohz_full_update_tick(struct tick_sched *ts,
979 ktime_t now)
5811d996
FW
980{
981#ifdef CONFIG_NO_HZ_FULL
e9a2eb40 982 int cpu = smp_processor_id();
5811d996 983
a5183862
YY
984 if (can_stop_full_tick(cpu, ts))
985 tick_nohz_stop_sched_tick(ts, cpu);
986 else if (ts->tick_stopped)
987 tick_nohz_restart_sched_tick(ts, now);
988#endif
989}
990
991static void tick_nohz_full_update_tick(struct tick_sched *ts)
992{
993 if (!tick_nohz_full_cpu(smp_processor_id()))
e9a2eb40 994 return;
5811d996 995
e9a2eb40
AS
996 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
997 return;
5811d996 998
a5183862 999 __tick_nohz_full_update_tick(ts, ktime_get());
5811d996
FW
1000}
1001
0345691b
FW
1002/*
1003 * A pending softirq outside an IRQ (or softirq disabled section) context
1004 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1005 * reach here due to the need_resched() early check in can_stop_idle_tick().
1006 *
1007 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1008 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1009 * triggering the below since wakep_softirqd() is ignored.
1010 *
1011 */
1012static bool report_idle_softirq(void)
1013{
1014 static int ratelimit;
1015 unsigned int pending = local_softirq_pending();
1016
1017 if (likely(!pending))
1018 return false;
1019
1020 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1021 if (!cpu_active(smp_processor_id())) {
1022 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1023 if (!pending)
1024 return false;
1025 }
1026
1027 if (ratelimit < 10)
1028 return false;
1029
1030 /* On RT, softirqs handling may be waiting on some lock */
1031 if (!local_bh_blocked())
1032 return false;
1033
1034 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1035 pending);
1036 ratelimit++;
1037
1038 return true;
1039}
1040
5b39939a
FW
1041static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1042{
1043 /*
0de7611a 1044 * If this CPU is offline and it is the one which updates
5b39939a 1045 * jiffies, then give up the assignment and let it be taken by
0de7611a 1046 * the CPU which runs the tick timer next. If we don't drop
5b39939a
FW
1047 * this here the jiffies might be stale and do_timer() never
1048 * invoked.
1049 */
1050 if (unlikely(!cpu_online(cpu))) {
1051 if (cpu == tick_do_timer_cpu)
1052 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
411fe24e
FW
1053 /*
1054 * Make sure the CPU doesn't get fooled by obsolete tick
1055 * deadline if it comes back online later.
1056 */
1057 ts->next_tick = 0;
f7ea0fd6 1058 return false;
5b39939a
FW
1059 }
1060
23a8d888 1061 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
5b39939a
FW
1062 return false;
1063
1064 if (need_resched())
1065 return false;
1066
0345691b 1067 if (unlikely(report_idle_softirq()))
5b39939a 1068 return false;
5b39939a 1069
460775df 1070 if (tick_nohz_full_enabled()) {
a382bf93
FW
1071 /*
1072 * Keep the tick alive to guarantee timekeeping progression
1073 * if there are full dynticks CPUs around
1074 */
1075 if (tick_do_timer_cpu == cpu)
1076 return false;
08ae95f4
NP
1077
1078 /* Should not happen for nohz-full */
1079 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
a382bf93
FW
1080 return false;
1081 }
1082
5b39939a
FW
1083 return true;
1084}
1085
0e776768 1086static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
19f5f736 1087{
0e776768 1088 ktime_t expires;
5b39939a 1089 int cpu = smp_processor_id();
19f5f736 1090
554c8aa8
RW
1091 /*
1092 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1093 * tick timer expiration time is known already.
1094 */
1095 if (ts->timer_expires_base)
1096 expires = ts->timer_expires;
1097 else if (can_stop_idle_tick(cpu, ts))
1098 expires = tick_nohz_next_event(ts, cpu);
1099 else
1100 return;
23a8d888
RW
1101
1102 ts->idle_calls++;
08d07259 1103
23a8d888 1104 if (expires > 0LL) {
5b39939a
FW
1105 int was_stopped = ts->tick_stopped;
1106
23a8d888 1107 tick_nohz_stop_tick(ts, cpu);
84bf1bcc 1108
23a8d888
RW
1109 ts->idle_sleeps++;
1110 ts->idle_expires = expires;
5b39939a 1111
a0db971e 1112 if (!was_stopped && ts->tick_stopped) {
5b39939a 1113 ts->idle_jiffies = ts->last_jiffies;
a0db971e
FW
1114 nohz_balance_enter_idle(cpu);
1115 }
23a8d888
RW
1116 } else {
1117 tick_nohz_retain_tick(ts);
5b39939a 1118 }
280f0677
FW
1119}
1120
1121/**
0e776768 1122 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
280f0677
FW
1123 *
1124 * When the next event is more than a tick into the future, stop the idle tick
0e776768
RW
1125 */
1126void tick_nohz_idle_stop_tick(void)
1127{
1128 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1129}
1130
554c8aa8
RW
1131void tick_nohz_idle_retain_tick(void)
1132{
1133 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1134 /*
1135 * Undo the effect of get_next_timer_interrupt() called from
1136 * tick_nohz_next_event().
1137 */
1138 timer_clear_idle();
1139}
1140
0e776768
RW
1141/**
1142 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
2bbb6817 1143 *
0e776768 1144 * Called when we start the idle loop.
280f0677 1145 */
1268fbc7 1146void tick_nohz_idle_enter(void)
280f0677
FW
1147{
1148 struct tick_sched *ts;
1149
ebf3adba 1150 lockdep_assert_irqs_enabled();
0db49b72 1151
1268fbc7
FW
1152 local_irq_disable();
1153
22127e93 1154 ts = this_cpu_ptr(&tick_cpu_sched);
23a8d888
RW
1155
1156 WARN_ON_ONCE(ts->timer_expires_base);
1157
280f0677 1158 ts->inidle = 1;
0e776768 1159 tick_nohz_start_idle(ts);
1268fbc7
FW
1160
1161 local_irq_enable();
280f0677
FW
1162}
1163
1164/**
1165 * tick_nohz_irq_exit - update next tick event from interrupt exit
1166 *
1167 * When an interrupt fires while we are idle and it doesn't cause
1168 * a reschedule, it may still add, modify or delete a timer, enqueue
1169 * an RCU callback, etc...
1170 * So we need to re-calculate and reprogram the next tick event.
1171 */
1172void tick_nohz_irq_exit(void)
1173{
22127e93 1174 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
280f0677 1175
14851912 1176 if (ts->inidle)
0e776768 1177 tick_nohz_start_idle(ts);
14851912 1178 else
73738a95 1179 tick_nohz_full_update_tick(ts);
79bf2bb3
TG
1180}
1181
4f86d3a8 1182/**
45f1ff59
RW
1183 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1184 */
1185bool tick_nohz_idle_got_tick(void)
1186{
1187 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1188
2bc629a6
FW
1189 if (ts->got_idle_tick) {
1190 ts->got_idle_tick = 0;
45f1ff59
RW
1191 return true;
1192 }
1193 return false;
1194}
1195
6f9b83ac
UH
1196/**
1197 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1198 * or the tick, whatever that expires first. Note that, if the tick has been
1199 * stopped, it returns the next hrtimer.
1200 *
1201 * Called from power state control code with interrupts disabled
1202 */
1203ktime_t tick_nohz_get_next_hrtimer(void)
1204{
1205 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1206}
1207
4f86d3a8 1208/**
554c8aa8 1209 * tick_nohz_get_sleep_length - return the expected length of the current sleep
296bb1e5 1210 * @delta_next: duration until the next event if the tick cannot be stopped
4f86d3a8 1211 *
4c81cb7e
RW
1212 * Called from power state control code with interrupts disabled.
1213 *
1214 * The return value of this function and/or the value returned by it through the
1215 * @delta_next pointer can be negative which must be taken into account by its
1216 * callers.
4f86d3a8 1217 */
296bb1e5 1218ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
4f86d3a8 1219{
554c8aa8 1220 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
22127e93 1221 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
554c8aa8
RW
1222 int cpu = smp_processor_id();
1223 /*
1224 * The idle entry time is expected to be a sufficient approximation of
1225 * the current time at this point.
1226 */
1227 ktime_t now = ts->idle_entrytime;
1228 ktime_t next_event;
1229
1230 WARN_ON_ONCE(!ts->inidle);
1231
296bb1e5
RW
1232 *delta_next = ktime_sub(dev->next_event, now);
1233
554c8aa8 1234 if (!can_stop_idle_tick(cpu, ts))
296bb1e5 1235 return *delta_next;
554c8aa8
RW
1236
1237 next_event = tick_nohz_next_event(ts, cpu);
1238 if (!next_event)
296bb1e5 1239 return *delta_next;
554c8aa8
RW
1240
1241 /*
1242 * If the next highres timer to expire is earlier than next_event, the
1243 * idle governor needs to know that.
1244 */
1245 next_event = min_t(u64, next_event,
1246 hrtimer_next_event_without(&ts->sched_timer));
4f86d3a8 1247
554c8aa8 1248 return ktime_sub(next_event, now);
4f86d3a8
LB
1249}
1250
466a2b42
JF
1251/**
1252 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1253 * for a particular CPU.
1254 *
1255 * Called from the schedutil frequency scaling governor in scheduler context.
1256 */
1257unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1258{
1259 struct tick_sched *ts = tick_get_tick_sched(cpu);
1260
1261 return ts->idle_calls;
1262}
1263
b7eaf1aa
RW
1264/**
1265 * tick_nohz_get_idle_calls - return the current idle calls counter value
1266 *
1267 * Called from the schedutil frequency scaling governor in scheduler context.
1268 */
1269unsigned long tick_nohz_get_idle_calls(void)
1270{
1271 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1272
1273 return ts->idle_calls;
1274}
1275
96c9b903
YY
1276static void tick_nohz_account_idle_time(struct tick_sched *ts,
1277 ktime_t now)
2ac0d98f 1278{
2ac0d98f 1279 unsigned long ticks;
3f4724ea 1280
96c9b903
YY
1281 ts->idle_exittime = now;
1282
e44fcb4b 1283 if (vtime_accounting_enabled_this_cpu())
3f4724ea 1284 return;
79bf2bb3
TG
1285 /*
1286 * We stopped the tick in idle. Update process times would miss the
1287 * time we slept as update_process_times does only a 1 tick
1288 * accounting. Enforce that this is accounted to idle !
1289 */
1290 ticks = jiffies - ts->idle_jiffies;
1291 /*
1292 * We might be one off. Do not randomly account a huge number of ticks!
1293 */
79741dd3
MS
1294 if (ticks && ticks < LONG_MAX)
1295 account_idle_ticks(ticks);
19f5f736
FW
1296}
1297
a5183862 1298void tick_nohz_idle_restart_tick(void)
2aaf709a 1299{
a5183862
YY
1300 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1301
1302 if (ts->tick_stopped) {
96c9b903
YY
1303 ktime_t now = ktime_get();
1304 tick_nohz_restart_sched_tick(ts, now);
1305 tick_nohz_account_idle_time(ts, now);
a5183862 1306 }
2aaf709a
RW
1307}
1308
a5183862 1309static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
2aaf709a 1310{
a5183862
YY
1311 if (tick_nohz_full_cpu(smp_processor_id()))
1312 __tick_nohz_full_update_tick(ts, now);
1313 else
1314 tick_nohz_restart_sched_tick(ts, now);
2aaf709a 1315
96c9b903 1316 tick_nohz_account_idle_time(ts, now);
2aaf709a
RW
1317}
1318
79bf2bb3 1319/**
280f0677 1320 * tick_nohz_idle_exit - restart the idle tick from the idle task
79bf2bb3
TG
1321 *
1322 * Restart the idle tick when the CPU is woken up from idle
280f0677
FW
1323 * This also exit the RCU extended quiescent state. The CPU
1324 * can use RCU again after this function is called.
79bf2bb3 1325 */
280f0677 1326void tick_nohz_idle_exit(void)
79bf2bb3 1327{
4a32fea9 1328 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
bbe9a70a 1329 bool idle_active, tick_stopped;
6378ddb5 1330 ktime_t now;
79bf2bb3 1331
6378ddb5 1332 local_irq_disable();
2bbb6817 1333
15f827be 1334 WARN_ON_ONCE(!ts->inidle);
23a8d888 1335 WARN_ON_ONCE(ts->timer_expires_base);
15f827be
FW
1336
1337 ts->inidle = 0;
bbe9a70a
AB
1338 idle_active = ts->idle_active;
1339 tick_stopped = ts->tick_stopped;
15f827be 1340
bbe9a70a 1341 if (idle_active || tick_stopped)
eed3b9cf
MS
1342 now = ktime_get();
1343
bbe9a70a 1344 if (idle_active)
e8fcaa5c 1345 tick_nohz_stop_idle(ts, now);
6378ddb5 1346
bbe9a70a 1347 if (tick_stopped)
a5183862 1348 tick_nohz_idle_update_tick(ts, now);
79bf2bb3 1349
79bf2bb3
TG
1350 local_irq_enable();
1351}
1352
79bf2bb3
TG
1353/*
1354 * The nohz low res interrupt handler
1355 */
1356static void tick_nohz_handler(struct clock_event_device *dev)
1357{
22127e93 1358 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1359 struct pt_regs *regs = get_irq_regs();
1360 ktime_t now = ktime_get();
1361
2456e855 1362 dev->next_event = KTIME_MAX;
79bf2bb3 1363
ff7de620 1364 tick_sched_do_timer(ts, now);
9e8f559b 1365 tick_sched_handle(ts, regs);
79bf2bb3 1366
b5e995e6
VK
1367 /* No need to reprogram if we are running tickless */
1368 if (unlikely(ts->tick_stopped))
1369 return;
1370
b9965449 1371 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
0ff53d09 1372 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
79bf2bb3
TG
1373}
1374
bc7a34b8
TG
1375static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1376{
1377 if (!tick_nohz_enabled)
1378 return;
1379 ts->nohz_mode = mode;
1380 /* One update is enough */
1381 if (!test_and_set_bit(0, &tick_nohz_active))
ae67bada 1382 timers_update_nohz();
bc7a34b8
TG
1383}
1384
79bf2bb3
TG
1385/**
1386 * tick_nohz_switch_to_nohz - switch to nohz mode
1387 */
1388static void tick_nohz_switch_to_nohz(void)
1389{
22127e93 1390 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1391 ktime_t next;
1392
27630532 1393 if (!tick_nohz_enabled)
79bf2bb3
TG
1394 return;
1395
6b442bc8 1396 if (tick_switch_to_oneshot(tick_nohz_handler))
79bf2bb3 1397 return;
6b442bc8 1398
79bf2bb3
TG
1399 /*
1400 * Recycle the hrtimer in ts, so we can share the
1401 * hrtimer_forward with the highres code.
1402 */
71fed982 1403 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
79bf2bb3
TG
1404 /* Get the next period */
1405 next = tick_init_jiffy_update();
1406
0ff53d09 1407 hrtimer_set_expires(&ts->sched_timer, next);
b9965449 1408 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1ca8ec53 1409 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
bc7a34b8 1410 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
79bf2bb3
TG
1411}
1412
5acac1be 1413static inline void tick_nohz_irq_enter(void)
eed3b9cf 1414{
4a32fea9 1415 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
eed3b9cf
MS
1416 ktime_t now;
1417
1418 if (!ts->idle_active && !ts->tick_stopped)
1419 return;
1420 now = ktime_get();
1421 if (ts->idle_active)
e8fcaa5c 1422 tick_nohz_stop_idle(ts, now);
53e87e3c
FW
1423 /*
1424 * If all CPUs are idle. We may need to update a stale jiffies value.
1425 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1426 * alive but it might be busy looping with interrupts disabled in some
1427 * rare case (typically stop machine). So we must make sure we have a
1428 * last resort.
1429 */
ff006732 1430 if (ts->tick_stopped)
eed3b9cf 1431 tick_nohz_update_jiffies(now);
eed3b9cf
MS
1432}
1433
79bf2bb3
TG
1434#else
1435
1436static inline void tick_nohz_switch_to_nohz(void) { }
5acac1be 1437static inline void tick_nohz_irq_enter(void) { }
bc7a34b8 1438static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
79bf2bb3 1439
3451d024 1440#endif /* CONFIG_NO_HZ_COMMON */
79bf2bb3 1441
719254fa
TG
1442/*
1443 * Called from irq_enter to notify about the possible interruption of idle()
1444 */
5acac1be 1445void tick_irq_enter(void)
719254fa 1446{
e8fcaa5c 1447 tick_check_oneshot_broadcast_this_cpu();
5acac1be 1448 tick_nohz_irq_enter();
719254fa
TG
1449}
1450
79bf2bb3
TG
1451/*
1452 * High resolution timer specific code
1453 */
1454#ifdef CONFIG_HIGH_RES_TIMERS
1455/*
4c9dc641 1456 * We rearm the timer until we get disabled by the idle code.
351f181f 1457 * Called with interrupts disabled.
79bf2bb3
TG
1458 */
1459static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1460{
1461 struct tick_sched *ts =
1462 container_of(timer, struct tick_sched, sched_timer);
79bf2bb3
TG
1463 struct pt_regs *regs = get_irq_regs();
1464 ktime_t now = ktime_get();
d3ed7824 1465
ff7de620 1466 tick_sched_do_timer(ts, now);
79bf2bb3
TG
1467
1468 /*
1469 * Do not call, when we are not in irq context and have
1470 * no valid regs pointer
1471 */
9e8f559b
FW
1472 if (regs)
1473 tick_sched_handle(ts, regs);
7c259045
FW
1474 else
1475 ts->next_tick = 0;
79bf2bb3 1476
2a16fc93
VK
1477 /* No need to reprogram if we are in idle or full dynticks mode */
1478 if (unlikely(ts->tick_stopped))
1479 return HRTIMER_NORESTART;
1480
b9965449 1481 hrtimer_forward(timer, now, TICK_NSEC);
79bf2bb3
TG
1482
1483 return HRTIMER_RESTART;
1484}
1485
5307c955
MG
1486static int sched_skew_tick;
1487
62cf20b3
TG
1488static int __init skew_tick(char *str)
1489{
1490 get_option(&str, &sched_skew_tick);
1491
1492 return 0;
1493}
1494early_param("skew_tick", skew_tick);
1495
79bf2bb3
TG
1496/**
1497 * tick_setup_sched_timer - setup the tick emulation timer
1498 */
1499void tick_setup_sched_timer(void)
1500{
22127e93 1501 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1502 ktime_t now = ktime_get();
1503
1504 /*
1505 * Emulate tick processing via per-CPU hrtimers:
1506 */
902a9f9c 1507 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
79bf2bb3 1508 ts->sched_timer.function = tick_sched_timer;
79bf2bb3 1509
0de7611a 1510 /* Get the next period (per-CPU) */
cc584b21 1511 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
79bf2bb3 1512
9c3f9e28 1513 /* Offset the tick to avert jiffies_lock contention. */
5307c955 1514 if (sched_skew_tick) {
b9965449 1515 u64 offset = TICK_NSEC >> 1;
5307c955
MG
1516 do_div(offset, num_possible_cpus());
1517 offset *= smp_processor_id();
1518 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1519 }
1520
b9965449 1521 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
902a9f9c 1522 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
bc7a34b8 1523 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
79bf2bb3 1524}
3c4fbe5e 1525#endif /* HIGH_RES_TIMERS */
79bf2bb3 1526
3451d024 1527#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1528void tick_cancel_sched_timer(int cpu)
1529{
1530 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1531
3c4fbe5e 1532# ifdef CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1533 if (ts->sched_timer.base)
1534 hrtimer_cancel(&ts->sched_timer);
3c4fbe5e 1535# endif
a7901766 1536
4b0c0f29 1537 memset(ts, 0, sizeof(*ts));
79bf2bb3 1538}
3c4fbe5e 1539#endif
79bf2bb3
TG
1540
1541/**
1542 * Async notification about clocksource changes
1543 */
1544void tick_clock_notify(void)
1545{
1546 int cpu;
1547
1548 for_each_possible_cpu(cpu)
1549 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1550}
1551
1552/*
1553 * Async notification about clock event changes
1554 */
1555void tick_oneshot_notify(void)
1556{
22127e93 1557 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1558
1559 set_bit(0, &ts->check_clocks);
1560}
1561
1562/**
1563 * Check, if a change happened, which makes oneshot possible.
1564 *
1565 * Called cyclic from the hrtimer softirq (driven by the timer
1566 * softirq) allow_nohz signals, that we can switch into low-res nohz
1567 * mode, because high resolution timers are disabled (either compile
6b442bc8 1568 * or runtime). Called with interrupts disabled.
79bf2bb3
TG
1569 */
1570int tick_check_oneshot_change(int allow_nohz)
1571{
22127e93 1572 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1573
1574 if (!test_and_clear_bit(0, &ts->check_clocks))
1575 return 0;
1576
1577 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1578 return 0;
1579
cf4fc6cb 1580 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
79bf2bb3
TG
1581 return 0;
1582
1583 if (!allow_nohz)
1584 return 1;
1585
1586 tick_nohz_switch_to_nohz();
1587 return 0;
1588}