mm: move MAP_SYNC to asm-generic/mman-common.h
[linux-2.6-block.git] / kernel / time / tick-sched.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
79bf2bb3 2/*
79bf2bb3
TG
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
79bf2bb3
TG
10 */
11#include <linux/cpu.h>
12#include <linux/err.h>
13#include <linux/hrtimer.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/percpu.h>
38b8d208 17#include <linux/nmi.h>
79bf2bb3 18#include <linux/profile.h>
3f07c014 19#include <linux/sched/signal.h>
e6017571 20#include <linux/sched/clock.h>
03441a34 21#include <linux/sched/stat.h>
370c9135 22#include <linux/sched/nohz.h>
8083e4ad 23#include <linux/module.h>
00b42959 24#include <linux/irq_work.h>
9014c45d 25#include <linux/posix-timers.h>
2e709338 26#include <linux/context_tracking.h>
62cb1188 27#include <linux/mm.h>
79bf2bb3 28
9e203bcc
DM
29#include <asm/irq_regs.h>
30
79bf2bb3
TG
31#include "tick-internal.h"
32
cb41a290
FW
33#include <trace/events/timer.h>
34
79bf2bb3 35/*
0de7611a 36 * Per-CPU nohz control structure
79bf2bb3 37 */
c1797baf 38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
79bf2bb3 39
289f480a
IM
40struct tick_sched *tick_get_tick_sched(int cpu)
41{
42 return &per_cpu(tick_cpu_sched, cpu);
43}
44
7809998a
AB
45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46/*
47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
48 */
49static ktime_t last_jiffies_update;
50
79bf2bb3
TG
51/*
52 * Must be called with interrupts disabled !
53 */
54static void tick_do_update_jiffies64(ktime_t now)
55{
56 unsigned long ticks = 0;
57 ktime_t delta;
58
7a14ce1d 59 /*
d6ad4187 60 * Do a quick check without holding jiffies_lock:
7a14ce1d
IM
61 */
62 delta = ktime_sub(now, last_jiffies_update);
2456e855 63 if (delta < tick_period)
7a14ce1d
IM
64 return;
65
6168f8ed 66 /* Reevaluate with jiffies_lock held */
d6ad4187 67 write_seqlock(&jiffies_lock);
79bf2bb3
TG
68
69 delta = ktime_sub(now, last_jiffies_update);
2456e855 70 if (delta >= tick_period) {
79bf2bb3
TG
71
72 delta = ktime_sub(delta, tick_period);
73 last_jiffies_update = ktime_add(last_jiffies_update,
74 tick_period);
75
76 /* Slow path for long timeouts */
2456e855 77 if (unlikely(delta >= tick_period)) {
79bf2bb3
TG
78 s64 incr = ktime_to_ns(tick_period);
79
80 ticks = ktime_divns(delta, incr);
81
82 last_jiffies_update = ktime_add_ns(last_jiffies_update,
83 incr * ticks);
84 }
85 do_timer(++ticks);
49d670fb
TG
86
87 /* Keep the tick_next_period variable up to date */
88 tick_next_period = ktime_add(last_jiffies_update, tick_period);
03e6bdc5
VK
89 } else {
90 write_sequnlock(&jiffies_lock);
91 return;
79bf2bb3 92 }
d6ad4187 93 write_sequnlock(&jiffies_lock);
47a1b796 94 update_wall_time();
79bf2bb3
TG
95}
96
97/*
98 * Initialize and return retrieve the jiffies update.
99 */
100static ktime_t tick_init_jiffy_update(void)
101{
102 ktime_t period;
103
d6ad4187 104 write_seqlock(&jiffies_lock);
79bf2bb3 105 /* Did we start the jiffies update yet ? */
2456e855 106 if (last_jiffies_update == 0)
79bf2bb3
TG
107 last_jiffies_update = tick_next_period;
108 period = last_jiffies_update;
d6ad4187 109 write_sequnlock(&jiffies_lock);
79bf2bb3
TG
110 return period;
111}
112
ff7de620 113static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
5bb96226
FW
114{
115 int cpu = smp_processor_id();
116
3451d024 117#ifdef CONFIG_NO_HZ_COMMON
5bb96226
FW
118 /*
119 * Check if the do_timer duty was dropped. We don't care about
0de7611a
IM
120 * concurrency: This happens only when the CPU in charge went
121 * into a long sleep. If two CPUs happen to assign themselves to
5bb96226 122 * this duty, then the jiffies update is still serialized by
9c3f9e28 123 * jiffies_lock.
08ae95f4
NP
124 *
125 * If nohz_full is enabled, this should not happen because the
126 * tick_do_timer_cpu never relinquishes.
5bb96226 127 */
08ae95f4
NP
128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
129#ifdef CONFIG_NO_HZ_FULL
130 WARN_ON(tick_nohz_full_running);
131#endif
5bb96226 132 tick_do_timer_cpu = cpu;
08ae95f4 133 }
5bb96226
FW
134#endif
135
136 /* Check, if the jiffies need an update */
137 if (tick_do_timer_cpu == cpu)
138 tick_do_update_jiffies64(now);
ff7de620
RW
139
140 if (ts->inidle)
141 ts->got_idle_tick = 1;
5bb96226
FW
142}
143
9e8f559b
FW
144static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
145{
3451d024 146#ifdef CONFIG_NO_HZ_COMMON
9e8f559b
FW
147 /*
148 * When we are idle and the tick is stopped, we have to touch
149 * the watchdog as we might not schedule for a really long
150 * time. This happens on complete idle SMP systems while
151 * waiting on the login prompt. We also increment the "start of
152 * idle" jiffy stamp so the idle accounting adjustment we do
153 * when we go busy again does not account too much ticks.
154 */
155 if (ts->tick_stopped) {
03e0d461 156 touch_softlockup_watchdog_sched();
9e8f559b
FW
157 if (is_idle_task(current))
158 ts->idle_jiffies++;
411fe24e
FW
159 /*
160 * In case the current tick fired too early past its expected
161 * expiration, make sure we don't bypass the next clock reprogramming
162 * to the same deadline.
163 */
164 ts->next_tick = 0;
9e8f559b 165 }
94a57140 166#endif
9e8f559b
FW
167 update_process_times(user_mode(regs));
168 profile_tick(CPU_PROFILING);
169}
7809998a 170#endif
9e8f559b 171
c5bfece2 172#ifdef CONFIG_NO_HZ_FULL
460775df 173cpumask_var_t tick_nohz_full_mask;
73867dcd 174bool tick_nohz_full_running;
f009a7a7 175static atomic_t tick_dep_mask;
a831881b 176
f009a7a7 177static bool check_tick_dependency(atomic_t *dep)
d027d45d 178{
f009a7a7
FW
179 int val = atomic_read(dep);
180
181 if (val & TICK_DEP_MASK_POSIX_TIMER) {
e6e6cc22 182 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
f009a7a7 183 return true;
d027d45d
FW
184 }
185
f009a7a7 186 if (val & TICK_DEP_MASK_PERF_EVENTS) {
e6e6cc22 187 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
f009a7a7 188 return true;
d027d45d
FW
189 }
190
f009a7a7 191 if (val & TICK_DEP_MASK_SCHED) {
e6e6cc22 192 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
f009a7a7 193 return true;
d027d45d
FW
194 }
195
f009a7a7 196 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
e6e6cc22 197 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
f009a7a7
FW
198 return true;
199 }
200
201 return false;
d027d45d
FW
202}
203
57ccdf44 204static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
9014c45d 205{
ebf3adba 206 lockdep_assert_irqs_disabled();
9014c45d 207
57ccdf44
WL
208 if (unlikely(!cpu_online(cpu)))
209 return false;
210
f009a7a7 211 if (check_tick_dependency(&tick_dep_mask))
d027d45d 212 return false;
d027d45d 213
f009a7a7 214 if (check_tick_dependency(&ts->tick_dep_mask))
d027d45d 215 return false;
d027d45d 216
f009a7a7 217 if (check_tick_dependency(&current->tick_dep_mask))
d027d45d 218 return false;
d027d45d 219
f009a7a7 220 if (check_tick_dependency(&current->signal->tick_dep_mask))
d027d45d 221 return false;
d027d45d 222
9014c45d
FW
223 return true;
224}
225
d027d45d 226static void nohz_full_kick_func(struct irq_work *work)
76c24fb0 227{
73738a95 228 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
76c24fb0
FW
229}
230
231static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
d027d45d 232 .func = nohz_full_kick_func,
76c24fb0
FW
233};
234
40bea039
FW
235/*
236 * Kick this CPU if it's full dynticks in order to force it to
237 * re-evaluate its dependency on the tick and restart it if necessary.
238 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
239 * is NMI safe.
240 */
555e0c1e 241static void tick_nohz_full_kick(void)
40bea039
FW
242{
243 if (!tick_nohz_full_cpu(smp_processor_id()))
244 return;
245
56e4dea8 246 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
40bea039
FW
247}
248
76c24fb0 249/*
3d36aebc 250 * Kick the CPU if it's full dynticks in order to force it to
76c24fb0
FW
251 * re-evaluate its dependency on the tick and restart it if necessary.
252 */
3d36aebc 253void tick_nohz_full_kick_cpu(int cpu)
76c24fb0 254{
3d36aebc
FW
255 if (!tick_nohz_full_cpu(cpu))
256 return;
257
258 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
76c24fb0
FW
259}
260
76c24fb0
FW
261/*
262 * Kick all full dynticks CPUs in order to force these to re-evaluate
263 * their dependency on the tick and restart it if necessary.
264 */
b7878300 265static void tick_nohz_full_kick_all(void)
76c24fb0 266{
8537bb95
FW
267 int cpu;
268
73867dcd 269 if (!tick_nohz_full_running)
76c24fb0
FW
270 return;
271
272 preempt_disable();
8537bb95
FW
273 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
274 tick_nohz_full_kick_cpu(cpu);
76c24fb0
FW
275 preempt_enable();
276}
277
f009a7a7 278static void tick_nohz_dep_set_all(atomic_t *dep,
d027d45d
FW
279 enum tick_dep_bits bit)
280{
f009a7a7 281 int prev;
d027d45d 282
a1cc5bcf 283 prev = atomic_fetch_or(BIT(bit), dep);
d027d45d
FW
284 if (!prev)
285 tick_nohz_full_kick_all();
286}
287
288/*
289 * Set a global tick dependency. Used by perf events that rely on freq and
290 * by unstable clock.
291 */
292void tick_nohz_dep_set(enum tick_dep_bits bit)
293{
294 tick_nohz_dep_set_all(&tick_dep_mask, bit);
295}
296
297void tick_nohz_dep_clear(enum tick_dep_bits bit)
298{
f009a7a7 299 atomic_andnot(BIT(bit), &tick_dep_mask);
d027d45d
FW
300}
301
302/*
303 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
304 * manage events throttling.
305 */
306void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
307{
f009a7a7 308 int prev;
d027d45d
FW
309 struct tick_sched *ts;
310
311 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
312
a1cc5bcf 313 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
314 if (!prev) {
315 preempt_disable();
316 /* Perf needs local kick that is NMI safe */
317 if (cpu == smp_processor_id()) {
318 tick_nohz_full_kick();
319 } else {
320 /* Remote irq work not NMI-safe */
321 if (!WARN_ON_ONCE(in_nmi()))
322 tick_nohz_full_kick_cpu(cpu);
323 }
324 preempt_enable();
325 }
326}
327
328void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
329{
330 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
331
f009a7a7 332 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
333}
334
335/*
336 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
337 * per task timers.
338 */
339void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
340{
341 /*
342 * We could optimize this with just kicking the target running the task
343 * if that noise matters for nohz full users.
344 */
345 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
346}
347
348void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
349{
f009a7a7 350 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
d027d45d
FW
351}
352
353/*
354 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
355 * per process timers.
356 */
357void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358{
359 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
360}
361
362void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
363{
f009a7a7 364 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
d027d45d
FW
365}
366
99e5ada9
FW
367/*
368 * Re-evaluate the need for the tick as we switch the current task.
369 * It might need the tick due to per task/process properties:
0de7611a 370 * perf events, posix CPU timers, ...
99e5ada9 371 */
de734f89 372void __tick_nohz_task_switch(void)
99e5ada9
FW
373{
374 unsigned long flags;
d027d45d 375 struct tick_sched *ts;
99e5ada9 376
99e5ada9
FW
377 local_irq_save(flags);
378
6296ace4
LZ
379 if (!tick_nohz_full_cpu(smp_processor_id()))
380 goto out;
381
d027d45d 382 ts = this_cpu_ptr(&tick_cpu_sched);
99e5ada9 383
d027d45d 384 if (ts->tick_stopped) {
f009a7a7
FW
385 if (atomic_read(&current->tick_dep_mask) ||
386 atomic_read(&current->signal->tick_dep_mask))
d027d45d
FW
387 tick_nohz_full_kick();
388 }
6296ace4 389out:
99e5ada9
FW
390 local_irq_restore(flags);
391}
392
6f1982fe
FW
393/* Get the boot-time nohz CPU list from the kernel parameters. */
394void __init tick_nohz_full_setup(cpumask_var_t cpumask)
a831881b 395{
73867dcd 396 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
6f1982fe 397 cpumask_copy(tick_nohz_full_mask, cpumask);
73867dcd 398 tick_nohz_full_running = true;
a831881b 399}
a831881b 400
31eff243 401static int tick_nohz_cpu_down(unsigned int cpu)
a382bf93 402{
31eff243 403 /*
08ae95f4
NP
404 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
405 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
31eff243
SAS
406 * CPUs. It must remain online when nohz full is enabled.
407 */
408 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
409 return -EBUSY;
410 return 0;
a382bf93
FW
411}
412
d1e43fa5 413void __init tick_nohz_init(void)
a831881b 414{
31eff243 415 int cpu, ret;
d1e43fa5 416
a7c8655b
PM
417 if (!tick_nohz_full_running)
418 return;
d1e43fa5 419
9b01f5bf
FW
420 /*
421 * Full dynticks uses irq work to drive the tick rescheduling on safe
422 * locking contexts. But then we need irq work to raise its own
423 * interrupts to avoid circular dependency on the tick
424 */
425 if (!arch_irq_work_has_interrupt()) {
a395d6a7 426 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
9b01f5bf 427 cpumask_clear(tick_nohz_full_mask);
9b01f5bf
FW
428 tick_nohz_full_running = false;
429 return;
430 }
431
08ae95f4
NP
432 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
433 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
434 cpu = smp_processor_id();
4327b15f 435
08ae95f4
NP
436 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
437 pr_warn("NO_HZ: Clearing %d from nohz_full range "
438 "for timekeeping\n", cpu);
439 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
440 }
4327b15f
FW
441 }
442
73867dcd 443 for_each_cpu(cpu, tick_nohz_full_mask)
2e709338
FW
444 context_tracking_cpu_set(cpu);
445
31eff243
SAS
446 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
447 "kernel/nohz:predown", NULL,
448 tick_nohz_cpu_down);
449 WARN_ON(ret < 0);
ffda22c1
TH
450 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
451 cpumask_pr_args(tick_nohz_full_mask));
a831881b 452}
a831881b
FW
453#endif
454
79bf2bb3
TG
455/*
456 * NOHZ - aka dynamic tick functionality
457 */
3451d024 458#ifdef CONFIG_NO_HZ_COMMON
79bf2bb3
TG
459/*
460 * NO HZ enabled ?
461 */
4cc7ecb7 462bool tick_nohz_enabled __read_mostly = true;
bc7a34b8 463unsigned long tick_nohz_active __read_mostly;
79bf2bb3
TG
464/*
465 * Enable / Disable tickless mode
466 */
467static int __init setup_tick_nohz(char *str)
468{
4cc7ecb7 469 return (kstrtobool(str, &tick_nohz_enabled) == 0);
79bf2bb3
TG
470}
471
472__setup("nohz=", setup_tick_nohz);
473
a3642983 474bool tick_nohz_tick_stopped(void)
c1797baf 475{
2bc629a6
FW
476 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
477
478 return ts->tick_stopped;
c1797baf
TG
479}
480
22ab8bc0
FW
481bool tick_nohz_tick_stopped_cpu(int cpu)
482{
483 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
484
485 return ts->tick_stopped;
486}
487
79bf2bb3
TG
488/**
489 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
490 *
491 * Called from interrupt entry when the CPU was idle
492 *
493 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
494 * must be updated. Otherwise an interrupt handler could use a stale jiffy
0de7611a
IM
495 * value. We do this unconditionally on any CPU, as we don't know whether the
496 * CPU, which has the update task assigned is in a long sleep.
79bf2bb3 497 */
eed3b9cf 498static void tick_nohz_update_jiffies(ktime_t now)
79bf2bb3 499{
79bf2bb3 500 unsigned long flags;
79bf2bb3 501
e8fcaa5c 502 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
79bf2bb3
TG
503
504 local_irq_save(flags);
505 tick_do_update_jiffies64(now);
506 local_irq_restore(flags);
02ff3755 507
03e0d461 508 touch_softlockup_watchdog_sched();
79bf2bb3
TG
509}
510
595aac48 511/*
0de7611a 512 * Updates the per-CPU time idle statistics counters
595aac48 513 */
8d63bf94 514static void
8c215bd3 515update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
6378ddb5 516{
eed3b9cf 517 ktime_t delta;
6378ddb5 518
595aac48
AV
519 if (ts->idle_active) {
520 delta = ktime_sub(now, ts->idle_entrytime);
8c215bd3 521 if (nr_iowait_cpu(cpu) > 0)
0224cf4c 522 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
6beea0cd
MH
523 else
524 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
8c7b09f4 525 ts->idle_entrytime = now;
595aac48 526 }
8d63bf94 527
e0e37c20 528 if (last_update_time)
8d63bf94
AV
529 *last_update_time = ktime_to_us(now);
530
595aac48
AV
531}
532
e8fcaa5c 533static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
595aac48 534{
e8fcaa5c 535 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
eed3b9cf 536 ts->idle_active = 0;
56c7426b 537
ac1e843f 538 sched_clock_idle_wakeup_event();
6378ddb5
VP
539}
540
0e776768 541static void tick_nohz_start_idle(struct tick_sched *ts)
6378ddb5 542{
0e776768 543 ts->idle_entrytime = ktime_get();
6378ddb5 544 ts->idle_active = 1;
56c7426b 545 sched_clock_idle_sleep_event();
6378ddb5
VP
546}
547
b1f724c3 548/**
0de7611a 549 * get_cpu_idle_time_us - get the total idle time of a CPU
b1f724c3 550 * @cpu: CPU number to query
09a1d34f
MH
551 * @last_update_time: variable to store update time in. Do not update
552 * counters if NULL.
b1f724c3 553 *
6168f8ed 554 * Return the cumulative idle time (since boot) for a given
6beea0cd 555 * CPU, in microseconds.
b1f724c3
AV
556 *
557 * This time is measured via accounting rather than sampling,
558 * and is as accurate as ktime_get() is.
559 *
560 * This function returns -1 if NOHZ is not enabled.
561 */
6378ddb5
VP
562u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
563{
564 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 565 ktime_t now, idle;
6378ddb5 566
d689fe22 567 if (!tick_nohz_active)
8083e4ad 568 return -1;
569
09a1d34f
MH
570 now = ktime_get();
571 if (last_update_time) {
572 update_ts_time_stats(cpu, ts, now, last_update_time);
573 idle = ts->idle_sleeptime;
574 } else {
575 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
576 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
577
578 idle = ktime_add(ts->idle_sleeptime, delta);
579 } else {
580 idle = ts->idle_sleeptime;
581 }
582 }
583
584 return ktime_to_us(idle);
8083e4ad 585
6378ddb5 586}
8083e4ad 587EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
6378ddb5 588
6beea0cd 589/**
0de7611a 590 * get_cpu_iowait_time_us - get the total iowait time of a CPU
0224cf4c 591 * @cpu: CPU number to query
09a1d34f
MH
592 * @last_update_time: variable to store update time in. Do not update
593 * counters if NULL.
0224cf4c 594 *
6168f8ed 595 * Return the cumulative iowait time (since boot) for a given
0224cf4c
AV
596 * CPU, in microseconds.
597 *
598 * This time is measured via accounting rather than sampling,
599 * and is as accurate as ktime_get() is.
600 *
601 * This function returns -1 if NOHZ is not enabled.
602 */
603u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
604{
605 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 606 ktime_t now, iowait;
0224cf4c 607
d689fe22 608 if (!tick_nohz_active)
0224cf4c
AV
609 return -1;
610
09a1d34f
MH
611 now = ktime_get();
612 if (last_update_time) {
613 update_ts_time_stats(cpu, ts, now, last_update_time);
614 iowait = ts->iowait_sleeptime;
615 } else {
616 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
617 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
0224cf4c 618
09a1d34f
MH
619 iowait = ktime_add(ts->iowait_sleeptime, delta);
620 } else {
621 iowait = ts->iowait_sleeptime;
622 }
623 }
0224cf4c 624
09a1d34f 625 return ktime_to_us(iowait);
0224cf4c
AV
626}
627EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
628
0ff53d09
TG
629static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
630{
631 hrtimer_cancel(&ts->sched_timer);
632 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
633
634 /* Forward the time to expire in the future */
635 hrtimer_forward(&ts->sched_timer, now, tick_period);
636
637 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
638 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
639 else
640 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
411fe24e
FW
641
642 /*
643 * Reset to make sure next tick stop doesn't get fooled by past
644 * cached clock deadline.
645 */
646 ts->next_tick = 0;
0ff53d09
TG
647}
648
5d62c183
TG
649static inline bool local_timer_softirq_pending(void)
650{
80d20d35 651 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
5d62c183
TG
652}
653
23a8d888 654static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
79bf2bb3 655{
c1ad348b 656 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
e1e41b6c
RV
657 unsigned long basejiff;
658 unsigned int seq;
855a0fc3 659
79bf2bb3
TG
660 /* Read jiffies and the time when jiffies were updated last */
661 do {
d6ad4187 662 seq = read_seqbegin(&jiffies_lock);
2456e855 663 basemono = last_jiffies_update;
c1ad348b 664 basejiff = jiffies;
d6ad4187 665 } while (read_seqretry(&jiffies_lock, seq));
c1ad348b 666 ts->last_jiffies = basejiff;
23a8d888 667 ts->timer_expires_base = basemono;
79bf2bb3 668
5d62c183
TG
669 /*
670 * Keep the periodic tick, when RCU, architecture or irq_work
671 * requests it.
672 * Aside of that check whether the local timer softirq is
673 * pending. If so its a bad idea to call get_next_timer_interrupt()
674 * because there is an already expired timer, so it will request
675 * immeditate expiry, which rearms the hardware timer with a
676 * minimal delta which brings us back to this place
677 * immediately. Lather, rinse and repeat...
678 */
679 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
680 irq_work_needs_cpu() || local_timer_softirq_pending()) {
c1ad348b 681 next_tick = basemono + TICK_NSEC;
3c5d92a0 682 } else {
c1ad348b
TG
683 /*
684 * Get the next pending timer. If high resolution
685 * timers are enabled this only takes the timer wheel
686 * timers into account. If high resolution timers are
687 * disabled this also looks at the next expiring
688 * hrtimer.
689 */
690 next_tmr = get_next_timer_interrupt(basejiff, basemono);
691 ts->next_timer = next_tmr;
692 /* Take the next rcu event into account */
693 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
3c5d92a0 694 }
47aa8b6c 695
c1ad348b
TG
696 /*
697 * If the tick is due in the next period, keep it ticking or
82bbe34b 698 * force prod the timer.
c1ad348b
TG
699 */
700 delta = next_tick - basemono;
701 if (delta <= (u64)TICK_NSEC) {
a683f390
TG
702 /*
703 * Tell the timer code that the base is not idle, i.e. undo
704 * the effect of get_next_timer_interrupt():
705 */
706 timer_clear_idle();
82bbe34b
PZ
707 /*
708 * We've not stopped the tick yet, and there's a timer in the
709 * next period, so no point in stopping it either, bail.
710 */
f99973e1 711 if (!ts->tick_stopped) {
23a8d888 712 ts->timer_expires = 0;
157d29e1
TG
713 goto out;
714 }
715 }
716
23a8d888
RW
717 /*
718 * If this CPU is the one which had the do_timer() duty last, we limit
719 * the sleep time to the timekeeping max_deferment value.
720 * Otherwise we can sleep as long as we want.
721 */
722 delta = timekeeping_max_deferment();
723 if (cpu != tick_do_timer_cpu &&
724 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
725 delta = KTIME_MAX;
726
727 /* Calculate the next expiry time */
728 if (delta < (KTIME_MAX - basemono))
729 expires = basemono + delta;
730 else
731 expires = KTIME_MAX;
732
733 ts->timer_expires = min_t(u64, expires, next_tick);
734
735out:
736 return ts->timer_expires;
737}
738
739static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
740{
741 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
742 u64 basemono = ts->timer_expires_base;
743 u64 expires = ts->timer_expires;
744 ktime_t tick = expires;
745
746 /* Make sure we won't be trying to stop it twice in a row. */
747 ts->timer_expires_base = 0;
748
79bf2bb3 749 /*
0de7611a
IM
750 * If this CPU is the one which updates jiffies, then give up
751 * the assignment and let it be taken by the CPU which runs
752 * the tick timer next, which might be this CPU as well. If we
157d29e1
TG
753 * don't drop this here the jiffies might be stale and
754 * do_timer() never invoked. Keep track of the fact that it
23a8d888 755 * was the one which had the do_timer() duty last.
79bf2bb3 756 */
157d29e1
TG
757 if (cpu == tick_do_timer_cpu) {
758 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
759 ts->do_timer_last = 1;
760 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
157d29e1 761 ts->do_timer_last = 0;
157d29e1 762 }
27185016 763
157d29e1 764 /* Skip reprogram of event if its not changed */
411fe24e
FW
765 if (ts->tick_stopped && (expires == ts->next_tick)) {
766 /* Sanity check: make sure clockevent is actually programmed */
d4af6d93 767 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
23a8d888 768 return;
411fe24e
FW
769
770 WARN_ON_ONCE(1);
771 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
772 basemono, ts->next_tick, dev->next_event,
773 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
ce6cf9a1 774 }
84bf1bcc 775
157d29e1
TG
776 /*
777 * nohz_stop_sched_tick can be called several times before
778 * the nohz_restart_sched_tick is called. This happens when
779 * interrupts arrive which do not cause a reschedule. In the
780 * first call we save the current tick time, so we can restart
781 * the scheduler tick in nohz_restart_sched_tick.
782 */
783 if (!ts->tick_stopped) {
3c85d6db 784 calc_load_nohz_start();
62cb1188 785 quiet_vmstat();
d3ed7824 786
157d29e1
TG
787 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
788 ts->tick_stopped = 1;
e6e6cc22 789 trace_tick_stop(1, TICK_DEP_MASK_NONE);
157d29e1 790 }
eaad084b 791
411fe24e
FW
792 ts->next_tick = tick;
793
157d29e1 794 /*
c1ad348b
TG
795 * If the expiration time == KTIME_MAX, then we simply stop
796 * the tick timer.
157d29e1 797 */
c1ad348b 798 if (unlikely(expires == KTIME_MAX)) {
157d29e1
TG
799 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
800 hrtimer_cancel(&ts->sched_timer);
23a8d888 801 return;
79bf2bb3 802 }
0ff53d09 803
1f71addd
TG
804 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
805 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
806 } else {
807 hrtimer_set_expires(&ts->sched_timer, tick);
c1ad348b 808 tick_program_event(tick, 1);
1f71addd 809 }
280f0677
FW
810}
811
23a8d888
RW
812static void tick_nohz_retain_tick(struct tick_sched *ts)
813{
814 ts->timer_expires_base = 0;
815}
816
817#ifdef CONFIG_NO_HZ_FULL
818static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
819{
820 if (tick_nohz_next_event(ts, cpu))
821 tick_nohz_stop_tick(ts, cpu);
822 else
823 tick_nohz_retain_tick(ts);
824}
825#endif /* CONFIG_NO_HZ_FULL */
826
1f41906a 827static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
59d2c7ca
FW
828{
829 /* Update jiffies first */
830 tick_do_update_jiffies64(now);
59d2c7ca 831
a683f390
TG
832 /*
833 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
834 * the clock forward checks in the enqueue path:
835 */
836 timer_clear_idle();
837
3c85d6db 838 calc_load_nohz_stop();
03e0d461 839 touch_softlockup_watchdog_sched();
59d2c7ca
FW
840 /*
841 * Cancel the scheduled timer and restore the tick
842 */
843 ts->tick_stopped = 0;
844 ts->idle_exittime = now;
845
846 tick_nohz_restart(ts, now);
847}
73738a95
FW
848
849static void tick_nohz_full_update_tick(struct tick_sched *ts)
5811d996
FW
850{
851#ifdef CONFIG_NO_HZ_FULL
e9a2eb40 852 int cpu = smp_processor_id();
5811d996 853
59449359 854 if (!tick_nohz_full_cpu(cpu))
e9a2eb40 855 return;
5811d996 856
e9a2eb40
AS
857 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
858 return;
5811d996 859
57ccdf44 860 if (can_stop_full_tick(cpu, ts))
23a8d888 861 tick_nohz_stop_sched_tick(ts, cpu);
73738a95 862 else if (ts->tick_stopped)
1f41906a 863 tick_nohz_restart_sched_tick(ts, ktime_get());
5811d996
FW
864#endif
865}
866
5b39939a
FW
867static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
868{
869 /*
0de7611a 870 * If this CPU is offline and it is the one which updates
5b39939a 871 * jiffies, then give up the assignment and let it be taken by
0de7611a 872 * the CPU which runs the tick timer next. If we don't drop
5b39939a
FW
873 * this here the jiffies might be stale and do_timer() never
874 * invoked.
875 */
876 if (unlikely(!cpu_online(cpu))) {
877 if (cpu == tick_do_timer_cpu)
878 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
411fe24e
FW
879 /*
880 * Make sure the CPU doesn't get fooled by obsolete tick
881 * deadline if it comes back online later.
882 */
883 ts->next_tick = 0;
f7ea0fd6 884 return false;
5b39939a
FW
885 }
886
23a8d888 887 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
5b39939a
FW
888 return false;
889
890 if (need_resched())
891 return false;
892
d59e0ba1 893 if (unlikely(local_softirq_pending())) {
5b39939a
FW
894 static int ratelimit;
895
803b0eba
PM
896 if (ratelimit < 10 &&
897 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
cfea7d7e
RV
898 pr_warn("NOHZ: local_softirq_pending %02x\n",
899 (unsigned int) local_softirq_pending());
5b39939a
FW
900 ratelimit++;
901 }
902 return false;
903 }
904
460775df 905 if (tick_nohz_full_enabled()) {
a382bf93
FW
906 /*
907 * Keep the tick alive to guarantee timekeeping progression
908 * if there are full dynticks CPUs around
909 */
910 if (tick_do_timer_cpu == cpu)
911 return false;
912 /*
913 * Boot safety: make sure the timekeeping duty has been
914 * assigned before entering dyntick-idle mode,
08ae95f4 915 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
a382bf93 916 */
08ae95f4
NP
917 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
918 return false;
919
920 /* Should not happen for nohz-full */
921 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
a382bf93
FW
922 return false;
923 }
924
5b39939a
FW
925 return true;
926}
927
0e776768 928static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
19f5f736 929{
0e776768 930 ktime_t expires;
5b39939a 931 int cpu = smp_processor_id();
19f5f736 932
554c8aa8
RW
933 /*
934 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
935 * tick timer expiration time is known already.
936 */
937 if (ts->timer_expires_base)
938 expires = ts->timer_expires;
939 else if (can_stop_idle_tick(cpu, ts))
940 expires = tick_nohz_next_event(ts, cpu);
941 else
942 return;
23a8d888
RW
943
944 ts->idle_calls++;
08d07259 945
23a8d888 946 if (expires > 0LL) {
5b39939a
FW
947 int was_stopped = ts->tick_stopped;
948
23a8d888 949 tick_nohz_stop_tick(ts, cpu);
84bf1bcc 950
23a8d888
RW
951 ts->idle_sleeps++;
952 ts->idle_expires = expires;
5b39939a 953
a0db971e 954 if (!was_stopped && ts->tick_stopped) {
5b39939a 955 ts->idle_jiffies = ts->last_jiffies;
a0db971e
FW
956 nohz_balance_enter_idle(cpu);
957 }
23a8d888
RW
958 } else {
959 tick_nohz_retain_tick(ts);
5b39939a 960 }
280f0677
FW
961}
962
963/**
0e776768 964 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
280f0677
FW
965 *
966 * When the next event is more than a tick into the future, stop the idle tick
0e776768
RW
967 */
968void tick_nohz_idle_stop_tick(void)
969{
970 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
971}
972
554c8aa8
RW
973void tick_nohz_idle_retain_tick(void)
974{
975 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
976 /*
977 * Undo the effect of get_next_timer_interrupt() called from
978 * tick_nohz_next_event().
979 */
980 timer_clear_idle();
981}
982
0e776768
RW
983/**
984 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
2bbb6817 985 *
0e776768 986 * Called when we start the idle loop.
280f0677 987 */
1268fbc7 988void tick_nohz_idle_enter(void)
280f0677
FW
989{
990 struct tick_sched *ts;
991
ebf3adba 992 lockdep_assert_irqs_enabled();
0db49b72 993
1268fbc7
FW
994 local_irq_disable();
995
22127e93 996 ts = this_cpu_ptr(&tick_cpu_sched);
23a8d888
RW
997
998 WARN_ON_ONCE(ts->timer_expires_base);
999
280f0677 1000 ts->inidle = 1;
0e776768 1001 tick_nohz_start_idle(ts);
1268fbc7
FW
1002
1003 local_irq_enable();
280f0677
FW
1004}
1005
1006/**
1007 * tick_nohz_irq_exit - update next tick event from interrupt exit
1008 *
1009 * When an interrupt fires while we are idle and it doesn't cause
1010 * a reschedule, it may still add, modify or delete a timer, enqueue
1011 * an RCU callback, etc...
1012 * So we need to re-calculate and reprogram the next tick event.
1013 */
1014void tick_nohz_irq_exit(void)
1015{
22127e93 1016 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
280f0677 1017
14851912 1018 if (ts->inidle)
0e776768 1019 tick_nohz_start_idle(ts);
14851912 1020 else
73738a95 1021 tick_nohz_full_update_tick(ts);
79bf2bb3
TG
1022}
1023
4f86d3a8 1024/**
45f1ff59
RW
1025 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1026 */
1027bool tick_nohz_idle_got_tick(void)
1028{
1029 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1030
2bc629a6
FW
1031 if (ts->got_idle_tick) {
1032 ts->got_idle_tick = 0;
45f1ff59
RW
1033 return true;
1034 }
1035 return false;
1036}
1037
6f9b83ac
UH
1038/**
1039 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1040 * or the tick, whatever that expires first. Note that, if the tick has been
1041 * stopped, it returns the next hrtimer.
1042 *
1043 * Called from power state control code with interrupts disabled
1044 */
1045ktime_t tick_nohz_get_next_hrtimer(void)
1046{
1047 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1048}
1049
4f86d3a8 1050/**
554c8aa8 1051 * tick_nohz_get_sleep_length - return the expected length of the current sleep
296bb1e5 1052 * @delta_next: duration until the next event if the tick cannot be stopped
4f86d3a8
LB
1053 *
1054 * Called from power state control code with interrupts disabled
1055 */
296bb1e5 1056ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
4f86d3a8 1057{
554c8aa8 1058 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
22127e93 1059 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
554c8aa8
RW
1060 int cpu = smp_processor_id();
1061 /*
1062 * The idle entry time is expected to be a sufficient approximation of
1063 * the current time at this point.
1064 */
1065 ktime_t now = ts->idle_entrytime;
1066 ktime_t next_event;
1067
1068 WARN_ON_ONCE(!ts->inidle);
1069
296bb1e5
RW
1070 *delta_next = ktime_sub(dev->next_event, now);
1071
554c8aa8 1072 if (!can_stop_idle_tick(cpu, ts))
296bb1e5 1073 return *delta_next;
554c8aa8
RW
1074
1075 next_event = tick_nohz_next_event(ts, cpu);
1076 if (!next_event)
296bb1e5 1077 return *delta_next;
554c8aa8
RW
1078
1079 /*
1080 * If the next highres timer to expire is earlier than next_event, the
1081 * idle governor needs to know that.
1082 */
1083 next_event = min_t(u64, next_event,
1084 hrtimer_next_event_without(&ts->sched_timer));
4f86d3a8 1085
554c8aa8 1086 return ktime_sub(next_event, now);
4f86d3a8
LB
1087}
1088
466a2b42
JF
1089/**
1090 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1091 * for a particular CPU.
1092 *
1093 * Called from the schedutil frequency scaling governor in scheduler context.
1094 */
1095unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1096{
1097 struct tick_sched *ts = tick_get_tick_sched(cpu);
1098
1099 return ts->idle_calls;
1100}
1101
b7eaf1aa
RW
1102/**
1103 * tick_nohz_get_idle_calls - return the current idle calls counter value
1104 *
1105 * Called from the schedutil frequency scaling governor in scheduler context.
1106 */
1107unsigned long tick_nohz_get_idle_calls(void)
1108{
1109 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1110
1111 return ts->idle_calls;
1112}
1113
2ac0d98f
FW
1114static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1115{
3f4724ea 1116#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
2ac0d98f 1117 unsigned long ticks;
3f4724ea 1118
55dbdcfa 1119 if (vtime_accounting_cpu_enabled())
3f4724ea 1120 return;
79bf2bb3
TG
1121 /*
1122 * We stopped the tick in idle. Update process times would miss the
1123 * time we slept as update_process_times does only a 1 tick
1124 * accounting. Enforce that this is accounted to idle !
1125 */
1126 ticks = jiffies - ts->idle_jiffies;
1127 /*
1128 * We might be one off. Do not randomly account a huge number of ticks!
1129 */
79741dd3
MS
1130 if (ticks && ticks < LONG_MAX)
1131 account_idle_ticks(ticks);
1132#endif
19f5f736
FW
1133}
1134
2aaf709a
RW
1135static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1136{
1137 tick_nohz_restart_sched_tick(ts, now);
1138 tick_nohz_account_idle_ticks(ts);
1139}
1140
1141void tick_nohz_idle_restart_tick(void)
1142{
1143 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1144
1145 if (ts->tick_stopped)
1146 __tick_nohz_idle_restart_tick(ts, ktime_get());
1147}
1148
79bf2bb3 1149/**
280f0677 1150 * tick_nohz_idle_exit - restart the idle tick from the idle task
79bf2bb3
TG
1151 *
1152 * Restart the idle tick when the CPU is woken up from idle
280f0677
FW
1153 * This also exit the RCU extended quiescent state. The CPU
1154 * can use RCU again after this function is called.
79bf2bb3 1155 */
280f0677 1156void tick_nohz_idle_exit(void)
79bf2bb3 1157{
4a32fea9 1158 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
bbe9a70a 1159 bool idle_active, tick_stopped;
6378ddb5 1160 ktime_t now;
79bf2bb3 1161
6378ddb5 1162 local_irq_disable();
2bbb6817 1163
15f827be 1164 WARN_ON_ONCE(!ts->inidle);
23a8d888 1165 WARN_ON_ONCE(ts->timer_expires_base);
15f827be
FW
1166
1167 ts->inidle = 0;
bbe9a70a
AB
1168 idle_active = ts->idle_active;
1169 tick_stopped = ts->tick_stopped;
15f827be 1170
bbe9a70a 1171 if (idle_active || tick_stopped)
eed3b9cf
MS
1172 now = ktime_get();
1173
bbe9a70a 1174 if (idle_active)
e8fcaa5c 1175 tick_nohz_stop_idle(ts, now);
6378ddb5 1176
bbe9a70a 1177 if (tick_stopped)
2aaf709a 1178 __tick_nohz_idle_restart_tick(ts, now);
79bf2bb3 1179
79bf2bb3
TG
1180 local_irq_enable();
1181}
1182
79bf2bb3
TG
1183/*
1184 * The nohz low res interrupt handler
1185 */
1186static void tick_nohz_handler(struct clock_event_device *dev)
1187{
22127e93 1188 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1189 struct pt_regs *regs = get_irq_regs();
1190 ktime_t now = ktime_get();
1191
2456e855 1192 dev->next_event = KTIME_MAX;
79bf2bb3 1193
ff7de620 1194 tick_sched_do_timer(ts, now);
9e8f559b 1195 tick_sched_handle(ts, regs);
79bf2bb3 1196
b5e995e6
VK
1197 /* No need to reprogram if we are running tickless */
1198 if (unlikely(ts->tick_stopped))
1199 return;
1200
0ff53d09
TG
1201 hrtimer_forward(&ts->sched_timer, now, tick_period);
1202 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
79bf2bb3
TG
1203}
1204
bc7a34b8
TG
1205static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1206{
1207 if (!tick_nohz_enabled)
1208 return;
1209 ts->nohz_mode = mode;
1210 /* One update is enough */
1211 if (!test_and_set_bit(0, &tick_nohz_active))
ae67bada 1212 timers_update_nohz();
bc7a34b8
TG
1213}
1214
79bf2bb3
TG
1215/**
1216 * tick_nohz_switch_to_nohz - switch to nohz mode
1217 */
1218static void tick_nohz_switch_to_nohz(void)
1219{
22127e93 1220 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1221 ktime_t next;
1222
27630532 1223 if (!tick_nohz_enabled)
79bf2bb3
TG
1224 return;
1225
6b442bc8 1226 if (tick_switch_to_oneshot(tick_nohz_handler))
79bf2bb3 1227 return;
6b442bc8 1228
79bf2bb3
TG
1229 /*
1230 * Recycle the hrtimer in ts, so we can share the
1231 * hrtimer_forward with the highres code.
1232 */
1233 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1234 /* Get the next period */
1235 next = tick_init_jiffy_update();
1236
0ff53d09 1237 hrtimer_set_expires(&ts->sched_timer, next);
1ca8ec53
WL
1238 hrtimer_forward_now(&ts->sched_timer, tick_period);
1239 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
bc7a34b8 1240 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
79bf2bb3
TG
1241}
1242
5acac1be 1243static inline void tick_nohz_irq_enter(void)
eed3b9cf 1244{
4a32fea9 1245 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
eed3b9cf
MS
1246 ktime_t now;
1247
1248 if (!ts->idle_active && !ts->tick_stopped)
1249 return;
1250 now = ktime_get();
1251 if (ts->idle_active)
e8fcaa5c 1252 tick_nohz_stop_idle(ts, now);
ff006732 1253 if (ts->tick_stopped)
eed3b9cf 1254 tick_nohz_update_jiffies(now);
eed3b9cf
MS
1255}
1256
79bf2bb3
TG
1257#else
1258
1259static inline void tick_nohz_switch_to_nohz(void) { }
5acac1be 1260static inline void tick_nohz_irq_enter(void) { }
bc7a34b8 1261static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
79bf2bb3 1262
3451d024 1263#endif /* CONFIG_NO_HZ_COMMON */
79bf2bb3 1264
719254fa
TG
1265/*
1266 * Called from irq_enter to notify about the possible interruption of idle()
1267 */
5acac1be 1268void tick_irq_enter(void)
719254fa 1269{
e8fcaa5c 1270 tick_check_oneshot_broadcast_this_cpu();
5acac1be 1271 tick_nohz_irq_enter();
719254fa
TG
1272}
1273
79bf2bb3
TG
1274/*
1275 * High resolution timer specific code
1276 */
1277#ifdef CONFIG_HIGH_RES_TIMERS
1278/*
4c9dc641 1279 * We rearm the timer until we get disabled by the idle code.
351f181f 1280 * Called with interrupts disabled.
79bf2bb3
TG
1281 */
1282static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1283{
1284 struct tick_sched *ts =
1285 container_of(timer, struct tick_sched, sched_timer);
79bf2bb3
TG
1286 struct pt_regs *regs = get_irq_regs();
1287 ktime_t now = ktime_get();
d3ed7824 1288
ff7de620 1289 tick_sched_do_timer(ts, now);
79bf2bb3
TG
1290
1291 /*
1292 * Do not call, when we are not in irq context and have
1293 * no valid regs pointer
1294 */
9e8f559b
FW
1295 if (regs)
1296 tick_sched_handle(ts, regs);
7c259045
FW
1297 else
1298 ts->next_tick = 0;
79bf2bb3 1299
2a16fc93
VK
1300 /* No need to reprogram if we are in idle or full dynticks mode */
1301 if (unlikely(ts->tick_stopped))
1302 return HRTIMER_NORESTART;
1303
79bf2bb3
TG
1304 hrtimer_forward(timer, now, tick_period);
1305
1306 return HRTIMER_RESTART;
1307}
1308
5307c955
MG
1309static int sched_skew_tick;
1310
62cf20b3
TG
1311static int __init skew_tick(char *str)
1312{
1313 get_option(&str, &sched_skew_tick);
1314
1315 return 0;
1316}
1317early_param("skew_tick", skew_tick);
1318
79bf2bb3
TG
1319/**
1320 * tick_setup_sched_timer - setup the tick emulation timer
1321 */
1322void tick_setup_sched_timer(void)
1323{
22127e93 1324 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1325 ktime_t now = ktime_get();
1326
1327 /*
1328 * Emulate tick processing via per-CPU hrtimers:
1329 */
1330 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1331 ts->sched_timer.function = tick_sched_timer;
79bf2bb3 1332
0de7611a 1333 /* Get the next period (per-CPU) */
cc584b21 1334 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
79bf2bb3 1335
9c3f9e28 1336 /* Offset the tick to avert jiffies_lock contention. */
5307c955
MG
1337 if (sched_skew_tick) {
1338 u64 offset = ktime_to_ns(tick_period) >> 1;
1339 do_div(offset, num_possible_cpus());
1340 offset *= smp_processor_id();
1341 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1342 }
1343
afc08b15
TG
1344 hrtimer_forward(&ts->sched_timer, now, tick_period);
1345 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
bc7a34b8 1346 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
79bf2bb3 1347}
3c4fbe5e 1348#endif /* HIGH_RES_TIMERS */
79bf2bb3 1349
3451d024 1350#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1351void tick_cancel_sched_timer(int cpu)
1352{
1353 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1354
3c4fbe5e 1355# ifdef CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1356 if (ts->sched_timer.base)
1357 hrtimer_cancel(&ts->sched_timer);
3c4fbe5e 1358# endif
a7901766 1359
4b0c0f29 1360 memset(ts, 0, sizeof(*ts));
79bf2bb3 1361}
3c4fbe5e 1362#endif
79bf2bb3
TG
1363
1364/**
1365 * Async notification about clocksource changes
1366 */
1367void tick_clock_notify(void)
1368{
1369 int cpu;
1370
1371 for_each_possible_cpu(cpu)
1372 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1373}
1374
1375/*
1376 * Async notification about clock event changes
1377 */
1378void tick_oneshot_notify(void)
1379{
22127e93 1380 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1381
1382 set_bit(0, &ts->check_clocks);
1383}
1384
1385/**
1386 * Check, if a change happened, which makes oneshot possible.
1387 *
1388 * Called cyclic from the hrtimer softirq (driven by the timer
1389 * softirq) allow_nohz signals, that we can switch into low-res nohz
1390 * mode, because high resolution timers are disabled (either compile
6b442bc8 1391 * or runtime). Called with interrupts disabled.
79bf2bb3
TG
1392 */
1393int tick_check_oneshot_change(int allow_nohz)
1394{
22127e93 1395 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1396
1397 if (!test_and_clear_bit(0, &ts->check_clocks))
1398 return 0;
1399
1400 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1401 return 0;
1402
cf4fc6cb 1403 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
79bf2bb3
TG
1404 return 0;
1405
1406 if (!allow_nohz)
1407 return 1;
1408
1409 tick_nohz_switch_to_nohz();
1410 return 0;
1411}