ALSA: pcm: Fix missing check of the new non-cached buffer type
[linux-2.6-block.git] / kernel / time / tick-sched.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
79bf2bb3 2/*
79bf2bb3
TG
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
79bf2bb3
TG
10 */
11#include <linux/cpu.h>
12#include <linux/err.h>
13#include <linux/hrtimer.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/percpu.h>
38b8d208 17#include <linux/nmi.h>
79bf2bb3 18#include <linux/profile.h>
3f07c014 19#include <linux/sched/signal.h>
e6017571 20#include <linux/sched/clock.h>
03441a34 21#include <linux/sched/stat.h>
370c9135 22#include <linux/sched/nohz.h>
8083e4ad 23#include <linux/module.h>
00b42959 24#include <linux/irq_work.h>
9014c45d 25#include <linux/posix-timers.h>
2e709338 26#include <linux/context_tracking.h>
62cb1188 27#include <linux/mm.h>
79bf2bb3 28
9e203bcc
DM
29#include <asm/irq_regs.h>
30
79bf2bb3
TG
31#include "tick-internal.h"
32
cb41a290
FW
33#include <trace/events/timer.h>
34
79bf2bb3 35/*
0de7611a 36 * Per-CPU nohz control structure
79bf2bb3 37 */
c1797baf 38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
79bf2bb3 39
289f480a
IM
40struct tick_sched *tick_get_tick_sched(int cpu)
41{
42 return &per_cpu(tick_cpu_sched, cpu);
43}
44
7809998a
AB
45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46/*
47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
48 */
49static ktime_t last_jiffies_update;
50
79bf2bb3
TG
51/*
52 * Must be called with interrupts disabled !
53 */
54static void tick_do_update_jiffies64(ktime_t now)
55{
56 unsigned long ticks = 0;
57 ktime_t delta;
58
7a14ce1d 59 /*
d6ad4187 60 * Do a quick check without holding jiffies_lock:
7a14ce1d
IM
61 */
62 delta = ktime_sub(now, last_jiffies_update);
2456e855 63 if (delta < tick_period)
7a14ce1d
IM
64 return;
65
6168f8ed 66 /* Reevaluate with jiffies_lock held */
d6ad4187 67 write_seqlock(&jiffies_lock);
79bf2bb3
TG
68
69 delta = ktime_sub(now, last_jiffies_update);
2456e855 70 if (delta >= tick_period) {
79bf2bb3
TG
71
72 delta = ktime_sub(delta, tick_period);
73 last_jiffies_update = ktime_add(last_jiffies_update,
74 tick_period);
75
76 /* Slow path for long timeouts */
2456e855 77 if (unlikely(delta >= tick_period)) {
79bf2bb3
TG
78 s64 incr = ktime_to_ns(tick_period);
79
80 ticks = ktime_divns(delta, incr);
81
82 last_jiffies_update = ktime_add_ns(last_jiffies_update,
83 incr * ticks);
84 }
85 do_timer(++ticks);
49d670fb
TG
86
87 /* Keep the tick_next_period variable up to date */
88 tick_next_period = ktime_add(last_jiffies_update, tick_period);
03e6bdc5
VK
89 } else {
90 write_sequnlock(&jiffies_lock);
91 return;
79bf2bb3 92 }
d6ad4187 93 write_sequnlock(&jiffies_lock);
47a1b796 94 update_wall_time();
79bf2bb3
TG
95}
96
97/*
98 * Initialize and return retrieve the jiffies update.
99 */
100static ktime_t tick_init_jiffy_update(void)
101{
102 ktime_t period;
103
d6ad4187 104 write_seqlock(&jiffies_lock);
79bf2bb3 105 /* Did we start the jiffies update yet ? */
2456e855 106 if (last_jiffies_update == 0)
79bf2bb3
TG
107 last_jiffies_update = tick_next_period;
108 period = last_jiffies_update;
d6ad4187 109 write_sequnlock(&jiffies_lock);
79bf2bb3
TG
110 return period;
111}
112
ff7de620 113static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
5bb96226
FW
114{
115 int cpu = smp_processor_id();
116
3451d024 117#ifdef CONFIG_NO_HZ_COMMON
5bb96226
FW
118 /*
119 * Check if the do_timer duty was dropped. We don't care about
0de7611a
IM
120 * concurrency: This happens only when the CPU in charge went
121 * into a long sleep. If two CPUs happen to assign themselves to
5bb96226 122 * this duty, then the jiffies update is still serialized by
9c3f9e28 123 * jiffies_lock.
08ae95f4
NP
124 *
125 * If nohz_full is enabled, this should not happen because the
126 * tick_do_timer_cpu never relinquishes.
5bb96226 127 */
08ae95f4
NP
128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
129#ifdef CONFIG_NO_HZ_FULL
130 WARN_ON(tick_nohz_full_running);
131#endif
5bb96226 132 tick_do_timer_cpu = cpu;
08ae95f4 133 }
5bb96226
FW
134#endif
135
136 /* Check, if the jiffies need an update */
137 if (tick_do_timer_cpu == cpu)
138 tick_do_update_jiffies64(now);
ff7de620
RW
139
140 if (ts->inidle)
141 ts->got_idle_tick = 1;
5bb96226
FW
142}
143
9e8f559b
FW
144static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
145{
3451d024 146#ifdef CONFIG_NO_HZ_COMMON
9e8f559b
FW
147 /*
148 * When we are idle and the tick is stopped, we have to touch
149 * the watchdog as we might not schedule for a really long
150 * time. This happens on complete idle SMP systems while
151 * waiting on the login prompt. We also increment the "start of
152 * idle" jiffy stamp so the idle accounting adjustment we do
153 * when we go busy again does not account too much ticks.
154 */
155 if (ts->tick_stopped) {
03e0d461 156 touch_softlockup_watchdog_sched();
9e8f559b
FW
157 if (is_idle_task(current))
158 ts->idle_jiffies++;
411fe24e
FW
159 /*
160 * In case the current tick fired too early past its expected
161 * expiration, make sure we don't bypass the next clock reprogramming
162 * to the same deadline.
163 */
164 ts->next_tick = 0;
9e8f559b 165 }
94a57140 166#endif
9e8f559b
FW
167 update_process_times(user_mode(regs));
168 profile_tick(CPU_PROFILING);
169}
7809998a 170#endif
9e8f559b 171
c5bfece2 172#ifdef CONFIG_NO_HZ_FULL
460775df 173cpumask_var_t tick_nohz_full_mask;
73867dcd 174bool tick_nohz_full_running;
f009a7a7 175static atomic_t tick_dep_mask;
a831881b 176
f009a7a7 177static bool check_tick_dependency(atomic_t *dep)
d027d45d 178{
f009a7a7
FW
179 int val = atomic_read(dep);
180
181 if (val & TICK_DEP_MASK_POSIX_TIMER) {
e6e6cc22 182 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
f009a7a7 183 return true;
d027d45d
FW
184 }
185
f009a7a7 186 if (val & TICK_DEP_MASK_PERF_EVENTS) {
e6e6cc22 187 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
f009a7a7 188 return true;
d027d45d
FW
189 }
190
f009a7a7 191 if (val & TICK_DEP_MASK_SCHED) {
e6e6cc22 192 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
f009a7a7 193 return true;
d027d45d
FW
194 }
195
f009a7a7 196 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
e6e6cc22 197 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
f009a7a7
FW
198 return true;
199 }
200
201 return false;
d027d45d
FW
202}
203
57ccdf44 204static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
9014c45d 205{
ebf3adba 206 lockdep_assert_irqs_disabled();
9014c45d 207
57ccdf44
WL
208 if (unlikely(!cpu_online(cpu)))
209 return false;
210
f009a7a7 211 if (check_tick_dependency(&tick_dep_mask))
d027d45d 212 return false;
d027d45d 213
f009a7a7 214 if (check_tick_dependency(&ts->tick_dep_mask))
d027d45d 215 return false;
d027d45d 216
f009a7a7 217 if (check_tick_dependency(&current->tick_dep_mask))
d027d45d 218 return false;
d027d45d 219
f009a7a7 220 if (check_tick_dependency(&current->signal->tick_dep_mask))
d027d45d 221 return false;
d027d45d 222
9014c45d
FW
223 return true;
224}
225
d027d45d 226static void nohz_full_kick_func(struct irq_work *work)
76c24fb0 227{
73738a95 228 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
76c24fb0
FW
229}
230
231static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
d027d45d 232 .func = nohz_full_kick_func,
76c24fb0
FW
233};
234
40bea039
FW
235/*
236 * Kick this CPU if it's full dynticks in order to force it to
237 * re-evaluate its dependency on the tick and restart it if necessary.
238 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
239 * is NMI safe.
240 */
555e0c1e 241static void tick_nohz_full_kick(void)
40bea039
FW
242{
243 if (!tick_nohz_full_cpu(smp_processor_id()))
244 return;
245
56e4dea8 246 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
40bea039
FW
247}
248
76c24fb0 249/*
3d36aebc 250 * Kick the CPU if it's full dynticks in order to force it to
76c24fb0
FW
251 * re-evaluate its dependency on the tick and restart it if necessary.
252 */
3d36aebc 253void tick_nohz_full_kick_cpu(int cpu)
76c24fb0 254{
3d36aebc
FW
255 if (!tick_nohz_full_cpu(cpu))
256 return;
257
258 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
76c24fb0
FW
259}
260
76c24fb0
FW
261/*
262 * Kick all full dynticks CPUs in order to force these to re-evaluate
263 * their dependency on the tick and restart it if necessary.
264 */
b7878300 265static void tick_nohz_full_kick_all(void)
76c24fb0 266{
8537bb95
FW
267 int cpu;
268
73867dcd 269 if (!tick_nohz_full_running)
76c24fb0
FW
270 return;
271
272 preempt_disable();
8537bb95
FW
273 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
274 tick_nohz_full_kick_cpu(cpu);
76c24fb0
FW
275 preempt_enable();
276}
277
f009a7a7 278static void tick_nohz_dep_set_all(atomic_t *dep,
d027d45d
FW
279 enum tick_dep_bits bit)
280{
f009a7a7 281 int prev;
d027d45d 282
a1cc5bcf 283 prev = atomic_fetch_or(BIT(bit), dep);
d027d45d
FW
284 if (!prev)
285 tick_nohz_full_kick_all();
286}
287
288/*
289 * Set a global tick dependency. Used by perf events that rely on freq and
290 * by unstable clock.
291 */
292void tick_nohz_dep_set(enum tick_dep_bits bit)
293{
294 tick_nohz_dep_set_all(&tick_dep_mask, bit);
295}
296
297void tick_nohz_dep_clear(enum tick_dep_bits bit)
298{
f009a7a7 299 atomic_andnot(BIT(bit), &tick_dep_mask);
d027d45d
FW
300}
301
302/*
303 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
304 * manage events throttling.
305 */
306void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
307{
f009a7a7 308 int prev;
d027d45d
FW
309 struct tick_sched *ts;
310
311 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
312
a1cc5bcf 313 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
314 if (!prev) {
315 preempt_disable();
316 /* Perf needs local kick that is NMI safe */
317 if (cpu == smp_processor_id()) {
318 tick_nohz_full_kick();
319 } else {
320 /* Remote irq work not NMI-safe */
321 if (!WARN_ON_ONCE(in_nmi()))
322 tick_nohz_full_kick_cpu(cpu);
323 }
324 preempt_enable();
325 }
326}
327
328void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
329{
330 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
331
f009a7a7 332 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
333}
334
335/*
336 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
337 * per task timers.
338 */
339void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
340{
341 /*
342 * We could optimize this with just kicking the target running the task
343 * if that noise matters for nohz full users.
344 */
345 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
346}
347
348void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
349{
f009a7a7 350 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
d027d45d
FW
351}
352
353/*
354 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
355 * per process timers.
356 */
357void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358{
359 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
360}
361
362void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
363{
f009a7a7 364 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
d027d45d
FW
365}
366
99e5ada9
FW
367/*
368 * Re-evaluate the need for the tick as we switch the current task.
369 * It might need the tick due to per task/process properties:
0de7611a 370 * perf events, posix CPU timers, ...
99e5ada9 371 */
de734f89 372void __tick_nohz_task_switch(void)
99e5ada9
FW
373{
374 unsigned long flags;
d027d45d 375 struct tick_sched *ts;
99e5ada9 376
99e5ada9
FW
377 local_irq_save(flags);
378
6296ace4
LZ
379 if (!tick_nohz_full_cpu(smp_processor_id()))
380 goto out;
381
d027d45d 382 ts = this_cpu_ptr(&tick_cpu_sched);
99e5ada9 383
d027d45d 384 if (ts->tick_stopped) {
f009a7a7
FW
385 if (atomic_read(&current->tick_dep_mask) ||
386 atomic_read(&current->signal->tick_dep_mask))
d027d45d
FW
387 tick_nohz_full_kick();
388 }
6296ace4 389out:
99e5ada9
FW
390 local_irq_restore(flags);
391}
392
6f1982fe
FW
393/* Get the boot-time nohz CPU list from the kernel parameters. */
394void __init tick_nohz_full_setup(cpumask_var_t cpumask)
a831881b 395{
73867dcd 396 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
6f1982fe 397 cpumask_copy(tick_nohz_full_mask, cpumask);
73867dcd 398 tick_nohz_full_running = true;
a831881b 399}
a831881b 400
31eff243 401static int tick_nohz_cpu_down(unsigned int cpu)
a382bf93 402{
31eff243 403 /*
08ae95f4
NP
404 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
405 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
31eff243
SAS
406 * CPUs. It must remain online when nohz full is enabled.
407 */
408 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
409 return -EBUSY;
410 return 0;
a382bf93
FW
411}
412
d1e43fa5 413void __init tick_nohz_init(void)
a831881b 414{
31eff243 415 int cpu, ret;
d1e43fa5 416
a7c8655b
PM
417 if (!tick_nohz_full_running)
418 return;
d1e43fa5 419
9b01f5bf
FW
420 /*
421 * Full dynticks uses irq work to drive the tick rescheduling on safe
422 * locking contexts. But then we need irq work to raise its own
423 * interrupts to avoid circular dependency on the tick
424 */
425 if (!arch_irq_work_has_interrupt()) {
a395d6a7 426 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
9b01f5bf 427 cpumask_clear(tick_nohz_full_mask);
9b01f5bf
FW
428 tick_nohz_full_running = false;
429 return;
430 }
431
08ae95f4
NP
432 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
433 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
434 cpu = smp_processor_id();
4327b15f 435
08ae95f4
NP
436 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
437 pr_warn("NO_HZ: Clearing %d from nohz_full range "
438 "for timekeeping\n", cpu);
439 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
440 }
4327b15f
FW
441 }
442
73867dcd 443 for_each_cpu(cpu, tick_nohz_full_mask)
2e709338
FW
444 context_tracking_cpu_set(cpu);
445
31eff243
SAS
446 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
447 "kernel/nohz:predown", NULL,
448 tick_nohz_cpu_down);
449 WARN_ON(ret < 0);
ffda22c1
TH
450 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
451 cpumask_pr_args(tick_nohz_full_mask));
a831881b 452}
a831881b
FW
453#endif
454
79bf2bb3
TG
455/*
456 * NOHZ - aka dynamic tick functionality
457 */
3451d024 458#ifdef CONFIG_NO_HZ_COMMON
79bf2bb3
TG
459/*
460 * NO HZ enabled ?
461 */
4cc7ecb7 462bool tick_nohz_enabled __read_mostly = true;
bc7a34b8 463unsigned long tick_nohz_active __read_mostly;
79bf2bb3
TG
464/*
465 * Enable / Disable tickless mode
466 */
467static int __init setup_tick_nohz(char *str)
468{
4cc7ecb7 469 return (kstrtobool(str, &tick_nohz_enabled) == 0);
79bf2bb3
TG
470}
471
472__setup("nohz=", setup_tick_nohz);
473
a3642983 474bool tick_nohz_tick_stopped(void)
c1797baf 475{
2bc629a6
FW
476 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
477
478 return ts->tick_stopped;
c1797baf
TG
479}
480
22ab8bc0
FW
481bool tick_nohz_tick_stopped_cpu(int cpu)
482{
483 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
484
485 return ts->tick_stopped;
486}
487
79bf2bb3
TG
488/**
489 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
490 *
491 * Called from interrupt entry when the CPU was idle
492 *
493 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
494 * must be updated. Otherwise an interrupt handler could use a stale jiffy
0de7611a
IM
495 * value. We do this unconditionally on any CPU, as we don't know whether the
496 * CPU, which has the update task assigned is in a long sleep.
79bf2bb3 497 */
eed3b9cf 498static void tick_nohz_update_jiffies(ktime_t now)
79bf2bb3 499{
79bf2bb3 500 unsigned long flags;
79bf2bb3 501
e8fcaa5c 502 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
79bf2bb3
TG
503
504 local_irq_save(flags);
505 tick_do_update_jiffies64(now);
506 local_irq_restore(flags);
02ff3755 507
03e0d461 508 touch_softlockup_watchdog_sched();
79bf2bb3
TG
509}
510
595aac48 511/*
0de7611a 512 * Updates the per-CPU time idle statistics counters
595aac48 513 */
8d63bf94 514static void
8c215bd3 515update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
6378ddb5 516{
eed3b9cf 517 ktime_t delta;
6378ddb5 518
595aac48
AV
519 if (ts->idle_active) {
520 delta = ktime_sub(now, ts->idle_entrytime);
8c215bd3 521 if (nr_iowait_cpu(cpu) > 0)
0224cf4c 522 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
6beea0cd
MH
523 else
524 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
8c7b09f4 525 ts->idle_entrytime = now;
595aac48 526 }
8d63bf94 527
e0e37c20 528 if (last_update_time)
8d63bf94
AV
529 *last_update_time = ktime_to_us(now);
530
595aac48
AV
531}
532
e8fcaa5c 533static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
595aac48 534{
e8fcaa5c 535 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
eed3b9cf 536 ts->idle_active = 0;
56c7426b 537
ac1e843f 538 sched_clock_idle_wakeup_event();
6378ddb5
VP
539}
540
0e776768 541static void tick_nohz_start_idle(struct tick_sched *ts)
6378ddb5 542{
0e776768 543 ts->idle_entrytime = ktime_get();
6378ddb5 544 ts->idle_active = 1;
56c7426b 545 sched_clock_idle_sleep_event();
6378ddb5
VP
546}
547
b1f724c3 548/**
0de7611a 549 * get_cpu_idle_time_us - get the total idle time of a CPU
b1f724c3 550 * @cpu: CPU number to query
09a1d34f
MH
551 * @last_update_time: variable to store update time in. Do not update
552 * counters if NULL.
b1f724c3 553 *
6168f8ed 554 * Return the cumulative idle time (since boot) for a given
6beea0cd 555 * CPU, in microseconds.
b1f724c3
AV
556 *
557 * This time is measured via accounting rather than sampling,
558 * and is as accurate as ktime_get() is.
559 *
560 * This function returns -1 if NOHZ is not enabled.
561 */
6378ddb5
VP
562u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
563{
564 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 565 ktime_t now, idle;
6378ddb5 566
d689fe22 567 if (!tick_nohz_active)
8083e4ad 568 return -1;
569
09a1d34f
MH
570 now = ktime_get();
571 if (last_update_time) {
572 update_ts_time_stats(cpu, ts, now, last_update_time);
573 idle = ts->idle_sleeptime;
574 } else {
575 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
576 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
577
578 idle = ktime_add(ts->idle_sleeptime, delta);
579 } else {
580 idle = ts->idle_sleeptime;
581 }
582 }
583
584 return ktime_to_us(idle);
8083e4ad 585
6378ddb5 586}
8083e4ad 587EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
6378ddb5 588
6beea0cd 589/**
0de7611a 590 * get_cpu_iowait_time_us - get the total iowait time of a CPU
0224cf4c 591 * @cpu: CPU number to query
09a1d34f
MH
592 * @last_update_time: variable to store update time in. Do not update
593 * counters if NULL.
0224cf4c 594 *
6168f8ed 595 * Return the cumulative iowait time (since boot) for a given
0224cf4c
AV
596 * CPU, in microseconds.
597 *
598 * This time is measured via accounting rather than sampling,
599 * and is as accurate as ktime_get() is.
600 *
601 * This function returns -1 if NOHZ is not enabled.
602 */
603u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
604{
605 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 606 ktime_t now, iowait;
0224cf4c 607
d689fe22 608 if (!tick_nohz_active)
0224cf4c
AV
609 return -1;
610
09a1d34f
MH
611 now = ktime_get();
612 if (last_update_time) {
613 update_ts_time_stats(cpu, ts, now, last_update_time);
614 iowait = ts->iowait_sleeptime;
615 } else {
616 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
617 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
0224cf4c 618
09a1d34f
MH
619 iowait = ktime_add(ts->iowait_sleeptime, delta);
620 } else {
621 iowait = ts->iowait_sleeptime;
622 }
623 }
0224cf4c 624
09a1d34f 625 return ktime_to_us(iowait);
0224cf4c
AV
626}
627EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
628
0ff53d09
TG
629static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
630{
631 hrtimer_cancel(&ts->sched_timer);
632 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
633
634 /* Forward the time to expire in the future */
635 hrtimer_forward(&ts->sched_timer, now, tick_period);
636
902a9f9c
SAS
637 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
638 hrtimer_start_expires(&ts->sched_timer,
639 HRTIMER_MODE_ABS_PINNED_HARD);
640 } else {
0ff53d09 641 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
902a9f9c 642 }
411fe24e
FW
643
644 /*
645 * Reset to make sure next tick stop doesn't get fooled by past
646 * cached clock deadline.
647 */
648 ts->next_tick = 0;
0ff53d09
TG
649}
650
5d62c183
TG
651static inline bool local_timer_softirq_pending(void)
652{
80d20d35 653 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
5d62c183
TG
654}
655
23a8d888 656static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
79bf2bb3 657{
c1ad348b 658 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
e1e41b6c
RV
659 unsigned long basejiff;
660 unsigned int seq;
855a0fc3 661
79bf2bb3
TG
662 /* Read jiffies and the time when jiffies were updated last */
663 do {
d6ad4187 664 seq = read_seqbegin(&jiffies_lock);
2456e855 665 basemono = last_jiffies_update;
c1ad348b 666 basejiff = jiffies;
d6ad4187 667 } while (read_seqretry(&jiffies_lock, seq));
c1ad348b 668 ts->last_jiffies = basejiff;
23a8d888 669 ts->timer_expires_base = basemono;
79bf2bb3 670
5d62c183
TG
671 /*
672 * Keep the periodic tick, when RCU, architecture or irq_work
673 * requests it.
674 * Aside of that check whether the local timer softirq is
675 * pending. If so its a bad idea to call get_next_timer_interrupt()
676 * because there is an already expired timer, so it will request
677 * immeditate expiry, which rearms the hardware timer with a
678 * minimal delta which brings us back to this place
679 * immediately. Lather, rinse and repeat...
680 */
681 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
682 irq_work_needs_cpu() || local_timer_softirq_pending()) {
c1ad348b 683 next_tick = basemono + TICK_NSEC;
3c5d92a0 684 } else {
c1ad348b
TG
685 /*
686 * Get the next pending timer. If high resolution
687 * timers are enabled this only takes the timer wheel
688 * timers into account. If high resolution timers are
689 * disabled this also looks at the next expiring
690 * hrtimer.
691 */
692 next_tmr = get_next_timer_interrupt(basejiff, basemono);
693 ts->next_timer = next_tmr;
694 /* Take the next rcu event into account */
695 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
3c5d92a0 696 }
47aa8b6c 697
c1ad348b
TG
698 /*
699 * If the tick is due in the next period, keep it ticking or
82bbe34b 700 * force prod the timer.
c1ad348b
TG
701 */
702 delta = next_tick - basemono;
703 if (delta <= (u64)TICK_NSEC) {
a683f390
TG
704 /*
705 * Tell the timer code that the base is not idle, i.e. undo
706 * the effect of get_next_timer_interrupt():
707 */
708 timer_clear_idle();
82bbe34b
PZ
709 /*
710 * We've not stopped the tick yet, and there's a timer in the
711 * next period, so no point in stopping it either, bail.
712 */
f99973e1 713 if (!ts->tick_stopped) {
23a8d888 714 ts->timer_expires = 0;
157d29e1
TG
715 goto out;
716 }
717 }
718
23a8d888
RW
719 /*
720 * If this CPU is the one which had the do_timer() duty last, we limit
721 * the sleep time to the timekeeping max_deferment value.
722 * Otherwise we can sleep as long as we want.
723 */
724 delta = timekeeping_max_deferment();
725 if (cpu != tick_do_timer_cpu &&
726 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
727 delta = KTIME_MAX;
728
729 /* Calculate the next expiry time */
730 if (delta < (KTIME_MAX - basemono))
731 expires = basemono + delta;
732 else
733 expires = KTIME_MAX;
734
735 ts->timer_expires = min_t(u64, expires, next_tick);
736
737out:
738 return ts->timer_expires;
739}
740
741static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
742{
743 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
744 u64 basemono = ts->timer_expires_base;
745 u64 expires = ts->timer_expires;
746 ktime_t tick = expires;
747
748 /* Make sure we won't be trying to stop it twice in a row. */
749 ts->timer_expires_base = 0;
750
79bf2bb3 751 /*
0de7611a
IM
752 * If this CPU is the one which updates jiffies, then give up
753 * the assignment and let it be taken by the CPU which runs
754 * the tick timer next, which might be this CPU as well. If we
157d29e1
TG
755 * don't drop this here the jiffies might be stale and
756 * do_timer() never invoked. Keep track of the fact that it
23a8d888 757 * was the one which had the do_timer() duty last.
79bf2bb3 758 */
157d29e1
TG
759 if (cpu == tick_do_timer_cpu) {
760 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
761 ts->do_timer_last = 1;
762 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
157d29e1 763 ts->do_timer_last = 0;
157d29e1 764 }
27185016 765
157d29e1 766 /* Skip reprogram of event if its not changed */
411fe24e
FW
767 if (ts->tick_stopped && (expires == ts->next_tick)) {
768 /* Sanity check: make sure clockevent is actually programmed */
d4af6d93 769 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
23a8d888 770 return;
411fe24e
FW
771
772 WARN_ON_ONCE(1);
773 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
774 basemono, ts->next_tick, dev->next_event,
775 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
ce6cf9a1 776 }
84bf1bcc 777
157d29e1
TG
778 /*
779 * nohz_stop_sched_tick can be called several times before
780 * the nohz_restart_sched_tick is called. This happens when
781 * interrupts arrive which do not cause a reschedule. In the
782 * first call we save the current tick time, so we can restart
783 * the scheduler tick in nohz_restart_sched_tick.
784 */
785 if (!ts->tick_stopped) {
3c85d6db 786 calc_load_nohz_start();
62cb1188 787 quiet_vmstat();
d3ed7824 788
157d29e1
TG
789 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
790 ts->tick_stopped = 1;
e6e6cc22 791 trace_tick_stop(1, TICK_DEP_MASK_NONE);
157d29e1 792 }
eaad084b 793
411fe24e
FW
794 ts->next_tick = tick;
795
157d29e1 796 /*
c1ad348b
TG
797 * If the expiration time == KTIME_MAX, then we simply stop
798 * the tick timer.
157d29e1 799 */
c1ad348b 800 if (unlikely(expires == KTIME_MAX)) {
157d29e1
TG
801 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
802 hrtimer_cancel(&ts->sched_timer);
23a8d888 803 return;
79bf2bb3 804 }
0ff53d09 805
1f71addd 806 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
902a9f9c
SAS
807 hrtimer_start(&ts->sched_timer, tick,
808 HRTIMER_MODE_ABS_PINNED_HARD);
1f71addd
TG
809 } else {
810 hrtimer_set_expires(&ts->sched_timer, tick);
c1ad348b 811 tick_program_event(tick, 1);
1f71addd 812 }
280f0677
FW
813}
814
23a8d888
RW
815static void tick_nohz_retain_tick(struct tick_sched *ts)
816{
817 ts->timer_expires_base = 0;
818}
819
820#ifdef CONFIG_NO_HZ_FULL
821static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
822{
823 if (tick_nohz_next_event(ts, cpu))
824 tick_nohz_stop_tick(ts, cpu);
825 else
826 tick_nohz_retain_tick(ts);
827}
828#endif /* CONFIG_NO_HZ_FULL */
829
1f41906a 830static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
59d2c7ca
FW
831{
832 /* Update jiffies first */
833 tick_do_update_jiffies64(now);
59d2c7ca 834
a683f390
TG
835 /*
836 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
837 * the clock forward checks in the enqueue path:
838 */
839 timer_clear_idle();
840
3c85d6db 841 calc_load_nohz_stop();
03e0d461 842 touch_softlockup_watchdog_sched();
59d2c7ca
FW
843 /*
844 * Cancel the scheduled timer and restore the tick
845 */
846 ts->tick_stopped = 0;
847 ts->idle_exittime = now;
848
849 tick_nohz_restart(ts, now);
850}
73738a95
FW
851
852static void tick_nohz_full_update_tick(struct tick_sched *ts)
5811d996
FW
853{
854#ifdef CONFIG_NO_HZ_FULL
e9a2eb40 855 int cpu = smp_processor_id();
5811d996 856
59449359 857 if (!tick_nohz_full_cpu(cpu))
e9a2eb40 858 return;
5811d996 859
e9a2eb40
AS
860 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
861 return;
5811d996 862
57ccdf44 863 if (can_stop_full_tick(cpu, ts))
23a8d888 864 tick_nohz_stop_sched_tick(ts, cpu);
73738a95 865 else if (ts->tick_stopped)
1f41906a 866 tick_nohz_restart_sched_tick(ts, ktime_get());
5811d996
FW
867#endif
868}
869
5b39939a
FW
870static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
871{
872 /*
0de7611a 873 * If this CPU is offline and it is the one which updates
5b39939a 874 * jiffies, then give up the assignment and let it be taken by
0de7611a 875 * the CPU which runs the tick timer next. If we don't drop
5b39939a
FW
876 * this here the jiffies might be stale and do_timer() never
877 * invoked.
878 */
879 if (unlikely(!cpu_online(cpu))) {
880 if (cpu == tick_do_timer_cpu)
881 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
411fe24e
FW
882 /*
883 * Make sure the CPU doesn't get fooled by obsolete tick
884 * deadline if it comes back online later.
885 */
886 ts->next_tick = 0;
f7ea0fd6 887 return false;
5b39939a
FW
888 }
889
23a8d888 890 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
5b39939a
FW
891 return false;
892
893 if (need_resched())
894 return false;
895
d59e0ba1 896 if (unlikely(local_softirq_pending())) {
5b39939a
FW
897 static int ratelimit;
898
803b0eba
PM
899 if (ratelimit < 10 &&
900 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
cfea7d7e
RV
901 pr_warn("NOHZ: local_softirq_pending %02x\n",
902 (unsigned int) local_softirq_pending());
5b39939a
FW
903 ratelimit++;
904 }
905 return false;
906 }
907
460775df 908 if (tick_nohz_full_enabled()) {
a382bf93
FW
909 /*
910 * Keep the tick alive to guarantee timekeeping progression
911 * if there are full dynticks CPUs around
912 */
913 if (tick_do_timer_cpu == cpu)
914 return false;
915 /*
916 * Boot safety: make sure the timekeeping duty has been
917 * assigned before entering dyntick-idle mode,
08ae95f4 918 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
a382bf93 919 */
08ae95f4
NP
920 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
921 return false;
922
923 /* Should not happen for nohz-full */
924 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
a382bf93
FW
925 return false;
926 }
927
5b39939a
FW
928 return true;
929}
930
0e776768 931static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
19f5f736 932{
0e776768 933 ktime_t expires;
5b39939a 934 int cpu = smp_processor_id();
19f5f736 935
554c8aa8
RW
936 /*
937 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
938 * tick timer expiration time is known already.
939 */
940 if (ts->timer_expires_base)
941 expires = ts->timer_expires;
942 else if (can_stop_idle_tick(cpu, ts))
943 expires = tick_nohz_next_event(ts, cpu);
944 else
945 return;
23a8d888
RW
946
947 ts->idle_calls++;
08d07259 948
23a8d888 949 if (expires > 0LL) {
5b39939a
FW
950 int was_stopped = ts->tick_stopped;
951
23a8d888 952 tick_nohz_stop_tick(ts, cpu);
84bf1bcc 953
23a8d888
RW
954 ts->idle_sleeps++;
955 ts->idle_expires = expires;
5b39939a 956
a0db971e 957 if (!was_stopped && ts->tick_stopped) {
5b39939a 958 ts->idle_jiffies = ts->last_jiffies;
a0db971e
FW
959 nohz_balance_enter_idle(cpu);
960 }
23a8d888
RW
961 } else {
962 tick_nohz_retain_tick(ts);
5b39939a 963 }
280f0677
FW
964}
965
966/**
0e776768 967 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
280f0677
FW
968 *
969 * When the next event is more than a tick into the future, stop the idle tick
0e776768
RW
970 */
971void tick_nohz_idle_stop_tick(void)
972{
973 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
974}
975
554c8aa8
RW
976void tick_nohz_idle_retain_tick(void)
977{
978 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
979 /*
980 * Undo the effect of get_next_timer_interrupt() called from
981 * tick_nohz_next_event().
982 */
983 timer_clear_idle();
984}
985
0e776768
RW
986/**
987 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
2bbb6817 988 *
0e776768 989 * Called when we start the idle loop.
280f0677 990 */
1268fbc7 991void tick_nohz_idle_enter(void)
280f0677
FW
992{
993 struct tick_sched *ts;
994
ebf3adba 995 lockdep_assert_irqs_enabled();
0db49b72 996
1268fbc7
FW
997 local_irq_disable();
998
22127e93 999 ts = this_cpu_ptr(&tick_cpu_sched);
23a8d888
RW
1000
1001 WARN_ON_ONCE(ts->timer_expires_base);
1002
280f0677 1003 ts->inidle = 1;
0e776768 1004 tick_nohz_start_idle(ts);
1268fbc7
FW
1005
1006 local_irq_enable();
280f0677
FW
1007}
1008
1009/**
1010 * tick_nohz_irq_exit - update next tick event from interrupt exit
1011 *
1012 * When an interrupt fires while we are idle and it doesn't cause
1013 * a reschedule, it may still add, modify or delete a timer, enqueue
1014 * an RCU callback, etc...
1015 * So we need to re-calculate and reprogram the next tick event.
1016 */
1017void tick_nohz_irq_exit(void)
1018{
22127e93 1019 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
280f0677 1020
14851912 1021 if (ts->inidle)
0e776768 1022 tick_nohz_start_idle(ts);
14851912 1023 else
73738a95 1024 tick_nohz_full_update_tick(ts);
79bf2bb3
TG
1025}
1026
4f86d3a8 1027/**
45f1ff59
RW
1028 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1029 */
1030bool tick_nohz_idle_got_tick(void)
1031{
1032 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1033
2bc629a6
FW
1034 if (ts->got_idle_tick) {
1035 ts->got_idle_tick = 0;
45f1ff59
RW
1036 return true;
1037 }
1038 return false;
1039}
1040
6f9b83ac
UH
1041/**
1042 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1043 * or the tick, whatever that expires first. Note that, if the tick has been
1044 * stopped, it returns the next hrtimer.
1045 *
1046 * Called from power state control code with interrupts disabled
1047 */
1048ktime_t tick_nohz_get_next_hrtimer(void)
1049{
1050 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1051}
1052
4f86d3a8 1053/**
554c8aa8 1054 * tick_nohz_get_sleep_length - return the expected length of the current sleep
296bb1e5 1055 * @delta_next: duration until the next event if the tick cannot be stopped
4f86d3a8
LB
1056 *
1057 * Called from power state control code with interrupts disabled
1058 */
296bb1e5 1059ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
4f86d3a8 1060{
554c8aa8 1061 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
22127e93 1062 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
554c8aa8
RW
1063 int cpu = smp_processor_id();
1064 /*
1065 * The idle entry time is expected to be a sufficient approximation of
1066 * the current time at this point.
1067 */
1068 ktime_t now = ts->idle_entrytime;
1069 ktime_t next_event;
1070
1071 WARN_ON_ONCE(!ts->inidle);
1072
296bb1e5
RW
1073 *delta_next = ktime_sub(dev->next_event, now);
1074
554c8aa8 1075 if (!can_stop_idle_tick(cpu, ts))
296bb1e5 1076 return *delta_next;
554c8aa8
RW
1077
1078 next_event = tick_nohz_next_event(ts, cpu);
1079 if (!next_event)
296bb1e5 1080 return *delta_next;
554c8aa8
RW
1081
1082 /*
1083 * If the next highres timer to expire is earlier than next_event, the
1084 * idle governor needs to know that.
1085 */
1086 next_event = min_t(u64, next_event,
1087 hrtimer_next_event_without(&ts->sched_timer));
4f86d3a8 1088
554c8aa8 1089 return ktime_sub(next_event, now);
4f86d3a8
LB
1090}
1091
466a2b42
JF
1092/**
1093 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1094 * for a particular CPU.
1095 *
1096 * Called from the schedutil frequency scaling governor in scheduler context.
1097 */
1098unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1099{
1100 struct tick_sched *ts = tick_get_tick_sched(cpu);
1101
1102 return ts->idle_calls;
1103}
1104
b7eaf1aa
RW
1105/**
1106 * tick_nohz_get_idle_calls - return the current idle calls counter value
1107 *
1108 * Called from the schedutil frequency scaling governor in scheduler context.
1109 */
1110unsigned long tick_nohz_get_idle_calls(void)
1111{
1112 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1113
1114 return ts->idle_calls;
1115}
1116
2ac0d98f
FW
1117static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1118{
3f4724ea 1119#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
2ac0d98f 1120 unsigned long ticks;
3f4724ea 1121
55dbdcfa 1122 if (vtime_accounting_cpu_enabled())
3f4724ea 1123 return;
79bf2bb3
TG
1124 /*
1125 * We stopped the tick in idle. Update process times would miss the
1126 * time we slept as update_process_times does only a 1 tick
1127 * accounting. Enforce that this is accounted to idle !
1128 */
1129 ticks = jiffies - ts->idle_jiffies;
1130 /*
1131 * We might be one off. Do not randomly account a huge number of ticks!
1132 */
79741dd3
MS
1133 if (ticks && ticks < LONG_MAX)
1134 account_idle_ticks(ticks);
1135#endif
19f5f736
FW
1136}
1137
2aaf709a
RW
1138static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1139{
1140 tick_nohz_restart_sched_tick(ts, now);
1141 tick_nohz_account_idle_ticks(ts);
1142}
1143
1144void tick_nohz_idle_restart_tick(void)
1145{
1146 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1147
1148 if (ts->tick_stopped)
1149 __tick_nohz_idle_restart_tick(ts, ktime_get());
1150}
1151
79bf2bb3 1152/**
280f0677 1153 * tick_nohz_idle_exit - restart the idle tick from the idle task
79bf2bb3
TG
1154 *
1155 * Restart the idle tick when the CPU is woken up from idle
280f0677
FW
1156 * This also exit the RCU extended quiescent state. The CPU
1157 * can use RCU again after this function is called.
79bf2bb3 1158 */
280f0677 1159void tick_nohz_idle_exit(void)
79bf2bb3 1160{
4a32fea9 1161 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
bbe9a70a 1162 bool idle_active, tick_stopped;
6378ddb5 1163 ktime_t now;
79bf2bb3 1164
6378ddb5 1165 local_irq_disable();
2bbb6817 1166
15f827be 1167 WARN_ON_ONCE(!ts->inidle);
23a8d888 1168 WARN_ON_ONCE(ts->timer_expires_base);
15f827be
FW
1169
1170 ts->inidle = 0;
bbe9a70a
AB
1171 idle_active = ts->idle_active;
1172 tick_stopped = ts->tick_stopped;
15f827be 1173
bbe9a70a 1174 if (idle_active || tick_stopped)
eed3b9cf
MS
1175 now = ktime_get();
1176
bbe9a70a 1177 if (idle_active)
e8fcaa5c 1178 tick_nohz_stop_idle(ts, now);
6378ddb5 1179
bbe9a70a 1180 if (tick_stopped)
2aaf709a 1181 __tick_nohz_idle_restart_tick(ts, now);
79bf2bb3 1182
79bf2bb3
TG
1183 local_irq_enable();
1184}
1185
79bf2bb3
TG
1186/*
1187 * The nohz low res interrupt handler
1188 */
1189static void tick_nohz_handler(struct clock_event_device *dev)
1190{
22127e93 1191 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1192 struct pt_regs *regs = get_irq_regs();
1193 ktime_t now = ktime_get();
1194
2456e855 1195 dev->next_event = KTIME_MAX;
79bf2bb3 1196
ff7de620 1197 tick_sched_do_timer(ts, now);
9e8f559b 1198 tick_sched_handle(ts, regs);
79bf2bb3 1199
b5e995e6
VK
1200 /* No need to reprogram if we are running tickless */
1201 if (unlikely(ts->tick_stopped))
1202 return;
1203
0ff53d09
TG
1204 hrtimer_forward(&ts->sched_timer, now, tick_period);
1205 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
79bf2bb3
TG
1206}
1207
bc7a34b8
TG
1208static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1209{
1210 if (!tick_nohz_enabled)
1211 return;
1212 ts->nohz_mode = mode;
1213 /* One update is enough */
1214 if (!test_and_set_bit(0, &tick_nohz_active))
ae67bada 1215 timers_update_nohz();
bc7a34b8
TG
1216}
1217
79bf2bb3
TG
1218/**
1219 * tick_nohz_switch_to_nohz - switch to nohz mode
1220 */
1221static void tick_nohz_switch_to_nohz(void)
1222{
22127e93 1223 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1224 ktime_t next;
1225
27630532 1226 if (!tick_nohz_enabled)
79bf2bb3
TG
1227 return;
1228
6b442bc8 1229 if (tick_switch_to_oneshot(tick_nohz_handler))
79bf2bb3 1230 return;
6b442bc8 1231
79bf2bb3
TG
1232 /*
1233 * Recycle the hrtimer in ts, so we can share the
1234 * hrtimer_forward with the highres code.
1235 */
71fed982 1236 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
79bf2bb3
TG
1237 /* Get the next period */
1238 next = tick_init_jiffy_update();
1239
0ff53d09 1240 hrtimer_set_expires(&ts->sched_timer, next);
1ca8ec53
WL
1241 hrtimer_forward_now(&ts->sched_timer, tick_period);
1242 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
bc7a34b8 1243 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
79bf2bb3
TG
1244}
1245
5acac1be 1246static inline void tick_nohz_irq_enter(void)
eed3b9cf 1247{
4a32fea9 1248 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
eed3b9cf
MS
1249 ktime_t now;
1250
1251 if (!ts->idle_active && !ts->tick_stopped)
1252 return;
1253 now = ktime_get();
1254 if (ts->idle_active)
e8fcaa5c 1255 tick_nohz_stop_idle(ts, now);
ff006732 1256 if (ts->tick_stopped)
eed3b9cf 1257 tick_nohz_update_jiffies(now);
eed3b9cf
MS
1258}
1259
79bf2bb3
TG
1260#else
1261
1262static inline void tick_nohz_switch_to_nohz(void) { }
5acac1be 1263static inline void tick_nohz_irq_enter(void) { }
bc7a34b8 1264static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
79bf2bb3 1265
3451d024 1266#endif /* CONFIG_NO_HZ_COMMON */
79bf2bb3 1267
719254fa
TG
1268/*
1269 * Called from irq_enter to notify about the possible interruption of idle()
1270 */
5acac1be 1271void tick_irq_enter(void)
719254fa 1272{
e8fcaa5c 1273 tick_check_oneshot_broadcast_this_cpu();
5acac1be 1274 tick_nohz_irq_enter();
719254fa
TG
1275}
1276
79bf2bb3
TG
1277/*
1278 * High resolution timer specific code
1279 */
1280#ifdef CONFIG_HIGH_RES_TIMERS
1281/*
4c9dc641 1282 * We rearm the timer until we get disabled by the idle code.
351f181f 1283 * Called with interrupts disabled.
79bf2bb3
TG
1284 */
1285static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1286{
1287 struct tick_sched *ts =
1288 container_of(timer, struct tick_sched, sched_timer);
79bf2bb3
TG
1289 struct pt_regs *regs = get_irq_regs();
1290 ktime_t now = ktime_get();
d3ed7824 1291
ff7de620 1292 tick_sched_do_timer(ts, now);
79bf2bb3
TG
1293
1294 /*
1295 * Do not call, when we are not in irq context and have
1296 * no valid regs pointer
1297 */
9e8f559b
FW
1298 if (regs)
1299 tick_sched_handle(ts, regs);
7c259045
FW
1300 else
1301 ts->next_tick = 0;
79bf2bb3 1302
2a16fc93
VK
1303 /* No need to reprogram if we are in idle or full dynticks mode */
1304 if (unlikely(ts->tick_stopped))
1305 return HRTIMER_NORESTART;
1306
79bf2bb3
TG
1307 hrtimer_forward(timer, now, tick_period);
1308
1309 return HRTIMER_RESTART;
1310}
1311
5307c955
MG
1312static int sched_skew_tick;
1313
62cf20b3
TG
1314static int __init skew_tick(char *str)
1315{
1316 get_option(&str, &sched_skew_tick);
1317
1318 return 0;
1319}
1320early_param("skew_tick", skew_tick);
1321
79bf2bb3
TG
1322/**
1323 * tick_setup_sched_timer - setup the tick emulation timer
1324 */
1325void tick_setup_sched_timer(void)
1326{
22127e93 1327 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1328 ktime_t now = ktime_get();
1329
1330 /*
1331 * Emulate tick processing via per-CPU hrtimers:
1332 */
902a9f9c 1333 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
79bf2bb3 1334 ts->sched_timer.function = tick_sched_timer;
79bf2bb3 1335
0de7611a 1336 /* Get the next period (per-CPU) */
cc584b21 1337 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
79bf2bb3 1338
9c3f9e28 1339 /* Offset the tick to avert jiffies_lock contention. */
5307c955
MG
1340 if (sched_skew_tick) {
1341 u64 offset = ktime_to_ns(tick_period) >> 1;
1342 do_div(offset, num_possible_cpus());
1343 offset *= smp_processor_id();
1344 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1345 }
1346
afc08b15 1347 hrtimer_forward(&ts->sched_timer, now, tick_period);
902a9f9c 1348 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
bc7a34b8 1349 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
79bf2bb3 1350}
3c4fbe5e 1351#endif /* HIGH_RES_TIMERS */
79bf2bb3 1352
3451d024 1353#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1354void tick_cancel_sched_timer(int cpu)
1355{
1356 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1357
3c4fbe5e 1358# ifdef CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1359 if (ts->sched_timer.base)
1360 hrtimer_cancel(&ts->sched_timer);
3c4fbe5e 1361# endif
a7901766 1362
4b0c0f29 1363 memset(ts, 0, sizeof(*ts));
79bf2bb3 1364}
3c4fbe5e 1365#endif
79bf2bb3
TG
1366
1367/**
1368 * Async notification about clocksource changes
1369 */
1370void tick_clock_notify(void)
1371{
1372 int cpu;
1373
1374 for_each_possible_cpu(cpu)
1375 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1376}
1377
1378/*
1379 * Async notification about clock event changes
1380 */
1381void tick_oneshot_notify(void)
1382{
22127e93 1383 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1384
1385 set_bit(0, &ts->check_clocks);
1386}
1387
1388/**
1389 * Check, if a change happened, which makes oneshot possible.
1390 *
1391 * Called cyclic from the hrtimer softirq (driven by the timer
1392 * softirq) allow_nohz signals, that we can switch into low-res nohz
1393 * mode, because high resolution timers are disabled (either compile
6b442bc8 1394 * or runtime). Called with interrupts disabled.
79bf2bb3
TG
1395 */
1396int tick_check_oneshot_change(int allow_nohz)
1397{
22127e93 1398 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1399
1400 if (!test_and_clear_bit(0, &ts->check_clocks))
1401 return 0;
1402
1403 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1404 return 0;
1405
cf4fc6cb 1406 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
79bf2bb3
TG
1407 return 0;
1408
1409 if (!allow_nohz)
1410 return 1;
1411
1412 tick_nohz_switch_to_nohz();
1413 return 0;
1414}