Merge branch 'work.iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-block.git] / kernel / time / tick-sched.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
79bf2bb3 2/*
79bf2bb3
TG
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
79bf2bb3
TG
10 */
11#include <linux/cpu.h>
12#include <linux/err.h>
13#include <linux/hrtimer.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/percpu.h>
38b8d208 17#include <linux/nmi.h>
79bf2bb3 18#include <linux/profile.h>
3f07c014 19#include <linux/sched/signal.h>
e6017571 20#include <linux/sched/clock.h>
03441a34 21#include <linux/sched/stat.h>
370c9135 22#include <linux/sched/nohz.h>
8083e4ad 23#include <linux/module.h>
00b42959 24#include <linux/irq_work.h>
9014c45d 25#include <linux/posix-timers.h>
2e709338 26#include <linux/context_tracking.h>
62cb1188 27#include <linux/mm.h>
79bf2bb3 28
9e203bcc
DM
29#include <asm/irq_regs.h>
30
79bf2bb3
TG
31#include "tick-internal.h"
32
cb41a290
FW
33#include <trace/events/timer.h>
34
79bf2bb3 35/*
0de7611a 36 * Per-CPU nohz control structure
79bf2bb3 37 */
c1797baf 38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
79bf2bb3 39
289f480a
IM
40struct tick_sched *tick_get_tick_sched(int cpu)
41{
42 return &per_cpu(tick_cpu_sched, cpu);
43}
44
7809998a
AB
45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46/*
47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
48 */
49static ktime_t last_jiffies_update;
50
79bf2bb3
TG
51/*
52 * Must be called with interrupts disabled !
53 */
54static void tick_do_update_jiffies64(ktime_t now)
55{
56 unsigned long ticks = 0;
57 ktime_t delta;
58
7a14ce1d 59 /*
d6ad4187 60 * Do a quick check without holding jiffies_lock:
7a14ce1d
IM
61 */
62 delta = ktime_sub(now, last_jiffies_update);
2456e855 63 if (delta < tick_period)
7a14ce1d
IM
64 return;
65
6168f8ed 66 /* Reevaluate with jiffies_lock held */
d6ad4187 67 write_seqlock(&jiffies_lock);
79bf2bb3
TG
68
69 delta = ktime_sub(now, last_jiffies_update);
2456e855 70 if (delta >= tick_period) {
79bf2bb3
TG
71
72 delta = ktime_sub(delta, tick_period);
73 last_jiffies_update = ktime_add(last_jiffies_update,
74 tick_period);
75
76 /* Slow path for long timeouts */
2456e855 77 if (unlikely(delta >= tick_period)) {
79bf2bb3
TG
78 s64 incr = ktime_to_ns(tick_period);
79
80 ticks = ktime_divns(delta, incr);
81
82 last_jiffies_update = ktime_add_ns(last_jiffies_update,
83 incr * ticks);
84 }
85 do_timer(++ticks);
49d670fb
TG
86
87 /* Keep the tick_next_period variable up to date */
88 tick_next_period = ktime_add(last_jiffies_update, tick_period);
03e6bdc5
VK
89 } else {
90 write_sequnlock(&jiffies_lock);
91 return;
79bf2bb3 92 }
d6ad4187 93 write_sequnlock(&jiffies_lock);
47a1b796 94 update_wall_time();
79bf2bb3
TG
95}
96
97/*
98 * Initialize and return retrieve the jiffies update.
99 */
100static ktime_t tick_init_jiffy_update(void)
101{
102 ktime_t period;
103
d6ad4187 104 write_seqlock(&jiffies_lock);
79bf2bb3 105 /* Did we start the jiffies update yet ? */
2456e855 106 if (last_jiffies_update == 0)
79bf2bb3
TG
107 last_jiffies_update = tick_next_period;
108 period = last_jiffies_update;
d6ad4187 109 write_sequnlock(&jiffies_lock);
79bf2bb3
TG
110 return period;
111}
112
ff7de620 113static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
5bb96226
FW
114{
115 int cpu = smp_processor_id();
116
3451d024 117#ifdef CONFIG_NO_HZ_COMMON
5bb96226
FW
118 /*
119 * Check if the do_timer duty was dropped. We don't care about
0de7611a
IM
120 * concurrency: This happens only when the CPU in charge went
121 * into a long sleep. If two CPUs happen to assign themselves to
5bb96226 122 * this duty, then the jiffies update is still serialized by
9c3f9e28 123 * jiffies_lock.
5bb96226 124 */
a382bf93 125 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
c5bfece2 126 && !tick_nohz_full_cpu(cpu))
5bb96226
FW
127 tick_do_timer_cpu = cpu;
128#endif
129
130 /* Check, if the jiffies need an update */
131 if (tick_do_timer_cpu == cpu)
132 tick_do_update_jiffies64(now);
ff7de620
RW
133
134 if (ts->inidle)
135 ts->got_idle_tick = 1;
5bb96226
FW
136}
137
9e8f559b
FW
138static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
139{
3451d024 140#ifdef CONFIG_NO_HZ_COMMON
9e8f559b
FW
141 /*
142 * When we are idle and the tick is stopped, we have to touch
143 * the watchdog as we might not schedule for a really long
144 * time. This happens on complete idle SMP systems while
145 * waiting on the login prompt. We also increment the "start of
146 * idle" jiffy stamp so the idle accounting adjustment we do
147 * when we go busy again does not account too much ticks.
148 */
149 if (ts->tick_stopped) {
03e0d461 150 touch_softlockup_watchdog_sched();
9e8f559b
FW
151 if (is_idle_task(current))
152 ts->idle_jiffies++;
411fe24e
FW
153 /*
154 * In case the current tick fired too early past its expected
155 * expiration, make sure we don't bypass the next clock reprogramming
156 * to the same deadline.
157 */
158 ts->next_tick = 0;
9e8f559b 159 }
94a57140 160#endif
9e8f559b
FW
161 update_process_times(user_mode(regs));
162 profile_tick(CPU_PROFILING);
163}
7809998a 164#endif
9e8f559b 165
c5bfece2 166#ifdef CONFIG_NO_HZ_FULL
460775df 167cpumask_var_t tick_nohz_full_mask;
73867dcd 168bool tick_nohz_full_running;
f009a7a7 169static atomic_t tick_dep_mask;
a831881b 170
f009a7a7 171static bool check_tick_dependency(atomic_t *dep)
d027d45d 172{
f009a7a7
FW
173 int val = atomic_read(dep);
174
175 if (val & TICK_DEP_MASK_POSIX_TIMER) {
e6e6cc22 176 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
f009a7a7 177 return true;
d027d45d
FW
178 }
179
f009a7a7 180 if (val & TICK_DEP_MASK_PERF_EVENTS) {
e6e6cc22 181 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
f009a7a7 182 return true;
d027d45d
FW
183 }
184
f009a7a7 185 if (val & TICK_DEP_MASK_SCHED) {
e6e6cc22 186 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
f009a7a7 187 return true;
d027d45d
FW
188 }
189
f009a7a7 190 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
e6e6cc22 191 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
f009a7a7
FW
192 return true;
193 }
194
195 return false;
d027d45d
FW
196}
197
57ccdf44 198static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
9014c45d 199{
ebf3adba 200 lockdep_assert_irqs_disabled();
9014c45d 201
57ccdf44
WL
202 if (unlikely(!cpu_online(cpu)))
203 return false;
204
f009a7a7 205 if (check_tick_dependency(&tick_dep_mask))
d027d45d 206 return false;
d027d45d 207
f009a7a7 208 if (check_tick_dependency(&ts->tick_dep_mask))
d027d45d 209 return false;
d027d45d 210
f009a7a7 211 if (check_tick_dependency(&current->tick_dep_mask))
d027d45d 212 return false;
d027d45d 213
f009a7a7 214 if (check_tick_dependency(&current->signal->tick_dep_mask))
d027d45d 215 return false;
d027d45d 216
9014c45d
FW
217 return true;
218}
219
d027d45d 220static void nohz_full_kick_func(struct irq_work *work)
76c24fb0 221{
73738a95 222 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
76c24fb0
FW
223}
224
225static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
d027d45d 226 .func = nohz_full_kick_func,
76c24fb0
FW
227};
228
40bea039
FW
229/*
230 * Kick this CPU if it's full dynticks in order to force it to
231 * re-evaluate its dependency on the tick and restart it if necessary.
232 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
233 * is NMI safe.
234 */
555e0c1e 235static void tick_nohz_full_kick(void)
40bea039
FW
236{
237 if (!tick_nohz_full_cpu(smp_processor_id()))
238 return;
239
56e4dea8 240 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
40bea039
FW
241}
242
76c24fb0 243/*
3d36aebc 244 * Kick the CPU if it's full dynticks in order to force it to
76c24fb0
FW
245 * re-evaluate its dependency on the tick and restart it if necessary.
246 */
3d36aebc 247void tick_nohz_full_kick_cpu(int cpu)
76c24fb0 248{
3d36aebc
FW
249 if (!tick_nohz_full_cpu(cpu))
250 return;
251
252 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
76c24fb0
FW
253}
254
76c24fb0
FW
255/*
256 * Kick all full dynticks CPUs in order to force these to re-evaluate
257 * their dependency on the tick and restart it if necessary.
258 */
b7878300 259static void tick_nohz_full_kick_all(void)
76c24fb0 260{
8537bb95
FW
261 int cpu;
262
73867dcd 263 if (!tick_nohz_full_running)
76c24fb0
FW
264 return;
265
266 preempt_disable();
8537bb95
FW
267 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
268 tick_nohz_full_kick_cpu(cpu);
76c24fb0
FW
269 preempt_enable();
270}
271
f009a7a7 272static void tick_nohz_dep_set_all(atomic_t *dep,
d027d45d
FW
273 enum tick_dep_bits bit)
274{
f009a7a7 275 int prev;
d027d45d 276
a1cc5bcf 277 prev = atomic_fetch_or(BIT(bit), dep);
d027d45d
FW
278 if (!prev)
279 tick_nohz_full_kick_all();
280}
281
282/*
283 * Set a global tick dependency. Used by perf events that rely on freq and
284 * by unstable clock.
285 */
286void tick_nohz_dep_set(enum tick_dep_bits bit)
287{
288 tick_nohz_dep_set_all(&tick_dep_mask, bit);
289}
290
291void tick_nohz_dep_clear(enum tick_dep_bits bit)
292{
f009a7a7 293 atomic_andnot(BIT(bit), &tick_dep_mask);
d027d45d
FW
294}
295
296/*
297 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
298 * manage events throttling.
299 */
300void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
301{
f009a7a7 302 int prev;
d027d45d
FW
303 struct tick_sched *ts;
304
305 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
306
a1cc5bcf 307 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
308 if (!prev) {
309 preempt_disable();
310 /* Perf needs local kick that is NMI safe */
311 if (cpu == smp_processor_id()) {
312 tick_nohz_full_kick();
313 } else {
314 /* Remote irq work not NMI-safe */
315 if (!WARN_ON_ONCE(in_nmi()))
316 tick_nohz_full_kick_cpu(cpu);
317 }
318 preempt_enable();
319 }
320}
321
322void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
323{
324 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
325
f009a7a7 326 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
d027d45d
FW
327}
328
329/*
330 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
331 * per task timers.
332 */
333void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
334{
335 /*
336 * We could optimize this with just kicking the target running the task
337 * if that noise matters for nohz full users.
338 */
339 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
340}
341
342void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
343{
f009a7a7 344 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
d027d45d
FW
345}
346
347/*
348 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
349 * per process timers.
350 */
351void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
352{
353 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
354}
355
356void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
357{
f009a7a7 358 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
d027d45d
FW
359}
360
99e5ada9
FW
361/*
362 * Re-evaluate the need for the tick as we switch the current task.
363 * It might need the tick due to per task/process properties:
0de7611a 364 * perf events, posix CPU timers, ...
99e5ada9 365 */
de734f89 366void __tick_nohz_task_switch(void)
99e5ada9
FW
367{
368 unsigned long flags;
d027d45d 369 struct tick_sched *ts;
99e5ada9 370
99e5ada9
FW
371 local_irq_save(flags);
372
6296ace4
LZ
373 if (!tick_nohz_full_cpu(smp_processor_id()))
374 goto out;
375
d027d45d 376 ts = this_cpu_ptr(&tick_cpu_sched);
99e5ada9 377
d027d45d 378 if (ts->tick_stopped) {
f009a7a7
FW
379 if (atomic_read(&current->tick_dep_mask) ||
380 atomic_read(&current->signal->tick_dep_mask))
d027d45d
FW
381 tick_nohz_full_kick();
382 }
6296ace4 383out:
99e5ada9
FW
384 local_irq_restore(flags);
385}
386
6f1982fe
FW
387/* Get the boot-time nohz CPU list from the kernel parameters. */
388void __init tick_nohz_full_setup(cpumask_var_t cpumask)
a831881b 389{
73867dcd 390 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
6f1982fe 391 cpumask_copy(tick_nohz_full_mask, cpumask);
73867dcd 392 tick_nohz_full_running = true;
a831881b 393}
a831881b 394
31eff243 395static int tick_nohz_cpu_down(unsigned int cpu)
a382bf93 396{
31eff243
SAS
397 /*
398 * The boot CPU handles housekeeping duty (unbound timers,
399 * workqueues, timekeeping, ...) on behalf of full dynticks
400 * CPUs. It must remain online when nohz full is enabled.
401 */
402 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
403 return -EBUSY;
404 return 0;
a382bf93
FW
405}
406
d1e43fa5 407void __init tick_nohz_init(void)
a831881b 408{
31eff243 409 int cpu, ret;
d1e43fa5 410
a7c8655b
PM
411 if (!tick_nohz_full_running)
412 return;
d1e43fa5 413
9b01f5bf
FW
414 /*
415 * Full dynticks uses irq work to drive the tick rescheduling on safe
416 * locking contexts. But then we need irq work to raise its own
417 * interrupts to avoid circular dependency on the tick
418 */
419 if (!arch_irq_work_has_interrupt()) {
a395d6a7 420 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
9b01f5bf 421 cpumask_clear(tick_nohz_full_mask);
9b01f5bf
FW
422 tick_nohz_full_running = false;
423 return;
424 }
425
4327b15f
FW
426 cpu = smp_processor_id();
427
428 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
a395d6a7
JP
429 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
430 cpu);
4327b15f
FW
431 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
432 }
433
73867dcd 434 for_each_cpu(cpu, tick_nohz_full_mask)
2e709338
FW
435 context_tracking_cpu_set(cpu);
436
31eff243
SAS
437 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
438 "kernel/nohz:predown", NULL,
439 tick_nohz_cpu_down);
440 WARN_ON(ret < 0);
ffda22c1
TH
441 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
442 cpumask_pr_args(tick_nohz_full_mask));
a831881b 443}
a831881b
FW
444#endif
445
79bf2bb3
TG
446/*
447 * NOHZ - aka dynamic tick functionality
448 */
3451d024 449#ifdef CONFIG_NO_HZ_COMMON
79bf2bb3
TG
450/*
451 * NO HZ enabled ?
452 */
4cc7ecb7 453bool tick_nohz_enabled __read_mostly = true;
bc7a34b8 454unsigned long tick_nohz_active __read_mostly;
79bf2bb3
TG
455/*
456 * Enable / Disable tickless mode
457 */
458static int __init setup_tick_nohz(char *str)
459{
4cc7ecb7 460 return (kstrtobool(str, &tick_nohz_enabled) == 0);
79bf2bb3
TG
461}
462
463__setup("nohz=", setup_tick_nohz);
464
a3642983 465bool tick_nohz_tick_stopped(void)
c1797baf 466{
2bc629a6
FW
467 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
468
469 return ts->tick_stopped;
c1797baf
TG
470}
471
22ab8bc0
FW
472bool tick_nohz_tick_stopped_cpu(int cpu)
473{
474 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
475
476 return ts->tick_stopped;
477}
478
79bf2bb3
TG
479/**
480 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
481 *
482 * Called from interrupt entry when the CPU was idle
483 *
484 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
485 * must be updated. Otherwise an interrupt handler could use a stale jiffy
0de7611a
IM
486 * value. We do this unconditionally on any CPU, as we don't know whether the
487 * CPU, which has the update task assigned is in a long sleep.
79bf2bb3 488 */
eed3b9cf 489static void tick_nohz_update_jiffies(ktime_t now)
79bf2bb3 490{
79bf2bb3 491 unsigned long flags;
79bf2bb3 492
e8fcaa5c 493 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
79bf2bb3
TG
494
495 local_irq_save(flags);
496 tick_do_update_jiffies64(now);
497 local_irq_restore(flags);
02ff3755 498
03e0d461 499 touch_softlockup_watchdog_sched();
79bf2bb3
TG
500}
501
595aac48 502/*
0de7611a 503 * Updates the per-CPU time idle statistics counters
595aac48 504 */
8d63bf94 505static void
8c215bd3 506update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
6378ddb5 507{
eed3b9cf 508 ktime_t delta;
6378ddb5 509
595aac48
AV
510 if (ts->idle_active) {
511 delta = ktime_sub(now, ts->idle_entrytime);
8c215bd3 512 if (nr_iowait_cpu(cpu) > 0)
0224cf4c 513 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
6beea0cd
MH
514 else
515 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
8c7b09f4 516 ts->idle_entrytime = now;
595aac48 517 }
8d63bf94 518
e0e37c20 519 if (last_update_time)
8d63bf94
AV
520 *last_update_time = ktime_to_us(now);
521
595aac48
AV
522}
523
e8fcaa5c 524static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
595aac48 525{
e8fcaa5c 526 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
eed3b9cf 527 ts->idle_active = 0;
56c7426b 528
ac1e843f 529 sched_clock_idle_wakeup_event();
6378ddb5
VP
530}
531
0e776768 532static void tick_nohz_start_idle(struct tick_sched *ts)
6378ddb5 533{
0e776768 534 ts->idle_entrytime = ktime_get();
6378ddb5 535 ts->idle_active = 1;
56c7426b 536 sched_clock_idle_sleep_event();
6378ddb5
VP
537}
538
b1f724c3 539/**
0de7611a 540 * get_cpu_idle_time_us - get the total idle time of a CPU
b1f724c3 541 * @cpu: CPU number to query
09a1d34f
MH
542 * @last_update_time: variable to store update time in. Do not update
543 * counters if NULL.
b1f724c3 544 *
6168f8ed 545 * Return the cumulative idle time (since boot) for a given
6beea0cd 546 * CPU, in microseconds.
b1f724c3
AV
547 *
548 * This time is measured via accounting rather than sampling,
549 * and is as accurate as ktime_get() is.
550 *
551 * This function returns -1 if NOHZ is not enabled.
552 */
6378ddb5
VP
553u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
554{
555 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 556 ktime_t now, idle;
6378ddb5 557
d689fe22 558 if (!tick_nohz_active)
8083e4ad 559 return -1;
560
09a1d34f
MH
561 now = ktime_get();
562 if (last_update_time) {
563 update_ts_time_stats(cpu, ts, now, last_update_time);
564 idle = ts->idle_sleeptime;
565 } else {
566 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
567 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
568
569 idle = ktime_add(ts->idle_sleeptime, delta);
570 } else {
571 idle = ts->idle_sleeptime;
572 }
573 }
574
575 return ktime_to_us(idle);
8083e4ad 576
6378ddb5 577}
8083e4ad 578EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
6378ddb5 579
6beea0cd 580/**
0de7611a 581 * get_cpu_iowait_time_us - get the total iowait time of a CPU
0224cf4c 582 * @cpu: CPU number to query
09a1d34f
MH
583 * @last_update_time: variable to store update time in. Do not update
584 * counters if NULL.
0224cf4c 585 *
6168f8ed 586 * Return the cumulative iowait time (since boot) for a given
0224cf4c
AV
587 * CPU, in microseconds.
588 *
589 * This time is measured via accounting rather than sampling,
590 * and is as accurate as ktime_get() is.
591 *
592 * This function returns -1 if NOHZ is not enabled.
593 */
594u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
595{
596 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 597 ktime_t now, iowait;
0224cf4c 598
d689fe22 599 if (!tick_nohz_active)
0224cf4c
AV
600 return -1;
601
09a1d34f
MH
602 now = ktime_get();
603 if (last_update_time) {
604 update_ts_time_stats(cpu, ts, now, last_update_time);
605 iowait = ts->iowait_sleeptime;
606 } else {
607 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
608 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
0224cf4c 609
09a1d34f
MH
610 iowait = ktime_add(ts->iowait_sleeptime, delta);
611 } else {
612 iowait = ts->iowait_sleeptime;
613 }
614 }
0224cf4c 615
09a1d34f 616 return ktime_to_us(iowait);
0224cf4c
AV
617}
618EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
619
0ff53d09
TG
620static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
621{
622 hrtimer_cancel(&ts->sched_timer);
623 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
624
625 /* Forward the time to expire in the future */
626 hrtimer_forward(&ts->sched_timer, now, tick_period);
627
628 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
629 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
630 else
631 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
411fe24e
FW
632
633 /*
634 * Reset to make sure next tick stop doesn't get fooled by past
635 * cached clock deadline.
636 */
637 ts->next_tick = 0;
0ff53d09
TG
638}
639
5d62c183
TG
640static inline bool local_timer_softirq_pending(void)
641{
80d20d35 642 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
5d62c183
TG
643}
644
23a8d888 645static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
79bf2bb3 646{
c1ad348b
TG
647 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
648 unsigned long seq, basejiff;
855a0fc3 649
79bf2bb3
TG
650 /* Read jiffies and the time when jiffies were updated last */
651 do {
d6ad4187 652 seq = read_seqbegin(&jiffies_lock);
2456e855 653 basemono = last_jiffies_update;
c1ad348b 654 basejiff = jiffies;
d6ad4187 655 } while (read_seqretry(&jiffies_lock, seq));
c1ad348b 656 ts->last_jiffies = basejiff;
23a8d888 657 ts->timer_expires_base = basemono;
79bf2bb3 658
5d62c183
TG
659 /*
660 * Keep the periodic tick, when RCU, architecture or irq_work
661 * requests it.
662 * Aside of that check whether the local timer softirq is
663 * pending. If so its a bad idea to call get_next_timer_interrupt()
664 * because there is an already expired timer, so it will request
665 * immeditate expiry, which rearms the hardware timer with a
666 * minimal delta which brings us back to this place
667 * immediately. Lather, rinse and repeat...
668 */
669 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
670 irq_work_needs_cpu() || local_timer_softirq_pending()) {
c1ad348b 671 next_tick = basemono + TICK_NSEC;
3c5d92a0 672 } else {
c1ad348b
TG
673 /*
674 * Get the next pending timer. If high resolution
675 * timers are enabled this only takes the timer wheel
676 * timers into account. If high resolution timers are
677 * disabled this also looks at the next expiring
678 * hrtimer.
679 */
680 next_tmr = get_next_timer_interrupt(basejiff, basemono);
681 ts->next_timer = next_tmr;
682 /* Take the next rcu event into account */
683 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
3c5d92a0 684 }
47aa8b6c 685
c1ad348b
TG
686 /*
687 * If the tick is due in the next period, keep it ticking or
82bbe34b 688 * force prod the timer.
c1ad348b
TG
689 */
690 delta = next_tick - basemono;
691 if (delta <= (u64)TICK_NSEC) {
a683f390
TG
692 /*
693 * Tell the timer code that the base is not idle, i.e. undo
694 * the effect of get_next_timer_interrupt():
695 */
696 timer_clear_idle();
82bbe34b
PZ
697 /*
698 * We've not stopped the tick yet, and there's a timer in the
699 * next period, so no point in stopping it either, bail.
700 */
f99973e1 701 if (!ts->tick_stopped) {
23a8d888 702 ts->timer_expires = 0;
157d29e1
TG
703 goto out;
704 }
705 }
706
23a8d888
RW
707 /*
708 * If this CPU is the one which had the do_timer() duty last, we limit
709 * the sleep time to the timekeeping max_deferment value.
710 * Otherwise we can sleep as long as we want.
711 */
712 delta = timekeeping_max_deferment();
713 if (cpu != tick_do_timer_cpu &&
714 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
715 delta = KTIME_MAX;
716
717 /* Calculate the next expiry time */
718 if (delta < (KTIME_MAX - basemono))
719 expires = basemono + delta;
720 else
721 expires = KTIME_MAX;
722
723 ts->timer_expires = min_t(u64, expires, next_tick);
724
725out:
726 return ts->timer_expires;
727}
728
729static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
730{
731 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
732 u64 basemono = ts->timer_expires_base;
733 u64 expires = ts->timer_expires;
734 ktime_t tick = expires;
735
736 /* Make sure we won't be trying to stop it twice in a row. */
737 ts->timer_expires_base = 0;
738
79bf2bb3 739 /*
0de7611a
IM
740 * If this CPU is the one which updates jiffies, then give up
741 * the assignment and let it be taken by the CPU which runs
742 * the tick timer next, which might be this CPU as well. If we
157d29e1
TG
743 * don't drop this here the jiffies might be stale and
744 * do_timer() never invoked. Keep track of the fact that it
23a8d888 745 * was the one which had the do_timer() duty last.
79bf2bb3 746 */
157d29e1
TG
747 if (cpu == tick_do_timer_cpu) {
748 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
749 ts->do_timer_last = 1;
750 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
157d29e1 751 ts->do_timer_last = 0;
157d29e1 752 }
27185016 753
157d29e1 754 /* Skip reprogram of event if its not changed */
411fe24e
FW
755 if (ts->tick_stopped && (expires == ts->next_tick)) {
756 /* Sanity check: make sure clockevent is actually programmed */
d4af6d93 757 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
23a8d888 758 return;
411fe24e
FW
759
760 WARN_ON_ONCE(1);
761 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
762 basemono, ts->next_tick, dev->next_event,
763 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
ce6cf9a1 764 }
84bf1bcc 765
157d29e1
TG
766 /*
767 * nohz_stop_sched_tick can be called several times before
768 * the nohz_restart_sched_tick is called. This happens when
769 * interrupts arrive which do not cause a reschedule. In the
770 * first call we save the current tick time, so we can restart
771 * the scheduler tick in nohz_restart_sched_tick.
772 */
773 if (!ts->tick_stopped) {
3c85d6db 774 calc_load_nohz_start();
1f41906a 775 cpu_load_update_nohz_start();
62cb1188 776 quiet_vmstat();
d3ed7824 777
157d29e1
TG
778 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
779 ts->tick_stopped = 1;
e6e6cc22 780 trace_tick_stop(1, TICK_DEP_MASK_NONE);
157d29e1 781 }
eaad084b 782
411fe24e
FW
783 ts->next_tick = tick;
784
157d29e1 785 /*
c1ad348b
TG
786 * If the expiration time == KTIME_MAX, then we simply stop
787 * the tick timer.
157d29e1 788 */
c1ad348b 789 if (unlikely(expires == KTIME_MAX)) {
157d29e1
TG
790 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
791 hrtimer_cancel(&ts->sched_timer);
23a8d888 792 return;
79bf2bb3 793 }
0ff53d09 794
1f71addd
TG
795 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
796 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
797 } else {
798 hrtimer_set_expires(&ts->sched_timer, tick);
c1ad348b 799 tick_program_event(tick, 1);
1f71addd 800 }
280f0677
FW
801}
802
23a8d888
RW
803static void tick_nohz_retain_tick(struct tick_sched *ts)
804{
805 ts->timer_expires_base = 0;
806}
807
808#ifdef CONFIG_NO_HZ_FULL
809static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
810{
811 if (tick_nohz_next_event(ts, cpu))
812 tick_nohz_stop_tick(ts, cpu);
813 else
814 tick_nohz_retain_tick(ts);
815}
816#endif /* CONFIG_NO_HZ_FULL */
817
1f41906a 818static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
59d2c7ca
FW
819{
820 /* Update jiffies first */
821 tick_do_update_jiffies64(now);
1f41906a 822 cpu_load_update_nohz_stop();
59d2c7ca 823
a683f390
TG
824 /*
825 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
826 * the clock forward checks in the enqueue path:
827 */
828 timer_clear_idle();
829
3c85d6db 830 calc_load_nohz_stop();
03e0d461 831 touch_softlockup_watchdog_sched();
59d2c7ca
FW
832 /*
833 * Cancel the scheduled timer and restore the tick
834 */
835 ts->tick_stopped = 0;
836 ts->idle_exittime = now;
837
838 tick_nohz_restart(ts, now);
839}
73738a95
FW
840
841static void tick_nohz_full_update_tick(struct tick_sched *ts)
5811d996
FW
842{
843#ifdef CONFIG_NO_HZ_FULL
e9a2eb40 844 int cpu = smp_processor_id();
5811d996 845
59449359 846 if (!tick_nohz_full_cpu(cpu))
e9a2eb40 847 return;
5811d996 848
e9a2eb40
AS
849 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
850 return;
5811d996 851
57ccdf44 852 if (can_stop_full_tick(cpu, ts))
23a8d888 853 tick_nohz_stop_sched_tick(ts, cpu);
73738a95 854 else if (ts->tick_stopped)
1f41906a 855 tick_nohz_restart_sched_tick(ts, ktime_get());
5811d996
FW
856#endif
857}
858
5b39939a
FW
859static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
860{
861 /*
0de7611a 862 * If this CPU is offline and it is the one which updates
5b39939a 863 * jiffies, then give up the assignment and let it be taken by
0de7611a 864 * the CPU which runs the tick timer next. If we don't drop
5b39939a
FW
865 * this here the jiffies might be stale and do_timer() never
866 * invoked.
867 */
868 if (unlikely(!cpu_online(cpu))) {
869 if (cpu == tick_do_timer_cpu)
870 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
411fe24e
FW
871 /*
872 * Make sure the CPU doesn't get fooled by obsolete tick
873 * deadline if it comes back online later.
874 */
875 ts->next_tick = 0;
f7ea0fd6 876 return false;
5b39939a
FW
877 }
878
23a8d888 879 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
5b39939a
FW
880 return false;
881
882 if (need_resched())
883 return false;
884
d59e0ba1 885 if (unlikely(local_softirq_pending())) {
5b39939a
FW
886 static int ratelimit;
887
803b0eba
PM
888 if (ratelimit < 10 &&
889 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
cfea7d7e
RV
890 pr_warn("NOHZ: local_softirq_pending %02x\n",
891 (unsigned int) local_softirq_pending());
5b39939a
FW
892 ratelimit++;
893 }
894 return false;
895 }
896
460775df 897 if (tick_nohz_full_enabled()) {
a382bf93
FW
898 /*
899 * Keep the tick alive to guarantee timekeeping progression
900 * if there are full dynticks CPUs around
901 */
902 if (tick_do_timer_cpu == cpu)
903 return false;
904 /*
905 * Boot safety: make sure the timekeeping duty has been
906 * assigned before entering dyntick-idle mode,
907 */
908 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
909 return false;
910 }
911
5b39939a
FW
912 return true;
913}
914
0e776768 915static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
19f5f736 916{
0e776768 917 ktime_t expires;
5b39939a 918 int cpu = smp_processor_id();
19f5f736 919
554c8aa8
RW
920 /*
921 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
922 * tick timer expiration time is known already.
923 */
924 if (ts->timer_expires_base)
925 expires = ts->timer_expires;
926 else if (can_stop_idle_tick(cpu, ts))
927 expires = tick_nohz_next_event(ts, cpu);
928 else
929 return;
23a8d888
RW
930
931 ts->idle_calls++;
08d07259 932
23a8d888 933 if (expires > 0LL) {
5b39939a
FW
934 int was_stopped = ts->tick_stopped;
935
23a8d888 936 tick_nohz_stop_tick(ts, cpu);
84bf1bcc 937
23a8d888
RW
938 ts->idle_sleeps++;
939 ts->idle_expires = expires;
5b39939a 940
a0db971e 941 if (!was_stopped && ts->tick_stopped) {
5b39939a 942 ts->idle_jiffies = ts->last_jiffies;
a0db971e
FW
943 nohz_balance_enter_idle(cpu);
944 }
23a8d888
RW
945 } else {
946 tick_nohz_retain_tick(ts);
5b39939a 947 }
280f0677
FW
948}
949
950/**
0e776768 951 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
280f0677
FW
952 *
953 * When the next event is more than a tick into the future, stop the idle tick
0e776768
RW
954 */
955void tick_nohz_idle_stop_tick(void)
956{
957 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
958}
959
554c8aa8
RW
960void tick_nohz_idle_retain_tick(void)
961{
962 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
963 /*
964 * Undo the effect of get_next_timer_interrupt() called from
965 * tick_nohz_next_event().
966 */
967 timer_clear_idle();
968}
969
0e776768
RW
970/**
971 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
2bbb6817 972 *
0e776768 973 * Called when we start the idle loop.
280f0677 974 */
1268fbc7 975void tick_nohz_idle_enter(void)
280f0677
FW
976{
977 struct tick_sched *ts;
978
ebf3adba 979 lockdep_assert_irqs_enabled();
0db49b72 980
1268fbc7
FW
981 local_irq_disable();
982
22127e93 983 ts = this_cpu_ptr(&tick_cpu_sched);
23a8d888
RW
984
985 WARN_ON_ONCE(ts->timer_expires_base);
986
280f0677 987 ts->inidle = 1;
0e776768 988 tick_nohz_start_idle(ts);
1268fbc7
FW
989
990 local_irq_enable();
280f0677
FW
991}
992
993/**
994 * tick_nohz_irq_exit - update next tick event from interrupt exit
995 *
996 * When an interrupt fires while we are idle and it doesn't cause
997 * a reschedule, it may still add, modify or delete a timer, enqueue
998 * an RCU callback, etc...
999 * So we need to re-calculate and reprogram the next tick event.
1000 */
1001void tick_nohz_irq_exit(void)
1002{
22127e93 1003 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
280f0677 1004
14851912 1005 if (ts->inidle)
0e776768 1006 tick_nohz_start_idle(ts);
14851912 1007 else
73738a95 1008 tick_nohz_full_update_tick(ts);
79bf2bb3
TG
1009}
1010
4f86d3a8 1011/**
45f1ff59
RW
1012 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1013 */
1014bool tick_nohz_idle_got_tick(void)
1015{
1016 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1017
2bc629a6
FW
1018 if (ts->got_idle_tick) {
1019 ts->got_idle_tick = 0;
45f1ff59
RW
1020 return true;
1021 }
1022 return false;
1023}
1024
4f86d3a8 1025/**
554c8aa8 1026 * tick_nohz_get_sleep_length - return the expected length of the current sleep
296bb1e5 1027 * @delta_next: duration until the next event if the tick cannot be stopped
4f86d3a8
LB
1028 *
1029 * Called from power state control code with interrupts disabled
1030 */
296bb1e5 1031ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
4f86d3a8 1032{
554c8aa8 1033 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
22127e93 1034 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
554c8aa8
RW
1035 int cpu = smp_processor_id();
1036 /*
1037 * The idle entry time is expected to be a sufficient approximation of
1038 * the current time at this point.
1039 */
1040 ktime_t now = ts->idle_entrytime;
1041 ktime_t next_event;
1042
1043 WARN_ON_ONCE(!ts->inidle);
1044
296bb1e5
RW
1045 *delta_next = ktime_sub(dev->next_event, now);
1046
554c8aa8 1047 if (!can_stop_idle_tick(cpu, ts))
296bb1e5 1048 return *delta_next;
554c8aa8
RW
1049
1050 next_event = tick_nohz_next_event(ts, cpu);
1051 if (!next_event)
296bb1e5 1052 return *delta_next;
554c8aa8
RW
1053
1054 /*
1055 * If the next highres timer to expire is earlier than next_event, the
1056 * idle governor needs to know that.
1057 */
1058 next_event = min_t(u64, next_event,
1059 hrtimer_next_event_without(&ts->sched_timer));
4f86d3a8 1060
554c8aa8 1061 return ktime_sub(next_event, now);
4f86d3a8
LB
1062}
1063
466a2b42
JF
1064/**
1065 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1066 * for a particular CPU.
1067 *
1068 * Called from the schedutil frequency scaling governor in scheduler context.
1069 */
1070unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1071{
1072 struct tick_sched *ts = tick_get_tick_sched(cpu);
1073
1074 return ts->idle_calls;
1075}
1076
b7eaf1aa
RW
1077/**
1078 * tick_nohz_get_idle_calls - return the current idle calls counter value
1079 *
1080 * Called from the schedutil frequency scaling governor in scheduler context.
1081 */
1082unsigned long tick_nohz_get_idle_calls(void)
1083{
1084 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1085
1086 return ts->idle_calls;
1087}
1088
2ac0d98f
FW
1089static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1090{
3f4724ea 1091#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
2ac0d98f 1092 unsigned long ticks;
3f4724ea 1093
55dbdcfa 1094 if (vtime_accounting_cpu_enabled())
3f4724ea 1095 return;
79bf2bb3
TG
1096 /*
1097 * We stopped the tick in idle. Update process times would miss the
1098 * time we slept as update_process_times does only a 1 tick
1099 * accounting. Enforce that this is accounted to idle !
1100 */
1101 ticks = jiffies - ts->idle_jiffies;
1102 /*
1103 * We might be one off. Do not randomly account a huge number of ticks!
1104 */
79741dd3
MS
1105 if (ticks && ticks < LONG_MAX)
1106 account_idle_ticks(ticks);
1107#endif
19f5f736
FW
1108}
1109
2aaf709a
RW
1110static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1111{
1112 tick_nohz_restart_sched_tick(ts, now);
1113 tick_nohz_account_idle_ticks(ts);
1114}
1115
1116void tick_nohz_idle_restart_tick(void)
1117{
1118 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1119
1120 if (ts->tick_stopped)
1121 __tick_nohz_idle_restart_tick(ts, ktime_get());
1122}
1123
79bf2bb3 1124/**
280f0677 1125 * tick_nohz_idle_exit - restart the idle tick from the idle task
79bf2bb3
TG
1126 *
1127 * Restart the idle tick when the CPU is woken up from idle
280f0677
FW
1128 * This also exit the RCU extended quiescent state. The CPU
1129 * can use RCU again after this function is called.
79bf2bb3 1130 */
280f0677 1131void tick_nohz_idle_exit(void)
79bf2bb3 1132{
4a32fea9 1133 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
bbe9a70a 1134 bool idle_active, tick_stopped;
6378ddb5 1135 ktime_t now;
79bf2bb3 1136
6378ddb5 1137 local_irq_disable();
2bbb6817 1138
15f827be 1139 WARN_ON_ONCE(!ts->inidle);
23a8d888 1140 WARN_ON_ONCE(ts->timer_expires_base);
15f827be
FW
1141
1142 ts->inidle = 0;
bbe9a70a
AB
1143 idle_active = ts->idle_active;
1144 tick_stopped = ts->tick_stopped;
15f827be 1145
bbe9a70a 1146 if (idle_active || tick_stopped)
eed3b9cf
MS
1147 now = ktime_get();
1148
bbe9a70a 1149 if (idle_active)
e8fcaa5c 1150 tick_nohz_stop_idle(ts, now);
6378ddb5 1151
bbe9a70a 1152 if (tick_stopped)
2aaf709a 1153 __tick_nohz_idle_restart_tick(ts, now);
79bf2bb3 1154
79bf2bb3
TG
1155 local_irq_enable();
1156}
1157
79bf2bb3
TG
1158/*
1159 * The nohz low res interrupt handler
1160 */
1161static void tick_nohz_handler(struct clock_event_device *dev)
1162{
22127e93 1163 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1164 struct pt_regs *regs = get_irq_regs();
1165 ktime_t now = ktime_get();
1166
2456e855 1167 dev->next_event = KTIME_MAX;
79bf2bb3 1168
ff7de620 1169 tick_sched_do_timer(ts, now);
9e8f559b 1170 tick_sched_handle(ts, regs);
79bf2bb3 1171
b5e995e6
VK
1172 /* No need to reprogram if we are running tickless */
1173 if (unlikely(ts->tick_stopped))
1174 return;
1175
0ff53d09
TG
1176 hrtimer_forward(&ts->sched_timer, now, tick_period);
1177 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
79bf2bb3
TG
1178}
1179
bc7a34b8
TG
1180static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1181{
1182 if (!tick_nohz_enabled)
1183 return;
1184 ts->nohz_mode = mode;
1185 /* One update is enough */
1186 if (!test_and_set_bit(0, &tick_nohz_active))
ae67bada 1187 timers_update_nohz();
bc7a34b8
TG
1188}
1189
79bf2bb3
TG
1190/**
1191 * tick_nohz_switch_to_nohz - switch to nohz mode
1192 */
1193static void tick_nohz_switch_to_nohz(void)
1194{
22127e93 1195 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1196 ktime_t next;
1197
27630532 1198 if (!tick_nohz_enabled)
79bf2bb3
TG
1199 return;
1200
6b442bc8 1201 if (tick_switch_to_oneshot(tick_nohz_handler))
79bf2bb3 1202 return;
6b442bc8 1203
79bf2bb3
TG
1204 /*
1205 * Recycle the hrtimer in ts, so we can share the
1206 * hrtimer_forward with the highres code.
1207 */
1208 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1209 /* Get the next period */
1210 next = tick_init_jiffy_update();
1211
0ff53d09 1212 hrtimer_set_expires(&ts->sched_timer, next);
1ca8ec53
WL
1213 hrtimer_forward_now(&ts->sched_timer, tick_period);
1214 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
bc7a34b8 1215 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
79bf2bb3
TG
1216}
1217
5acac1be 1218static inline void tick_nohz_irq_enter(void)
eed3b9cf 1219{
4a32fea9 1220 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
eed3b9cf
MS
1221 ktime_t now;
1222
1223 if (!ts->idle_active && !ts->tick_stopped)
1224 return;
1225 now = ktime_get();
1226 if (ts->idle_active)
e8fcaa5c 1227 tick_nohz_stop_idle(ts, now);
ff006732 1228 if (ts->tick_stopped)
eed3b9cf 1229 tick_nohz_update_jiffies(now);
eed3b9cf
MS
1230}
1231
79bf2bb3
TG
1232#else
1233
1234static inline void tick_nohz_switch_to_nohz(void) { }
5acac1be 1235static inline void tick_nohz_irq_enter(void) { }
bc7a34b8 1236static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
79bf2bb3 1237
3451d024 1238#endif /* CONFIG_NO_HZ_COMMON */
79bf2bb3 1239
719254fa
TG
1240/*
1241 * Called from irq_enter to notify about the possible interruption of idle()
1242 */
5acac1be 1243void tick_irq_enter(void)
719254fa 1244{
e8fcaa5c 1245 tick_check_oneshot_broadcast_this_cpu();
5acac1be 1246 tick_nohz_irq_enter();
719254fa
TG
1247}
1248
79bf2bb3
TG
1249/*
1250 * High resolution timer specific code
1251 */
1252#ifdef CONFIG_HIGH_RES_TIMERS
1253/*
4c9dc641 1254 * We rearm the timer until we get disabled by the idle code.
351f181f 1255 * Called with interrupts disabled.
79bf2bb3
TG
1256 */
1257static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1258{
1259 struct tick_sched *ts =
1260 container_of(timer, struct tick_sched, sched_timer);
79bf2bb3
TG
1261 struct pt_regs *regs = get_irq_regs();
1262 ktime_t now = ktime_get();
d3ed7824 1263
ff7de620 1264 tick_sched_do_timer(ts, now);
79bf2bb3
TG
1265
1266 /*
1267 * Do not call, when we are not in irq context and have
1268 * no valid regs pointer
1269 */
9e8f559b
FW
1270 if (regs)
1271 tick_sched_handle(ts, regs);
7c259045
FW
1272 else
1273 ts->next_tick = 0;
79bf2bb3 1274
2a16fc93
VK
1275 /* No need to reprogram if we are in idle or full dynticks mode */
1276 if (unlikely(ts->tick_stopped))
1277 return HRTIMER_NORESTART;
1278
79bf2bb3
TG
1279 hrtimer_forward(timer, now, tick_period);
1280
1281 return HRTIMER_RESTART;
1282}
1283
5307c955
MG
1284static int sched_skew_tick;
1285
62cf20b3
TG
1286static int __init skew_tick(char *str)
1287{
1288 get_option(&str, &sched_skew_tick);
1289
1290 return 0;
1291}
1292early_param("skew_tick", skew_tick);
1293
79bf2bb3
TG
1294/**
1295 * tick_setup_sched_timer - setup the tick emulation timer
1296 */
1297void tick_setup_sched_timer(void)
1298{
22127e93 1299 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1300 ktime_t now = ktime_get();
1301
1302 /*
1303 * Emulate tick processing via per-CPU hrtimers:
1304 */
1305 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1306 ts->sched_timer.function = tick_sched_timer;
79bf2bb3 1307
0de7611a 1308 /* Get the next period (per-CPU) */
cc584b21 1309 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
79bf2bb3 1310
9c3f9e28 1311 /* Offset the tick to avert jiffies_lock contention. */
5307c955
MG
1312 if (sched_skew_tick) {
1313 u64 offset = ktime_to_ns(tick_period) >> 1;
1314 do_div(offset, num_possible_cpus());
1315 offset *= smp_processor_id();
1316 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1317 }
1318
afc08b15
TG
1319 hrtimer_forward(&ts->sched_timer, now, tick_period);
1320 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
bc7a34b8 1321 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
79bf2bb3 1322}
3c4fbe5e 1323#endif /* HIGH_RES_TIMERS */
79bf2bb3 1324
3451d024 1325#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1326void tick_cancel_sched_timer(int cpu)
1327{
1328 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1329
3c4fbe5e 1330# ifdef CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
1331 if (ts->sched_timer.base)
1332 hrtimer_cancel(&ts->sched_timer);
3c4fbe5e 1333# endif
a7901766 1334
4b0c0f29 1335 memset(ts, 0, sizeof(*ts));
79bf2bb3 1336}
3c4fbe5e 1337#endif
79bf2bb3
TG
1338
1339/**
1340 * Async notification about clocksource changes
1341 */
1342void tick_clock_notify(void)
1343{
1344 int cpu;
1345
1346 for_each_possible_cpu(cpu)
1347 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1348}
1349
1350/*
1351 * Async notification about clock event changes
1352 */
1353void tick_oneshot_notify(void)
1354{
22127e93 1355 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1356
1357 set_bit(0, &ts->check_clocks);
1358}
1359
1360/**
1361 * Check, if a change happened, which makes oneshot possible.
1362 *
1363 * Called cyclic from the hrtimer softirq (driven by the timer
1364 * softirq) allow_nohz signals, that we can switch into low-res nohz
1365 * mode, because high resolution timers are disabled (either compile
6b442bc8 1366 * or runtime). Called with interrupts disabled.
79bf2bb3
TG
1367 */
1368int tick_check_oneshot_change(int allow_nohz)
1369{
22127e93 1370 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
79bf2bb3
TG
1371
1372 if (!test_and_clear_bit(0, &ts->check_clocks))
1373 return 0;
1374
1375 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1376 return 0;
1377
cf4fc6cb 1378 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
79bf2bb3
TG
1379 return 0;
1380
1381 if (!allow_nohz)
1382 return 1;
1383
1384 tick_nohz_switch_to_nohz();
1385 return 0;
1386}