ARC: mm: do_page_fault refactor #8: release mmap_sem sooner
[linux-2.6-block.git] / kernel / time / tick-common.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
906568c9 2/*
906568c9
TG
3 * This file contains the base functions to manage periodic tick
4 * related events.
5 *
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
906568c9
TG
9 */
10#include <linux/cpu.h>
11#include <linux/err.h>
12#include <linux/hrtimer.h>
d7b90689 13#include <linux/interrupt.h>
906568c9
TG
14#include <linux/percpu.h>
15#include <linux/profile.h>
16#include <linux/sched.h>
ccf33d68 17#include <linux/module.h>
75e0678e 18#include <trace/events/power.h>
906568c9 19
d7b90689
RK
20#include <asm/irq_regs.h>
21
f8381cba
TG
22#include "tick-internal.h"
23
906568c9
TG
24/*
25 * Tick devices
26 */
f8381cba 27DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
906568c9
TG
28/*
29 * Tick next event: keeps track of the tick time
30 */
f8381cba
TG
31ktime_t tick_next_period;
32ktime_t tick_period;
050ded1b
AM
33
34/*
35 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
36 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
37 * variable has two functions:
38 *
39 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
40 * timekeeping lock all at once. Only the CPU which is assigned to do the
41 * update is handling it.
42 *
43 * 2) Hand off the duty in the NOHZ idle case by setting the value to
44 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
45 * at it will take over and keep the time keeping alive. The handover
46 * procedure also covers cpu hotplug.
47 */
6441402b 48int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
08ae95f4
NP
49#ifdef CONFIG_NO_HZ_FULL
50/*
51 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
52 * tick_do_timer_cpu and it should be taken over by an eligible secondary
53 * when one comes online.
54 */
55static int tick_do_timer_boot_cpu __read_mostly = -1;
56#endif
906568c9 57
289f480a
IM
58/*
59 * Debugging: see timer_list.c
60 */
61struct tick_device *tick_get_device(int cpu)
62{
63 return &per_cpu(tick_cpu_device, cpu);
64}
65
79bf2bb3
TG
66/**
67 * tick_is_oneshot_available - check for a oneshot capable event device
68 */
69int tick_is_oneshot_available(void)
70{
909ea964 71 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
79bf2bb3 72
3a142a06
TG
73 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
74 return 0;
75 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
76 return 1;
77 return tick_broadcast_oneshot_available();
79bf2bb3
TG
78}
79
906568c9
TG
80/*
81 * Periodic tick
82 */
83static void tick_periodic(int cpu)
84{
85 if (tick_do_timer_cpu == cpu) {
d6ad4187 86 write_seqlock(&jiffies_lock);
906568c9
TG
87
88 /* Keep track of the next tick event */
89 tick_next_period = ktime_add(tick_next_period, tick_period);
90
91 do_timer(1);
d6ad4187 92 write_sequnlock(&jiffies_lock);
47a1b796 93 update_wall_time();
906568c9
TG
94 }
95
96 update_process_times(user_mode(get_irq_regs()));
97 profile_tick(CPU_PROFILING);
98}
99
100/*
101 * Event handler for periodic ticks
102 */
103void tick_handle_periodic(struct clock_event_device *dev)
104{
105 int cpu = smp_processor_id();
b97f0291 106 ktime_t next = dev->next_event;
906568c9
TG
107
108 tick_periodic(cpu);
109
c6eb3f70
TG
110#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
111 /*
112 * The cpu might have transitioned to HIGHRES or NOHZ mode via
113 * update_process_times() -> run_local_timers() ->
114 * hrtimer_run_queues().
115 */
116 if (dev->event_handler != tick_handle_periodic)
117 return;
118#endif
119
472c4a94 120 if (!clockevent_state_oneshot(dev))
906568c9 121 return;
906568c9 122 for (;;) {
b97f0291
VK
123 /*
124 * Setup the next period for devices, which do not have
125 * periodic mode:
126 */
127 next = ktime_add(next, tick_period);
128
d1748302 129 if (!clockevents_program_event(dev, next, false))
906568c9 130 return;
74a03b69 131 /*
132 * Have to be careful here. If we're in oneshot mode,
133 * before we call tick_periodic() in a loop, we need
134 * to be sure we're using a real hardware clocksource.
135 * Otherwise we could get trapped in an infinite
136 * loop, as the tick_periodic() increments jiffies,
cacb3c76 137 * which then will increment time, possibly causing
74a03b69 138 * the loop to trigger again and again.
139 */
140 if (timekeeping_valid_for_hres())
141 tick_periodic(cpu);
906568c9
TG
142 }
143}
144
145/*
146 * Setup the device for a periodic tick
147 */
f8381cba 148void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
906568c9 149{
f8381cba
TG
150 tick_set_periodic_handler(dev, broadcast);
151
152 /* Broadcast setup ? */
153 if (!tick_device_is_functional(dev))
154 return;
906568c9 155
27ce4cb4
TG
156 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
157 !tick_broadcast_oneshot_active()) {
d7eb231c 158 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
906568c9 159 } else {
e1e41b6c 160 unsigned int seq;
906568c9
TG
161 ktime_t next;
162
163 do {
d6ad4187 164 seq = read_seqbegin(&jiffies_lock);
906568c9 165 next = tick_next_period;
d6ad4187 166 } while (read_seqretry(&jiffies_lock, seq));
906568c9 167
d7eb231c 168 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
906568c9
TG
169
170 for (;;) {
d1748302 171 if (!clockevents_program_event(dev, next, false))
906568c9
TG
172 return;
173 next = ktime_add(next, tick_period);
174 }
175 }
176}
177
08ae95f4
NP
178#ifdef CONFIG_NO_HZ_FULL
179static void giveup_do_timer(void *info)
180{
181 int cpu = *(unsigned int *)info;
182
183 WARN_ON(tick_do_timer_cpu != smp_processor_id());
184
185 tick_do_timer_cpu = cpu;
186}
187
188static void tick_take_do_timer_from_boot(void)
189{
190 int cpu = smp_processor_id();
191 int from = tick_do_timer_boot_cpu;
192
193 if (from >= 0 && from != cpu)
194 smp_call_function_single(from, giveup_do_timer, &cpu, 1);
195}
196#endif
197
906568c9
TG
198/*
199 * Setup the tick device
200 */
201static void tick_setup_device(struct tick_device *td,
202 struct clock_event_device *newdev, int cpu,
0de26520 203 const struct cpumask *cpumask)
906568c9 204{
906568c9 205 void (*handler)(struct clock_event_device *) = NULL;
8b0e1953 206 ktime_t next_event = 0;
906568c9
TG
207
208 /*
209 * First device setup ?
210 */
211 if (!td->evtdev) {
212 /*
213 * If no cpu took the do_timer update, assign it to
214 * this cpu:
215 */
6441402b 216 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
08ae95f4
NP
217 tick_do_timer_cpu = cpu;
218
906568c9 219 tick_next_period = ktime_get();
8b0e1953 220 tick_period = NSEC_PER_SEC / HZ;
08ae95f4
NP
221#ifdef CONFIG_NO_HZ_FULL
222 /*
223 * The boot CPU may be nohz_full, in which case set
224 * tick_do_timer_boot_cpu so the first housekeeping
225 * secondary that comes up will take do_timer from
226 * us.
227 */
228 if (tick_nohz_full_cpu(cpu))
229 tick_do_timer_boot_cpu = cpu;
230
231 } else if (tick_do_timer_boot_cpu != -1 &&
232 !tick_nohz_full_cpu(cpu)) {
233 tick_take_do_timer_from_boot();
234 tick_do_timer_boot_cpu = -1;
235 WARN_ON(tick_do_timer_cpu != cpu);
236#endif
906568c9
TG
237 }
238
239 /*
240 * Startup in periodic mode first.
241 */
242 td->mode = TICKDEV_MODE_PERIODIC;
243 } else {
244 handler = td->evtdev->event_handler;
245 next_event = td->evtdev->next_event;
7c1e7689 246 td->evtdev->event_handler = clockevents_handle_noop;
906568c9
TG
247 }
248
249 td->evtdev = newdev;
250
251 /*
252 * When the device is not per cpu, pin the interrupt to the
253 * current cpu:
254 */
320ab2b0 255 if (!cpumask_equal(newdev->cpumask, cpumask))
0de26520 256 irq_set_affinity(newdev->irq, cpumask);
906568c9 257
f8381cba
TG
258 /*
259 * When global broadcasting is active, check if the current
260 * device is registered as a placeholder for broadcast mode.
261 * This allows us to handle this x86 misfeature in a generic
07bd1172
TG
262 * way. This function also returns !=0 when we keep the
263 * current active broadcast state for this CPU.
f8381cba
TG
264 */
265 if (tick_device_uses_broadcast(newdev, cpu))
266 return;
267
906568c9
TG
268 if (td->mode == TICKDEV_MODE_PERIODIC)
269 tick_setup_periodic(newdev, 0);
79bf2bb3
TG
270 else
271 tick_setup_oneshot(newdev, handler, next_event);
906568c9
TG
272}
273
03e13cf5
TG
274void tick_install_replacement(struct clock_event_device *newdev)
275{
22127e93 276 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
03e13cf5
TG
277 int cpu = smp_processor_id();
278
279 clockevents_exchange_device(td->evtdev, newdev);
280 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
281 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
282 tick_oneshot_notify();
283}
284
45cb8e01
TG
285static bool tick_check_percpu(struct clock_event_device *curdev,
286 struct clock_event_device *newdev, int cpu)
287{
288 if (!cpumask_test_cpu(cpu, newdev->cpumask))
289 return false;
290 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
291 return true;
292 /* Check if irq affinity can be set */
293 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
294 return false;
295 /* Prefer an existing cpu local device */
296 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
297 return false;
298 return true;
299}
300
301static bool tick_check_preferred(struct clock_event_device *curdev,
302 struct clock_event_device *newdev)
303{
304 /* Prefer oneshot capable device */
305 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
306 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
307 return false;
308 if (tick_oneshot_mode_active())
309 return false;
310 }
311
70e5975d
SB
312 /*
313 * Use the higher rated one, but prefer a CPU local device with a lower
314 * rating than a non-CPU local device
315 */
316 return !curdev ||
317 newdev->rating > curdev->rating ||
5b5ccbc2 318 !cpumask_equal(curdev->cpumask, newdev->cpumask);
45cb8e01
TG
319}
320
03e13cf5
TG
321/*
322 * Check whether the new device is a better fit than curdev. curdev
323 * can be NULL !
324 */
325bool tick_check_replacement(struct clock_event_device *curdev,
326 struct clock_event_device *newdev)
327{
521c4299 328 if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
03e13cf5
TG
329 return false;
330
331 return tick_check_preferred(curdev, newdev);
332}
333
906568c9 334/*
7126cac4
TG
335 * Check, if the new registered device should be used. Called with
336 * clockevents_lock held and interrupts disabled.
906568c9 337 */
7172a286 338void tick_check_new_device(struct clock_event_device *newdev)
906568c9
TG
339{
340 struct clock_event_device *curdev;
341 struct tick_device *td;
7172a286 342 int cpu;
906568c9
TG
343
344 cpu = smp_processor_id();
906568c9
TG
345 td = &per_cpu(tick_cpu_device, cpu);
346 curdev = td->evtdev;
906568c9
TG
347
348 /* cpu local device ? */
45cb8e01
TG
349 if (!tick_check_percpu(curdev, newdev, cpu))
350 goto out_bc;
906568c9 351
45cb8e01
TG
352 /* Preference decision */
353 if (!tick_check_preferred(curdev, newdev))
354 goto out_bc;
906568c9 355
ccf33d68
TG
356 if (!try_module_get(newdev->owner))
357 return;
358
906568c9
TG
359 /*
360 * Replace the eventually existing device by the new
f8381cba
TG
361 * device. If the current device is the broadcast device, do
362 * not give it back to the clockevents layer !
906568c9 363 */
f8381cba 364 if (tick_is_broadcast_device(curdev)) {
2344abbc 365 clockevents_shutdown(curdev);
f8381cba
TG
366 curdev = NULL;
367 }
906568c9 368 clockevents_exchange_device(curdev, newdev);
6b954823 369 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
79bf2bb3
TG
370 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
371 tick_oneshot_notify();
7172a286 372 return;
f8381cba
TG
373
374out_bc:
375 /*
376 * Can the new device be used as a broadcast device ?
377 */
7172a286 378 tick_install_broadcast_device(newdev);
906568c9
TG
379}
380
f32dd117
TG
381/**
382 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
383 * @state: The target state (enter/exit)
384 *
385 * The system enters/leaves a state, where affected devices might stop
386 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
387 *
388 * Called with interrupts disabled, so clockevents_lock is not
389 * required here because the local clock event device cannot go away
390 * under us.
391 */
392int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
393{
394 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
395
396 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
397 return 0;
398
399 return __tick_broadcast_oneshot_control(state);
400}
0f447051 401EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
f32dd117 402
52c063d1 403#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
404/*
405 * Transfer the do_timer job away from a dying cpu.
406 *
52c063d1
TG
407 * Called with interrupts disabled. Not locking required. If
408 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
94df7de0 409 */
52c063d1 410void tick_handover_do_timer(void)
94df7de0 411{
52c063d1 412 if (tick_do_timer_cpu == smp_processor_id()) {
94df7de0
SD
413 int cpu = cpumask_first(cpu_online_mask);
414
415 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
416 TICK_DO_TIMER_NONE;
417 }
418}
419
906568c9
TG
420/*
421 * Shutdown an event device on a given cpu:
422 *
423 * This is called on a life CPU, when a CPU is dead. So we cannot
424 * access the hardware device itself.
425 * We just set the mode and remove it from the lists.
426 */
a49b116d 427void tick_shutdown(unsigned int cpu)
906568c9 428{
a49b116d 429 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
906568c9 430 struct clock_event_device *dev = td->evtdev;
906568c9 431
906568c9
TG
432 td->mode = TICKDEV_MODE_PERIODIC;
433 if (dev) {
434 /*
435 * Prevent that the clock events layer tries to call
436 * the set mode function!
437 */
051ebd10 438 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
906568c9 439 clockevents_exchange_device(dev, NULL);
6f7a05d7 440 dev->event_handler = clockevents_handle_noop;
906568c9
TG
441 td->evtdev = NULL;
442 }
906568c9 443}
a49b116d 444#endif
906568c9 445
4ffee521 446/**
f46481d0 447 * tick_suspend_local - Suspend the local tick device
4ffee521 448 *
f46481d0 449 * Called from the local cpu for freeze with interrupts disabled.
4ffee521
TG
450 *
451 * No locks required. Nothing can change the per cpu device.
452 */
7270d11c 453void tick_suspend_local(void)
6321dd60 454{
22127e93 455 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
6321dd60 456
2344abbc 457 clockevents_shutdown(td->evtdev);
6321dd60
TG
458}
459
4ffee521 460/**
f46481d0 461 * tick_resume_local - Resume the local tick device
4ffee521 462 *
f46481d0 463 * Called from the local CPU for unfreeze or XEN resume magic.
4ffee521
TG
464 *
465 * No locks required. Nothing can change the per cpu device.
466 */
f46481d0 467void tick_resume_local(void)
6321dd60 468{
f46481d0
TG
469 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
470 bool broadcast = tick_resume_check_broadcast();
6321dd60 471
554ef387 472 clockevents_tick_resume(td->evtdev);
18de5bc4
TG
473 if (!broadcast) {
474 if (td->mode == TICKDEV_MODE_PERIODIC)
475 tick_setup_periodic(td->evtdev, 0);
476 else
477 tick_resume_oneshot();
478 }
6321dd60
TG
479}
480
f46481d0
TG
481/**
482 * tick_suspend - Suspend the tick and the broadcast device
483 *
484 * Called from syscore_suspend() via timekeeping_suspend with only one
485 * CPU online and interrupts disabled or from tick_unfreeze() under
486 * tick_freeze_lock.
487 *
488 * No locks required. Nothing can change the per cpu device.
489 */
490void tick_suspend(void)
491{
492 tick_suspend_local();
493 tick_suspend_broadcast();
494}
495
496/**
497 * tick_resume - Resume the tick and the broadcast device
498 *
499 * Called from syscore_resume() via timekeeping_resume with only one
500 * CPU online and interrupts disabled.
501 *
502 * No locks required. Nothing can change the per cpu device.
503 */
504void tick_resume(void)
505{
506 tick_resume_broadcast();
507 tick_resume_local();
508}
509
87e9b9f1 510#ifdef CONFIG_SUSPEND
124cf911
RW
511static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
512static unsigned int tick_freeze_depth;
513
514/**
515 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
516 *
517 * Check if this is the last online CPU executing the function and if so,
518 * suspend timekeeping. Otherwise suspend the local tick.
519 *
520 * Call with interrupts disabled. Must be balanced with %tick_unfreeze().
521 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
522 */
523void tick_freeze(void)
524{
525 raw_spin_lock(&tick_freeze_lock);
526
527 tick_freeze_depth++;
75e0678e
RW
528 if (tick_freeze_depth == num_online_cpus()) {
529 trace_suspend_resume(TPS("timekeeping_freeze"),
530 smp_processor_id(), true);
c1a957d1 531 system_state = SYSTEM_SUSPEND;
3f2552f7 532 sched_clock_suspend();
124cf911 533 timekeeping_suspend();
75e0678e 534 } else {
f46481d0 535 tick_suspend_local();
75e0678e 536 }
124cf911
RW
537
538 raw_spin_unlock(&tick_freeze_lock);
539}
540
541/**
542 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
543 *
544 * Check if this is the first CPU executing the function and if so, resume
545 * timekeeping. Otherwise resume the local tick.
546 *
547 * Call with interrupts disabled. Must be balanced with %tick_freeze().
548 * Interrupts must not be enabled after the preceding %tick_freeze().
549 */
550void tick_unfreeze(void)
551{
552 raw_spin_lock(&tick_freeze_lock);
553
75e0678e 554 if (tick_freeze_depth == num_online_cpus()) {
124cf911 555 timekeeping_resume();
3f2552f7 556 sched_clock_resume();
c1a957d1 557 system_state = SYSTEM_RUNNING;
75e0678e
RW
558 trace_suspend_resume(TPS("timekeeping_freeze"),
559 smp_processor_id(), false);
560 } else {
422fe750 561 tick_resume_local();
75e0678e 562 }
124cf911
RW
563
564 tick_freeze_depth--;
565
566 raw_spin_unlock(&tick_freeze_lock);
567}
87e9b9f1 568#endif /* CONFIG_SUSPEND */
124cf911 569
906568c9
TG
570/**
571 * tick_init - initialize the tick control
906568c9
TG
572 */
573void __init tick_init(void)
574{
b352bc1c 575 tick_broadcast_init();
a80e49e2 576 tick_nohz_init();
906568c9 577}