posix-timers: Make compat syscalls depend on CONFIG_COMPAT_32BIT_TIME
[linux-2.6-block.git] / kernel / time / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
61855b6b 38#include <linux/sched/task.h>
1da177e4 39
7c0f6ba6 40#include <linux/uaccess.h>
1da177e4
LT
41#include <linux/list.h>
42#include <linux/init.h>
43#include <linux/compiler.h>
5ed67f05 44#include <linux/hash.h>
0606f422 45#include <linux/posix-clock.h>
1da177e4
LT
46#include <linux/posix-timers.h>
47#include <linux/syscalls.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
9984de1a 50#include <linux/export.h>
5ed67f05 51#include <linux/hashtable.h>
edbeda46 52#include <linux/compat.h>
19b558db 53#include <linux/nospec.h>
1da177e4 54
8b094cd0 55#include "timekeeping.h"
bab0aae9 56#include "posix-timers.h"
8b094cd0 57
1da177e4 58/*
5ed67f05
PE
59 * Management arrays for POSIX timers. Timers are now kept in static hash table
60 * with 512 entries.
61 * Timer ids are allocated by local routine, which selects proper hash head by
62 * key, constructed from current->signal address and per signal struct counter.
63 * This keeps timer ids unique per process, but now they can intersect between
64 * processes.
1da177e4
LT
65 */
66
67/*
68 * Lets keep our timers in a slab cache :-)
69 */
e18b890b 70static struct kmem_cache *posix_timers_cache;
5ed67f05
PE
71
72static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73static DEFINE_SPINLOCK(hash_lock);
1da177e4 74
6631fa12
TG
75static const struct k_clock * const posix_clocks[];
76static const struct k_clock *clockid_to_kclock(const clockid_t id);
67edab48 77static const struct k_clock clock_realtime, clock_monotonic;
6631fa12 78
1da177e4
LT
79/*
80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81 * SIGEV values. Here we put out an error if this assumption fails.
82 */
83#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86#endif
87
65da528d
TG
88/*
89 * parisc wants ENOTSUP instead of EOPNOTSUPP
90 */
91#ifndef ENOTSUP
92# define ENANOSLEEP_NOTSUP EOPNOTSUPP
93#else
94# define ENANOSLEEP_NOTSUP ENOTSUP
95#endif
1da177e4
LT
96
97/*
98 * The timer ID is turned into a timer address by idr_find().
99 * Verifying a valid ID consists of:
100 *
101 * a) checking that idr_find() returns other than -1.
102 * b) checking that the timer id matches the one in the timer itself.
103 * c) that the timer owner is in the callers thread group.
104 */
105
106/*
107 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
108 * to implement others. This structure defines the various
0061748d 109 * clocks.
1da177e4
LT
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
0061748d
RC
119 * FUNCTIONS: The CLOCKs structure defines possible functions to
120 * handle various clock functions.
1da177e4 121 *
0061748d
RC
122 * The standard POSIX timer management code assumes the
123 * following: 1.) The k_itimer struct (sched.h) is used for
124 * the timer. 2.) The list, it_lock, it_clock, it_id and
125 * it_pid fields are not modified by timer code.
1da177e4
LT
126 *
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
133 */
20f33a03
NK
134static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
135
136#define lock_timer(tid, flags) \
137({ struct k_itimer *__timr; \
138 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
139 __timr; \
140})
1da177e4 141
5ed67f05
PE
142static int hash(struct signal_struct *sig, unsigned int nr)
143{
144 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
145}
146
147static struct k_itimer *__posix_timers_find(struct hlist_head *head,
148 struct signal_struct *sig,
149 timer_t id)
150{
5ed67f05
PE
151 struct k_itimer *timer;
152
153 hlist_for_each_entry_rcu(timer, head, t_hash) {
154 if ((timer->it_signal == sig) && (timer->it_id == id))
155 return timer;
156 }
157 return NULL;
158}
159
160static struct k_itimer *posix_timer_by_id(timer_t id)
161{
162 struct signal_struct *sig = current->signal;
163 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
164
165 return __posix_timers_find(head, sig, id);
166}
167
168static int posix_timer_add(struct k_itimer *timer)
169{
170 struct signal_struct *sig = current->signal;
171 int first_free_id = sig->posix_timer_id;
172 struct hlist_head *head;
173 int ret = -ENOENT;
174
175 do {
176 spin_lock(&hash_lock);
177 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
178 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
179 hlist_add_head_rcu(&timer->t_hash, head);
180 ret = sig->posix_timer_id;
181 }
182 if (++sig->posix_timer_id < 0)
183 sig->posix_timer_id = 0;
184 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
185 /* Loop over all possible ids completed */
186 ret = -EAGAIN;
187 spin_unlock(&hash_lock);
188 } while (ret == -ENOENT);
189 return ret;
190}
191
1da177e4
LT
192static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
193{
194 spin_unlock_irqrestore(&timr->it_lock, flags);
195}
196
42285777 197/* Get clock_realtime */
3c9c12f4 198static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
42285777 199{
3c9c12f4 200 ktime_get_real_ts64(tp);
42285777
TG
201 return 0;
202}
203
26f9a479
TG
204/* Set clock_realtime */
205static int posix_clock_realtime_set(const clockid_t which_clock,
0fe6afe3 206 const struct timespec64 *tp)
26f9a479 207{
0fe6afe3 208 return do_sys_settimeofday64(tp, NULL);
26f9a479
TG
209}
210
f1f1d5eb
RC
211static int posix_clock_realtime_adj(const clockid_t which_clock,
212 struct timex *t)
213{
214 return do_adjtimex(t);
215}
216
becf8b5d
TG
217/*
218 * Get monotonic time for posix timers
219 */
3c9c12f4 220static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
becf8b5d 221{
3c9c12f4 222 ktime_get_ts64(tp);
becf8b5d
TG
223 return 0;
224}
1da177e4 225
2d42244a 226/*
7fdd7f89 227 * Get monotonic-raw time for posix timers
2d42244a 228 */
3c9c12f4 229static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
2d42244a 230{
3c9c12f4 231 getrawmonotonic64(tp);
2d42244a
JS
232 return 0;
233}
234
da15cfda 235
3c9c12f4 236static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
da15cfda 237{
3c9c12f4 238 *tp = current_kernel_time64();
da15cfda 239 return 0;
240}
241
242static int posix_get_monotonic_coarse(clockid_t which_clock,
3c9c12f4 243 struct timespec64 *tp)
da15cfda 244{
3c9c12f4 245 *tp = get_monotonic_coarse64();
da15cfda 246 return 0;
247}
248
d2e3e0ca 249static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
da15cfda 250{
d2e3e0ca 251 *tp = ktime_to_timespec64(KTIME_LOW_RES);
da15cfda 252 return 0;
253}
7fdd7f89 254
3c9c12f4 255static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
7fdd7f89 256{
3c9c12f4 257 timekeeping_clocktai64(tp);
7fdd7f89
JS
258 return 0;
259}
260
72199320
TG
261static int posix_get_monotonic_active(clockid_t which_clock,
262 struct timespec64 *tp)
1ff3c967 263{
72199320 264 ktime_get_active_ts64(tp);
1ff3c967
JS
265 return 0;
266}
7fdd7f89 267
d2e3e0ca 268static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
056a3cac
TG
269{
270 tp->tv_sec = 0;
271 tp->tv_nsec = hrtimer_resolution;
272 return 0;
273}
274
1da177e4
LT
275/*
276 * Initialize everything, well, just everything in Posix clocks/timers ;)
277 */
278static __init int init_posix_timers(void)
279{
1da177e4 280 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
281 sizeof (struct k_itimer), 0, SLAB_PANIC,
282 NULL);
1da177e4
LT
283 return 0;
284}
1da177e4
LT
285__initcall(init_posix_timers);
286
f37fb0aa 287static void common_hrtimer_rearm(struct k_itimer *timr)
1da177e4 288{
44f21475
RZ
289 struct hrtimer *timer = &timr->it.real.timer;
290
80105cd0 291 if (!timr->it_interval)
1da177e4
LT
292 return;
293
4d672e7a
DL
294 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
295 timer->base->get_time(),
80105cd0 296 timr->it_interval);
44f21475 297 hrtimer_restart(timer);
1da177e4
LT
298}
299
300/*
301 * This function is exported for use by the signal deliver code. It is
302 * called just prior to the info block being released and passes that
303 * block to us. It's function is to update the overrun entry AND to
304 * restart the timer. It should only be called if the timer is to be
305 * restarted (i.e. we have flagged this in the sys_private entry of the
306 * info block).
307 *
25985edc 308 * To protect against the timer going away while the interrupt is queued,
1da177e4
LT
309 * we require that the it_requeue_pending flag be set.
310 */
96fe3b07 311void posixtimer_rearm(struct siginfo *info)
1da177e4
LT
312{
313 struct k_itimer *timr;
314 unsigned long flags;
315
316 timr = lock_timer(info->si_tid, &flags);
af888d67
TG
317 if (!timr)
318 return;
1da177e4 319
af888d67 320 if (timr->it_requeue_pending == info->si_sys_private) {
f37fb0aa 321 timr->kclock->timer_rearm(timr);
1da177e4 322
21e55c1f 323 timr->it_active = 1;
af888d67
TG
324 timr->it_overrun_last = timr->it_overrun;
325 timr->it_overrun = -1;
326 ++timr->it_requeue_pending;
327
54da1174 328 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
329 }
330
af888d67 331 unlock_timer(timr, flags);
1da177e4
LT
332}
333
ba661292 334int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 335{
27af4245
ON
336 struct task_struct *task;
337 int shared, ret = -1;
ba661292
ON
338 /*
339 * FIXME: if ->sigq is queued we can race with
96fe3b07 340 * dequeue_signal()->posixtimer_rearm().
ba661292
ON
341 *
342 * If dequeue_signal() sees the "right" value of
96fe3b07 343 * si_sys_private it calls posixtimer_rearm().
ba661292 344 * We re-queue ->sigq and drop ->it_lock().
96fe3b07 345 * posixtimer_rearm() locks the timer
ba661292
ON
346 * and re-schedules it while ->sigq is pending.
347 * Not really bad, but not that we want.
348 */
1da177e4 349 timr->sigq->info.si_sys_private = si_private;
1da177e4 350
27af4245
ON
351 rcu_read_lock();
352 task = pid_task(timr->it_pid, PIDTYPE_PID);
353 if (task) {
354 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
355 ret = send_sigqueue(timr->sigq, task, shared);
356 }
357 rcu_read_unlock();
4aa73611
ON
358 /* If we failed to send the signal the timer stops. */
359 return ret > 0;
1da177e4 360}
1da177e4
LT
361
362/*
363 * This function gets called when a POSIX.1b interval timer expires. It
364 * is used as a callback from the kernel internal timer. The
365 * run_timer_list code ALWAYS calls with interrupts on.
366
367 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
368 */
c9cb2e3d 369static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 370{
05cfb614 371 struct k_itimer *timr;
1da177e4 372 unsigned long flags;
becf8b5d 373 int si_private = 0;
c9cb2e3d 374 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 375
05cfb614 376 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 377 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 378
21e55c1f 379 timr->it_active = 0;
80105cd0 380 if (timr->it_interval != 0)
becf8b5d 381 si_private = ++timr->it_requeue_pending;
1da177e4 382
becf8b5d
TG
383 if (posix_timer_event(timr, si_private)) {
384 /*
385 * signal was not sent because of sig_ignor
386 * we will not get a call back to restart it AND
387 * it should be restarted.
388 */
80105cd0 389 if (timr->it_interval != 0) {
58229a18
TG
390 ktime_t now = hrtimer_cb_get_time(timer);
391
392 /*
393 * FIXME: What we really want, is to stop this
394 * timer completely and restart it in case the
395 * SIG_IGN is removed. This is a non trivial
396 * change which involves sighand locking
397 * (sigh !), which we don't want to do late in
398 * the release cycle.
399 *
400 * For now we just let timers with an interval
401 * less than a jiffie expire every jiffie to
402 * avoid softirq starvation in case of SIG_IGN
403 * and a very small interval, which would put
404 * the timer right back on the softirq pending
405 * list. By moving now ahead of time we trick
406 * hrtimer_forward() to expire the timer
407 * later, while we still maintain the overrun
408 * accuracy, but have some inconsistency in
409 * the timer_gettime() case. This is at least
410 * better than a starved softirq. A more
411 * complex fix which solves also another related
412 * inconsistency is already in the pipeline.
413 */
414#ifdef CONFIG_HIGH_RES_TIMERS
415 {
8b0e1953 416 ktime_t kj = NSEC_PER_SEC / HZ;
58229a18 417
80105cd0 418 if (timr->it_interval < kj)
58229a18
TG
419 now = ktime_add(now, kj);
420 }
421#endif
4d672e7a 422 timr->it_overrun += (unsigned int)
58229a18 423 hrtimer_forward(timer, now,
80105cd0 424 timr->it_interval);
becf8b5d 425 ret = HRTIMER_RESTART;
a0a0c28c 426 ++timr->it_requeue_pending;
21e55c1f 427 timr->it_active = 1;
1da177e4 428 }
1da177e4 429 }
1da177e4 430
becf8b5d
TG
431 unlock_timer(timr, flags);
432 return ret;
433}
1da177e4 434
27af4245 435static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
436{
437 struct task_struct *rtn = current->group_leader;
438
cef31d9a
TG
439 switch (event->sigev_notify) {
440 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
441 rtn = find_task_by_vpid(event->sigev_notify_thread_id);
442 if (!rtn || !same_thread_group(rtn, current))
443 return NULL;
444 /* FALLTHRU */
445 case SIGEV_SIGNAL:
446 case SIGEV_THREAD:
447 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
448 return NULL;
449 /* FALLTHRU */
450 case SIGEV_NONE:
451 return task_pid(rtn);
452 default:
1da177e4 453 return NULL;
cef31d9a 454 }
1da177e4
LT
455}
456
1da177e4
LT
457static struct k_itimer * alloc_posix_timer(void)
458{
459 struct k_itimer *tmr;
c3762229 460 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
461 if (!tmr)
462 return tmr;
1da177e4
LT
463 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
464 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 465 return NULL;
1da177e4 466 }
3b10db2b 467 clear_siginfo(&tmr->sigq->info);
1da177e4
LT
468 return tmr;
469}
470
8af08871
ED
471static void k_itimer_rcu_free(struct rcu_head *head)
472{
473 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
474
475 kmem_cache_free(posix_timers_cache, tmr);
476}
477
1da177e4
LT
478#define IT_ID_SET 1
479#define IT_ID_NOT_SET 0
480static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
481{
482 if (it_id_set) {
483 unsigned long flags;
5ed67f05
PE
484 spin_lock_irqsave(&hash_lock, flags);
485 hlist_del_rcu(&tmr->t_hash);
486 spin_unlock_irqrestore(&hash_lock, flags);
1da177e4 487 }
89992102 488 put_pid(tmr->it_pid);
1da177e4 489 sigqueue_free(tmr->sigq);
8af08871 490 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
1da177e4
LT
491}
492
838394fb
TG
493static int common_timer_create(struct k_itimer *new_timer)
494{
495 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
496 return 0;
497}
498
1da177e4 499/* Create a POSIX.1b interval timer. */
2482097c
AV
500static int do_timer_create(clockid_t which_clock, struct sigevent *event,
501 timer_t __user *created_timer_id)
1da177e4 502{
d3ba5a9a 503 const struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 504 struct k_itimer *new_timer;
ef864c95 505 int error, new_timer_id;
1da177e4
LT
506 int it_id_set = IT_ID_NOT_SET;
507
838394fb 508 if (!kc)
1da177e4 509 return -EINVAL;
838394fb
TG
510 if (!kc->timer_create)
511 return -EOPNOTSUPP;
1da177e4
LT
512
513 new_timer = alloc_posix_timer();
514 if (unlikely(!new_timer))
515 return -EAGAIN;
516
517 spin_lock_init(&new_timer->it_lock);
5ed67f05
PE
518 new_timer_id = posix_timer_add(new_timer);
519 if (new_timer_id < 0) {
520 error = new_timer_id;
1da177e4
LT
521 goto out;
522 }
523
524 it_id_set = IT_ID_SET;
525 new_timer->it_id = (timer_t) new_timer_id;
526 new_timer->it_clock = which_clock;
d97bb75d 527 new_timer->kclock = kc;
1da177e4 528 new_timer->it_overrun = -1;
1da177e4 529
2482097c 530 if (event) {
36b2f046 531 rcu_read_lock();
2482097c 532 new_timer->it_pid = get_pid(good_sigevent(event));
36b2f046 533 rcu_read_unlock();
89992102 534 if (!new_timer->it_pid) {
1da177e4
LT
535 error = -EINVAL;
536 goto out;
537 }
2482097c
AV
538 new_timer->it_sigev_notify = event->sigev_notify;
539 new_timer->sigq->info.si_signo = event->sigev_signo;
540 new_timer->sigq->info.si_value = event->sigev_value;
1da177e4 541 } else {
2482097c
AV
542 new_timer->it_sigev_notify = SIGEV_SIGNAL;
543 new_timer->sigq->info.si_signo = SIGALRM;
544 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
545 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
89992102 546 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
547 }
548
717835d9 549 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 550 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 551
2b08de00
AV
552 if (copy_to_user(created_timer_id,
553 &new_timer_id, sizeof (new_timer_id))) {
554 error = -EFAULT;
555 goto out;
556 }
557
838394fb 558 error = kc->timer_create(new_timer);
45e0fffc
AV
559 if (error)
560 goto out;
561
36b2f046 562 spin_lock_irq(&current->sighand->siglock);
27af4245 563 new_timer->it_signal = current->signal;
36b2f046
ON
564 list_add(&new_timer->list, &current->signal->posix_timers);
565 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
566
567 return 0;
838394fb 568 /*
1da177e4
LT
569 * In the case of the timer belonging to another task, after
570 * the task is unlocked, the timer is owned by the other task
571 * and may cease to exist at any time. Don't use or modify
572 * new_timer after the unlock call.
573 */
1da177e4 574out:
ef864c95 575 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
576 return error;
577}
578
2482097c
AV
579SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
580 struct sigevent __user *, timer_event_spec,
581 timer_t __user *, created_timer_id)
582{
583 if (timer_event_spec) {
584 sigevent_t event;
585
586 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
587 return -EFAULT;
588 return do_timer_create(which_clock, &event, created_timer_id);
589 }
590 return do_timer_create(which_clock, NULL, created_timer_id);
591}
592
593#ifdef CONFIG_COMPAT
594COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
595 struct compat_sigevent __user *, timer_event_spec,
596 timer_t __user *, created_timer_id)
597{
598 if (timer_event_spec) {
599 sigevent_t event;
600
601 if (get_compat_sigevent(&event, timer_event_spec))
602 return -EFAULT;
603 return do_timer_create(which_clock, &event, created_timer_id);
604 }
605 return do_timer_create(which_clock, NULL, created_timer_id);
606}
607#endif
608
1da177e4
LT
609/*
610 * Locking issues: We need to protect the result of the id look up until
611 * we get the timer locked down so it is not deleted under us. The
612 * removal is done under the idr spinlock so we use that here to bridge
613 * the find to the timer lock. To avoid a dead lock, the timer id MUST
614 * be release with out holding the timer lock.
615 */
20f33a03 616static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
617{
618 struct k_itimer *timr;
8af08871 619
e182bb38
TH
620 /*
621 * timer_t could be any type >= int and we want to make sure any
622 * @timer_id outside positive int range fails lookup.
623 */
624 if ((unsigned long long)timer_id > INT_MAX)
625 return NULL;
626
8af08871 627 rcu_read_lock();
5ed67f05 628 timr = posix_timer_by_id(timer_id);
1da177e4 629 if (timr) {
8af08871 630 spin_lock_irqsave(&timr->it_lock, *flags);
89992102 631 if (timr->it_signal == current->signal) {
8af08871 632 rcu_read_unlock();
31d92845
ON
633 return timr;
634 }
8af08871 635 spin_unlock_irqrestore(&timr->it_lock, *flags);
31d92845 636 }
8af08871 637 rcu_read_unlock();
1da177e4 638
31d92845 639 return NULL;
1da177e4
LT
640}
641
91d57bae
TG
642static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
643{
644 struct hrtimer *timer = &timr->it.real.timer;
645
646 return __hrtimer_expires_remaining_adjusted(timer, now);
647}
648
649static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
650{
651 struct hrtimer *timer = &timr->it.real.timer;
652
653 return (int)hrtimer_forward(timer, now, timr->it_interval);
654}
655
1da177e4
LT
656/*
657 * Get the time remaining on a POSIX.1b interval timer. This function
658 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
659 * mess with irq.
660 *
661 * We have a couple of messes to clean up here. First there is the case
662 * of a timer that has a requeue pending. These timers should appear to
663 * be in the timer list with an expiry as if we were to requeue them
664 * now.
665 *
666 * The second issue is the SIGEV_NONE timer which may be active but is
667 * not really ever put in the timer list (to save system resources).
668 * This timer may be expired, and if so, we will do it here. Otherwise
669 * it is the same as a requeue pending timer WRT to what we should
670 * report.
671 */
f2c45807 672void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
1da177e4 673{
91d57bae 674 const struct k_clock *kc = timr->kclock;
3b98a532 675 ktime_t now, remaining, iv;
91d57bae
TG
676 struct timespec64 ts64;
677 bool sig_none;
1da177e4 678
cef31d9a 679 sig_none = timr->it_sigev_notify == SIGEV_NONE;
80105cd0 680 iv = timr->it_interval;
3b98a532 681
becf8b5d 682 /* interval timer ? */
91d57bae 683 if (iv) {
5f252b32 684 cur_setting->it_interval = ktime_to_timespec64(iv);
91d57bae
TG
685 } else if (!timr->it_active) {
686 /*
687 * SIGEV_NONE oneshot timers are never queued. Check them
688 * below.
689 */
690 if (!sig_none)
691 return;
692 }
3b98a532 693
91d57bae
TG
694 /*
695 * The timespec64 based conversion is suboptimal, but it's not
696 * worth to implement yet another callback.
697 */
698 kc->clock_get(timr->it_clock, &ts64);
699 now = timespec64_to_ktime(ts64);
3b98a532 700
becf8b5d 701 /*
91d57bae
TG
702 * When a requeue is pending or this is a SIGEV_NONE timer move the
703 * expiry time forward by intervals, so expiry is > now.
becf8b5d 704 */
91d57bae
TG
705 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
706 timr->it_overrun += kc->timer_forward(timr, now);
3b98a532 707
91d57bae 708 remaining = kc->timer_remaining(timr, now);
becf8b5d 709 /* Return 0 only, when the timer is expired and not pending */
2456e855 710 if (remaining <= 0) {
3b98a532
RZ
711 /*
712 * A single shot SIGEV_NONE timer must return 0, when
713 * it is expired !
714 */
91d57bae 715 if (!sig_none)
3b98a532 716 cur_setting->it_value.tv_nsec = 1;
91d57bae 717 } else {
5f252b32 718 cur_setting->it_value = ktime_to_timespec64(remaining);
91d57bae 719 }
1da177e4
LT
720}
721
722/* Get the time remaining on a POSIX.1b interval timer. */
b0dc1242 723static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
1da177e4 724{
a7319fa2 725 struct k_itimer *timr;
d3ba5a9a 726 const struct k_clock *kc;
1da177e4 727 unsigned long flags;
a7319fa2 728 int ret = 0;
1da177e4
LT
729
730 timr = lock_timer(timer_id, &flags);
731 if (!timr)
732 return -EINVAL;
733
b0dc1242 734 memset(setting, 0, sizeof(*setting));
d97bb75d 735 kc = timr->kclock;
a7319fa2
TG
736 if (WARN_ON_ONCE(!kc || !kc->timer_get))
737 ret = -EINVAL;
738 else
b0dc1242 739 kc->timer_get(timr, setting);
1da177e4
LT
740
741 unlock_timer(timr, flags);
b0dc1242
AV
742 return ret;
743}
1da177e4 744
b0dc1242
AV
745/* Get the time remaining on a POSIX.1b interval timer. */
746SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
747 struct itimerspec __user *, setting)
748{
725816e8 749 struct itimerspec64 cur_setting;
1da177e4 750
725816e8 751 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 752 if (!ret) {
725816e8 753 if (put_itimerspec64(&cur_setting, setting))
b0dc1242
AV
754 ret = -EFAULT;
755 }
a7319fa2 756 return ret;
1da177e4 757}
becf8b5d 758
b0dc1242
AV
759#ifdef CONFIG_COMPAT
760COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
761 struct compat_itimerspec __user *, setting)
762{
725816e8 763 struct itimerspec64 cur_setting;
b0dc1242 764
725816e8 765 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 766 if (!ret) {
725816e8 767 if (put_compat_itimerspec64(&cur_setting, setting))
b0dc1242
AV
768 ret = -EFAULT;
769 }
770 return ret;
771}
772#endif
773
1da177e4
LT
774/*
775 * Get the number of overruns of a POSIX.1b interval timer. This is to
776 * be the overrun of the timer last delivered. At the same time we are
777 * accumulating overruns on the next timer. The overrun is frozen when
778 * the signal is delivered, either at the notify time (if the info block
779 * is not queued) or at the actual delivery time (as we are informed by
96fe3b07 780 * the call back to posixtimer_rearm(). So all we need to do is
1da177e4
LT
781 * to pick up the frozen overrun.
782 */
362e9c07 783SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
784{
785 struct k_itimer *timr;
786 int overrun;
5ba25331 787 unsigned long flags;
1da177e4
LT
788
789 timr = lock_timer(timer_id, &flags);
790 if (!timr)
791 return -EINVAL;
792
793 overrun = timr->it_overrun_last;
794 unlock_timer(timr, flags);
795
796 return overrun;
797}
1da177e4 798
eae1c4ae
TG
799static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
800 bool absolute, bool sigev_none)
801{
802 struct hrtimer *timer = &timr->it.real.timer;
803 enum hrtimer_mode mode;
804
805 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
67edab48
TG
806 /*
807 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
808 * clock modifications, so they become CLOCK_MONOTONIC based under the
809 * hood. See hrtimer_init(). Update timr->kclock, so the generic
810 * functions which use timr->kclock->clock_get() work.
811 *
812 * Note: it_clock stays unmodified, because the next timer_set() might
813 * use ABSTIME, so it needs to switch back.
814 */
815 if (timr->it_clock == CLOCK_REALTIME)
816 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
817
eae1c4ae
TG
818 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
819 timr->it.real.timer.function = posix_timer_fn;
820
821 if (!absolute)
822 expires = ktime_add_safe(expires, timer->base->get_time());
823 hrtimer_set_expires(timer, expires);
824
825 if (!sigev_none)
826 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
827}
828
829static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
830{
831 return hrtimer_try_to_cancel(&timr->it.real.timer);
832}
833
1da177e4 834/* Set a POSIX.1b interval timer. */
f2c45807
TG
835int common_timer_set(struct k_itimer *timr, int flags,
836 struct itimerspec64 *new_setting,
837 struct itimerspec64 *old_setting)
1da177e4 838{
eae1c4ae
TG
839 const struct k_clock *kc = timr->kclock;
840 bool sigev_none;
841 ktime_t expires;
1da177e4
LT
842
843 if (old_setting)
844 common_timer_get(timr, old_setting);
845
eae1c4ae 846 /* Prevent rearming by clearing the interval */
80105cd0 847 timr->it_interval = 0;
1da177e4 848 /*
eae1c4ae
TG
849 * Careful here. On SMP systems the timer expiry function could be
850 * active and spinning on timr->it_lock.
1da177e4 851 */
eae1c4ae 852 if (kc->timer_try_to_cancel(timr) < 0)
1da177e4 853 return TIMER_RETRY;
1da177e4 854
21e55c1f
TG
855 timr->it_active = 0;
856 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
1da177e4
LT
857 ~REQUEUE_PENDING;
858 timr->it_overrun_last = 0;
1da177e4 859
eae1c4ae 860 /* Switch off the timer when it_value is zero */
becf8b5d
TG
861 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
862 return 0;
1da177e4 863
80105cd0 864 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
eae1c4ae 865 expires = timespec64_to_ktime(new_setting->it_value);
cef31d9a 866 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
becf8b5d 867
eae1c4ae
TG
868 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
869 timr->it_active = !sigev_none;
1da177e4
LT
870 return 0;
871}
872
1acbe770
AV
873static int do_timer_settime(timer_t timer_id, int flags,
874 struct itimerspec64 *new_spec64,
875 struct itimerspec64 *old_spec64)
1da177e4 876{
1acbe770 877 const struct k_clock *kc;
5f252b32 878 struct k_itimer *timr;
5ba25331 879 unsigned long flag;
5f252b32 880 int error = 0;
1da177e4 881
1acbe770
AV
882 if (!timespec64_valid(&new_spec64->it_interval) ||
883 !timespec64_valid(&new_spec64->it_value))
1da177e4
LT
884 return -EINVAL;
885
1acbe770
AV
886 if (old_spec64)
887 memset(old_spec64, 0, sizeof(*old_spec64));
1da177e4
LT
888retry:
889 timr = lock_timer(timer_id, &flag);
890 if (!timr)
891 return -EINVAL;
892
d97bb75d 893 kc = timr->kclock;
27722df1
TG
894 if (WARN_ON_ONCE(!kc || !kc->timer_set))
895 error = -EINVAL;
896 else
1acbe770 897 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
1da177e4
LT
898
899 unlock_timer(timr, flag);
900 if (error == TIMER_RETRY) {
1acbe770 901 old_spec64 = NULL; // We already got the old time...
1da177e4
LT
902 goto retry;
903 }
904
1acbe770
AV
905 return error;
906}
1da177e4 907
1acbe770
AV
908/* Set a POSIX.1b interval timer */
909SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
910 const struct itimerspec __user *, new_setting,
911 struct itimerspec __user *, old_setting)
912{
725816e8
DD
913 struct itimerspec64 new_spec, old_spec;
914 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
1acbe770
AV
915 int error = 0;
916
917 if (!new_setting)
918 return -EINVAL;
919
725816e8 920 if (get_itimerspec64(&new_spec, new_setting))
1acbe770 921 return -EFAULT;
1acbe770 922
725816e8 923 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 924 if (!error && old_setting) {
725816e8 925 if (put_itimerspec64(&old_spec, old_setting))
1acbe770
AV
926 error = -EFAULT;
927 }
928 return error;
929}
930
931#ifdef CONFIG_COMPAT
932COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
933 struct compat_itimerspec __user *, new,
934 struct compat_itimerspec __user *, old)
935{
725816e8
DD
936 struct itimerspec64 new_spec, old_spec;
937 struct itimerspec64 *rtn = old ? &old_spec : NULL;
1acbe770
AV
938 int error = 0;
939
940 if (!new)
941 return -EINVAL;
725816e8 942 if (get_compat_itimerspec64(&new_spec, new))
1acbe770
AV
943 return -EFAULT;
944
725816e8 945 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 946 if (!error && old) {
725816e8 947 if (put_compat_itimerspec64(&old_spec, old))
1acbe770
AV
948 error = -EFAULT;
949 }
1da177e4
LT
950 return error;
951}
1acbe770 952#endif
1da177e4 953
f2c45807 954int common_timer_del(struct k_itimer *timer)
1da177e4 955{
eae1c4ae 956 const struct k_clock *kc = timer->kclock;
f972be33 957
eae1c4ae
TG
958 timer->it_interval = 0;
959 if (kc->timer_try_to_cancel(timer) < 0)
1da177e4 960 return TIMER_RETRY;
21e55c1f 961 timer->it_active = 0;
1da177e4
LT
962 return 0;
963}
964
965static inline int timer_delete_hook(struct k_itimer *timer)
966{
d97bb75d 967 const struct k_clock *kc = timer->kclock;
6761c670
TG
968
969 if (WARN_ON_ONCE(!kc || !kc->timer_del))
970 return -EINVAL;
971 return kc->timer_del(timer);
1da177e4
LT
972}
973
974/* Delete a POSIX.1b interval timer. */
362e9c07 975SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
976{
977 struct k_itimer *timer;
5ba25331 978 unsigned long flags;
1da177e4 979
1da177e4 980retry_delete:
1da177e4
LT
981 timer = lock_timer(timer_id, &flags);
982 if (!timer)
983 return -EINVAL;
984
becf8b5d 985 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
986 unlock_timer(timer, flags);
987 goto retry_delete;
988 }
becf8b5d 989
1da177e4
LT
990 spin_lock(&current->sighand->siglock);
991 list_del(&timer->list);
992 spin_unlock(&current->sighand->siglock);
993 /*
994 * This keeps any tasks waiting on the spin lock from thinking
995 * they got something (see the lock code above).
996 */
89992102 997 timer->it_signal = NULL;
4b7a1304 998
1da177e4
LT
999 unlock_timer(timer, flags);
1000 release_posix_timer(timer, IT_ID_SET);
1001 return 0;
1002}
becf8b5d 1003
1da177e4
LT
1004/*
1005 * return timer owned by the process, used by exit_itimers
1006 */
858119e1 1007static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
1008{
1009 unsigned long flags;
1010
1da177e4 1011retry_delete:
1da177e4
LT
1012 spin_lock_irqsave(&timer->it_lock, flags);
1013
becf8b5d 1014 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
1015 unlock_timer(timer, flags);
1016 goto retry_delete;
1017 }
1da177e4
LT
1018 list_del(&timer->list);
1019 /*
1020 * This keeps any tasks waiting on the spin lock from thinking
1021 * they got something (see the lock code above).
1022 */
89992102 1023 timer->it_signal = NULL;
4b7a1304 1024
1da177e4
LT
1025 unlock_timer(timer, flags);
1026 release_posix_timer(timer, IT_ID_SET);
1027}
1028
1029/*
25f407f0 1030 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
1031 * references to the shared signal_struct.
1032 */
1033void exit_itimers(struct signal_struct *sig)
1034{
1035 struct k_itimer *tmr;
1036
1037 while (!list_empty(&sig->posix_timers)) {
1038 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1039 itimer_delete(tmr);
1040 }
1041}
1042
362e9c07
HC
1043SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1044 const struct timespec __user *, tp)
1da177e4 1045{
d3ba5a9a 1046 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1047 struct timespec64 new_tp;
1da177e4 1048
26f9a479 1049 if (!kc || !kc->clock_set)
1da177e4 1050 return -EINVAL;
26f9a479 1051
5c499410 1052 if (get_timespec64(&new_tp, tp))
1da177e4
LT
1053 return -EFAULT;
1054
5c499410 1055 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
1056}
1057
362e9c07
HC
1058SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1059 struct timespec __user *,tp)
1da177e4 1060{
d3ba5a9a 1061 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1062 struct timespec64 kernel_tp;
1da177e4
LT
1063 int error;
1064
42285777 1065 if (!kc)
1da177e4 1066 return -EINVAL;
42285777 1067
5c499410 1068 error = kc->clock_get(which_clock, &kernel_tp);
42285777 1069
5c499410 1070 if (!error && put_timespec64(&kernel_tp, tp))
1da177e4
LT
1071 error = -EFAULT;
1072
1073 return error;
1da177e4
LT
1074}
1075
f1f1d5eb
RC
1076SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1077 struct timex __user *, utx)
1078{
d3ba5a9a 1079 const struct k_clock *kc = clockid_to_kclock(which_clock);
f1f1d5eb
RC
1080 struct timex ktx;
1081 int err;
1082
1083 if (!kc)
1084 return -EINVAL;
1085 if (!kc->clock_adj)
1086 return -EOPNOTSUPP;
1087
1088 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1089 return -EFAULT;
1090
1091 err = kc->clock_adj(which_clock, &ktx);
1092
f0dbe81f 1093 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
f1f1d5eb
RC
1094 return -EFAULT;
1095
1096 return err;
1097}
1098
d822cdcc
AV
1099SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1100 struct timespec __user *, tp)
1101{
1102 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1103 struct timespec64 rtn_tp;
d822cdcc
AV
1104 int error;
1105
1106 if (!kc)
1107 return -EINVAL;
1108
5c499410 1109 error = kc->clock_getres(which_clock, &rtn_tp);
d822cdcc 1110
5c499410 1111 if (!error && tp && put_timespec64(&rtn_tp, tp))
d822cdcc
AV
1112 error = -EFAULT;
1113
1114 return error;
1115}
1116
b5793b0d 1117#ifdef CONFIG_COMPAT_32BIT_TIME
3a4d44b6 1118
d822cdcc
AV
1119COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1120 struct compat_timespec __user *, tp)
1121{
1122 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1123 struct timespec64 ts;
d822cdcc
AV
1124
1125 if (!kc || !kc->clock_set)
1126 return -EINVAL;
1127
5c499410 1128 if (compat_get_timespec64(&ts, tp))
d822cdcc
AV
1129 return -EFAULT;
1130
5c499410 1131 return kc->clock_set(which_clock, &ts);
d822cdcc
AV
1132}
1133
1134COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1135 struct compat_timespec __user *, tp)
1136{
1137 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1138 struct timespec64 ts;
1139 int err;
d822cdcc
AV
1140
1141 if (!kc)
1142 return -EINVAL;
1143
5c499410 1144 err = kc->clock_get(which_clock, &ts);
d822cdcc 1145
5c499410
DD
1146 if (!err && compat_put_timespec64(&ts, tp))
1147 err = -EFAULT;
d822cdcc 1148
5c499410 1149 return err;
d822cdcc
AV
1150}
1151
b5793b0d
DD
1152#endif
1153
1154#ifdef CONFIG_COMPAT
1155
3a4d44b6
AV
1156COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1157 struct compat_timex __user *, utp)
1158{
1159 const struct k_clock *kc = clockid_to_kclock(which_clock);
1160 struct timex ktx;
1161 int err;
1162
1163 if (!kc)
1164 return -EINVAL;
1165 if (!kc->clock_adj)
1166 return -EOPNOTSUPP;
1167
1168 err = compat_get_timex(&ktx, utp);
1169 if (err)
1170 return err;
1171
1172 err = kc->clock_adj(which_clock, &ktx);
1173
1174 if (err >= 0)
1175 err = compat_put_timex(utp, &ktx);
1176
1177 return err;
1178}
3a4d44b6 1179
b5793b0d
DD
1180#endif
1181
1182#ifdef CONFIG_COMPAT_32BIT_TIME
1183
d822cdcc
AV
1184COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1185 struct compat_timespec __user *, tp)
1da177e4 1186{
d3ba5a9a 1187 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1188 struct timespec64 ts;
1189 int err;
1da177e4 1190
e5e542ee 1191 if (!kc)
1da177e4
LT
1192 return -EINVAL;
1193
5c499410
DD
1194 err = kc->clock_getres(which_clock, &ts);
1195 if (!err && tp && compat_put_timespec64(&ts, tp))
1196 return -EFAULT;
1da177e4 1197
5c499410 1198 return err;
1da177e4 1199}
5c499410 1200
d822cdcc 1201#endif
1da177e4 1202
97735f25
TG
1203/*
1204 * nanosleep for monotonic and realtime clocks
1205 */
1206static int common_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1207 const struct timespec64 *rqtp)
97735f25 1208{
938e7cf2 1209 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
080344b9
ON
1210 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1211 which_clock);
97735f25 1212}
1da177e4 1213
362e9c07
HC
1214SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1215 const struct timespec __user *, rqtp,
1216 struct timespec __user *, rmtp)
1da177e4 1217{
d3ba5a9a 1218 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1219 struct timespec64 t;
1da177e4 1220
a5cd2880 1221 if (!kc)
1da177e4 1222 return -EINVAL;
a5cd2880
TG
1223 if (!kc->nsleep)
1224 return -ENANOSLEEP_NOTSUP;
1da177e4 1225
c0edd7c9 1226 if (get_timespec64(&t, rqtp))
1da177e4
LT
1227 return -EFAULT;
1228
c0edd7c9 1229 if (!timespec64_valid(&t))
1da177e4 1230 return -EINVAL;
99e6c0e6
AV
1231 if (flags & TIMER_ABSTIME)
1232 rmtp = NULL;
edbeda46 1233 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
99e6c0e6 1234 current->restart_block.nanosleep.rmtp = rmtp;
1da177e4 1235
c0edd7c9 1236 return kc->nsleep(which_clock, flags, &t);
1da177e4 1237}
1711ef38 1238
b5793b0d
DD
1239#ifdef CONFIG_COMPAT_32BIT_TIME
1240
edbeda46
AV
1241COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1242 struct compat_timespec __user *, rqtp,
1243 struct compat_timespec __user *, rmtp)
1711ef38 1244{
d3ba5a9a 1245 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1246 struct timespec64 t;
59bd5bc2 1247
edbeda46 1248 if (!kc)
59bd5bc2 1249 return -EINVAL;
edbeda46
AV
1250 if (!kc->nsleep)
1251 return -ENANOSLEEP_NOTSUP;
1252
c0edd7c9 1253 if (compat_get_timespec64(&t, rqtp))
edbeda46 1254 return -EFAULT;
1711ef38 1255
c0edd7c9 1256 if (!timespec64_valid(&t))
edbeda46
AV
1257 return -EINVAL;
1258 if (flags & TIMER_ABSTIME)
1259 rmtp = NULL;
1260 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1261 current->restart_block.nanosleep.compat_rmtp = rmtp;
1262
c0edd7c9 1263 return kc->nsleep(which_clock, flags, &t);
1711ef38 1264}
b5793b0d 1265
edbeda46 1266#endif
6631fa12
TG
1267
1268static const struct k_clock clock_realtime = {
eae1c4ae
TG
1269 .clock_getres = posix_get_hrtimer_res,
1270 .clock_get = posix_clock_realtime_get,
1271 .clock_set = posix_clock_realtime_set,
1272 .clock_adj = posix_clock_realtime_adj,
1273 .nsleep = common_nsleep,
eae1c4ae
TG
1274 .timer_create = common_timer_create,
1275 .timer_set = common_timer_set,
1276 .timer_get = common_timer_get,
1277 .timer_del = common_timer_del,
1278 .timer_rearm = common_hrtimer_rearm,
1279 .timer_forward = common_hrtimer_forward,
1280 .timer_remaining = common_hrtimer_remaining,
1281 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1282 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1283};
1284
1285static const struct k_clock clock_monotonic = {
eae1c4ae
TG
1286 .clock_getres = posix_get_hrtimer_res,
1287 .clock_get = posix_ktime_get_ts,
1288 .nsleep = common_nsleep,
eae1c4ae
TG
1289 .timer_create = common_timer_create,
1290 .timer_set = common_timer_set,
1291 .timer_get = common_timer_get,
1292 .timer_del = common_timer_del,
1293 .timer_rearm = common_hrtimer_rearm,
1294 .timer_forward = common_hrtimer_forward,
1295 .timer_remaining = common_hrtimer_remaining,
1296 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1297 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1298};
1299
1300static const struct k_clock clock_monotonic_raw = {
eae1c4ae
TG
1301 .clock_getres = posix_get_hrtimer_res,
1302 .clock_get = posix_get_monotonic_raw,
6631fa12
TG
1303};
1304
1305static const struct k_clock clock_realtime_coarse = {
eae1c4ae
TG
1306 .clock_getres = posix_get_coarse_res,
1307 .clock_get = posix_get_realtime_coarse,
6631fa12
TG
1308};
1309
1310static const struct k_clock clock_monotonic_coarse = {
eae1c4ae
TG
1311 .clock_getres = posix_get_coarse_res,
1312 .clock_get = posix_get_monotonic_coarse,
6631fa12
TG
1313};
1314
1315static const struct k_clock clock_tai = {
eae1c4ae
TG
1316 .clock_getres = posix_get_hrtimer_res,
1317 .clock_get = posix_get_tai,
1318 .nsleep = common_nsleep,
eae1c4ae
TG
1319 .timer_create = common_timer_create,
1320 .timer_set = common_timer_set,
1321 .timer_get = common_timer_get,
1322 .timer_del = common_timer_del,
1323 .timer_rearm = common_hrtimer_rearm,
1324 .timer_forward = common_hrtimer_forward,
1325 .timer_remaining = common_hrtimer_remaining,
1326 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1327 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1328};
1329
72199320 1330static const struct k_clock clock_monotonic_active = {
eae1c4ae 1331 .clock_getres = posix_get_hrtimer_res,
72199320 1332 .clock_get = posix_get_monotonic_active,
6631fa12
TG
1333};
1334
1335static const struct k_clock * const posix_clocks[] = {
1336 [CLOCK_REALTIME] = &clock_realtime,
1337 [CLOCK_MONOTONIC] = &clock_monotonic,
1338 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1339 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1340 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1341 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1342 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
7250a404 1343 [CLOCK_BOOTTIME] = &clock_monotonic,
6631fa12
TG
1344 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1345 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1346 [CLOCK_TAI] = &clock_tai,
72199320 1347 [CLOCK_MONOTONIC_ACTIVE] = &clock_monotonic_active,
6631fa12
TG
1348};
1349
1350static const struct k_clock *clockid_to_kclock(const clockid_t id)
1351{
19b558db
TG
1352 clockid_t idx = id;
1353
1354 if (id < 0) {
6631fa12
TG
1355 return (id & CLOCKFD_MASK) == CLOCKFD ?
1356 &clock_posix_dynamic : &clock_posix_cpu;
19b558db 1357 }
6631fa12 1358
19b558db 1359 if (id >= ARRAY_SIZE(posix_clocks))
6631fa12 1360 return NULL;
19b558db
TG
1361
1362 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
6631fa12 1363}