dm-crypt: use __bio_add_page to add single page to clone bio
[linux-block.git] / kernel / time / posix-timers.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0+
1da177e4 2/*
1da177e4
LT
3 * 2002-10-15 Posix Clocks & timers
4 * by George Anzinger george@mvista.com
1da177e4
LT
5 * Copyright (C) 2002 2003 by MontaVista Software.
6 *
7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8 * Copyright (C) 2004 Boris Hu
9 *
0141de74 10 * These are all the functions necessary to implement POSIX clocks & timers
1da177e4
LT
11 */
12#include <linux/mm.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/slab.h>
15#include <linux/time.h>
97d1f15b 16#include <linux/mutex.h>
61855b6b 17#include <linux/sched/task.h>
1da177e4 18
7c0f6ba6 19#include <linux/uaccess.h>
1da177e4
LT
20#include <linux/list.h>
21#include <linux/init.h>
22#include <linux/compiler.h>
5ed67f05 23#include <linux/hash.h>
0606f422 24#include <linux/posix-clock.h>
1da177e4
LT
25#include <linux/posix-timers.h>
26#include <linux/syscalls.h>
27#include <linux/wait.h>
28#include <linux/workqueue.h>
9984de1a 29#include <linux/export.h>
5ed67f05 30#include <linux/hashtable.h>
edbeda46 31#include <linux/compat.h>
19b558db 32#include <linux/nospec.h>
5a590f35 33#include <linux/time_namespace.h>
1da177e4 34
8b094cd0 35#include "timekeeping.h"
bab0aae9 36#include "posix-timers.h"
8b094cd0 37
1da177e4 38/*
5ed67f05
PE
39 * Management arrays for POSIX timers. Timers are now kept in static hash table
40 * with 512 entries.
41 * Timer ids are allocated by local routine, which selects proper hash head by
42 * key, constructed from current->signal address and per signal struct counter.
43 * This keeps timer ids unique per process, but now they can intersect between
44 * processes.
1da177e4
LT
45 */
46
47/*
48 * Lets keep our timers in a slab cache :-)
49 */
e18b890b 50static struct kmem_cache *posix_timers_cache;
5ed67f05
PE
51
52static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
53static DEFINE_SPINLOCK(hash_lock);
1da177e4 54
6631fa12
TG
55static const struct k_clock * const posix_clocks[];
56static const struct k_clock *clockid_to_kclock(const clockid_t id);
67edab48 57static const struct k_clock clock_realtime, clock_monotonic;
6631fa12 58
1da177e4
LT
59/*
60 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
61 * SIGEV values. Here we put out an error if this assumption fails.
62 */
63#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
64 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
65#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
66#endif
67
1da177e4
LT
68/*
69 * The timer ID is turned into a timer address by idr_find().
70 * Verifying a valid ID consists of:
71 *
72 * a) checking that idr_find() returns other than -1.
73 * b) checking that the timer id matches the one in the timer itself.
74 * c) that the timer owner is in the callers thread group.
75 */
76
77/*
78 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
79 * to implement others. This structure defines the various
0061748d 80 * clocks.
1da177e4
LT
81 *
82 * RESOLUTION: Clock resolution is used to round up timer and interval
83 * times, NOT to report clock times, which are reported with as
84 * much resolution as the system can muster. In some cases this
85 * resolution may depend on the underlying clock hardware and
86 * may not be quantifiable until run time, and only then is the
87 * necessary code is written. The standard says we should say
88 * something about this issue in the documentation...
89 *
0061748d
RC
90 * FUNCTIONS: The CLOCKs structure defines possible functions to
91 * handle various clock functions.
1da177e4 92 *
0061748d
RC
93 * The standard POSIX timer management code assumes the
94 * following: 1.) The k_itimer struct (sched.h) is used for
95 * the timer. 2.) The list, it_lock, it_clock, it_id and
96 * it_pid fields are not modified by timer code.
1da177e4
LT
97 *
98 * Permissions: It is assumed that the clock_settime() function defined
99 * for each clock will take care of permission checks. Some
100 * clocks may be set able by any user (i.e. local process
101 * clocks) others not. Currently the only set able clock we
102 * have is CLOCK_REALTIME and its high res counter part, both of
103 * which we beg off on and pass to do_sys_settimeofday().
104 */
20f33a03
NK
105static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
106
107#define lock_timer(tid, flags) \
108({ struct k_itimer *__timr; \
109 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
110 __timr; \
111})
1da177e4 112
5ed67f05
PE
113static int hash(struct signal_struct *sig, unsigned int nr)
114{
115 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
116}
117
118static struct k_itimer *__posix_timers_find(struct hlist_head *head,
119 struct signal_struct *sig,
120 timer_t id)
121{
5ed67f05
PE
122 struct k_itimer *timer;
123
5fb1c2a5
AG
124 hlist_for_each_entry_rcu(timer, head, t_hash,
125 lockdep_is_held(&hash_lock)) {
5ed67f05
PE
126 if ((timer->it_signal == sig) && (timer->it_id == id))
127 return timer;
128 }
129 return NULL;
130}
131
132static struct k_itimer *posix_timer_by_id(timer_t id)
133{
134 struct signal_struct *sig = current->signal;
135 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
136
137 return __posix_timers_find(head, sig, id);
138}
139
140static int posix_timer_add(struct k_itimer *timer)
141{
142 struct signal_struct *sig = current->signal;
143 int first_free_id = sig->posix_timer_id;
144 struct hlist_head *head;
145 int ret = -ENOENT;
146
147 do {
148 spin_lock(&hash_lock);
149 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
150 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
151 hlist_add_head_rcu(&timer->t_hash, head);
152 ret = sig->posix_timer_id;
153 }
154 if (++sig->posix_timer_id < 0)
155 sig->posix_timer_id = 0;
156 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
157 /* Loop over all possible ids completed */
158 ret = -EAGAIN;
159 spin_unlock(&hash_lock);
160 } while (ret == -ENOENT);
161 return ret;
162}
163
1da177e4
LT
164static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
165{
166 spin_unlock_irqrestore(&timr->it_lock, flags);
167}
168
42285777 169/* Get clock_realtime */
eaf80194 170static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
42285777 171{
3c9c12f4 172 ktime_get_real_ts64(tp);
42285777
TG
173 return 0;
174}
175
9c71a2e8
AV
176static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
177{
178 return ktime_get_real();
179}
180
26f9a479
TG
181/* Set clock_realtime */
182static int posix_clock_realtime_set(const clockid_t which_clock,
0fe6afe3 183 const struct timespec64 *tp)
26f9a479 184{
0fe6afe3 185 return do_sys_settimeofday64(tp, NULL);
26f9a479
TG
186}
187
f1f1d5eb 188static int posix_clock_realtime_adj(const clockid_t which_clock,
ead25417 189 struct __kernel_timex *t)
f1f1d5eb
RC
190{
191 return do_adjtimex(t);
192}
193
becf8b5d
TG
194/*
195 * Get monotonic time for posix timers
196 */
eaf80194 197static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
becf8b5d 198{
3c9c12f4 199 ktime_get_ts64(tp);
5a590f35 200 timens_add_monotonic(tp);
becf8b5d
TG
201 return 0;
202}
1da177e4 203
9c71a2e8
AV
204static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
205{
206 return ktime_get();
207}
208
2d42244a 209/*
7fdd7f89 210 * Get monotonic-raw time for posix timers
2d42244a 211 */
3c9c12f4 212static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
2d42244a 213{
58a10456 214 ktime_get_raw_ts64(tp);
5a590f35 215 timens_add_monotonic(tp);
2d42244a
JS
216 return 0;
217}
218
da15cfda 219
3c9c12f4 220static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
da15cfda 221{
58a10456 222 ktime_get_coarse_real_ts64(tp);
da15cfda 223 return 0;
224}
225
226static int posix_get_monotonic_coarse(clockid_t which_clock,
3c9c12f4 227 struct timespec64 *tp)
da15cfda 228{
58a10456 229 ktime_get_coarse_ts64(tp);
5a590f35 230 timens_add_monotonic(tp);
da15cfda 231 return 0;
232}
233
d2e3e0ca 234static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
da15cfda 235{
d2e3e0ca 236 *tp = ktime_to_timespec64(KTIME_LOW_RES);
da15cfda 237 return 0;
238}
7fdd7f89 239
eaf80194 240static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
7fdd7f89 241{
58a10456 242 ktime_get_boottime_ts64(tp);
5a590f35 243 timens_add_boottime(tp);
7fdd7f89
JS
244 return 0;
245}
246
9c71a2e8
AV
247static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
248{
249 return ktime_get_boottime();
250}
251
eaf80194 252static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
1ff3c967 253{
58a10456 254 ktime_get_clocktai_ts64(tp);
1ff3c967
JS
255 return 0;
256}
7fdd7f89 257
9c71a2e8
AV
258static ktime_t posix_get_tai_ktime(clockid_t which_clock)
259{
260 return ktime_get_clocktai();
261}
262
d2e3e0ca 263static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
056a3cac
TG
264{
265 tp->tv_sec = 0;
266 tp->tv_nsec = hrtimer_resolution;
267 return 0;
268}
269
1da177e4
LT
270/*
271 * Initialize everything, well, just everything in Posix clocks/timers ;)
272 */
273static __init int init_posix_timers(void)
274{
1da177e4 275 posix_timers_cache = kmem_cache_create("posix_timers_cache",
c509723e
VA
276 sizeof(struct k_itimer), 0,
277 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1da177e4
LT
278 return 0;
279}
1da177e4
LT
280__initcall(init_posix_timers);
281
78c9c4df
TG
282/*
283 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
284 * are of type int. Clamp the overrun value to INT_MAX
285 */
286static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
287{
288 s64 sum = timr->it_overrun_last + (s64)baseval;
289
290 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
291}
292
f37fb0aa 293static void common_hrtimer_rearm(struct k_itimer *timr)
1da177e4 294{
44f21475
RZ
295 struct hrtimer *timer = &timr->it.real.timer;
296
78c9c4df
TG
297 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
298 timr->it_interval);
44f21475 299 hrtimer_restart(timer);
1da177e4
LT
300}
301
302/*
303 * This function is exported for use by the signal deliver code. It is
304 * called just prior to the info block being released and passes that
305 * block to us. It's function is to update the overrun entry AND to
306 * restart the timer. It should only be called if the timer is to be
307 * restarted (i.e. we have flagged this in the sys_private entry of the
308 * info block).
309 *
25985edc 310 * To protect against the timer going away while the interrupt is queued,
1da177e4
LT
311 * we require that the it_requeue_pending flag be set.
312 */
ae7795bc 313void posixtimer_rearm(struct kernel_siginfo *info)
1da177e4
LT
314{
315 struct k_itimer *timr;
316 unsigned long flags;
317
318 timr = lock_timer(info->si_tid, &flags);
af888d67
TG
319 if (!timr)
320 return;
1da177e4 321
0e334db6 322 if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
f37fb0aa 323 timr->kclock->timer_rearm(timr);
1da177e4 324
21e55c1f 325 timr->it_active = 1;
af888d67 326 timr->it_overrun_last = timr->it_overrun;
78c9c4df 327 timr->it_overrun = -1LL;
af888d67
TG
328 ++timr->it_requeue_pending;
329
78c9c4df 330 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
becf8b5d
TG
331 }
332
af888d67 333 unlock_timer(timr, flags);
1da177e4
LT
334}
335
ba661292 336int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 337{
24122c7f 338 enum pid_type type;
1dae37c7 339 int ret;
ba661292
ON
340 /*
341 * FIXME: if ->sigq is queued we can race with
96fe3b07 342 * dequeue_signal()->posixtimer_rearm().
ba661292
ON
343 *
344 * If dequeue_signal() sees the "right" value of
96fe3b07 345 * si_sys_private it calls posixtimer_rearm().
ba661292 346 * We re-queue ->sigq and drop ->it_lock().
96fe3b07 347 * posixtimer_rearm() locks the timer
ba661292
ON
348 * and re-schedules it while ->sigq is pending.
349 * Not really bad, but not that we want.
350 */
1da177e4 351 timr->sigq->info.si_sys_private = si_private;
1da177e4 352
24122c7f
EB
353 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
354 ret = send_sigqueue(timr->sigq, timr->it_pid, type);
4aa73611
ON
355 /* If we failed to send the signal the timer stops. */
356 return ret > 0;
1da177e4 357}
1da177e4
LT
358
359/*
360 * This function gets called when a POSIX.1b interval timer expires. It
361 * is used as a callback from the kernel internal timer. The
362 * run_timer_list code ALWAYS calls with interrupts on.
363
364 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
365 */
c9cb2e3d 366static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 367{
05cfb614 368 struct k_itimer *timr;
1da177e4 369 unsigned long flags;
becf8b5d 370 int si_private = 0;
c9cb2e3d 371 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 372
05cfb614 373 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 374 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 375
21e55c1f 376 timr->it_active = 0;
80105cd0 377 if (timr->it_interval != 0)
becf8b5d 378 si_private = ++timr->it_requeue_pending;
1da177e4 379
becf8b5d
TG
380 if (posix_timer_event(timr, si_private)) {
381 /*
382 * signal was not sent because of sig_ignor
383 * we will not get a call back to restart it AND
384 * it should be restarted.
385 */
80105cd0 386 if (timr->it_interval != 0) {
58229a18
TG
387 ktime_t now = hrtimer_cb_get_time(timer);
388
389 /*
390 * FIXME: What we really want, is to stop this
391 * timer completely and restart it in case the
392 * SIG_IGN is removed. This is a non trivial
393 * change which involves sighand locking
394 * (sigh !), which we don't want to do late in
395 * the release cycle.
396 *
397 * For now we just let timers with an interval
398 * less than a jiffie expire every jiffie to
399 * avoid softirq starvation in case of SIG_IGN
400 * and a very small interval, which would put
401 * the timer right back on the softirq pending
402 * list. By moving now ahead of time we trick
403 * hrtimer_forward() to expire the timer
404 * later, while we still maintain the overrun
405 * accuracy, but have some inconsistency in
406 * the timer_gettime() case. This is at least
407 * better than a starved softirq. A more
408 * complex fix which solves also another related
409 * inconsistency is already in the pipeline.
410 */
411#ifdef CONFIG_HIGH_RES_TIMERS
412 {
8b0e1953 413 ktime_t kj = NSEC_PER_SEC / HZ;
58229a18 414
80105cd0 415 if (timr->it_interval < kj)
58229a18
TG
416 now = ktime_add(now, kj);
417 }
418#endif
78c9c4df
TG
419 timr->it_overrun += hrtimer_forward(timer, now,
420 timr->it_interval);
becf8b5d 421 ret = HRTIMER_RESTART;
a0a0c28c 422 ++timr->it_requeue_pending;
21e55c1f 423 timr->it_active = 1;
1da177e4 424 }
1da177e4 425 }
1da177e4 426
becf8b5d
TG
427 unlock_timer(timr, flags);
428 return ret;
429}
1da177e4 430
27af4245 431static struct pid *good_sigevent(sigevent_t * event)
1da177e4 432{
2118e1f5
EB
433 struct pid *pid = task_tgid(current);
434 struct task_struct *rtn;
1da177e4 435
cef31d9a
TG
436 switch (event->sigev_notify) {
437 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
2118e1f5
EB
438 pid = find_vpid(event->sigev_notify_thread_id);
439 rtn = pid_task(pid, PIDTYPE_PID);
cef31d9a
TG
440 if (!rtn || !same_thread_group(rtn, current))
441 return NULL;
df561f66 442 fallthrough;
cef31d9a
TG
443 case SIGEV_SIGNAL:
444 case SIGEV_THREAD:
445 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
446 return NULL;
df561f66 447 fallthrough;
cef31d9a 448 case SIGEV_NONE:
2118e1f5 449 return pid;
cef31d9a 450 default:
1da177e4 451 return NULL;
cef31d9a 452 }
1da177e4
LT
453}
454
1da177e4
LT
455static struct k_itimer * alloc_posix_timer(void)
456{
457 struct k_itimer *tmr;
c3762229 458 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
459 if (!tmr)
460 return tmr;
1da177e4
LT
461 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
462 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 463 return NULL;
1da177e4 464 }
3b10db2b 465 clear_siginfo(&tmr->sigq->info);
1da177e4
LT
466 return tmr;
467}
468
8af08871
ED
469static void k_itimer_rcu_free(struct rcu_head *head)
470{
5d99b32a 471 struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
8af08871
ED
472
473 kmem_cache_free(posix_timers_cache, tmr);
474}
475
1da177e4
LT
476#define IT_ID_SET 1
477#define IT_ID_NOT_SET 0
478static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
479{
480 if (it_id_set) {
481 unsigned long flags;
5ed67f05
PE
482 spin_lock_irqsave(&hash_lock, flags);
483 hlist_del_rcu(&tmr->t_hash);
484 spin_unlock_irqrestore(&hash_lock, flags);
1da177e4 485 }
89992102 486 put_pid(tmr->it_pid);
1da177e4 487 sigqueue_free(tmr->sigq);
5d99b32a 488 call_rcu(&tmr->rcu, k_itimer_rcu_free);
1da177e4
LT
489}
490
838394fb
TG
491static int common_timer_create(struct k_itimer *new_timer)
492{
493 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
494 return 0;
495}
496
1da177e4 497/* Create a POSIX.1b interval timer. */
2482097c
AV
498static int do_timer_create(clockid_t which_clock, struct sigevent *event,
499 timer_t __user *created_timer_id)
1da177e4 500{
d3ba5a9a 501 const struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 502 struct k_itimer *new_timer;
ef864c95 503 int error, new_timer_id;
1da177e4
LT
504 int it_id_set = IT_ID_NOT_SET;
505
838394fb 506 if (!kc)
1da177e4 507 return -EINVAL;
838394fb
TG
508 if (!kc->timer_create)
509 return -EOPNOTSUPP;
1da177e4
LT
510
511 new_timer = alloc_posix_timer();
512 if (unlikely(!new_timer))
513 return -EAGAIN;
514
515 spin_lock_init(&new_timer->it_lock);
5ed67f05
PE
516 new_timer_id = posix_timer_add(new_timer);
517 if (new_timer_id < 0) {
518 error = new_timer_id;
1da177e4
LT
519 goto out;
520 }
521
522 it_id_set = IT_ID_SET;
523 new_timer->it_id = (timer_t) new_timer_id;
524 new_timer->it_clock = which_clock;
d97bb75d 525 new_timer->kclock = kc;
78c9c4df 526 new_timer->it_overrun = -1LL;
1da177e4 527
2482097c 528 if (event) {
36b2f046 529 rcu_read_lock();
2482097c 530 new_timer->it_pid = get_pid(good_sigevent(event));
36b2f046 531 rcu_read_unlock();
89992102 532 if (!new_timer->it_pid) {
1da177e4
LT
533 error = -EINVAL;
534 goto out;
535 }
2482097c
AV
536 new_timer->it_sigev_notify = event->sigev_notify;
537 new_timer->sigq->info.si_signo = event->sigev_signo;
538 new_timer->sigq->info.si_value = event->sigev_value;
1da177e4 539 } else {
2482097c
AV
540 new_timer->it_sigev_notify = SIGEV_SIGNAL;
541 new_timer->sigq->info.si_signo = SIGALRM;
542 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
543 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
89992102 544 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
545 }
546
717835d9 547 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 548 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 549
2b08de00
AV
550 if (copy_to_user(created_timer_id,
551 &new_timer_id, sizeof (new_timer_id))) {
552 error = -EFAULT;
553 goto out;
554 }
555
838394fb 556 error = kc->timer_create(new_timer);
45e0fffc
AV
557 if (error)
558 goto out;
559
36b2f046 560 spin_lock_irq(&current->sighand->siglock);
27af4245 561 new_timer->it_signal = current->signal;
36b2f046
ON
562 list_add(&new_timer->list, &current->signal->posix_timers);
563 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
564
565 return 0;
838394fb 566 /*
1da177e4
LT
567 * In the case of the timer belonging to another task, after
568 * the task is unlocked, the timer is owned by the other task
569 * and may cease to exist at any time. Don't use or modify
570 * new_timer after the unlock call.
571 */
1da177e4 572out:
ef864c95 573 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
574 return error;
575}
576
2482097c
AV
577SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
578 struct sigevent __user *, timer_event_spec,
579 timer_t __user *, created_timer_id)
580{
581 if (timer_event_spec) {
582 sigevent_t event;
583
584 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
585 return -EFAULT;
586 return do_timer_create(which_clock, &event, created_timer_id);
587 }
588 return do_timer_create(which_clock, NULL, created_timer_id);
589}
590
591#ifdef CONFIG_COMPAT
592COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
593 struct compat_sigevent __user *, timer_event_spec,
594 timer_t __user *, created_timer_id)
595{
596 if (timer_event_spec) {
597 sigevent_t event;
598
599 if (get_compat_sigevent(&event, timer_event_spec))
600 return -EFAULT;
601 return do_timer_create(which_clock, &event, created_timer_id);
602 }
603 return do_timer_create(which_clock, NULL, created_timer_id);
604}
605#endif
606
1da177e4
LT
607/*
608 * Locking issues: We need to protect the result of the id look up until
609 * we get the timer locked down so it is not deleted under us. The
610 * removal is done under the idr spinlock so we use that here to bridge
611 * the find to the timer lock. To avoid a dead lock, the timer id MUST
612 * be release with out holding the timer lock.
613 */
20f33a03 614static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
615{
616 struct k_itimer *timr;
8af08871 617
e182bb38
TH
618 /*
619 * timer_t could be any type >= int and we want to make sure any
620 * @timer_id outside positive int range fails lookup.
621 */
622 if ((unsigned long long)timer_id > INT_MAX)
623 return NULL;
624
8af08871 625 rcu_read_lock();
5ed67f05 626 timr = posix_timer_by_id(timer_id);
1da177e4 627 if (timr) {
8af08871 628 spin_lock_irqsave(&timr->it_lock, *flags);
89992102 629 if (timr->it_signal == current->signal) {
8af08871 630 rcu_read_unlock();
31d92845
ON
631 return timr;
632 }
8af08871 633 spin_unlock_irqrestore(&timr->it_lock, *flags);
31d92845 634 }
8af08871 635 rcu_read_unlock();
1da177e4 636
31d92845 637 return NULL;
1da177e4
LT
638}
639
91d57bae
TG
640static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
641{
642 struct hrtimer *timer = &timr->it.real.timer;
643
644 return __hrtimer_expires_remaining_adjusted(timer, now);
645}
646
6fec64e1 647static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
91d57bae
TG
648{
649 struct hrtimer *timer = &timr->it.real.timer;
650
6fec64e1 651 return hrtimer_forward(timer, now, timr->it_interval);
91d57bae
TG
652}
653
1da177e4
LT
654/*
655 * Get the time remaining on a POSIX.1b interval timer. This function
656 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
657 * mess with irq.
658 *
659 * We have a couple of messes to clean up here. First there is the case
660 * of a timer that has a requeue pending. These timers should appear to
661 * be in the timer list with an expiry as if we were to requeue them
662 * now.
663 *
664 * The second issue is the SIGEV_NONE timer which may be active but is
665 * not really ever put in the timer list (to save system resources).
666 * This timer may be expired, and if so, we will do it here. Otherwise
667 * it is the same as a requeue pending timer WRT to what we should
668 * report.
669 */
f2c45807 670void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
1da177e4 671{
91d57bae 672 const struct k_clock *kc = timr->kclock;
3b98a532 673 ktime_t now, remaining, iv;
91d57bae 674 bool sig_none;
1da177e4 675
cef31d9a 676 sig_none = timr->it_sigev_notify == SIGEV_NONE;
80105cd0 677 iv = timr->it_interval;
3b98a532 678
becf8b5d 679 /* interval timer ? */
91d57bae 680 if (iv) {
5f252b32 681 cur_setting->it_interval = ktime_to_timespec64(iv);
91d57bae
TG
682 } else if (!timr->it_active) {
683 /*
684 * SIGEV_NONE oneshot timers are never queued. Check them
685 * below.
686 */
687 if (!sig_none)
688 return;
689 }
3b98a532 690
198fa445 691 now = kc->clock_get_ktime(timr->it_clock);
3b98a532 692
becf8b5d 693 /*
91d57bae
TG
694 * When a requeue is pending or this is a SIGEV_NONE timer move the
695 * expiry time forward by intervals, so expiry is > now.
becf8b5d 696 */
91d57bae 697 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
78c9c4df 698 timr->it_overrun += kc->timer_forward(timr, now);
3b98a532 699
91d57bae 700 remaining = kc->timer_remaining(timr, now);
becf8b5d 701 /* Return 0 only, when the timer is expired and not pending */
2456e855 702 if (remaining <= 0) {
3b98a532
RZ
703 /*
704 * A single shot SIGEV_NONE timer must return 0, when
705 * it is expired !
706 */
91d57bae 707 if (!sig_none)
3b98a532 708 cur_setting->it_value.tv_nsec = 1;
91d57bae 709 } else {
5f252b32 710 cur_setting->it_value = ktime_to_timespec64(remaining);
91d57bae 711 }
1da177e4
LT
712}
713
714/* Get the time remaining on a POSIX.1b interval timer. */
b0dc1242 715static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
1da177e4 716{
a7319fa2 717 struct k_itimer *timr;
d3ba5a9a 718 const struct k_clock *kc;
1da177e4 719 unsigned long flags;
a7319fa2 720 int ret = 0;
1da177e4
LT
721
722 timr = lock_timer(timer_id, &flags);
723 if (!timr)
724 return -EINVAL;
725
b0dc1242 726 memset(setting, 0, sizeof(*setting));
d97bb75d 727 kc = timr->kclock;
a7319fa2
TG
728 if (WARN_ON_ONCE(!kc || !kc->timer_get))
729 ret = -EINVAL;
730 else
b0dc1242 731 kc->timer_get(timr, setting);
1da177e4
LT
732
733 unlock_timer(timr, flags);
b0dc1242
AV
734 return ret;
735}
1da177e4 736
b0dc1242
AV
737/* Get the time remaining on a POSIX.1b interval timer. */
738SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
6ff84735 739 struct __kernel_itimerspec __user *, setting)
b0dc1242 740{
725816e8 741 struct itimerspec64 cur_setting;
1da177e4 742
725816e8 743 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 744 if (!ret) {
725816e8 745 if (put_itimerspec64(&cur_setting, setting))
b0dc1242
AV
746 ret = -EFAULT;
747 }
a7319fa2 748 return ret;
1da177e4 749}
becf8b5d 750
6ff84735
DD
751#ifdef CONFIG_COMPAT_32BIT_TIME
752
8dabe724
AB
753SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
754 struct old_itimerspec32 __user *, setting)
b0dc1242 755{
725816e8 756 struct itimerspec64 cur_setting;
b0dc1242 757
725816e8 758 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 759 if (!ret) {
9afc5eee 760 if (put_old_itimerspec32(&cur_setting, setting))
b0dc1242
AV
761 ret = -EFAULT;
762 }
763 return ret;
764}
6ff84735 765
b0dc1242
AV
766#endif
767
1da177e4
LT
768/*
769 * Get the number of overruns of a POSIX.1b interval timer. This is to
770 * be the overrun of the timer last delivered. At the same time we are
771 * accumulating overruns on the next timer. The overrun is frozen when
772 * the signal is delivered, either at the notify time (if the info block
773 * is not queued) or at the actual delivery time (as we are informed by
96fe3b07 774 * the call back to posixtimer_rearm(). So all we need to do is
1da177e4
LT
775 * to pick up the frozen overrun.
776 */
362e9c07 777SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
778{
779 struct k_itimer *timr;
780 int overrun;
5ba25331 781 unsigned long flags;
1da177e4
LT
782
783 timr = lock_timer(timer_id, &flags);
784 if (!timr)
785 return -EINVAL;
786
78c9c4df 787 overrun = timer_overrun_to_int(timr, 0);
1da177e4
LT
788 unlock_timer(timr, flags);
789
790 return overrun;
791}
1da177e4 792
eae1c4ae
TG
793static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
794 bool absolute, bool sigev_none)
795{
796 struct hrtimer *timer = &timr->it.real.timer;
797 enum hrtimer_mode mode;
798
799 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
67edab48
TG
800 /*
801 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
802 * clock modifications, so they become CLOCK_MONOTONIC based under the
803 * hood. See hrtimer_init(). Update timr->kclock, so the generic
9c71a2e8 804 * functions which use timr->kclock->clock_get_*() work.
67edab48
TG
805 *
806 * Note: it_clock stays unmodified, because the next timer_set() might
807 * use ABSTIME, so it needs to switch back.
808 */
809 if (timr->it_clock == CLOCK_REALTIME)
810 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
811
eae1c4ae
TG
812 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
813 timr->it.real.timer.function = posix_timer_fn;
814
815 if (!absolute)
816 expires = ktime_add_safe(expires, timer->base->get_time());
817 hrtimer_set_expires(timer, expires);
818
819 if (!sigev_none)
820 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
821}
822
823static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
824{
825 return hrtimer_try_to_cancel(&timr->it.real.timer);
826}
827
ec8f954a
TG
828static void common_timer_wait_running(struct k_itimer *timer)
829{
830 hrtimer_cancel_wait_running(&timer->it.real.timer);
831}
832
0bee3b60
FW
833/*
834 * On PREEMPT_RT this prevent priority inversion against softirq kthread in
835 * case it gets preempted while executing a timer callback. See comments in
836 * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
837 * cpu_relax().
838 */
6945e5c2
TG
839static struct k_itimer *timer_wait_running(struct k_itimer *timer,
840 unsigned long *flags)
841{
ec8f954a 842 const struct k_clock *kc = READ_ONCE(timer->kclock);
6945e5c2
TG
843 timer_t timer_id = READ_ONCE(timer->it_id);
844
ec8f954a
TG
845 /* Prevent kfree(timer) after dropping the lock */
846 rcu_read_lock();
6945e5c2 847 unlock_timer(timer, *flags);
ec8f954a 848
f7abf14f
TG
849 /*
850 * kc->timer_wait_running() might drop RCU lock. So @timer
851 * cannot be touched anymore after the function returns!
852 */
ec8f954a
TG
853 if (!WARN_ON_ONCE(!kc->timer_wait_running))
854 kc->timer_wait_running(timer);
855
856 rcu_read_unlock();
6945e5c2
TG
857 /* Relock the timer. It might be not longer hashed. */
858 return lock_timer(timer_id, flags);
859}
860
1da177e4 861/* Set a POSIX.1b interval timer. */
f2c45807
TG
862int common_timer_set(struct k_itimer *timr, int flags,
863 struct itimerspec64 *new_setting,
864 struct itimerspec64 *old_setting)
1da177e4 865{
eae1c4ae
TG
866 const struct k_clock *kc = timr->kclock;
867 bool sigev_none;
868 ktime_t expires;
1da177e4
LT
869
870 if (old_setting)
871 common_timer_get(timr, old_setting);
872
eae1c4ae 873 /* Prevent rearming by clearing the interval */
80105cd0 874 timr->it_interval = 0;
1da177e4 875 /*
eae1c4ae
TG
876 * Careful here. On SMP systems the timer expiry function could be
877 * active and spinning on timr->it_lock.
1da177e4 878 */
eae1c4ae 879 if (kc->timer_try_to_cancel(timr) < 0)
1da177e4 880 return TIMER_RETRY;
1da177e4 881
21e55c1f
TG
882 timr->it_active = 0;
883 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
1da177e4
LT
884 ~REQUEUE_PENDING;
885 timr->it_overrun_last = 0;
1da177e4 886
eae1c4ae 887 /* Switch off the timer when it_value is zero */
becf8b5d
TG
888 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
889 return 0;
1da177e4 890
80105cd0 891 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
eae1c4ae 892 expires = timespec64_to_ktime(new_setting->it_value);
7da8b3a4
AV
893 if (flags & TIMER_ABSTIME)
894 expires = timens_ktime_to_host(timr->it_clock, expires);
cef31d9a 895 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
becf8b5d 896
eae1c4ae
TG
897 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
898 timr->it_active = !sigev_none;
1da177e4
LT
899 return 0;
900}
901
21670ee4 902static int do_timer_settime(timer_t timer_id, int tmr_flags,
1acbe770
AV
903 struct itimerspec64 *new_spec64,
904 struct itimerspec64 *old_spec64)
1da177e4 905{
1acbe770 906 const struct k_clock *kc;
5f252b32 907 struct k_itimer *timr;
21670ee4 908 unsigned long flags;
5f252b32 909 int error = 0;
1da177e4 910
1acbe770
AV
911 if (!timespec64_valid(&new_spec64->it_interval) ||
912 !timespec64_valid(&new_spec64->it_value))
1da177e4
LT
913 return -EINVAL;
914
1acbe770
AV
915 if (old_spec64)
916 memset(old_spec64, 0, sizeof(*old_spec64));
6945e5c2 917
21670ee4 918 timr = lock_timer(timer_id, &flags);
6945e5c2 919retry:
1da177e4
LT
920 if (!timr)
921 return -EINVAL;
922
d97bb75d 923 kc = timr->kclock;
27722df1
TG
924 if (WARN_ON_ONCE(!kc || !kc->timer_set))
925 error = -EINVAL;
926 else
21670ee4 927 error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
1da177e4 928
1da177e4 929 if (error == TIMER_RETRY) {
6945e5c2
TG
930 // We already got the old time...
931 old_spec64 = NULL;
932 /* Unlocks and relocks the timer if it still exists */
933 timr = timer_wait_running(timr, &flags);
1da177e4
LT
934 goto retry;
935 }
6945e5c2 936 unlock_timer(timr, flags);
1da177e4 937
1acbe770
AV
938 return error;
939}
1da177e4 940
1acbe770
AV
941/* Set a POSIX.1b interval timer */
942SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
6ff84735
DD
943 const struct __kernel_itimerspec __user *, new_setting,
944 struct __kernel_itimerspec __user *, old_setting)
1acbe770 945{
725816e8
DD
946 struct itimerspec64 new_spec, old_spec;
947 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
1acbe770
AV
948 int error = 0;
949
950 if (!new_setting)
951 return -EINVAL;
952
725816e8 953 if (get_itimerspec64(&new_spec, new_setting))
1acbe770 954 return -EFAULT;
1acbe770 955
725816e8 956 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 957 if (!error && old_setting) {
725816e8 958 if (put_itimerspec64(&old_spec, old_setting))
1acbe770
AV
959 error = -EFAULT;
960 }
961 return error;
962}
963
6ff84735 964#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
965SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
966 struct old_itimerspec32 __user *, new,
967 struct old_itimerspec32 __user *, old)
1acbe770 968{
725816e8
DD
969 struct itimerspec64 new_spec, old_spec;
970 struct itimerspec64 *rtn = old ? &old_spec : NULL;
1acbe770
AV
971 int error = 0;
972
973 if (!new)
974 return -EINVAL;
9afc5eee 975 if (get_old_itimerspec32(&new_spec, new))
1acbe770
AV
976 return -EFAULT;
977
725816e8 978 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 979 if (!error && old) {
9afc5eee 980 if (put_old_itimerspec32(&old_spec, old))
1acbe770
AV
981 error = -EFAULT;
982 }
1da177e4
LT
983 return error;
984}
1acbe770 985#endif
1da177e4 986
f2c45807 987int common_timer_del(struct k_itimer *timer)
1da177e4 988{
eae1c4ae 989 const struct k_clock *kc = timer->kclock;
f972be33 990
eae1c4ae
TG
991 timer->it_interval = 0;
992 if (kc->timer_try_to_cancel(timer) < 0)
1da177e4 993 return TIMER_RETRY;
21e55c1f 994 timer->it_active = 0;
1da177e4
LT
995 return 0;
996}
997
998static inline int timer_delete_hook(struct k_itimer *timer)
999{
d97bb75d 1000 const struct k_clock *kc = timer->kclock;
6761c670
TG
1001
1002 if (WARN_ON_ONCE(!kc || !kc->timer_del))
1003 return -EINVAL;
1004 return kc->timer_del(timer);
1da177e4
LT
1005}
1006
1007/* Delete a POSIX.1b interval timer. */
362e9c07 1008SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
1009{
1010 struct k_itimer *timer;
5ba25331 1011 unsigned long flags;
1da177e4 1012
1da177e4 1013 timer = lock_timer(timer_id, &flags);
6945e5c2
TG
1014
1015retry_delete:
1da177e4
LT
1016 if (!timer)
1017 return -EINVAL;
1018
6945e5c2
TG
1019 if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
1020 /* Unlocks and relocks the timer if it still exists */
1021 timer = timer_wait_running(timer, &flags);
1da177e4
LT
1022 goto retry_delete;
1023 }
becf8b5d 1024
1da177e4
LT
1025 spin_lock(&current->sighand->siglock);
1026 list_del(&timer->list);
1027 spin_unlock(&current->sighand->siglock);
1028 /*
1029 * This keeps any tasks waiting on the spin lock from thinking
1030 * they got something (see the lock code above).
1031 */
89992102 1032 timer->it_signal = NULL;
4b7a1304 1033
1da177e4
LT
1034 unlock_timer(timer, flags);
1035 release_posix_timer(timer, IT_ID_SET);
1036 return 0;
1037}
becf8b5d 1038
1da177e4
LT
1039/*
1040 * return timer owned by the process, used by exit_itimers
1041 */
858119e1 1042static void itimer_delete(struct k_itimer *timer)
1da177e4 1043{
1da177e4 1044retry_delete:
7586addb 1045 spin_lock_irq(&timer->it_lock);
1da177e4 1046
becf8b5d 1047 if (timer_delete_hook(timer) == TIMER_RETRY) {
7586addb 1048 spin_unlock_irq(&timer->it_lock);
1da177e4
LT
1049 goto retry_delete;
1050 }
1da177e4 1051 list_del(&timer->list);
4b7a1304 1052
7586addb 1053 spin_unlock_irq(&timer->it_lock);
1da177e4
LT
1054 release_posix_timer(timer, IT_ID_SET);
1055}
1056
1057/*
d5b36a4d
ON
1058 * This is called by do_exit or de_thread, only when nobody else can
1059 * modify the signal->posix_timers list. Yet we need sighand->siglock
1060 * to prevent the race with /proc/pid/timers.
1da177e4 1061 */
d5b36a4d 1062void exit_itimers(struct task_struct *tsk)
1da177e4 1063{
d5b36a4d 1064 struct list_head timers;
1da177e4
LT
1065 struct k_itimer *tmr;
1066
d5b36a4d
ON
1067 if (list_empty(&tsk->signal->posix_timers))
1068 return;
1069
1070 spin_lock_irq(&tsk->sighand->siglock);
1071 list_replace_init(&tsk->signal->posix_timers, &timers);
1072 spin_unlock_irq(&tsk->sighand->siglock);
1073
1074 while (!list_empty(&timers)) {
1075 tmr = list_first_entry(&timers, struct k_itimer, list);
1da177e4
LT
1076 itimer_delete(tmr);
1077 }
1078}
1079
362e9c07 1080SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
6d5b8413 1081 const struct __kernel_timespec __user *, tp)
1da177e4 1082{
d3ba5a9a 1083 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1084 struct timespec64 new_tp;
1da177e4 1085
26f9a479 1086 if (!kc || !kc->clock_set)
1da177e4 1087 return -EINVAL;
26f9a479 1088
5c499410 1089 if (get_timespec64(&new_tp, tp))
1da177e4
LT
1090 return -EFAULT;
1091
5c499410 1092 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
1093}
1094
362e9c07 1095SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
6d5b8413 1096 struct __kernel_timespec __user *, tp)
1da177e4 1097{
d3ba5a9a 1098 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1099 struct timespec64 kernel_tp;
1da177e4
LT
1100 int error;
1101
42285777 1102 if (!kc)
1da177e4 1103 return -EINVAL;
42285777 1104
819a95fe 1105 error = kc->clock_get_timespec(which_clock, &kernel_tp);
42285777 1106
5c499410 1107 if (!error && put_timespec64(&kernel_tp, tp))
1da177e4
LT
1108 error = -EFAULT;
1109
1110 return error;
1da177e4
LT
1111}
1112
ead25417 1113int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
f1f1d5eb 1114{
d3ba5a9a 1115 const struct k_clock *kc = clockid_to_kclock(which_clock);
f1f1d5eb
RC
1116
1117 if (!kc)
1118 return -EINVAL;
1119 if (!kc->clock_adj)
1120 return -EOPNOTSUPP;
1121
1a596398
AB
1122 return kc->clock_adj(which_clock, ktx);
1123}
1124
1125SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
3876ced4 1126 struct __kernel_timex __user *, utx)
1a596398 1127{
ead25417 1128 struct __kernel_timex ktx;
1a596398
AB
1129 int err;
1130
f1f1d5eb
RC
1131 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1132 return -EFAULT;
1133
1a596398 1134 err = do_clock_adjtime(which_clock, &ktx);
f1f1d5eb 1135
f0dbe81f 1136 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
f1f1d5eb
RC
1137 return -EFAULT;
1138
1139 return err;
1140}
1141
d822cdcc 1142SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
6d5b8413 1143 struct __kernel_timespec __user *, tp)
d822cdcc
AV
1144{
1145 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1146 struct timespec64 rtn_tp;
d822cdcc
AV
1147 int error;
1148
1149 if (!kc)
1150 return -EINVAL;
1151
5c499410 1152 error = kc->clock_getres(which_clock, &rtn_tp);
d822cdcc 1153
5c499410 1154 if (!error && tp && put_timespec64(&rtn_tp, tp))
d822cdcc
AV
1155 error = -EFAULT;
1156
1157 return error;
1158}
1159
b5793b0d 1160#ifdef CONFIG_COMPAT_32BIT_TIME
3a4d44b6 1161
8dabe724
AB
1162SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1163 struct old_timespec32 __user *, tp)
d822cdcc
AV
1164{
1165 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1166 struct timespec64 ts;
d822cdcc
AV
1167
1168 if (!kc || !kc->clock_set)
1169 return -EINVAL;
1170
9afc5eee 1171 if (get_old_timespec32(&ts, tp))
d822cdcc
AV
1172 return -EFAULT;
1173
5c499410 1174 return kc->clock_set(which_clock, &ts);
d822cdcc
AV
1175}
1176
8dabe724
AB
1177SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1178 struct old_timespec32 __user *, tp)
d822cdcc
AV
1179{
1180 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1181 struct timespec64 ts;
1182 int err;
d822cdcc
AV
1183
1184 if (!kc)
1185 return -EINVAL;
1186
819a95fe 1187 err = kc->clock_get_timespec(which_clock, &ts);
d822cdcc 1188
9afc5eee 1189 if (!err && put_old_timespec32(&ts, tp))
5c499410 1190 err = -EFAULT;
d822cdcc 1191
5c499410 1192 return err;
d822cdcc
AV
1193}
1194
8dabe724
AB
1195SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1196 struct old_timex32 __user *, utp)
3a4d44b6 1197{
ead25417 1198 struct __kernel_timex ktx;
3a4d44b6
AV
1199 int err;
1200
4d5f007e 1201 err = get_old_timex32(&ktx, utp);
3a4d44b6
AV
1202 if (err)
1203 return err;
1204
1a596398 1205 err = do_clock_adjtime(which_clock, &ktx);
3a4d44b6 1206
2d036dfa
CJ
1207 if (err >= 0 && put_old_timex32(utp, &ktx))
1208 return -EFAULT;
3a4d44b6
AV
1209
1210 return err;
1211}
3a4d44b6 1212
8dabe724
AB
1213SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1214 struct old_timespec32 __user *, tp)
1da177e4 1215{
d3ba5a9a 1216 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1217 struct timespec64 ts;
1218 int err;
1da177e4 1219
e5e542ee 1220 if (!kc)
1da177e4
LT
1221 return -EINVAL;
1222
5c499410 1223 err = kc->clock_getres(which_clock, &ts);
9afc5eee 1224 if (!err && tp && put_old_timespec32(&ts, tp))
5c499410 1225 return -EFAULT;
1da177e4 1226
5c499410 1227 return err;
1da177e4 1228}
5c499410 1229
d822cdcc 1230#endif
1da177e4 1231
97735f25
TG
1232/*
1233 * nanosleep for monotonic and realtime clocks
1234 */
1235static int common_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1236 const struct timespec64 *rqtp)
97735f25 1237{
ea2d1f7f
AV
1238 ktime_t texp = timespec64_to_ktime(*rqtp);
1239
1240 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
080344b9
ON
1241 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1242 which_clock);
97735f25 1243}
1da177e4 1244
1f9b37bf
AV
1245static int common_nsleep_timens(const clockid_t which_clock, int flags,
1246 const struct timespec64 *rqtp)
1247{
1248 ktime_t texp = timespec64_to_ktime(*rqtp);
1249
1250 if (flags & TIMER_ABSTIME)
1251 texp = timens_ktime_to_host(which_clock, texp);
1252
1253 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1254 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1255 which_clock);
1256}
1257
362e9c07 1258SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
01909974
DD
1259 const struct __kernel_timespec __user *, rqtp,
1260 struct __kernel_timespec __user *, rmtp)
1da177e4 1261{
d3ba5a9a 1262 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1263 struct timespec64 t;
1da177e4 1264
a5cd2880 1265 if (!kc)
1da177e4 1266 return -EINVAL;
a5cd2880 1267 if (!kc->nsleep)
93cb8e20 1268 return -EOPNOTSUPP;
1da177e4 1269
c0edd7c9 1270 if (get_timespec64(&t, rqtp))
1da177e4
LT
1271 return -EFAULT;
1272
c0edd7c9 1273 if (!timespec64_valid(&t))
1da177e4 1274 return -EINVAL;
99e6c0e6
AV
1275 if (flags & TIMER_ABSTIME)
1276 rmtp = NULL;
9f76d591 1277 current->restart_block.fn = do_no_restart_syscall;
edbeda46 1278 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
99e6c0e6 1279 current->restart_block.nanosleep.rmtp = rmtp;
1da177e4 1280
c0edd7c9 1281 return kc->nsleep(which_clock, flags, &t);
1da177e4 1282}
1711ef38 1283
b5793b0d
DD
1284#ifdef CONFIG_COMPAT_32BIT_TIME
1285
8dabe724
AB
1286SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1287 struct old_timespec32 __user *, rqtp,
1288 struct old_timespec32 __user *, rmtp)
1711ef38 1289{
d3ba5a9a 1290 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1291 struct timespec64 t;
59bd5bc2 1292
edbeda46 1293 if (!kc)
59bd5bc2 1294 return -EINVAL;
edbeda46 1295 if (!kc->nsleep)
93cb8e20 1296 return -EOPNOTSUPP;
edbeda46 1297
9afc5eee 1298 if (get_old_timespec32(&t, rqtp))
edbeda46 1299 return -EFAULT;
1711ef38 1300
c0edd7c9 1301 if (!timespec64_valid(&t))
edbeda46
AV
1302 return -EINVAL;
1303 if (flags & TIMER_ABSTIME)
1304 rmtp = NULL;
9f76d591 1305 current->restart_block.fn = do_no_restart_syscall;
edbeda46
AV
1306 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1307 current->restart_block.nanosleep.compat_rmtp = rmtp;
1308
c0edd7c9 1309 return kc->nsleep(which_clock, flags, &t);
1711ef38 1310}
b5793b0d 1311
edbeda46 1312#endif
6631fa12
TG
1313
1314static const struct k_clock clock_realtime = {
eae1c4ae 1315 .clock_getres = posix_get_hrtimer_res,
eaf80194 1316 .clock_get_timespec = posix_get_realtime_timespec,
9c71a2e8 1317 .clock_get_ktime = posix_get_realtime_ktime,
eae1c4ae
TG
1318 .clock_set = posix_clock_realtime_set,
1319 .clock_adj = posix_clock_realtime_adj,
1320 .nsleep = common_nsleep,
eae1c4ae
TG
1321 .timer_create = common_timer_create,
1322 .timer_set = common_timer_set,
1323 .timer_get = common_timer_get,
1324 .timer_del = common_timer_del,
1325 .timer_rearm = common_hrtimer_rearm,
1326 .timer_forward = common_hrtimer_forward,
1327 .timer_remaining = common_hrtimer_remaining,
1328 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
ec8f954a 1329 .timer_wait_running = common_timer_wait_running,
eae1c4ae 1330 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1331};
1332
1333static const struct k_clock clock_monotonic = {
eae1c4ae 1334 .clock_getres = posix_get_hrtimer_res,
eaf80194 1335 .clock_get_timespec = posix_get_monotonic_timespec,
9c71a2e8 1336 .clock_get_ktime = posix_get_monotonic_ktime,
1f9b37bf 1337 .nsleep = common_nsleep_timens,
eae1c4ae
TG
1338 .timer_create = common_timer_create,
1339 .timer_set = common_timer_set,
1340 .timer_get = common_timer_get,
1341 .timer_del = common_timer_del,
1342 .timer_rearm = common_hrtimer_rearm,
1343 .timer_forward = common_hrtimer_forward,
1344 .timer_remaining = common_hrtimer_remaining,
1345 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
ec8f954a 1346 .timer_wait_running = common_timer_wait_running,
eae1c4ae 1347 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1348};
1349
1350static const struct k_clock clock_monotonic_raw = {
eae1c4ae 1351 .clock_getres = posix_get_hrtimer_res,
819a95fe 1352 .clock_get_timespec = posix_get_monotonic_raw,
6631fa12
TG
1353};
1354
1355static const struct k_clock clock_realtime_coarse = {
eae1c4ae 1356 .clock_getres = posix_get_coarse_res,
819a95fe 1357 .clock_get_timespec = posix_get_realtime_coarse,
6631fa12
TG
1358};
1359
1360static const struct k_clock clock_monotonic_coarse = {
eae1c4ae 1361 .clock_getres = posix_get_coarse_res,
819a95fe 1362 .clock_get_timespec = posix_get_monotonic_coarse,
6631fa12
TG
1363};
1364
1365static const struct k_clock clock_tai = {
eae1c4ae 1366 .clock_getres = posix_get_hrtimer_res,
9c71a2e8 1367 .clock_get_ktime = posix_get_tai_ktime,
eaf80194 1368 .clock_get_timespec = posix_get_tai_timespec,
eae1c4ae 1369 .nsleep = common_nsleep,
eae1c4ae
TG
1370 .timer_create = common_timer_create,
1371 .timer_set = common_timer_set,
1372 .timer_get = common_timer_get,
1373 .timer_del = common_timer_del,
1374 .timer_rearm = common_hrtimer_rearm,
1375 .timer_forward = common_hrtimer_forward,
1376 .timer_remaining = common_hrtimer_remaining,
1377 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
ec8f954a 1378 .timer_wait_running = common_timer_wait_running,
eae1c4ae 1379 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1380};
1381
a3ed0e43 1382static const struct k_clock clock_boottime = {
eae1c4ae 1383 .clock_getres = posix_get_hrtimer_res,
9c71a2e8 1384 .clock_get_ktime = posix_get_boottime_ktime,
eaf80194 1385 .clock_get_timespec = posix_get_boottime_timespec,
1f9b37bf 1386 .nsleep = common_nsleep_timens,
a3ed0e43
TG
1387 .timer_create = common_timer_create,
1388 .timer_set = common_timer_set,
1389 .timer_get = common_timer_get,
1390 .timer_del = common_timer_del,
1391 .timer_rearm = common_hrtimer_rearm,
1392 .timer_forward = common_hrtimer_forward,
1393 .timer_remaining = common_hrtimer_remaining,
1394 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
ec8f954a 1395 .timer_wait_running = common_timer_wait_running,
a3ed0e43 1396 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1397};
1398
1399static const struct k_clock * const posix_clocks[] = {
1400 [CLOCK_REALTIME] = &clock_realtime,
1401 [CLOCK_MONOTONIC] = &clock_monotonic,
1402 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1403 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1404 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1405 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1406 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
a3ed0e43 1407 [CLOCK_BOOTTIME] = &clock_boottime,
6631fa12
TG
1408 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1409 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1410 [CLOCK_TAI] = &clock_tai,
1411};
1412
1413static const struct k_clock *clockid_to_kclock(const clockid_t id)
1414{
19b558db
TG
1415 clockid_t idx = id;
1416
1417 if (id < 0) {
6631fa12
TG
1418 return (id & CLOCKFD_MASK) == CLOCKFD ?
1419 &clock_posix_dynamic : &clock_posix_cpu;
19b558db 1420 }
6631fa12 1421
19b558db 1422 if (id >= ARRAY_SIZE(posix_clocks))
6631fa12 1423 return NULL;
19b558db
TG
1424
1425 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
6631fa12 1426}