License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[linux-block.git] / kernel / time / posix-cpu-timers.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * Implement CPU time clocks for the POSIX clock interface.
4 */
5
3f07c014 6#include <linux/sched/signal.h>
32ef5517 7#include <linux/sched/cputime.h>
1da177e4 8#include <linux/posix-timers.h>
1da177e4 9#include <linux/errno.h>
f8bd2258 10#include <linux/math64.h>
7c0f6ba6 11#include <linux/uaccess.h>
bb34d92f 12#include <linux/kernel_stat.h>
3f0a525e 13#include <trace/events/timer.h>
a8572160
FW
14#include <linux/tick.h>
15#include <linux/workqueue.h>
edbeda46 16#include <linux/compat.h>
1da177e4 17
bab0aae9
TG
18#include "posix-timers.h"
19
f37fb0aa
TG
20static void posix_cpu_timer_rearm(struct k_itimer *timer);
21
f06febc9 22/*
f55db609
SG
23 * Called after updating RLIMIT_CPU to run cpu timer and update
24 * tsk->signal->cputime_expires expiration cache if necessary. Needs
25 * siglock protection since other code may update expiration cache as
26 * well.
f06febc9 27 */
5ab46b34 28void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
f06febc9 29{
858cf3a8 30 u64 nsecs = rlim_new * NSEC_PER_SEC;
f06febc9 31
5ab46b34 32 spin_lock_irq(&task->sighand->siglock);
858cf3a8 33 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
5ab46b34 34 spin_unlock_irq(&task->sighand->siglock);
f06febc9
FM
35}
36
a924b04d 37static int check_clock(const clockid_t which_clock)
1da177e4
LT
38{
39 int error = 0;
40 struct task_struct *p;
41 const pid_t pid = CPUCLOCK_PID(which_clock);
42
43 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
44 return -EINVAL;
45
46 if (pid == 0)
47 return 0;
48
c0deae8c 49 rcu_read_lock();
8dc86af0 50 p = find_task_by_vpid(pid);
bac0abd6 51 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
c0deae8c 52 same_thread_group(p, current) : has_group_leader_pid(p))) {
1da177e4
LT
53 error = -EINVAL;
54 }
c0deae8c 55 rcu_read_unlock();
1da177e4
LT
56
57 return error;
58}
59
1da177e4
LT
60/*
61 * Update expiry time from increment, and increase overrun count,
62 * given the current clock sample.
63 */
ebd7e7fc 64static void bump_cpu_timer(struct k_itimer *timer, u64 now)
1da177e4
LT
65{
66 int i;
ebd7e7fc 67 u64 delta, incr;
1da177e4 68
55ccb616 69 if (timer->it.cpu.incr == 0)
1da177e4
LT
70 return;
71
55ccb616
FW
72 if (now < timer->it.cpu.expires)
73 return;
1da177e4 74
55ccb616
FW
75 incr = timer->it.cpu.incr;
76 delta = now + incr - timer->it.cpu.expires;
1da177e4 77
55ccb616
FW
78 /* Don't use (incr*2 < delta), incr*2 might overflow. */
79 for (i = 0; incr < delta - incr; i++)
80 incr = incr << 1;
81
82 for (; i >= 0; incr >>= 1, i--) {
83 if (delta < incr)
84 continue;
85
86 timer->it.cpu.expires += incr;
87 timer->it_overrun += 1 << i;
88 delta -= incr;
1da177e4
LT
89 }
90}
91
555347f6
FW
92/**
93 * task_cputime_zero - Check a task_cputime struct for all zero fields.
94 *
95 * @cputime: The struct to compare.
96 *
97 * Checks @cputime to see if all fields are zero. Returns true if all fields
98 * are zero, false if any field is nonzero.
99 */
ebd7e7fc 100static inline int task_cputime_zero(const struct task_cputime *cputime)
555347f6
FW
101{
102 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
103 return 1;
104 return 0;
105}
106
ebd7e7fc 107static inline u64 prof_ticks(struct task_struct *p)
1da177e4 108{
ebd7e7fc 109 u64 utime, stime;
6fac4829 110
ebd7e7fc 111 task_cputime(p, &utime, &stime);
6fac4829 112
ebd7e7fc 113 return utime + stime;
1da177e4 114}
ebd7e7fc 115static inline u64 virt_ticks(struct task_struct *p)
1da177e4 116{
ebd7e7fc 117 u64 utime, stime;
6fac4829 118
ebd7e7fc 119 task_cputime(p, &utime, &stime);
6fac4829 120
ebd7e7fc 121 return utime;
1da177e4 122}
1da177e4 123
bc2c8ea4 124static int
d2e3e0ca 125posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
1da177e4
LT
126{
127 int error = check_clock(which_clock);
128 if (!error) {
129 tp->tv_sec = 0;
130 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
131 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
132 /*
133 * If sched_clock is using a cycle counter, we
134 * don't have any idea of its true resolution
135 * exported, but it is much more than 1s/HZ.
136 */
137 tp->tv_nsec = 1;
138 }
139 }
140 return error;
141}
142
bc2c8ea4 143static int
0fe6afe3 144posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
1da177e4
LT
145{
146 /*
147 * You can never reset a CPU clock, but we check for other errors
148 * in the call before failing with EPERM.
149 */
150 int error = check_clock(which_clock);
151 if (error == 0) {
152 error = -EPERM;
153 }
154 return error;
155}
156
157
158/*
159 * Sample a per-thread clock for the given task.
160 */
ebd7e7fc
FW
161static int cpu_clock_sample(const clockid_t which_clock,
162 struct task_struct *p, u64 *sample)
1da177e4
LT
163{
164 switch (CPUCLOCK_WHICH(which_clock)) {
165 default:
166 return -EINVAL;
167 case CPUCLOCK_PROF:
55ccb616 168 *sample = prof_ticks(p);
1da177e4
LT
169 break;
170 case CPUCLOCK_VIRT:
55ccb616 171 *sample = virt_ticks(p);
1da177e4
LT
172 break;
173 case CPUCLOCK_SCHED:
55ccb616 174 *sample = task_sched_runtime(p);
1da177e4
LT
175 break;
176 }
177 return 0;
178}
179
1018016c
JL
180/*
181 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
182 * to avoid race conditions with concurrent updates to cputime.
183 */
184static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
4da94d49 185{
1018016c
JL
186 u64 curr_cputime;
187retry:
188 curr_cputime = atomic64_read(cputime);
189 if (sum_cputime > curr_cputime) {
190 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
191 goto retry;
192 }
193}
4da94d49 194
ebd7e7fc 195static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
1018016c 196{
71107445
JL
197 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
198 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
199 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
1018016c 200}
4da94d49 201
71107445 202/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
ebd7e7fc 203static inline void sample_cputime_atomic(struct task_cputime *times,
71107445 204 struct task_cputime_atomic *atomic_times)
1018016c 205{
71107445
JL
206 times->utime = atomic64_read(&atomic_times->utime);
207 times->stime = atomic64_read(&atomic_times->stime);
208 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
4da94d49
PZ
209}
210
ebd7e7fc 211void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
4da94d49
PZ
212{
213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
ebd7e7fc 214 struct task_cputime sum;
4da94d49 215
1018016c
JL
216 /* Check if cputimer isn't running. This is accessed without locking. */
217 if (!READ_ONCE(cputimer->running)) {
4da94d49
PZ
218 /*
219 * The POSIX timer interface allows for absolute time expiry
220 * values through the TIMER_ABSTIME flag, therefore we have
1018016c 221 * to synchronize the timer to the clock every time we start it.
4da94d49 222 */
ebd7e7fc 223 thread_group_cputime(tsk, &sum);
71107445 224 update_gt_cputime(&cputimer->cputime_atomic, &sum);
1018016c
JL
225
226 /*
227 * We're setting cputimer->running without a lock. Ensure
228 * this only gets written to in one operation. We set
229 * running after update_gt_cputime() as a small optimization,
230 * but barriers are not required because update_gt_cputime()
231 * can handle concurrent updates.
232 */
d5c373eb 233 WRITE_ONCE(cputimer->running, true);
1018016c 234 }
71107445 235 sample_cputime_atomic(times, &cputimer->cputime_atomic);
4da94d49
PZ
236}
237
1da177e4
LT
238/*
239 * Sample a process (thread group) clock for the given group_leader task.
e73d84e3
FW
240 * Must be called with task sighand lock held for safe while_each_thread()
241 * traversal.
1da177e4 242 */
bb34d92f
FM
243static int cpu_clock_sample_group(const clockid_t which_clock,
244 struct task_struct *p,
ebd7e7fc 245 u64 *sample)
1da177e4 246{
ebd7e7fc 247 struct task_cputime cputime;
f06febc9 248
eccdaeaf 249 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
250 default:
251 return -EINVAL;
252 case CPUCLOCK_PROF:
ebd7e7fc
FW
253 thread_group_cputime(p, &cputime);
254 *sample = cputime.utime + cputime.stime;
1da177e4
LT
255 break;
256 case CPUCLOCK_VIRT:
ebd7e7fc
FW
257 thread_group_cputime(p, &cputime);
258 *sample = cputime.utime;
1da177e4
LT
259 break;
260 case CPUCLOCK_SCHED:
ebd7e7fc 261 thread_group_cputime(p, &cputime);
55ccb616 262 *sample = cputime.sum_exec_runtime;
1da177e4
LT
263 break;
264 }
265 return 0;
266}
267
33ab0fec
FW
268static int posix_cpu_clock_get_task(struct task_struct *tsk,
269 const clockid_t which_clock,
3c9c12f4 270 struct timespec64 *tp)
33ab0fec
FW
271{
272 int err = -EINVAL;
ebd7e7fc 273 u64 rtn;
33ab0fec
FW
274
275 if (CPUCLOCK_PERTHREAD(which_clock)) {
276 if (same_thread_group(tsk, current))
277 err = cpu_clock_sample(which_clock, tsk, &rtn);
278 } else {
50875788 279 if (tsk == current || thread_group_leader(tsk))
33ab0fec 280 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
33ab0fec
FW
281 }
282
283 if (!err)
3c9c12f4 284 *tp = ns_to_timespec64(rtn);
33ab0fec
FW
285
286 return err;
287}
288
1da177e4 289
3c9c12f4 290static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
1da177e4
LT
291{
292 const pid_t pid = CPUCLOCK_PID(which_clock);
33ab0fec 293 int err = -EINVAL;
1da177e4
LT
294
295 if (pid == 0) {
296 /*
297 * Special case constant value for our own clocks.
298 * We don't have to do any lookup to find ourselves.
299 */
33ab0fec 300 err = posix_cpu_clock_get_task(current, which_clock, tp);
1da177e4
LT
301 } else {
302 /*
303 * Find the given PID, and validate that the caller
304 * should be able to see it.
305 */
306 struct task_struct *p;
1f2ea083 307 rcu_read_lock();
8dc86af0 308 p = find_task_by_vpid(pid);
33ab0fec
FW
309 if (p)
310 err = posix_cpu_clock_get_task(p, which_clock, tp);
1f2ea083 311 rcu_read_unlock();
1da177e4
LT
312 }
313
33ab0fec 314 return err;
1da177e4
LT
315}
316
1da177e4
LT
317/*
318 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
319 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
320 * new timer already all-zeros initialized.
1da177e4 321 */
bc2c8ea4 322static int posix_cpu_timer_create(struct k_itimer *new_timer)
1da177e4
LT
323{
324 int ret = 0;
325 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
326 struct task_struct *p;
327
328 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
329 return -EINVAL;
330
d97bb75d
TG
331 new_timer->kclock = &clock_posix_cpu;
332
1da177e4 333 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
1da177e4 334
c0deae8c 335 rcu_read_lock();
1da177e4
LT
336 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
337 if (pid == 0) {
338 p = current;
339 } else {
8dc86af0 340 p = find_task_by_vpid(pid);
bac0abd6 341 if (p && !same_thread_group(p, current))
1da177e4
LT
342 p = NULL;
343 }
344 } else {
345 if (pid == 0) {
346 p = current->group_leader;
347 } else {
8dc86af0 348 p = find_task_by_vpid(pid);
c0deae8c 349 if (p && !has_group_leader_pid(p))
1da177e4
LT
350 p = NULL;
351 }
352 }
353 new_timer->it.cpu.task = p;
354 if (p) {
355 get_task_struct(p);
356 } else {
357 ret = -EINVAL;
358 }
c0deae8c 359 rcu_read_unlock();
1da177e4
LT
360
361 return ret;
362}
363
364/*
365 * Clean up a CPU-clock timer that is about to be destroyed.
366 * This is called from timer deletion with the timer already locked.
367 * If we return TIMER_RETRY, it's necessary to release the timer's lock
368 * and try again. (This happens when the timer is in the middle of firing.)
369 */
bc2c8ea4 370static int posix_cpu_timer_del(struct k_itimer *timer)
1da177e4 371{
108150ea 372 int ret = 0;
3d7a1427
FW
373 unsigned long flags;
374 struct sighand_struct *sighand;
375 struct task_struct *p = timer->it.cpu.task;
1da177e4 376
a3222f88 377 WARN_ON_ONCE(p == NULL);
108150ea 378
3d7a1427
FW
379 /*
380 * Protect against sighand release/switch in exit/exec and process/
381 * thread timer list entry concurrent read/writes.
382 */
383 sighand = lock_task_sighand(p, &flags);
384 if (unlikely(sighand == NULL)) {
a3222f88
FW
385 /*
386 * We raced with the reaping of the task.
387 * The deletion should have cleared us off the list.
388 */
531f64fd 389 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
a3222f88 390 } else {
a3222f88
FW
391 if (timer->it.cpu.firing)
392 ret = TIMER_RETRY;
393 else
394 list_del(&timer->it.cpu.entry);
3d7a1427
FW
395
396 unlock_task_sighand(p, &flags);
1da177e4 397 }
a3222f88
FW
398
399 if (!ret)
400 put_task_struct(p);
1da177e4 401
108150ea 402 return ret;
1da177e4
LT
403}
404
af82eb3c 405static void cleanup_timers_list(struct list_head *head)
1a7fa510
FW
406{
407 struct cpu_timer_list *timer, *next;
408
a0b2062b 409 list_for_each_entry_safe(timer, next, head, entry)
1a7fa510 410 list_del_init(&timer->entry);
1a7fa510
FW
411}
412
1da177e4
LT
413/*
414 * Clean out CPU timers still ticking when a thread exited. The task
415 * pointer is cleared, and the expiry time is replaced with the residual
416 * time for later timer_gettime calls to return.
417 * This must be called with the siglock held.
418 */
af82eb3c 419static void cleanup_timers(struct list_head *head)
1da177e4 420{
af82eb3c
FW
421 cleanup_timers_list(head);
422 cleanup_timers_list(++head);
423 cleanup_timers_list(++head);
1da177e4
LT
424}
425
426/*
427 * These are both called with the siglock held, when the current thread
428 * is being reaped. When the final (leader) thread in the group is reaped,
429 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
430 */
431void posix_cpu_timers_exit(struct task_struct *tsk)
432{
af82eb3c 433 cleanup_timers(tsk->cpu_timers);
1da177e4
LT
434}
435void posix_cpu_timers_exit_group(struct task_struct *tsk)
436{
af82eb3c 437 cleanup_timers(tsk->signal->cpu_timers);
1da177e4
LT
438}
439
ebd7e7fc 440static inline int expires_gt(u64 expires, u64 new_exp)
d1e3b6d1 441{
64861634 442 return expires == 0 || expires > new_exp;
d1e3b6d1
SG
443}
444
1da177e4
LT
445/*
446 * Insert the timer on the appropriate list before any timers that
e73d84e3 447 * expire later. This must be called with the sighand lock held.
1da177e4 448 */
5eb9aa64 449static void arm_timer(struct k_itimer *timer)
1da177e4
LT
450{
451 struct task_struct *p = timer->it.cpu.task;
452 struct list_head *head, *listpos;
ebd7e7fc 453 struct task_cputime *cputime_expires;
1da177e4
LT
454 struct cpu_timer_list *const nt = &timer->it.cpu;
455 struct cpu_timer_list *next;
1da177e4 456
5eb9aa64
SG
457 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
458 head = p->cpu_timers;
459 cputime_expires = &p->cputime_expires;
460 } else {
461 head = p->signal->cpu_timers;
462 cputime_expires = &p->signal->cputime_expires;
463 }
1da177e4
LT
464 head += CPUCLOCK_WHICH(timer->it_clock);
465
1da177e4 466 listpos = head;
5eb9aa64 467 list_for_each_entry(next, head, entry) {
55ccb616 468 if (nt->expires < next->expires)
5eb9aa64
SG
469 break;
470 listpos = &next->entry;
1da177e4
LT
471 }
472 list_add(&nt->entry, listpos);
473
474 if (listpos == head) {
ebd7e7fc 475 u64 exp = nt->expires;
5eb9aa64 476
1da177e4 477 /*
5eb9aa64
SG
478 * We are the new earliest-expiring POSIX 1.b timer, hence
479 * need to update expiration cache. Take into account that
480 * for process timers we share expiration cache with itimers
481 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
1da177e4
LT
482 */
483
5eb9aa64
SG
484 switch (CPUCLOCK_WHICH(timer->it_clock)) {
485 case CPUCLOCK_PROF:
ebd7e7fc
FW
486 if (expires_gt(cputime_expires->prof_exp, exp))
487 cputime_expires->prof_exp = exp;
5eb9aa64
SG
488 break;
489 case CPUCLOCK_VIRT:
ebd7e7fc
FW
490 if (expires_gt(cputime_expires->virt_exp, exp))
491 cputime_expires->virt_exp = exp;
5eb9aa64
SG
492 break;
493 case CPUCLOCK_SCHED:
ebd7e7fc 494 if (expires_gt(cputime_expires->sched_exp, exp))
55ccb616 495 cputime_expires->sched_exp = exp;
5eb9aa64 496 break;
1da177e4 497 }
b7878300
FW
498 if (CPUCLOCK_PERTHREAD(timer->it_clock))
499 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
500 else
501 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4 502 }
1da177e4
LT
503}
504
505/*
506 * The timer is locked, fire it and arrange for its reload.
507 */
508static void cpu_timer_fire(struct k_itimer *timer)
509{
1f169f84
SG
510 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
511 /*
512 * User don't want any signal.
513 */
55ccb616 514 timer->it.cpu.expires = 0;
1f169f84 515 } else if (unlikely(timer->sigq == NULL)) {
1da177e4
LT
516 /*
517 * This a special case for clock_nanosleep,
518 * not a normal timer from sys_timer_create.
519 */
520 wake_up_process(timer->it_process);
55ccb616
FW
521 timer->it.cpu.expires = 0;
522 } else if (timer->it.cpu.incr == 0) {
1da177e4
LT
523 /*
524 * One-shot timer. Clear it as soon as it's fired.
525 */
526 posix_timer_event(timer, 0);
55ccb616 527 timer->it.cpu.expires = 0;
1da177e4
LT
528 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
529 /*
530 * The signal did not get queued because the signal
531 * was ignored, so we won't get any callback to
532 * reload the timer. But we need to keep it
533 * ticking in case the signal is deliverable next time.
534 */
f37fb0aa 535 posix_cpu_timer_rearm(timer);
af888d67 536 ++timer->it_requeue_pending;
1da177e4
LT
537 }
538}
539
3997ad31
PZ
540/*
541 * Sample a process (thread group) timer for the given group_leader task.
e73d84e3
FW
542 * Must be called with task sighand lock held for safe while_each_thread()
543 * traversal.
3997ad31
PZ
544 */
545static int cpu_timer_sample_group(const clockid_t which_clock,
ebd7e7fc 546 struct task_struct *p, u64 *sample)
3997ad31 547{
ebd7e7fc 548 struct task_cputime cputime;
3997ad31
PZ
549
550 thread_group_cputimer(p, &cputime);
551 switch (CPUCLOCK_WHICH(which_clock)) {
552 default:
553 return -EINVAL;
554 case CPUCLOCK_PROF:
ebd7e7fc 555 *sample = cputime.utime + cputime.stime;
3997ad31
PZ
556 break;
557 case CPUCLOCK_VIRT:
ebd7e7fc 558 *sample = cputime.utime;
3997ad31
PZ
559 break;
560 case CPUCLOCK_SCHED:
23cfa361 561 *sample = cputime.sum_exec_runtime;
3997ad31
PZ
562 break;
563 }
564 return 0;
565}
566
1da177e4
LT
567/*
568 * Guts of sys_timer_settime for CPU timers.
569 * This is called with the timer locked and interrupts disabled.
570 * If we return TIMER_RETRY, it's necessary to release the timer's lock
571 * and try again. (This happens when the timer is in the middle of firing.)
572 */
e73d84e3 573static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
5f252b32 574 struct itimerspec64 *new, struct itimerspec64 *old)
1da177e4 575{
e73d84e3
FW
576 unsigned long flags;
577 struct sighand_struct *sighand;
1da177e4 578 struct task_struct *p = timer->it.cpu.task;
ebd7e7fc 579 u64 old_expires, new_expires, old_incr, val;
1da177e4
LT
580 int ret;
581
a3222f88 582 WARN_ON_ONCE(p == NULL);
1da177e4 583
098b0e01
TG
584 /*
585 * Use the to_ktime conversion because that clamps the maximum
586 * value to KTIME_MAX and avoid multiplication overflows.
587 */
588 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
1da177e4 589
1da177e4 590 /*
e73d84e3
FW
591 * Protect against sighand release/switch in exit/exec and p->cpu_timers
592 * and p->signal->cpu_timers read/write in arm_timer()
593 */
594 sighand = lock_task_sighand(p, &flags);
595 /*
596 * If p has just been reaped, we can no
1da177e4
LT
597 * longer get any information about it at all.
598 */
e73d84e3 599 if (unlikely(sighand == NULL)) {
1da177e4
LT
600 return -ESRCH;
601 }
602
603 /*
604 * Disarm any old timer after extracting its expiry time.
605 */
531f64fd 606 WARN_ON_ONCE(!irqs_disabled());
a69ac4a7
ON
607
608 ret = 0;
ae1a78ee 609 old_incr = timer->it.cpu.incr;
1da177e4 610 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
611 if (unlikely(timer->it.cpu.firing)) {
612 timer->it.cpu.firing = -1;
613 ret = TIMER_RETRY;
614 } else
615 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
616
617 /*
618 * We need to sample the current value to convert the new
619 * value from to relative and absolute, and to convert the
620 * old value from absolute to relative. To set a process
621 * timer, we need a sample to balance the thread expiry
622 * times (in arm_timer). With an absolute time, we must
623 * check if it's already passed. In short, we need a sample.
624 */
625 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
626 cpu_clock_sample(timer->it_clock, p, &val);
627 } else {
3997ad31 628 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
629 }
630
631 if (old) {
55ccb616 632 if (old_expires == 0) {
1da177e4
LT
633 old->it_value.tv_sec = 0;
634 old->it_value.tv_nsec = 0;
635 } else {
636 /*
637 * Update the timer in case it has
638 * overrun already. If it has,
639 * we'll report it as having overrun
640 * and with the next reloaded timer
641 * already ticking, though we are
642 * swallowing that pending
643 * notification here to install the
644 * new setting.
645 */
646 bump_cpu_timer(timer, val);
55ccb616
FW
647 if (val < timer->it.cpu.expires) {
648 old_expires = timer->it.cpu.expires - val;
5f252b32 649 old->it_value = ns_to_timespec64(old_expires);
1da177e4
LT
650 } else {
651 old->it_value.tv_nsec = 1;
652 old->it_value.tv_sec = 0;
653 }
654 }
655 }
656
a69ac4a7 657 if (unlikely(ret)) {
1da177e4
LT
658 /*
659 * We are colliding with the timer actually firing.
660 * Punt after filling in the timer's old value, and
661 * disable this firing since we are already reporting
662 * it as an overrun (thanks to bump_cpu_timer above).
663 */
e73d84e3 664 unlock_task_sighand(p, &flags);
1da177e4
LT
665 goto out;
666 }
667
e73d84e3 668 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
55ccb616 669 new_expires += val;
1da177e4
LT
670 }
671
672 /*
673 * Install the new expiry time (or zero).
674 * For a timer with no notification action, we don't actually
675 * arm the timer (we'll just fake it for timer_gettime).
676 */
677 timer->it.cpu.expires = new_expires;
55ccb616 678 if (new_expires != 0 && val < new_expires) {
5eb9aa64 679 arm_timer(timer);
1da177e4
LT
680 }
681
e73d84e3 682 unlock_task_sighand(p, &flags);
1da177e4
LT
683 /*
684 * Install the new reload setting, and
685 * set up the signal and overrun bookkeeping.
686 */
5f252b32 687 timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
1da177e4
LT
688
689 /*
690 * This acts as a modification timestamp for the timer,
691 * so any automatic reload attempt will punt on seeing
692 * that we have reset the timer manually.
693 */
694 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
695 ~REQUEUE_PENDING;
696 timer->it_overrun_last = 0;
697 timer->it_overrun = -1;
698
55ccb616 699 if (new_expires != 0 && !(val < new_expires)) {
1da177e4
LT
700 /*
701 * The designated time already passed, so we notify
702 * immediately, even if the thread never runs to
703 * accumulate more time on this clock.
704 */
705 cpu_timer_fire(timer);
706 }
707
708 ret = 0;
709 out:
ebd7e7fc 710 if (old)
5f252b32 711 old->it_interval = ns_to_timespec64(old_incr);
b7878300 712
1da177e4
LT
713 return ret;
714}
715
5f252b32 716static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
1da177e4 717{
ebd7e7fc 718 u64 now;
1da177e4 719 struct task_struct *p = timer->it.cpu.task;
1da177e4 720
a3222f88
FW
721 WARN_ON_ONCE(p == NULL);
722
1da177e4
LT
723 /*
724 * Easy part: convert the reload time.
725 */
5f252b32 726 itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
1da177e4 727
eabdec04 728 if (!timer->it.cpu.expires)
1da177e4 729 return;
1da177e4 730
1da177e4
LT
731 /*
732 * Sample the clock to take the difference with the expiry time.
733 */
734 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
735 cpu_clock_sample(timer->it_clock, p, &now);
1da177e4 736 } else {
e73d84e3
FW
737 struct sighand_struct *sighand;
738 unsigned long flags;
739
740 /*
741 * Protect against sighand release/switch in exit/exec and
742 * also make timer sampling safe if it ends up calling
ebd7e7fc 743 * thread_group_cputime().
e73d84e3
FW
744 */
745 sighand = lock_task_sighand(p, &flags);
746 if (unlikely(sighand == NULL)) {
1da177e4
LT
747 /*
748 * The process has been reaped.
749 * We can't even collect a sample any more.
750 * Call the timer disarmed, nothing else to do.
751 */
55ccb616 752 timer->it.cpu.expires = 0;
2c13ce8f 753 return;
1da177e4 754 } else {
3997ad31 755 cpu_timer_sample_group(timer->it_clock, p, &now);
e73d84e3 756 unlock_task_sighand(p, &flags);
1da177e4 757 }
1da177e4
LT
758 }
759
55ccb616 760 if (now < timer->it.cpu.expires) {
5f252b32 761 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
1da177e4
LT
762 } else {
763 /*
764 * The timer should have expired already, but the firing
765 * hasn't taken place yet. Say it's just about to expire.
766 */
767 itp->it_value.tv_nsec = 1;
768 itp->it_value.tv_sec = 0;
769 }
770}
771
2473f3e7
FW
772static unsigned long long
773check_timers_list(struct list_head *timers,
774 struct list_head *firing,
775 unsigned long long curr)
776{
777 int maxfire = 20;
778
779 while (!list_empty(timers)) {
780 struct cpu_timer_list *t;
781
782 t = list_first_entry(timers, struct cpu_timer_list, entry);
783
784 if (!--maxfire || curr < t->expires)
785 return t->expires;
786
787 t->firing = 1;
788 list_move_tail(&t->entry, firing);
789 }
790
791 return 0;
792}
793
1da177e4
LT
794/*
795 * Check for any per-thread CPU timers that have fired and move them off
796 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
797 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
798 */
799static void check_thread_timers(struct task_struct *tsk,
800 struct list_head *firing)
801{
802 struct list_head *timers = tsk->cpu_timers;
ebd7e7fc
FW
803 struct task_cputime *tsk_expires = &tsk->cputime_expires;
804 u64 expires;
d4bb5274 805 unsigned long soft;
1da177e4 806
934715a1
JL
807 /*
808 * If cputime_expires is zero, then there are no active
809 * per thread CPU timers.
810 */
811 if (task_cputime_zero(&tsk->cputime_expires))
812 return;
813
2473f3e7 814 expires = check_timers_list(timers, firing, prof_ticks(tsk));
ebd7e7fc 815 tsk_expires->prof_exp = expires;
1da177e4 816
2473f3e7 817 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
ebd7e7fc 818 tsk_expires->virt_exp = expires;
1da177e4 819
2473f3e7
FW
820 tsk_expires->sched_exp = check_timers_list(++timers, firing,
821 tsk->se.sum_exec_runtime);
78f2c7db
PZ
822
823 /*
824 * Check for the special case thread timers.
825 */
3cf29496 826 soft = task_rlimit(tsk, RLIMIT_RTTIME);
d4bb5274 827 if (soft != RLIM_INFINITY) {
3cf29496 828 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
78f2c7db 829
5a52dd50
PZ
830 if (hard != RLIM_INFINITY &&
831 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
832 /*
833 * At the hard limit, we just die.
834 * No need to calculate anything else now.
835 */
43fe8b8e
TG
836 if (print_fatal_signals) {
837 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
838 tsk->comm, task_pid_nr(tsk));
839 }
78f2c7db
PZ
840 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
841 return;
842 }
d4bb5274 843 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
844 /*
845 * At the soft limit, send a SIGXCPU every second.
846 */
d4bb5274
JS
847 if (soft < hard) {
848 soft += USEC_PER_SEC;
3cf29496
KO
849 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
850 soft;
78f2c7db 851 }
43fe8b8e
TG
852 if (print_fatal_signals) {
853 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
854 tsk->comm, task_pid_nr(tsk));
855 }
78f2c7db
PZ
856 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
857 }
858 }
b7878300
FW
859 if (task_cputime_zero(tsk_expires))
860 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
861}
862
1018016c 863static inline void stop_process_timers(struct signal_struct *sig)
3fccfd67 864{
15365c10 865 struct thread_group_cputimer *cputimer = &sig->cputimer;
3fccfd67 866
1018016c 867 /* Turn off cputimer->running. This is done without locking. */
d5c373eb 868 WRITE_ONCE(cputimer->running, false);
b7878300 869 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
3fccfd67
PZ
870}
871
42c4ab41 872static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
ebd7e7fc 873 u64 *expires, u64 cur_time, int signo)
42c4ab41 874{
64861634 875 if (!it->expires)
42c4ab41
SG
876 return;
877
858cf3a8
FW
878 if (cur_time >= it->expires) {
879 if (it->incr)
64861634 880 it->expires += it->incr;
858cf3a8 881 else
64861634 882 it->expires = 0;
42c4ab41 883
3f0a525e
XG
884 trace_itimer_expire(signo == SIGPROF ?
885 ITIMER_PROF : ITIMER_VIRTUAL,
886 tsk->signal->leader_pid, cur_time);
42c4ab41
SG
887 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
888 }
889
858cf3a8
FW
890 if (it->expires && (!*expires || it->expires < *expires))
891 *expires = it->expires;
42c4ab41
SG
892}
893
1da177e4
LT
894/*
895 * Check for any per-thread CPU timers that have fired and move them
896 * off the tsk->*_timers list onto the firing list. Per-thread timers
897 * have already been taken off.
898 */
899static void check_process_timers(struct task_struct *tsk,
900 struct list_head *firing)
901{
902 struct signal_struct *const sig = tsk->signal;
ebd7e7fc
FW
903 u64 utime, ptime, virt_expires, prof_expires;
904 u64 sum_sched_runtime, sched_expires;
1da177e4 905 struct list_head *timers = sig->cpu_timers;
ebd7e7fc 906 struct task_cputime cputime;
d4bb5274 907 unsigned long soft;
1da177e4 908
934715a1
JL
909 /*
910 * If cputimer is not running, then there are no active
911 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
912 */
913 if (!READ_ONCE(tsk->signal->cputimer.running))
914 return;
915
c8d75aa4
JL
916 /*
917 * Signify that a thread is checking for process timers.
918 * Write access to this field is protected by the sighand lock.
919 */
920 sig->cputimer.checking_timer = true;
921
1da177e4
LT
922 /*
923 * Collect the current process totals.
924 */
4cd4c1b4 925 thread_group_cputimer(tsk, &cputime);
ebd7e7fc
FW
926 utime = cputime.utime;
927 ptime = utime + cputime.stime;
f06febc9 928 sum_sched_runtime = cputime.sum_exec_runtime;
1da177e4 929
2473f3e7
FW
930 prof_expires = check_timers_list(timers, firing, ptime);
931 virt_expires = check_timers_list(++timers, firing, utime);
932 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
1da177e4
LT
933
934 /*
935 * Check for the special case process timers.
936 */
42c4ab41
SG
937 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
938 SIGPROF);
939 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
940 SIGVTALRM);
3cf29496 941 soft = task_rlimit(tsk, RLIMIT_CPU);
d4bb5274 942 if (soft != RLIM_INFINITY) {
ebd7e7fc 943 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
3cf29496 944 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
ebd7e7fc 945 u64 x;
d4bb5274 946 if (psecs >= hard) {
1da177e4
LT
947 /*
948 * At the hard limit, we just die.
949 * No need to calculate anything else now.
950 */
43fe8b8e
TG
951 if (print_fatal_signals) {
952 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
953 tsk->comm, task_pid_nr(tsk));
954 }
1da177e4
LT
955 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
956 return;
957 }
d4bb5274 958 if (psecs >= soft) {
1da177e4
LT
959 /*
960 * At the soft limit, send a SIGXCPU every second.
961 */
43fe8b8e
TG
962 if (print_fatal_signals) {
963 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
964 tsk->comm, task_pid_nr(tsk));
965 }
1da177e4 966 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
d4bb5274
JS
967 if (soft < hard) {
968 soft++;
969 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1da177e4
LT
970 }
971 }
ebd7e7fc
FW
972 x = soft * NSEC_PER_SEC;
973 if (!prof_expires || x < prof_expires)
1da177e4 974 prof_expires = x;
1da177e4
LT
975 }
976
ebd7e7fc
FW
977 sig->cputime_expires.prof_exp = prof_expires;
978 sig->cputime_expires.virt_exp = virt_expires;
29f87b79
SG
979 sig->cputime_expires.sched_exp = sched_expires;
980 if (task_cputime_zero(&sig->cputime_expires))
981 stop_process_timers(sig);
c8d75aa4
JL
982
983 sig->cputimer.checking_timer = false;
1da177e4
LT
984}
985
986/*
96fe3b07 987 * This is called from the signal code (via posixtimer_rearm)
1da177e4
LT
988 * when the last timer signal was delivered and we have to reload the timer.
989 */
f37fb0aa 990static void posix_cpu_timer_rearm(struct k_itimer *timer)
1da177e4 991{
e73d84e3
FW
992 struct sighand_struct *sighand;
993 unsigned long flags;
1da177e4 994 struct task_struct *p = timer->it.cpu.task;
ebd7e7fc 995 u64 now;
1da177e4 996
a3222f88 997 WARN_ON_ONCE(p == NULL);
1da177e4
LT
998
999 /*
1000 * Fetch the current sample and update the timer's expiry time.
1001 */
1002 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1003 cpu_clock_sample(timer->it_clock, p, &now);
1004 bump_cpu_timer(timer, now);
724a3713 1005 if (unlikely(p->exit_state))
af888d67 1006 return;
724a3713 1007
e73d84e3
FW
1008 /* Protect timer list r/w in arm_timer() */
1009 sighand = lock_task_sighand(p, &flags);
1010 if (!sighand)
af888d67 1011 return;
1da177e4 1012 } else {
e73d84e3
FW
1013 /*
1014 * Protect arm_timer() and timer sampling in case of call to
ebd7e7fc 1015 * thread_group_cputime().
e73d84e3
FW
1016 */
1017 sighand = lock_task_sighand(p, &flags);
1018 if (unlikely(sighand == NULL)) {
1da177e4
LT
1019 /*
1020 * The process has been reaped.
1021 * We can't even collect a sample any more.
1022 */
55ccb616 1023 timer->it.cpu.expires = 0;
af888d67 1024 return;
1da177e4 1025 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
af888d67
TG
1026 /* If the process is dying, no need to rearm */
1027 goto unlock;
1da177e4 1028 }
3997ad31 1029 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4 1030 bump_cpu_timer(timer, now);
e73d84e3 1031 /* Leave the sighand locked for the call below. */
1da177e4
LT
1032 }
1033
1034 /*
1035 * Now re-arm for the new expiry time.
1036 */
531f64fd 1037 WARN_ON_ONCE(!irqs_disabled());
5eb9aa64 1038 arm_timer(timer);
af888d67 1039unlock:
e73d84e3 1040 unlock_task_sighand(p, &flags);
1da177e4
LT
1041}
1042
f06febc9
FM
1043/**
1044 * task_cputime_expired - Compare two task_cputime entities.
1045 *
1046 * @sample: The task_cputime structure to be checked for expiration.
1047 * @expires: Expiration times, against which @sample will be checked.
1048 *
1049 * Checks @sample against @expires to see if any field of @sample has expired.
1050 * Returns true if any field of the former is greater than the corresponding
1051 * field of the latter if the latter field is set. Otherwise returns false.
1052 */
ebd7e7fc
FW
1053static inline int task_cputime_expired(const struct task_cputime *sample,
1054 const struct task_cputime *expires)
f06febc9 1055{
64861634 1056 if (expires->utime && sample->utime >= expires->utime)
f06febc9 1057 return 1;
64861634 1058 if (expires->stime && sample->utime + sample->stime >= expires->stime)
f06febc9
FM
1059 return 1;
1060 if (expires->sum_exec_runtime != 0 &&
1061 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1062 return 1;
1063 return 0;
1064}
1065
1066/**
1067 * fastpath_timer_check - POSIX CPU timers fast path.
1068 *
1069 * @tsk: The task (thread) being checked.
f06febc9 1070 *
bb34d92f
FM
1071 * Check the task and thread group timers. If both are zero (there are no
1072 * timers set) return false. Otherwise snapshot the task and thread group
1073 * timers and compare them with the corresponding expiration times. Return
1074 * true if a timer has expired, else return false.
f06febc9 1075 */
bb34d92f 1076static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1077{
ad133ba3 1078 struct signal_struct *sig;
bb34d92f 1079
bb34d92f 1080 if (!task_cputime_zero(&tsk->cputime_expires)) {
ebd7e7fc 1081 struct task_cputime task_sample;
bb34d92f 1082
ebd7e7fc 1083 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
7c177d99 1084 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
bb34d92f
FM
1085 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1086 return 1;
1087 }
ad133ba3
ON
1088
1089 sig = tsk->signal;
c8d75aa4
JL
1090 /*
1091 * Check if thread group timers expired when the cputimer is
1092 * running and no other thread in the group is already checking
1093 * for thread group cputimers. These fields are read without the
1094 * sighand lock. However, this is fine because this is meant to
1095 * be a fastpath heuristic to determine whether we should try to
1096 * acquire the sighand lock to check/handle timers.
1097 *
1098 * In the worst case scenario, if 'running' or 'checking_timer' gets
1099 * set but the current thread doesn't see the change yet, we'll wait
1100 * until the next thread in the group gets a scheduler interrupt to
1101 * handle the timer. This isn't an issue in practice because these
1102 * types of delays with signals actually getting sent are expected.
1103 */
1104 if (READ_ONCE(sig->cputimer.running) &&
1105 !READ_ONCE(sig->cputimer.checking_timer)) {
ebd7e7fc 1106 struct task_cputime group_sample;
bb34d92f 1107
71107445 1108 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
8d1f431c 1109
bb34d92f
FM
1110 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1111 return 1;
1112 }
37bebc70 1113
f55db609 1114 return 0;
f06febc9
FM
1115}
1116
1da177e4
LT
1117/*
1118 * This is called from the timer interrupt handler. The irq handler has
1119 * already updated our counts. We need to check if any timers fire now.
1120 * Interrupts are disabled.
1121 */
1122void run_posix_cpu_timers(struct task_struct *tsk)
1123{
1124 LIST_HEAD(firing);
1125 struct k_itimer *timer, *next;
0bdd2ed4 1126 unsigned long flags;
1da177e4 1127
531f64fd 1128 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1129
1da177e4 1130 /*
f06febc9 1131 * The fast path checks that there are no expired thread or thread
bb34d92f 1132 * group timers. If that's so, just return.
1da177e4 1133 */
bb34d92f 1134 if (!fastpath_timer_check(tsk))
f06febc9 1135 return;
5ce73a4a 1136
0bdd2ed4
ON
1137 if (!lock_task_sighand(tsk, &flags))
1138 return;
bb34d92f
FM
1139 /*
1140 * Here we take off tsk->signal->cpu_timers[N] and
1141 * tsk->cpu_timers[N] all the timers that are firing, and
1142 * put them on the firing list.
1143 */
1144 check_thread_timers(tsk, &firing);
934715a1
JL
1145
1146 check_process_timers(tsk, &firing);
1da177e4 1147
bb34d92f
FM
1148 /*
1149 * We must release these locks before taking any timer's lock.
1150 * There is a potential race with timer deletion here, as the
1151 * siglock now protects our private firing list. We have set
1152 * the firing flag in each timer, so that a deletion attempt
1153 * that gets the timer lock before we do will give it up and
1154 * spin until we've taken care of that timer below.
1155 */
0bdd2ed4 1156 unlock_task_sighand(tsk, &flags);
1da177e4
LT
1157
1158 /*
1159 * Now that all the timers on our list have the firing flag,
25985edc 1160 * no one will touch their list entries but us. We'll take
1da177e4
LT
1161 * each timer's lock before clearing its firing flag, so no
1162 * timer call will interfere.
1163 */
1164 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1165 int cpu_firing;
1166
1da177e4
LT
1167 spin_lock(&timer->it_lock);
1168 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1169 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1170 timer->it.cpu.firing = 0;
1171 /*
1172 * The firing flag is -1 if we collided with a reset
1173 * of the timer, which already reported this
1174 * almost-firing as an overrun. So don't generate an event.
1175 */
6e85c5ba 1176 if (likely(cpu_firing >= 0))
1da177e4 1177 cpu_timer_fire(timer);
1da177e4
LT
1178 spin_unlock(&timer->it_lock);
1179 }
1180}
1181
1182/*
f55db609 1183 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1184 * The tsk->sighand->siglock must be held by the caller.
1da177e4
LT
1185 */
1186void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
858cf3a8 1187 u64 *newval, u64 *oldval)
1da177e4 1188{
858cf3a8 1189 u64 now;
1da177e4 1190
531f64fd 1191 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1192 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1193
1194 if (oldval) {
f55db609
SG
1195 /*
1196 * We are setting itimer. The *oldval is absolute and we update
1197 * it to be relative, *newval argument is relative and we update
1198 * it to be absolute.
1199 */
64861634 1200 if (*oldval) {
858cf3a8 1201 if (*oldval <= now) {
1da177e4 1202 /* Just about to fire. */
858cf3a8 1203 *oldval = TICK_NSEC;
1da177e4 1204 } else {
858cf3a8 1205 *oldval -= now;
1da177e4
LT
1206 }
1207 }
1208
64861634 1209 if (!*newval)
b7878300 1210 return;
858cf3a8 1211 *newval += now;
1da177e4
LT
1212 }
1213
1214 /*
f55db609
SG
1215 * Update expiration cache if we are the earliest timer, or eventually
1216 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1da177e4 1217 */
f55db609
SG
1218 switch (clock_idx) {
1219 case CPUCLOCK_PROF:
858cf3a8
FW
1220 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1221 tsk->signal->cputime_expires.prof_exp = *newval;
f55db609
SG
1222 break;
1223 case CPUCLOCK_VIRT:
858cf3a8
FW
1224 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1225 tsk->signal->cputime_expires.virt_exp = *newval;
f55db609 1226 break;
1da177e4 1227 }
b7878300
FW
1228
1229 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
1230}
1231
e4b76555 1232static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
343d8fc2 1233 const struct timespec64 *rqtp)
1da177e4 1234{
86a9c446 1235 struct itimerspec64 it;
343d8fc2
TG
1236 struct k_itimer timer;
1237 u64 expires;
1da177e4
LT
1238 int error;
1239
1da177e4
LT
1240 /*
1241 * Set up a temporary timer and then wait for it to go off.
1242 */
1243 memset(&timer, 0, sizeof timer);
1244 spin_lock_init(&timer.it_lock);
1245 timer.it_clock = which_clock;
1246 timer.it_overrun = -1;
1247 error = posix_cpu_timer_create(&timer);
1248 timer.it_process = current;
1249 if (!error) {
5f252b32 1250 static struct itimerspec64 zero_it;
edbeda46 1251 struct restart_block *restart;
e4b76555 1252
edbeda46 1253 memset(&it, 0, sizeof(it));
86a9c446 1254 it.it_value = *rqtp;
1da177e4
LT
1255
1256 spin_lock_irq(&timer.it_lock);
86a9c446 1257 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1da177e4
LT
1258 if (error) {
1259 spin_unlock_irq(&timer.it_lock);
1260 return error;
1261 }
1262
1263 while (!signal_pending(current)) {
55ccb616 1264 if (timer.it.cpu.expires == 0) {
1da177e4 1265 /*
e6c42c29
SG
1266 * Our timer fired and was reset, below
1267 * deletion can not fail.
1da177e4 1268 */
e6c42c29 1269 posix_cpu_timer_del(&timer);
1da177e4
LT
1270 spin_unlock_irq(&timer.it_lock);
1271 return 0;
1272 }
1273
1274 /*
1275 * Block until cpu_timer_fire (or a signal) wakes us.
1276 */
1277 __set_current_state(TASK_INTERRUPTIBLE);
1278 spin_unlock_irq(&timer.it_lock);
1279 schedule();
1280 spin_lock_irq(&timer.it_lock);
1281 }
1282
1283 /*
1284 * We were interrupted by a signal.
1285 */
343d8fc2 1286 expires = timer.it.cpu.expires;
86a9c446 1287 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
e6c42c29
SG
1288 if (!error) {
1289 /*
1290 * Timer is now unarmed, deletion can not fail.
1291 */
1292 posix_cpu_timer_del(&timer);
1293 }
1da177e4
LT
1294 spin_unlock_irq(&timer.it_lock);
1295
e6c42c29
SG
1296 while (error == TIMER_RETRY) {
1297 /*
1298 * We need to handle case when timer was or is in the
1299 * middle of firing. In other cases we already freed
1300 * resources.
1301 */
1302 spin_lock_irq(&timer.it_lock);
1303 error = posix_cpu_timer_del(&timer);
1304 spin_unlock_irq(&timer.it_lock);
1305 }
1306
86a9c446 1307 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1da177e4
LT
1308 /*
1309 * It actually did fire already.
1310 */
1311 return 0;
1312 }
1313
e4b76555 1314 error = -ERESTART_RESTARTBLOCK;
86a9c446
AV
1315 /*
1316 * Report back to the user the time still remaining.
1317 */
edbeda46 1318 restart = &current->restart_block;
343d8fc2 1319 restart->nanosleep.expires = expires;
c0edd7c9
DD
1320 if (restart->nanosleep.type != TT_NONE)
1321 error = nanosleep_copyout(restart, &it.it_value);
e4b76555
TA
1322 }
1323
1324 return error;
1325}
1326
bc2c8ea4
TG
1327static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1328
1329static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1330 const struct timespec64 *rqtp)
e4b76555 1331{
f56141e3 1332 struct restart_block *restart_block = &current->restart_block;
e4b76555
TA
1333 int error;
1334
1335 /*
1336 * Diagnose required errors first.
1337 */
1338 if (CPUCLOCK_PERTHREAD(which_clock) &&
1339 (CPUCLOCK_PID(which_clock) == 0 ||
01a21974 1340 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
e4b76555
TA
1341 return -EINVAL;
1342
86a9c446 1343 error = do_cpu_nanosleep(which_clock, flags, rqtp);
e4b76555
TA
1344
1345 if (error == -ERESTART_RESTARTBLOCK) {
1346
3751f9f2 1347 if (flags & TIMER_ABSTIME)
e4b76555 1348 return -ERESTARTNOHAND;
1da177e4 1349
1711ef38 1350 restart_block->fn = posix_cpu_nsleep_restart;
ab8177bc 1351 restart_block->nanosleep.clockid = which_clock;
1da177e4 1352 }
1da177e4
LT
1353 return error;
1354}
1355
bc2c8ea4 1356static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4 1357{
ab8177bc 1358 clockid_t which_clock = restart_block->nanosleep.clockid;
ad196384 1359 struct timespec64 t;
97735f25 1360
ad196384 1361 t = ns_to_timespec64(restart_block->nanosleep.expires);
97735f25 1362
86a9c446 1363 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1da177e4
LT
1364}
1365
1da177e4
LT
1366#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1367#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1368
a924b04d 1369static int process_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1370 struct timespec64 *tp)
1da177e4
LT
1371{
1372 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1373}
a924b04d 1374static int process_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1375 struct timespec64 *tp)
1da177e4
LT
1376{
1377 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1378}
1379static int process_cpu_timer_create(struct k_itimer *timer)
1380{
1381 timer->it_clock = PROCESS_CLOCK;
1382 return posix_cpu_timer_create(timer);
1383}
a924b04d 1384static int process_cpu_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1385 const struct timespec64 *rqtp)
1da177e4 1386{
99e6c0e6 1387 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1da177e4 1388}
a924b04d 1389static int thread_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1390 struct timespec64 *tp)
1da177e4
LT
1391{
1392 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1393}
a924b04d 1394static int thread_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1395 struct timespec64 *tp)
1da177e4
LT
1396{
1397 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1398}
1399static int thread_cpu_timer_create(struct k_itimer *timer)
1400{
1401 timer->it_clock = THREAD_CLOCK;
1402 return posix_cpu_timer_create(timer);
1403}
1da177e4 1404
d3ba5a9a 1405const struct k_clock clock_posix_cpu = {
1976945e
TG
1406 .clock_getres = posix_cpu_clock_getres,
1407 .clock_set = posix_cpu_clock_set,
1408 .clock_get = posix_cpu_clock_get,
1409 .timer_create = posix_cpu_timer_create,
1410 .nsleep = posix_cpu_nsleep,
1976945e
TG
1411 .timer_set = posix_cpu_timer_set,
1412 .timer_del = posix_cpu_timer_del,
1413 .timer_get = posix_cpu_timer_get,
f37fb0aa 1414 .timer_rearm = posix_cpu_timer_rearm,
1976945e
TG
1415};
1416
d3ba5a9a
CH
1417const struct k_clock clock_process = {
1418 .clock_getres = process_cpu_clock_getres,
1419 .clock_get = process_cpu_clock_get,
1420 .timer_create = process_cpu_timer_create,
1421 .nsleep = process_cpu_nsleep,
d3ba5a9a 1422};
1da177e4 1423
d3ba5a9a
CH
1424const struct k_clock clock_thread = {
1425 .clock_getres = thread_cpu_clock_getres,
1426 .clock_get = thread_cpu_clock_get,
1427 .timer_create = thread_cpu_timer_create,
1428};