sched: Move struct task_cputime to types.h
[linux-2.6-block.git] / kernel / time / posix-cpu-timers.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * Implement CPU time clocks for the POSIX clock interface.
4 */
5
3f07c014 6#include <linux/sched/signal.h>
32ef5517 7#include <linux/sched/cputime.h>
1da177e4 8#include <linux/posix-timers.h>
1da177e4 9#include <linux/errno.h>
f8bd2258 10#include <linux/math64.h>
7c0f6ba6 11#include <linux/uaccess.h>
bb34d92f 12#include <linux/kernel_stat.h>
3f0a525e 13#include <trace/events/timer.h>
a8572160
FW
14#include <linux/tick.h>
15#include <linux/workqueue.h>
edbeda46 16#include <linux/compat.h>
34be3930 17#include <linux/sched/deadline.h>
1da177e4 18
bab0aae9
TG
19#include "posix-timers.h"
20
f37fb0aa
TG
21static void posix_cpu_timer_rearm(struct k_itimer *timer);
22
f06febc9 23/*
f55db609
SG
24 * Called after updating RLIMIT_CPU to run cpu timer and update
25 * tsk->signal->cputime_expires expiration cache if necessary. Needs
26 * siglock protection since other code may update expiration cache as
27 * well.
f06febc9 28 */
5ab46b34 29void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
f06febc9 30{
858cf3a8 31 u64 nsecs = rlim_new * NSEC_PER_SEC;
f06febc9 32
5ab46b34 33 spin_lock_irq(&task->sighand->siglock);
858cf3a8 34 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
5ab46b34 35 spin_unlock_irq(&task->sighand->siglock);
f06febc9
FM
36}
37
6ae40e3f
TG
38/*
39 * Functions for validating access to tasks.
40 */
41static struct task_struct *lookup_task(const pid_t pid, bool thread)
1da177e4 42{
1da177e4 43 struct task_struct *p;
1da177e4 44
6ae40e3f
TG
45 if (!pid)
46 return thread ? current : current->group_leader;
1da177e4 47
6ae40e3f
TG
48 p = find_task_by_vpid(pid);
49 if (!p || p == current)
50 return p;
51 if (thread)
52 return same_thread_group(p, current) ? p : NULL;
53 if (p == current)
54 return p;
55 return has_group_leader_pid(p) ? p : NULL;
56}
57
58static struct task_struct *__get_task_for_clock(const clockid_t clock,
59 bool getref)
60{
61 const bool thread = !!CPUCLOCK_PERTHREAD(clock);
62 const pid_t pid = CPUCLOCK_PID(clock);
63 struct task_struct *p;
64
65 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
66 return NULL;
1da177e4 67
c0deae8c 68 rcu_read_lock();
6ae40e3f
TG
69 p = lookup_task(pid, thread);
70 if (p && getref)
71 get_task_struct(p);
c0deae8c 72 rcu_read_unlock();
6ae40e3f
TG
73 return p;
74}
1da177e4 75
6ae40e3f
TG
76static inline struct task_struct *get_task_for_clock(const clockid_t clock)
77{
78 return __get_task_for_clock(clock, true);
79}
80
81static inline int validate_clock_permissions(const clockid_t clock)
82{
83 return __get_task_for_clock(clock, false) ? 0 : -EINVAL;
1da177e4
LT
84}
85
1da177e4
LT
86/*
87 * Update expiry time from increment, and increase overrun count,
88 * given the current clock sample.
89 */
ebd7e7fc 90static void bump_cpu_timer(struct k_itimer *timer, u64 now)
1da177e4
LT
91{
92 int i;
ebd7e7fc 93 u64 delta, incr;
1da177e4 94
16118794 95 if (!timer->it_interval)
1da177e4
LT
96 return;
97
55ccb616
FW
98 if (now < timer->it.cpu.expires)
99 return;
1da177e4 100
16118794 101 incr = timer->it_interval;
55ccb616 102 delta = now + incr - timer->it.cpu.expires;
1da177e4 103
55ccb616
FW
104 /* Don't use (incr*2 < delta), incr*2 might overflow. */
105 for (i = 0; incr < delta - incr; i++)
106 incr = incr << 1;
107
108 for (; i >= 0; incr >>= 1, i--) {
109 if (delta < incr)
110 continue;
111
112 timer->it.cpu.expires += incr;
78c9c4df 113 timer->it_overrun += 1LL << i;
55ccb616 114 delta -= incr;
1da177e4
LT
115 }
116}
117
555347f6
FW
118/**
119 * task_cputime_zero - Check a task_cputime struct for all zero fields.
120 *
121 * @cputime: The struct to compare.
122 *
123 * Checks @cputime to see if all fields are zero. Returns true if all fields
124 * are zero, false if any field is nonzero.
125 */
ebd7e7fc 126static inline int task_cputime_zero(const struct task_cputime *cputime)
555347f6
FW
127{
128 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
129 return 1;
130 return 0;
131}
132
bc2c8ea4 133static int
d2e3e0ca 134posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
1da177e4 135{
6ae40e3f
TG
136 int error = validate_clock_permissions(which_clock);
137
1da177e4
LT
138 if (!error) {
139 tp->tv_sec = 0;
140 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
141 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
142 /*
143 * If sched_clock is using a cycle counter, we
144 * don't have any idea of its true resolution
145 * exported, but it is much more than 1s/HZ.
146 */
147 tp->tv_nsec = 1;
148 }
149 }
150 return error;
151}
152
bc2c8ea4 153static int
6ae40e3f 154posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
1da177e4 155{
6ae40e3f
TG
156 int error = validate_clock_permissions(clock);
157
1da177e4
LT
158 /*
159 * You can never reset a CPU clock, but we check for other errors
160 * in the call before failing with EPERM.
161 */
6ae40e3f 162 return error ? : -EPERM;
1da177e4
LT
163}
164
1da177e4 165/*
2092c1d4 166 * Sample a per-thread clock for the given task. clkid is validated.
1da177e4 167 */
8c2d74f0 168static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
1da177e4 169{
ab693c5a
TG
170 u64 utime, stime;
171
172 if (clkid == CPUCLOCK_SCHED)
173 return task_sched_runtime(p);
174
175 task_cputime(p, &utime, &stime);
176
2092c1d4 177 switch (clkid) {
1da177e4 178 case CPUCLOCK_PROF:
ab693c5a 179 return utime + stime;
1da177e4 180 case CPUCLOCK_VIRT:
ab693c5a 181 return utime;
2092c1d4
TG
182 default:
183 WARN_ON_ONCE(1);
1da177e4 184 }
8c2d74f0 185 return 0;
1da177e4
LT
186}
187
1018016c
JL
188/*
189 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
190 * to avoid race conditions with concurrent updates to cputime.
191 */
192static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
4da94d49 193{
1018016c
JL
194 u64 curr_cputime;
195retry:
196 curr_cputime = atomic64_read(cputime);
197 if (sum_cputime > curr_cputime) {
198 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
199 goto retry;
200 }
201}
4da94d49 202
ebd7e7fc 203static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
1018016c 204{
71107445
JL
205 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
206 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
207 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
1018016c 208}
4da94d49 209
71107445 210/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
ebd7e7fc 211static inline void sample_cputime_atomic(struct task_cputime *times,
71107445 212 struct task_cputime_atomic *atomic_times)
1018016c 213{
71107445
JL
214 times->utime = atomic64_read(&atomic_times->utime);
215 times->stime = atomic64_read(&atomic_times->stime);
216 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
4da94d49
PZ
217}
218
19298fbf
TG
219/**
220 * thread_group_sample_cputime - Sample cputime for a given task
221 * @tsk: Task for which cputime needs to be started
222 * @iimes: Storage for time samples
223 *
224 * Called from sys_getitimer() to calculate the expiry time of an active
225 * timer. That means group cputime accounting is already active. Called
226 * with task sighand lock held.
227 *
228 * Updates @times with an uptodate sample of the thread group cputimes.
229 */
230void thread_group_sample_cputime(struct task_struct *tsk,
231 struct task_cputime *times)
232{
233 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
234
235 WARN_ON_ONCE(!cputimer->running);
236
237 sample_cputime_atomic(times, &cputimer->cputime_atomic);
238}
239
c506bef4
TG
240/**
241 * thread_group_start_cputime - Start cputime and return a sample
242 * @tsk: Task for which cputime needs to be started
243 * @iimes: Storage for time samples
244 *
245 * The thread group cputime accouting is avoided when there are no posix
246 * CPU timers armed. Before starting a timer it's required to check whether
247 * the time accounting is active. If not, a full update of the atomic
248 * accounting store needs to be done and the accounting enabled.
249 *
250 * Updates @times with an uptodate sample of the thread group cputimes.
251 */
252static void
253thread_group_start_cputime(struct task_struct *tsk, struct task_cputime *times)
4da94d49
PZ
254{
255 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
ebd7e7fc 256 struct task_cputime sum;
4da94d49 257
1018016c
JL
258 /* Check if cputimer isn't running. This is accessed without locking. */
259 if (!READ_ONCE(cputimer->running)) {
4da94d49
PZ
260 /*
261 * The POSIX timer interface allows for absolute time expiry
262 * values through the TIMER_ABSTIME flag, therefore we have
1018016c 263 * to synchronize the timer to the clock every time we start it.
4da94d49 264 */
ebd7e7fc 265 thread_group_cputime(tsk, &sum);
71107445 266 update_gt_cputime(&cputimer->cputime_atomic, &sum);
1018016c
JL
267
268 /*
269 * We're setting cputimer->running without a lock. Ensure
270 * this only gets written to in one operation. We set
271 * running after update_gt_cputime() as a small optimization,
272 * but barriers are not required because update_gt_cputime()
273 * can handle concurrent updates.
274 */
d5c373eb 275 WRITE_ONCE(cputimer->running, true);
1018016c 276 }
71107445 277 sample_cputime_atomic(times, &cputimer->cputime_atomic);
4da94d49
PZ
278}
279
1da177e4 280/*
24ab7f5a
TG
281 * Sample a process (thread group) clock for the given task clkid. If the
282 * group's cputime accounting is already enabled, read the atomic
283 * store. Otherwise a full update is required. Task's sighand lock must be
2092c1d4
TG
284 * held to protect the task traversal on a full update. clkid is already
285 * validated.
1da177e4 286 */
8c2d74f0
TG
287static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
288 bool start)
1da177e4 289{
24ab7f5a 290 struct thread_group_cputimer *cputimer = &p->signal->cputimer;
ebd7e7fc 291 struct task_cputime cputime;
f06febc9 292
24ab7f5a
TG
293 if (!READ_ONCE(cputimer->running)) {
294 if (start)
295 thread_group_start_cputime(p, &cputime);
296 else
297 thread_group_cputime(p, &cputime);
298 } else {
299 sample_cputime_atomic(&cputime, &cputimer->cputime_atomic);
300 }
301
2092c1d4 302 switch (clkid) {
1da177e4 303 case CPUCLOCK_PROF:
8c2d74f0 304 return cputime.utime + cputime.stime;
1da177e4 305 case CPUCLOCK_VIRT:
8c2d74f0 306 return cputime.utime;
1da177e4 307 case CPUCLOCK_SCHED:
8c2d74f0 308 return cputime.sum_exec_runtime;
2092c1d4
TG
309 default:
310 WARN_ON_ONCE(1);
1da177e4 311 }
8c2d74f0 312 return 0;
1da177e4
LT
313}
314
bfcf3e92 315static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
33ab0fec 316{
bfcf3e92
TG
317 const clockid_t clkid = CPUCLOCK_WHICH(clock);
318 struct task_struct *tsk;
319 u64 t;
33ab0fec 320
bfcf3e92
TG
321 tsk = get_task_for_clock(clock);
322 if (!tsk)
323 return -EINVAL;
1da177e4 324
bfcf3e92 325 if (CPUCLOCK_PERTHREAD(clock))
8c2d74f0 326 t = cpu_clock_sample(clkid, tsk);
bfcf3e92 327 else
8c2d74f0 328 t = cpu_clock_sample_group(clkid, tsk, false);
bfcf3e92 329 put_task_struct(tsk);
1da177e4 330
bfcf3e92
TG
331 *tp = ns_to_timespec64(t);
332 return 0;
1da177e4
LT
333}
334
1da177e4
LT
335/*
336 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
337 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
338 * new timer already all-zeros initialized.
1da177e4 339 */
bc2c8ea4 340static int posix_cpu_timer_create(struct k_itimer *new_timer)
1da177e4 341{
e5a8b65b 342 struct task_struct *p = get_task_for_clock(new_timer->it_clock);
1da177e4 343
e5a8b65b 344 if (!p)
1da177e4
LT
345 return -EINVAL;
346
d97bb75d 347 new_timer->kclock = &clock_posix_cpu;
1da177e4 348 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
1da177e4 349 new_timer->it.cpu.task = p;
e5a8b65b 350 return 0;
1da177e4
LT
351}
352
353/*
354 * Clean up a CPU-clock timer that is about to be destroyed.
355 * This is called from timer deletion with the timer already locked.
356 * If we return TIMER_RETRY, it's necessary to release the timer's lock
357 * and try again. (This happens when the timer is in the middle of firing.)
358 */
bc2c8ea4 359static int posix_cpu_timer_del(struct k_itimer *timer)
1da177e4 360{
108150ea 361 int ret = 0;
3d7a1427
FW
362 unsigned long flags;
363 struct sighand_struct *sighand;
364 struct task_struct *p = timer->it.cpu.task;
1da177e4 365
692117c1
TG
366 if (WARN_ON_ONCE(!p))
367 return -EINVAL;
108150ea 368
3d7a1427
FW
369 /*
370 * Protect against sighand release/switch in exit/exec and process/
371 * thread timer list entry concurrent read/writes.
372 */
373 sighand = lock_task_sighand(p, &flags);
374 if (unlikely(sighand == NULL)) {
a3222f88
FW
375 /*
376 * We raced with the reaping of the task.
377 * The deletion should have cleared us off the list.
378 */
531f64fd 379 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
a3222f88 380 } else {
a3222f88
FW
381 if (timer->it.cpu.firing)
382 ret = TIMER_RETRY;
383 else
384 list_del(&timer->it.cpu.entry);
3d7a1427
FW
385
386 unlock_task_sighand(p, &flags);
1da177e4 387 }
a3222f88
FW
388
389 if (!ret)
390 put_task_struct(p);
1da177e4 391
108150ea 392 return ret;
1da177e4
LT
393}
394
af82eb3c 395static void cleanup_timers_list(struct list_head *head)
1a7fa510
FW
396{
397 struct cpu_timer_list *timer, *next;
398
a0b2062b 399 list_for_each_entry_safe(timer, next, head, entry)
1a7fa510 400 list_del_init(&timer->entry);
1a7fa510
FW
401}
402
1da177e4 403/*
7cb9a94c
TG
404 * Clean out CPU timers which are still armed when a thread exits. The
405 * timers are only removed from the list. No other updates are done. The
406 * corresponding posix timers are still accessible, but cannot be rearmed.
407 *
1da177e4
LT
408 * This must be called with the siglock held.
409 */
2b69942f 410static void cleanup_timers(struct posix_cputimers *pct)
1da177e4 411{
2b69942f
TG
412 cleanup_timers_list(&pct->cpu_timers[CPUCLOCK_PROF]);
413 cleanup_timers_list(&pct->cpu_timers[CPUCLOCK_VIRT]);
414 cleanup_timers_list(&pct->cpu_timers[CPUCLOCK_SCHED]);
1da177e4
LT
415}
416
417/*
418 * These are both called with the siglock held, when the current thread
419 * is being reaped. When the final (leader) thread in the group is reaped,
420 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
421 */
422void posix_cpu_timers_exit(struct task_struct *tsk)
423{
2b69942f 424 cleanup_timers(&tsk->posix_cputimers);
1da177e4
LT
425}
426void posix_cpu_timers_exit_group(struct task_struct *tsk)
427{
2b69942f 428 cleanup_timers(&tsk->signal->posix_cputimers);
1da177e4
LT
429}
430
ebd7e7fc 431static inline int expires_gt(u64 expires, u64 new_exp)
d1e3b6d1 432{
64861634 433 return expires == 0 || expires > new_exp;
d1e3b6d1
SG
434}
435
1da177e4
LT
436/*
437 * Insert the timer on the appropriate list before any timers that
e73d84e3 438 * expire later. This must be called with the sighand lock held.
1da177e4 439 */
5eb9aa64 440static void arm_timer(struct k_itimer *timer)
1da177e4
LT
441{
442 struct task_struct *p = timer->it.cpu.task;
443 struct list_head *head, *listpos;
ebd7e7fc 444 struct task_cputime *cputime_expires;
1da177e4
LT
445 struct cpu_timer_list *const nt = &timer->it.cpu;
446 struct cpu_timer_list *next;
1da177e4 447
5eb9aa64 448 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
2b69942f 449 head = p->posix_cputimers.cpu_timers;
5eb9aa64
SG
450 cputime_expires = &p->cputime_expires;
451 } else {
2b69942f 452 head = p->signal->posix_cputimers.cpu_timers;
5eb9aa64
SG
453 cputime_expires = &p->signal->cputime_expires;
454 }
1da177e4
LT
455 head += CPUCLOCK_WHICH(timer->it_clock);
456
1da177e4 457 listpos = head;
5eb9aa64 458 list_for_each_entry(next, head, entry) {
55ccb616 459 if (nt->expires < next->expires)
5eb9aa64
SG
460 break;
461 listpos = &next->entry;
1da177e4
LT
462 }
463 list_add(&nt->entry, listpos);
464
465 if (listpos == head) {
ebd7e7fc 466 u64 exp = nt->expires;
5eb9aa64 467
1da177e4 468 /*
5eb9aa64
SG
469 * We are the new earliest-expiring POSIX 1.b timer, hence
470 * need to update expiration cache. Take into account that
471 * for process timers we share expiration cache with itimers
472 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
1da177e4
LT
473 */
474
5eb9aa64
SG
475 switch (CPUCLOCK_WHICH(timer->it_clock)) {
476 case CPUCLOCK_PROF:
ebd7e7fc
FW
477 if (expires_gt(cputime_expires->prof_exp, exp))
478 cputime_expires->prof_exp = exp;
5eb9aa64
SG
479 break;
480 case CPUCLOCK_VIRT:
ebd7e7fc
FW
481 if (expires_gt(cputime_expires->virt_exp, exp))
482 cputime_expires->virt_exp = exp;
5eb9aa64
SG
483 break;
484 case CPUCLOCK_SCHED:
ebd7e7fc 485 if (expires_gt(cputime_expires->sched_exp, exp))
55ccb616 486 cputime_expires->sched_exp = exp;
5eb9aa64 487 break;
1da177e4 488 }
b7878300
FW
489 if (CPUCLOCK_PERTHREAD(timer->it_clock))
490 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
491 else
492 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4 493 }
1da177e4
LT
494}
495
496/*
497 * The timer is locked, fire it and arrange for its reload.
498 */
499static void cpu_timer_fire(struct k_itimer *timer)
500{
1f169f84
SG
501 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
502 /*
503 * User don't want any signal.
504 */
55ccb616 505 timer->it.cpu.expires = 0;
1f169f84 506 } else if (unlikely(timer->sigq == NULL)) {
1da177e4
LT
507 /*
508 * This a special case for clock_nanosleep,
509 * not a normal timer from sys_timer_create.
510 */
511 wake_up_process(timer->it_process);
55ccb616 512 timer->it.cpu.expires = 0;
16118794 513 } else if (!timer->it_interval) {
1da177e4
LT
514 /*
515 * One-shot timer. Clear it as soon as it's fired.
516 */
517 posix_timer_event(timer, 0);
55ccb616 518 timer->it.cpu.expires = 0;
1da177e4
LT
519 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
520 /*
521 * The signal did not get queued because the signal
522 * was ignored, so we won't get any callback to
523 * reload the timer. But we need to keep it
524 * ticking in case the signal is deliverable next time.
525 */
f37fb0aa 526 posix_cpu_timer_rearm(timer);
af888d67 527 ++timer->it_requeue_pending;
1da177e4
LT
528 }
529}
530
531/*
532 * Guts of sys_timer_settime for CPU timers.
533 * This is called with the timer locked and interrupts disabled.
534 * If we return TIMER_RETRY, it's necessary to release the timer's lock
535 * and try again. (This happens when the timer is in the middle of firing.)
536 */
e73d84e3 537static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
5f252b32 538 struct itimerspec64 *new, struct itimerspec64 *old)
1da177e4 539{
c7a37c6f 540 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
ebd7e7fc 541 u64 old_expires, new_expires, old_incr, val;
c7a37c6f
TG
542 struct task_struct *p = timer->it.cpu.task;
543 struct sighand_struct *sighand;
544 unsigned long flags;
1da177e4
LT
545 int ret;
546
692117c1
TG
547 if (WARN_ON_ONCE(!p))
548 return -EINVAL;
1da177e4 549
098b0e01
TG
550 /*
551 * Use the to_ktime conversion because that clamps the maximum
552 * value to KTIME_MAX and avoid multiplication overflows.
553 */
554 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
1da177e4 555
1da177e4 556 /*
e73d84e3
FW
557 * Protect against sighand release/switch in exit/exec and p->cpu_timers
558 * and p->signal->cpu_timers read/write in arm_timer()
559 */
560 sighand = lock_task_sighand(p, &flags);
561 /*
562 * If p has just been reaped, we can no
1da177e4
LT
563 * longer get any information about it at all.
564 */
e73d84e3 565 if (unlikely(sighand == NULL)) {
1da177e4
LT
566 return -ESRCH;
567 }
568
569 /*
570 * Disarm any old timer after extracting its expiry time.
571 */
a69ac4a7
ON
572
573 ret = 0;
16118794 574 old_incr = timer->it_interval;
1da177e4 575 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
576 if (unlikely(timer->it.cpu.firing)) {
577 timer->it.cpu.firing = -1;
578 ret = TIMER_RETRY;
579 } else
580 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
581
582 /*
583 * We need to sample the current value to convert the new
584 * value from to relative and absolute, and to convert the
585 * old value from absolute to relative. To set a process
586 * timer, we need a sample to balance the thread expiry
587 * times (in arm_timer). With an absolute time, we must
588 * check if it's already passed. In short, we need a sample.
589 */
8c2d74f0
TG
590 if (CPUCLOCK_PERTHREAD(timer->it_clock))
591 val = cpu_clock_sample(clkid, p);
592 else
593 val = cpu_clock_sample_group(clkid, p, true);
1da177e4
LT
594
595 if (old) {
55ccb616 596 if (old_expires == 0) {
1da177e4
LT
597 old->it_value.tv_sec = 0;
598 old->it_value.tv_nsec = 0;
599 } else {
600 /*
601 * Update the timer in case it has
602 * overrun already. If it has,
603 * we'll report it as having overrun
604 * and with the next reloaded timer
605 * already ticking, though we are
606 * swallowing that pending
607 * notification here to install the
608 * new setting.
609 */
610 bump_cpu_timer(timer, val);
55ccb616
FW
611 if (val < timer->it.cpu.expires) {
612 old_expires = timer->it.cpu.expires - val;
5f252b32 613 old->it_value = ns_to_timespec64(old_expires);
1da177e4
LT
614 } else {
615 old->it_value.tv_nsec = 1;
616 old->it_value.tv_sec = 0;
617 }
618 }
619 }
620
a69ac4a7 621 if (unlikely(ret)) {
1da177e4
LT
622 /*
623 * We are colliding with the timer actually firing.
624 * Punt after filling in the timer's old value, and
625 * disable this firing since we are already reporting
626 * it as an overrun (thanks to bump_cpu_timer above).
627 */
e73d84e3 628 unlock_task_sighand(p, &flags);
1da177e4
LT
629 goto out;
630 }
631
e73d84e3 632 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
55ccb616 633 new_expires += val;
1da177e4
LT
634 }
635
636 /*
637 * Install the new expiry time (or zero).
638 * For a timer with no notification action, we don't actually
639 * arm the timer (we'll just fake it for timer_gettime).
640 */
641 timer->it.cpu.expires = new_expires;
55ccb616 642 if (new_expires != 0 && val < new_expires) {
5eb9aa64 643 arm_timer(timer);
1da177e4
LT
644 }
645
e73d84e3 646 unlock_task_sighand(p, &flags);
1da177e4
LT
647 /*
648 * Install the new reload setting, and
649 * set up the signal and overrun bookkeeping.
650 */
16118794 651 timer->it_interval = timespec64_to_ktime(new->it_interval);
1da177e4
LT
652
653 /*
654 * This acts as a modification timestamp for the timer,
655 * so any automatic reload attempt will punt on seeing
656 * that we have reset the timer manually.
657 */
658 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
659 ~REQUEUE_PENDING;
660 timer->it_overrun_last = 0;
661 timer->it_overrun = -1;
662
55ccb616 663 if (new_expires != 0 && !(val < new_expires)) {
1da177e4
LT
664 /*
665 * The designated time already passed, so we notify
666 * immediately, even if the thread never runs to
667 * accumulate more time on this clock.
668 */
669 cpu_timer_fire(timer);
670 }
671
672 ret = 0;
673 out:
ebd7e7fc 674 if (old)
5f252b32 675 old->it_interval = ns_to_timespec64(old_incr);
b7878300 676
1da177e4
LT
677 return ret;
678}
679
5f252b32 680static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
1da177e4 681{
99093c5b 682 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
1da177e4 683 struct task_struct *p = timer->it.cpu.task;
692117c1 684 u64 now;
1da177e4 685
692117c1
TG
686 if (WARN_ON_ONCE(!p))
687 return;
a3222f88 688
1da177e4
LT
689 /*
690 * Easy part: convert the reload time.
691 */
16118794 692 itp->it_interval = ktime_to_timespec64(timer->it_interval);
1da177e4 693
eabdec04 694 if (!timer->it.cpu.expires)
1da177e4 695 return;
1da177e4 696
1da177e4
LT
697 /*
698 * Sample the clock to take the difference with the expiry time.
699 */
700 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
8c2d74f0 701 now = cpu_clock_sample(clkid, p);
1da177e4 702 } else {
e73d84e3
FW
703 struct sighand_struct *sighand;
704 unsigned long flags;
705
706 /*
707 * Protect against sighand release/switch in exit/exec and
708 * also make timer sampling safe if it ends up calling
ebd7e7fc 709 * thread_group_cputime().
e73d84e3
FW
710 */
711 sighand = lock_task_sighand(p, &flags);
712 if (unlikely(sighand == NULL)) {
1da177e4
LT
713 /*
714 * The process has been reaped.
715 * We can't even collect a sample any more.
716 * Call the timer disarmed, nothing else to do.
717 */
55ccb616 718 timer->it.cpu.expires = 0;
2c13ce8f 719 return;
1da177e4 720 } else {
8c2d74f0 721 now = cpu_clock_sample_group(clkid, p, false);
e73d84e3 722 unlock_task_sighand(p, &flags);
1da177e4 723 }
1da177e4
LT
724 }
725
55ccb616 726 if (now < timer->it.cpu.expires) {
5f252b32 727 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
1da177e4
LT
728 } else {
729 /*
730 * The timer should have expired already, but the firing
731 * hasn't taken place yet. Say it's just about to expire.
732 */
733 itp->it_value.tv_nsec = 1;
734 itp->it_value.tv_sec = 0;
735 }
736}
737
2473f3e7
FW
738static unsigned long long
739check_timers_list(struct list_head *timers,
740 struct list_head *firing,
741 unsigned long long curr)
742{
743 int maxfire = 20;
744
745 while (!list_empty(timers)) {
746 struct cpu_timer_list *t;
747
748 t = list_first_entry(timers, struct cpu_timer_list, entry);
749
750 if (!--maxfire || curr < t->expires)
751 return t->expires;
752
753 t->firing = 1;
754 list_move_tail(&t->entry, firing);
755 }
756
757 return 0;
758}
759
34be3930
JL
760static inline void check_dl_overrun(struct task_struct *tsk)
761{
762 if (tsk->dl.dl_overrun) {
763 tsk->dl.dl_overrun = 0;
764 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
765 }
766}
767
1da177e4
LT
768/*
769 * Check for any per-thread CPU timers that have fired and move them off
770 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
771 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
772 */
773static void check_thread_timers(struct task_struct *tsk,
774 struct list_head *firing)
775{
2b69942f 776 struct list_head *timers = tsk->posix_cputimers.cpu_timers;
ebd7e7fc 777 struct task_cputime *tsk_expires = &tsk->cputime_expires;
0476ff2c 778 u64 expires, stime, utime;
d4bb5274 779 unsigned long soft;
1da177e4 780
34be3930
JL
781 if (dl_task(tsk))
782 check_dl_overrun(tsk);
783
934715a1
JL
784 /*
785 * If cputime_expires is zero, then there are no active
786 * per thread CPU timers.
787 */
788 if (task_cputime_zero(&tsk->cputime_expires))
789 return;
790
0476ff2c
TG
791 task_cputime(tsk, &utime, &stime);
792
793 expires = check_timers_list(timers, firing, utime + stime);
ebd7e7fc 794 tsk_expires->prof_exp = expires;
1da177e4 795
0476ff2c 796 expires = check_timers_list(++timers, firing, utime);
ebd7e7fc 797 tsk_expires->virt_exp = expires;
1da177e4 798
2473f3e7
FW
799 tsk_expires->sched_exp = check_timers_list(++timers, firing,
800 tsk->se.sum_exec_runtime);
78f2c7db
PZ
801
802 /*
803 * Check for the special case thread timers.
804 */
3cf29496 805 soft = task_rlimit(tsk, RLIMIT_RTTIME);
d4bb5274 806 if (soft != RLIM_INFINITY) {
3cf29496 807 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
78f2c7db 808
5a52dd50
PZ
809 if (hard != RLIM_INFINITY &&
810 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
811 /*
812 * At the hard limit, we just die.
813 * No need to calculate anything else now.
814 */
43fe8b8e
TG
815 if (print_fatal_signals) {
816 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
817 tsk->comm, task_pid_nr(tsk));
818 }
78f2c7db
PZ
819 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
820 return;
821 }
d4bb5274 822 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
823 /*
824 * At the soft limit, send a SIGXCPU every second.
825 */
d4bb5274
JS
826 if (soft < hard) {
827 soft += USEC_PER_SEC;
3cf29496
KO
828 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
829 soft;
78f2c7db 830 }
43fe8b8e
TG
831 if (print_fatal_signals) {
832 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
833 tsk->comm, task_pid_nr(tsk));
834 }
78f2c7db
PZ
835 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
836 }
837 }
b7878300
FW
838 if (task_cputime_zero(tsk_expires))
839 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
840}
841
1018016c 842static inline void stop_process_timers(struct signal_struct *sig)
3fccfd67 843{
15365c10 844 struct thread_group_cputimer *cputimer = &sig->cputimer;
3fccfd67 845
1018016c 846 /* Turn off cputimer->running. This is done without locking. */
d5c373eb 847 WRITE_ONCE(cputimer->running, false);
b7878300 848 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
3fccfd67
PZ
849}
850
42c4ab41 851static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
ebd7e7fc 852 u64 *expires, u64 cur_time, int signo)
42c4ab41 853{
64861634 854 if (!it->expires)
42c4ab41
SG
855 return;
856
858cf3a8
FW
857 if (cur_time >= it->expires) {
858 if (it->incr)
64861634 859 it->expires += it->incr;
858cf3a8 860 else
64861634 861 it->expires = 0;
42c4ab41 862
3f0a525e
XG
863 trace_itimer_expire(signo == SIGPROF ?
864 ITIMER_PROF : ITIMER_VIRTUAL,
6883f81a 865 task_tgid(tsk), cur_time);
42c4ab41
SG
866 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
867 }
868
858cf3a8
FW
869 if (it->expires && (!*expires || it->expires < *expires))
870 *expires = it->expires;
42c4ab41
SG
871}
872
1da177e4
LT
873/*
874 * Check for any per-thread CPU timers that have fired and move them
875 * off the tsk->*_timers list onto the firing list. Per-thread timers
876 * have already been taken off.
877 */
878static void check_process_timers(struct task_struct *tsk,
879 struct list_head *firing)
880{
881 struct signal_struct *const sig = tsk->signal;
2b69942f 882 struct list_head *timers = sig->posix_cputimers.cpu_timers;
ebd7e7fc
FW
883 u64 utime, ptime, virt_expires, prof_expires;
884 u64 sum_sched_runtime, sched_expires;
ebd7e7fc 885 struct task_cputime cputime;
d4bb5274 886 unsigned long soft;
1da177e4 887
934715a1
JL
888 /*
889 * If cputimer is not running, then there are no active
890 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
891 */
892 if (!READ_ONCE(tsk->signal->cputimer.running))
893 return;
894
a324956f 895 /*
c8d75aa4
JL
896 * Signify that a thread is checking for process timers.
897 * Write access to this field is protected by the sighand lock.
898 */
899 sig->cputimer.checking_timer = true;
900
1da177e4 901 /*
a324956f
TG
902 * Collect the current process totals. Group accounting is active
903 * so the sample can be taken directly.
1da177e4 904 */
a324956f 905 sample_cputime_atomic(&cputime, &sig->cputimer.cputime_atomic);
ebd7e7fc
FW
906 utime = cputime.utime;
907 ptime = utime + cputime.stime;
f06febc9 908 sum_sched_runtime = cputime.sum_exec_runtime;
1da177e4 909
2473f3e7
FW
910 prof_expires = check_timers_list(timers, firing, ptime);
911 virt_expires = check_timers_list(++timers, firing, utime);
912 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
1da177e4
LT
913
914 /*
915 * Check for the special case process timers.
916 */
42c4ab41
SG
917 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
918 SIGPROF);
919 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
920 SIGVTALRM);
3cf29496 921 soft = task_rlimit(tsk, RLIMIT_CPU);
d4bb5274 922 if (soft != RLIM_INFINITY) {
ebd7e7fc 923 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
3cf29496 924 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
ebd7e7fc 925 u64 x;
d4bb5274 926 if (psecs >= hard) {
1da177e4
LT
927 /*
928 * At the hard limit, we just die.
929 * No need to calculate anything else now.
930 */
43fe8b8e
TG
931 if (print_fatal_signals) {
932 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
933 tsk->comm, task_pid_nr(tsk));
934 }
1da177e4
LT
935 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
936 return;
937 }
d4bb5274 938 if (psecs >= soft) {
1da177e4
LT
939 /*
940 * At the soft limit, send a SIGXCPU every second.
941 */
43fe8b8e
TG
942 if (print_fatal_signals) {
943 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
944 tsk->comm, task_pid_nr(tsk));
945 }
1da177e4 946 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
d4bb5274
JS
947 if (soft < hard) {
948 soft++;
949 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1da177e4
LT
950 }
951 }
ebd7e7fc
FW
952 x = soft * NSEC_PER_SEC;
953 if (!prof_expires || x < prof_expires)
1da177e4 954 prof_expires = x;
1da177e4
LT
955 }
956
ebd7e7fc
FW
957 sig->cputime_expires.prof_exp = prof_expires;
958 sig->cputime_expires.virt_exp = virt_expires;
29f87b79
SG
959 sig->cputime_expires.sched_exp = sched_expires;
960 if (task_cputime_zero(&sig->cputime_expires))
961 stop_process_timers(sig);
c8d75aa4
JL
962
963 sig->cputimer.checking_timer = false;
1da177e4
LT
964}
965
966/*
96fe3b07 967 * This is called from the signal code (via posixtimer_rearm)
1da177e4
LT
968 * when the last timer signal was delivered and we have to reload the timer.
969 */
f37fb0aa 970static void posix_cpu_timer_rearm(struct k_itimer *timer)
1da177e4 971{
da020ce4 972 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
692117c1 973 struct task_struct *p = timer->it.cpu.task;
e73d84e3
FW
974 struct sighand_struct *sighand;
975 unsigned long flags;
ebd7e7fc 976 u64 now;
1da177e4 977
692117c1
TG
978 if (WARN_ON_ONCE(!p))
979 return;
1da177e4
LT
980
981 /*
982 * Fetch the current sample and update the timer's expiry time.
983 */
984 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
8c2d74f0 985 now = cpu_clock_sample(clkid, p);
1da177e4 986 bump_cpu_timer(timer, now);
724a3713 987 if (unlikely(p->exit_state))
af888d67 988 return;
724a3713 989
e73d84e3
FW
990 /* Protect timer list r/w in arm_timer() */
991 sighand = lock_task_sighand(p, &flags);
992 if (!sighand)
af888d67 993 return;
1da177e4 994 } else {
e73d84e3
FW
995 /*
996 * Protect arm_timer() and timer sampling in case of call to
ebd7e7fc 997 * thread_group_cputime().
e73d84e3
FW
998 */
999 sighand = lock_task_sighand(p, &flags);
1000 if (unlikely(sighand == NULL)) {
1da177e4
LT
1001 /*
1002 * The process has been reaped.
1003 * We can't even collect a sample any more.
1004 */
55ccb616 1005 timer->it.cpu.expires = 0;
af888d67 1006 return;
1da177e4 1007 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
af888d67
TG
1008 /* If the process is dying, no need to rearm */
1009 goto unlock;
1da177e4 1010 }
8c2d74f0 1011 now = cpu_clock_sample_group(clkid, p, true);
1da177e4 1012 bump_cpu_timer(timer, now);
e73d84e3 1013 /* Leave the sighand locked for the call below. */
1da177e4
LT
1014 }
1015
1016 /*
1017 * Now re-arm for the new expiry time.
1018 */
5eb9aa64 1019 arm_timer(timer);
af888d67 1020unlock:
e73d84e3 1021 unlock_task_sighand(p, &flags);
1da177e4
LT
1022}
1023
f06febc9
FM
1024/**
1025 * task_cputime_expired - Compare two task_cputime entities.
1026 *
1027 * @sample: The task_cputime structure to be checked for expiration.
1028 * @expires: Expiration times, against which @sample will be checked.
1029 *
1030 * Checks @sample against @expires to see if any field of @sample has expired.
1031 * Returns true if any field of the former is greater than the corresponding
1032 * field of the latter if the latter field is set. Otherwise returns false.
1033 */
ebd7e7fc
FW
1034static inline int task_cputime_expired(const struct task_cputime *sample,
1035 const struct task_cputime *expires)
f06febc9 1036{
64861634 1037 if (expires->utime && sample->utime >= expires->utime)
f06febc9 1038 return 1;
64861634 1039 if (expires->stime && sample->utime + sample->stime >= expires->stime)
f06febc9
FM
1040 return 1;
1041 if (expires->sum_exec_runtime != 0 &&
1042 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1043 return 1;
1044 return 0;
1045}
1046
1047/**
1048 * fastpath_timer_check - POSIX CPU timers fast path.
1049 *
1050 * @tsk: The task (thread) being checked.
f06febc9 1051 *
bb34d92f
FM
1052 * Check the task and thread group timers. If both are zero (there are no
1053 * timers set) return false. Otherwise snapshot the task and thread group
1054 * timers and compare them with the corresponding expiration times. Return
1055 * true if a timer has expired, else return false.
f06febc9 1056 */
bb34d92f 1057static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1058{
ad133ba3 1059 struct signal_struct *sig;
bb34d92f 1060
bb34d92f 1061 if (!task_cputime_zero(&tsk->cputime_expires)) {
ebd7e7fc 1062 struct task_cputime task_sample;
bb34d92f 1063
ebd7e7fc 1064 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
7c177d99 1065 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
bb34d92f
FM
1066 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1067 return 1;
1068 }
ad133ba3
ON
1069
1070 sig = tsk->signal;
c8d75aa4
JL
1071 /*
1072 * Check if thread group timers expired when the cputimer is
1073 * running and no other thread in the group is already checking
1074 * for thread group cputimers. These fields are read without the
1075 * sighand lock. However, this is fine because this is meant to
1076 * be a fastpath heuristic to determine whether we should try to
1077 * acquire the sighand lock to check/handle timers.
1078 *
1079 * In the worst case scenario, if 'running' or 'checking_timer' gets
1080 * set but the current thread doesn't see the change yet, we'll wait
1081 * until the next thread in the group gets a scheduler interrupt to
1082 * handle the timer. This isn't an issue in practice because these
1083 * types of delays with signals actually getting sent are expected.
1084 */
1085 if (READ_ONCE(sig->cputimer.running) &&
1086 !READ_ONCE(sig->cputimer.checking_timer)) {
ebd7e7fc 1087 struct task_cputime group_sample;
bb34d92f 1088
71107445 1089 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
8d1f431c 1090
bb34d92f
FM
1091 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1092 return 1;
1093 }
37bebc70 1094
34be3930
JL
1095 if (dl_task(tsk) && tsk->dl.dl_overrun)
1096 return 1;
1097
f55db609 1098 return 0;
f06febc9
FM
1099}
1100
1da177e4
LT
1101/*
1102 * This is called from the timer interrupt handler. The irq handler has
1103 * already updated our counts. We need to check if any timers fire now.
1104 * Interrupts are disabled.
1105 */
dce3e8fd 1106void run_posix_cpu_timers(void)
1da177e4 1107{
dce3e8fd 1108 struct task_struct *tsk = current;
1da177e4 1109 struct k_itimer *timer, *next;
0bdd2ed4 1110 unsigned long flags;
dce3e8fd 1111 LIST_HEAD(firing);
1da177e4 1112
a6968220 1113 lockdep_assert_irqs_disabled();
1da177e4 1114
1da177e4 1115 /*
f06febc9 1116 * The fast path checks that there are no expired thread or thread
bb34d92f 1117 * group timers. If that's so, just return.
1da177e4 1118 */
bb34d92f 1119 if (!fastpath_timer_check(tsk))
f06febc9 1120 return;
5ce73a4a 1121
0bdd2ed4
ON
1122 if (!lock_task_sighand(tsk, &flags))
1123 return;
bb34d92f
FM
1124 /*
1125 * Here we take off tsk->signal->cpu_timers[N] and
1126 * tsk->cpu_timers[N] all the timers that are firing, and
1127 * put them on the firing list.
1128 */
1129 check_thread_timers(tsk, &firing);
934715a1
JL
1130
1131 check_process_timers(tsk, &firing);
1da177e4 1132
bb34d92f
FM
1133 /*
1134 * We must release these locks before taking any timer's lock.
1135 * There is a potential race with timer deletion here, as the
1136 * siglock now protects our private firing list. We have set
1137 * the firing flag in each timer, so that a deletion attempt
1138 * that gets the timer lock before we do will give it up and
1139 * spin until we've taken care of that timer below.
1140 */
0bdd2ed4 1141 unlock_task_sighand(tsk, &flags);
1da177e4
LT
1142
1143 /*
1144 * Now that all the timers on our list have the firing flag,
25985edc 1145 * no one will touch their list entries but us. We'll take
1da177e4
LT
1146 * each timer's lock before clearing its firing flag, so no
1147 * timer call will interfere.
1148 */
1149 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1150 int cpu_firing;
1151
1da177e4
LT
1152 spin_lock(&timer->it_lock);
1153 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1154 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1155 timer->it.cpu.firing = 0;
1156 /*
1157 * The firing flag is -1 if we collided with a reset
1158 * of the timer, which already reported this
1159 * almost-firing as an overrun. So don't generate an event.
1160 */
6e85c5ba 1161 if (likely(cpu_firing >= 0))
1da177e4 1162 cpu_timer_fire(timer);
1da177e4
LT
1163 spin_unlock(&timer->it_lock);
1164 }
1165}
1166
1167/*
f55db609 1168 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1169 * The tsk->sighand->siglock must be held by the caller.
1da177e4
LT
1170 */
1171void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
858cf3a8 1172 u64 *newval, u64 *oldval)
1da177e4 1173{
858cf3a8 1174 u64 now;
1da177e4 1175
692117c1
TG
1176 if (WARN_ON_ONCE(clock_idx >= CPUCLOCK_SCHED))
1177 return;
1178
8c2d74f0 1179 now = cpu_clock_sample_group(clock_idx, tsk, true);
1da177e4 1180
5405d005 1181 if (oldval) {
f55db609
SG
1182 /*
1183 * We are setting itimer. The *oldval is absolute and we update
1184 * it to be relative, *newval argument is relative and we update
1185 * it to be absolute.
1186 */
64861634 1187 if (*oldval) {
858cf3a8 1188 if (*oldval <= now) {
1da177e4 1189 /* Just about to fire. */
858cf3a8 1190 *oldval = TICK_NSEC;
1da177e4 1191 } else {
858cf3a8 1192 *oldval -= now;
1da177e4
LT
1193 }
1194 }
1195
64861634 1196 if (!*newval)
b7878300 1197 return;
858cf3a8 1198 *newval += now;
1da177e4
LT
1199 }
1200
1201 /*
f55db609
SG
1202 * Update expiration cache if we are the earliest timer, or eventually
1203 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1da177e4 1204 */
f55db609
SG
1205 switch (clock_idx) {
1206 case CPUCLOCK_PROF:
858cf3a8
FW
1207 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1208 tsk->signal->cputime_expires.prof_exp = *newval;
f55db609
SG
1209 break;
1210 case CPUCLOCK_VIRT:
858cf3a8
FW
1211 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1212 tsk->signal->cputime_expires.virt_exp = *newval;
f55db609 1213 break;
1da177e4 1214 }
b7878300
FW
1215
1216 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
1217}
1218
e4b76555 1219static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
343d8fc2 1220 const struct timespec64 *rqtp)
1da177e4 1221{
86a9c446 1222 struct itimerspec64 it;
343d8fc2
TG
1223 struct k_itimer timer;
1224 u64 expires;
1da177e4
LT
1225 int error;
1226
1da177e4
LT
1227 /*
1228 * Set up a temporary timer and then wait for it to go off.
1229 */
1230 memset(&timer, 0, sizeof timer);
1231 spin_lock_init(&timer.it_lock);
1232 timer.it_clock = which_clock;
1233 timer.it_overrun = -1;
1234 error = posix_cpu_timer_create(&timer);
1235 timer.it_process = current;
1236 if (!error) {
5f252b32 1237 static struct itimerspec64 zero_it;
edbeda46 1238 struct restart_block *restart;
e4b76555 1239
edbeda46 1240 memset(&it, 0, sizeof(it));
86a9c446 1241 it.it_value = *rqtp;
1da177e4
LT
1242
1243 spin_lock_irq(&timer.it_lock);
86a9c446 1244 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1da177e4
LT
1245 if (error) {
1246 spin_unlock_irq(&timer.it_lock);
1247 return error;
1248 }
1249
1250 while (!signal_pending(current)) {
55ccb616 1251 if (timer.it.cpu.expires == 0) {
1da177e4 1252 /*
e6c42c29
SG
1253 * Our timer fired and was reset, below
1254 * deletion can not fail.
1da177e4 1255 */
e6c42c29 1256 posix_cpu_timer_del(&timer);
1da177e4
LT
1257 spin_unlock_irq(&timer.it_lock);
1258 return 0;
1259 }
1260
1261 /*
1262 * Block until cpu_timer_fire (or a signal) wakes us.
1263 */
1264 __set_current_state(TASK_INTERRUPTIBLE);
1265 spin_unlock_irq(&timer.it_lock);
1266 schedule();
1267 spin_lock_irq(&timer.it_lock);
1268 }
1269
1270 /*
1271 * We were interrupted by a signal.
1272 */
343d8fc2 1273 expires = timer.it.cpu.expires;
86a9c446 1274 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
e6c42c29
SG
1275 if (!error) {
1276 /*
1277 * Timer is now unarmed, deletion can not fail.
1278 */
1279 posix_cpu_timer_del(&timer);
1280 }
1da177e4
LT
1281 spin_unlock_irq(&timer.it_lock);
1282
e6c42c29
SG
1283 while (error == TIMER_RETRY) {
1284 /*
1285 * We need to handle case when timer was or is in the
1286 * middle of firing. In other cases we already freed
1287 * resources.
1288 */
1289 spin_lock_irq(&timer.it_lock);
1290 error = posix_cpu_timer_del(&timer);
1291 spin_unlock_irq(&timer.it_lock);
1292 }
1293
86a9c446 1294 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1da177e4
LT
1295 /*
1296 * It actually did fire already.
1297 */
1298 return 0;
1299 }
1300
e4b76555 1301 error = -ERESTART_RESTARTBLOCK;
86a9c446
AV
1302 /*
1303 * Report back to the user the time still remaining.
1304 */
edbeda46 1305 restart = &current->restart_block;
343d8fc2 1306 restart->nanosleep.expires = expires;
c0edd7c9
DD
1307 if (restart->nanosleep.type != TT_NONE)
1308 error = nanosleep_copyout(restart, &it.it_value);
e4b76555
TA
1309 }
1310
1311 return error;
1312}
1313
bc2c8ea4
TG
1314static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1315
1316static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1317 const struct timespec64 *rqtp)
e4b76555 1318{
f56141e3 1319 struct restart_block *restart_block = &current->restart_block;
e4b76555
TA
1320 int error;
1321
1322 /*
1323 * Diagnose required errors first.
1324 */
1325 if (CPUCLOCK_PERTHREAD(which_clock) &&
1326 (CPUCLOCK_PID(which_clock) == 0 ||
01a21974 1327 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
e4b76555
TA
1328 return -EINVAL;
1329
86a9c446 1330 error = do_cpu_nanosleep(which_clock, flags, rqtp);
e4b76555
TA
1331
1332 if (error == -ERESTART_RESTARTBLOCK) {
1333
3751f9f2 1334 if (flags & TIMER_ABSTIME)
e4b76555 1335 return -ERESTARTNOHAND;
1da177e4 1336
1711ef38 1337 restart_block->fn = posix_cpu_nsleep_restart;
ab8177bc 1338 restart_block->nanosleep.clockid = which_clock;
1da177e4 1339 }
1da177e4
LT
1340 return error;
1341}
1342
bc2c8ea4 1343static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4 1344{
ab8177bc 1345 clockid_t which_clock = restart_block->nanosleep.clockid;
ad196384 1346 struct timespec64 t;
97735f25 1347
ad196384 1348 t = ns_to_timespec64(restart_block->nanosleep.expires);
97735f25 1349
86a9c446 1350 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1da177e4
LT
1351}
1352
29f1b2b0
ND
1353#define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1354#define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1da177e4 1355
a924b04d 1356static int process_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1357 struct timespec64 *tp)
1da177e4
LT
1358{
1359 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1360}
a924b04d 1361static int process_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1362 struct timespec64 *tp)
1da177e4
LT
1363{
1364 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1365}
1366static int process_cpu_timer_create(struct k_itimer *timer)
1367{
1368 timer->it_clock = PROCESS_CLOCK;
1369 return posix_cpu_timer_create(timer);
1370}
a924b04d 1371static int process_cpu_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1372 const struct timespec64 *rqtp)
1da177e4 1373{
99e6c0e6 1374 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1da177e4 1375}
a924b04d 1376static int thread_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1377 struct timespec64 *tp)
1da177e4
LT
1378{
1379 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1380}
a924b04d 1381static int thread_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1382 struct timespec64 *tp)
1da177e4
LT
1383{
1384 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1385}
1386static int thread_cpu_timer_create(struct k_itimer *timer)
1387{
1388 timer->it_clock = THREAD_CLOCK;
1389 return posix_cpu_timer_create(timer);
1390}
1da177e4 1391
d3ba5a9a 1392const struct k_clock clock_posix_cpu = {
1976945e
TG
1393 .clock_getres = posix_cpu_clock_getres,
1394 .clock_set = posix_cpu_clock_set,
1395 .clock_get = posix_cpu_clock_get,
1396 .timer_create = posix_cpu_timer_create,
1397 .nsleep = posix_cpu_nsleep,
1976945e
TG
1398 .timer_set = posix_cpu_timer_set,
1399 .timer_del = posix_cpu_timer_del,
1400 .timer_get = posix_cpu_timer_get,
f37fb0aa 1401 .timer_rearm = posix_cpu_timer_rearm,
1976945e
TG
1402};
1403
d3ba5a9a
CH
1404const struct k_clock clock_process = {
1405 .clock_getres = process_cpu_clock_getres,
1406 .clock_get = process_cpu_clock_get,
1407 .timer_create = process_cpu_timer_create,
1408 .nsleep = process_cpu_nsleep,
d3ba5a9a 1409};
1da177e4 1410
d3ba5a9a
CH
1411const struct k_clock clock_thread = {
1412 .clock_getres = thread_cpu_clock_getres,
1413 .clock_get = thread_cpu_clock_get,
1414 .timer_create = thread_cpu_timer_create,
1415};