posix-timers: Use get_timespec64() and put_timespec64()
[linux-block.git] / kernel / time / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
3f07c014 5#include <linux/sched/signal.h>
32ef5517 6#include <linux/sched/cputime.h>
1da177e4 7#include <linux/posix-timers.h>
1da177e4 8#include <linux/errno.h>
f8bd2258 9#include <linux/math64.h>
7c0f6ba6 10#include <linux/uaccess.h>
bb34d92f 11#include <linux/kernel_stat.h>
3f0a525e 12#include <trace/events/timer.h>
a8572160
FW
13#include <linux/tick.h>
14#include <linux/workqueue.h>
edbeda46 15#include <linux/compat.h>
1da177e4 16
bab0aae9
TG
17#include "posix-timers.h"
18
f37fb0aa
TG
19static void posix_cpu_timer_rearm(struct k_itimer *timer);
20
f06febc9 21/*
f55db609
SG
22 * Called after updating RLIMIT_CPU to run cpu timer and update
23 * tsk->signal->cputime_expires expiration cache if necessary. Needs
24 * siglock protection since other code may update expiration cache as
25 * well.
f06febc9 26 */
5ab46b34 27void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
f06febc9 28{
858cf3a8 29 u64 nsecs = rlim_new * NSEC_PER_SEC;
f06febc9 30
5ab46b34 31 spin_lock_irq(&task->sighand->siglock);
858cf3a8 32 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
5ab46b34 33 spin_unlock_irq(&task->sighand->siglock);
f06febc9
FM
34}
35
a924b04d 36static int check_clock(const clockid_t which_clock)
1da177e4
LT
37{
38 int error = 0;
39 struct task_struct *p;
40 const pid_t pid = CPUCLOCK_PID(which_clock);
41
42 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
43 return -EINVAL;
44
45 if (pid == 0)
46 return 0;
47
c0deae8c 48 rcu_read_lock();
8dc86af0 49 p = find_task_by_vpid(pid);
bac0abd6 50 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
c0deae8c 51 same_thread_group(p, current) : has_group_leader_pid(p))) {
1da177e4
LT
52 error = -EINVAL;
53 }
c0deae8c 54 rcu_read_unlock();
1da177e4
LT
55
56 return error;
57}
58
1da177e4
LT
59/*
60 * Update expiry time from increment, and increase overrun count,
61 * given the current clock sample.
62 */
ebd7e7fc 63static void bump_cpu_timer(struct k_itimer *timer, u64 now)
1da177e4
LT
64{
65 int i;
ebd7e7fc 66 u64 delta, incr;
1da177e4 67
55ccb616 68 if (timer->it.cpu.incr == 0)
1da177e4
LT
69 return;
70
55ccb616
FW
71 if (now < timer->it.cpu.expires)
72 return;
1da177e4 73
55ccb616
FW
74 incr = timer->it.cpu.incr;
75 delta = now + incr - timer->it.cpu.expires;
1da177e4 76
55ccb616
FW
77 /* Don't use (incr*2 < delta), incr*2 might overflow. */
78 for (i = 0; incr < delta - incr; i++)
79 incr = incr << 1;
80
81 for (; i >= 0; incr >>= 1, i--) {
82 if (delta < incr)
83 continue;
84
85 timer->it.cpu.expires += incr;
86 timer->it_overrun += 1 << i;
87 delta -= incr;
1da177e4
LT
88 }
89}
90
555347f6
FW
91/**
92 * task_cputime_zero - Check a task_cputime struct for all zero fields.
93 *
94 * @cputime: The struct to compare.
95 *
96 * Checks @cputime to see if all fields are zero. Returns true if all fields
97 * are zero, false if any field is nonzero.
98 */
ebd7e7fc 99static inline int task_cputime_zero(const struct task_cputime *cputime)
555347f6
FW
100{
101 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
102 return 1;
103 return 0;
104}
105
ebd7e7fc 106static inline u64 prof_ticks(struct task_struct *p)
1da177e4 107{
ebd7e7fc 108 u64 utime, stime;
6fac4829 109
ebd7e7fc 110 task_cputime(p, &utime, &stime);
6fac4829 111
ebd7e7fc 112 return utime + stime;
1da177e4 113}
ebd7e7fc 114static inline u64 virt_ticks(struct task_struct *p)
1da177e4 115{
ebd7e7fc 116 u64 utime, stime;
6fac4829 117
ebd7e7fc 118 task_cputime(p, &utime, &stime);
6fac4829 119
ebd7e7fc 120 return utime;
1da177e4 121}
1da177e4 122
bc2c8ea4 123static int
d2e3e0ca 124posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
1da177e4
LT
125{
126 int error = check_clock(which_clock);
127 if (!error) {
128 tp->tv_sec = 0;
129 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
130 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
131 /*
132 * If sched_clock is using a cycle counter, we
133 * don't have any idea of its true resolution
134 * exported, but it is much more than 1s/HZ.
135 */
136 tp->tv_nsec = 1;
137 }
138 }
139 return error;
140}
141
bc2c8ea4 142static int
0fe6afe3 143posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
1da177e4
LT
144{
145 /*
146 * You can never reset a CPU clock, but we check for other errors
147 * in the call before failing with EPERM.
148 */
149 int error = check_clock(which_clock);
150 if (error == 0) {
151 error = -EPERM;
152 }
153 return error;
154}
155
156
157/*
158 * Sample a per-thread clock for the given task.
159 */
ebd7e7fc
FW
160static int cpu_clock_sample(const clockid_t which_clock,
161 struct task_struct *p, u64 *sample)
1da177e4
LT
162{
163 switch (CPUCLOCK_WHICH(which_clock)) {
164 default:
165 return -EINVAL;
166 case CPUCLOCK_PROF:
55ccb616 167 *sample = prof_ticks(p);
1da177e4
LT
168 break;
169 case CPUCLOCK_VIRT:
55ccb616 170 *sample = virt_ticks(p);
1da177e4
LT
171 break;
172 case CPUCLOCK_SCHED:
55ccb616 173 *sample = task_sched_runtime(p);
1da177e4
LT
174 break;
175 }
176 return 0;
177}
178
1018016c
JL
179/*
180 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
181 * to avoid race conditions with concurrent updates to cputime.
182 */
183static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
4da94d49 184{
1018016c
JL
185 u64 curr_cputime;
186retry:
187 curr_cputime = atomic64_read(cputime);
188 if (sum_cputime > curr_cputime) {
189 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
190 goto retry;
191 }
192}
4da94d49 193
ebd7e7fc 194static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
1018016c 195{
71107445
JL
196 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
197 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
198 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
1018016c 199}
4da94d49 200
71107445 201/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
ebd7e7fc 202static inline void sample_cputime_atomic(struct task_cputime *times,
71107445 203 struct task_cputime_atomic *atomic_times)
1018016c 204{
71107445
JL
205 times->utime = atomic64_read(&atomic_times->utime);
206 times->stime = atomic64_read(&atomic_times->stime);
207 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
4da94d49
PZ
208}
209
ebd7e7fc 210void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
4da94d49
PZ
211{
212 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
ebd7e7fc 213 struct task_cputime sum;
4da94d49 214
1018016c
JL
215 /* Check if cputimer isn't running. This is accessed without locking. */
216 if (!READ_ONCE(cputimer->running)) {
4da94d49
PZ
217 /*
218 * The POSIX timer interface allows for absolute time expiry
219 * values through the TIMER_ABSTIME flag, therefore we have
1018016c 220 * to synchronize the timer to the clock every time we start it.
4da94d49 221 */
ebd7e7fc 222 thread_group_cputime(tsk, &sum);
71107445 223 update_gt_cputime(&cputimer->cputime_atomic, &sum);
1018016c
JL
224
225 /*
226 * We're setting cputimer->running without a lock. Ensure
227 * this only gets written to in one operation. We set
228 * running after update_gt_cputime() as a small optimization,
229 * but barriers are not required because update_gt_cputime()
230 * can handle concurrent updates.
231 */
d5c373eb 232 WRITE_ONCE(cputimer->running, true);
1018016c 233 }
71107445 234 sample_cputime_atomic(times, &cputimer->cputime_atomic);
4da94d49
PZ
235}
236
1da177e4
LT
237/*
238 * Sample a process (thread group) clock for the given group_leader task.
e73d84e3
FW
239 * Must be called with task sighand lock held for safe while_each_thread()
240 * traversal.
1da177e4 241 */
bb34d92f
FM
242static int cpu_clock_sample_group(const clockid_t which_clock,
243 struct task_struct *p,
ebd7e7fc 244 u64 *sample)
1da177e4 245{
ebd7e7fc 246 struct task_cputime cputime;
f06febc9 247
eccdaeaf 248 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
249 default:
250 return -EINVAL;
251 case CPUCLOCK_PROF:
ebd7e7fc
FW
252 thread_group_cputime(p, &cputime);
253 *sample = cputime.utime + cputime.stime;
1da177e4
LT
254 break;
255 case CPUCLOCK_VIRT:
ebd7e7fc
FW
256 thread_group_cputime(p, &cputime);
257 *sample = cputime.utime;
1da177e4
LT
258 break;
259 case CPUCLOCK_SCHED:
ebd7e7fc 260 thread_group_cputime(p, &cputime);
55ccb616 261 *sample = cputime.sum_exec_runtime;
1da177e4
LT
262 break;
263 }
264 return 0;
265}
266
33ab0fec
FW
267static int posix_cpu_clock_get_task(struct task_struct *tsk,
268 const clockid_t which_clock,
3c9c12f4 269 struct timespec64 *tp)
33ab0fec
FW
270{
271 int err = -EINVAL;
ebd7e7fc 272 u64 rtn;
33ab0fec
FW
273
274 if (CPUCLOCK_PERTHREAD(which_clock)) {
275 if (same_thread_group(tsk, current))
276 err = cpu_clock_sample(which_clock, tsk, &rtn);
277 } else {
50875788 278 if (tsk == current || thread_group_leader(tsk))
33ab0fec 279 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
33ab0fec
FW
280 }
281
282 if (!err)
3c9c12f4 283 *tp = ns_to_timespec64(rtn);
33ab0fec
FW
284
285 return err;
286}
287
1da177e4 288
3c9c12f4 289static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
1da177e4
LT
290{
291 const pid_t pid = CPUCLOCK_PID(which_clock);
33ab0fec 292 int err = -EINVAL;
1da177e4
LT
293
294 if (pid == 0) {
295 /*
296 * Special case constant value for our own clocks.
297 * We don't have to do any lookup to find ourselves.
298 */
33ab0fec 299 err = posix_cpu_clock_get_task(current, which_clock, tp);
1da177e4
LT
300 } else {
301 /*
302 * Find the given PID, and validate that the caller
303 * should be able to see it.
304 */
305 struct task_struct *p;
1f2ea083 306 rcu_read_lock();
8dc86af0 307 p = find_task_by_vpid(pid);
33ab0fec
FW
308 if (p)
309 err = posix_cpu_clock_get_task(p, which_clock, tp);
1f2ea083 310 rcu_read_unlock();
1da177e4
LT
311 }
312
33ab0fec 313 return err;
1da177e4
LT
314}
315
1da177e4
LT
316/*
317 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
318 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
319 * new timer already all-zeros initialized.
1da177e4 320 */
bc2c8ea4 321static int posix_cpu_timer_create(struct k_itimer *new_timer)
1da177e4
LT
322{
323 int ret = 0;
324 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
325 struct task_struct *p;
326
327 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
328 return -EINVAL;
329
d97bb75d
TG
330 new_timer->kclock = &clock_posix_cpu;
331
1da177e4 332 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
1da177e4 333
c0deae8c 334 rcu_read_lock();
1da177e4
LT
335 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
336 if (pid == 0) {
337 p = current;
338 } else {
8dc86af0 339 p = find_task_by_vpid(pid);
bac0abd6 340 if (p && !same_thread_group(p, current))
1da177e4
LT
341 p = NULL;
342 }
343 } else {
344 if (pid == 0) {
345 p = current->group_leader;
346 } else {
8dc86af0 347 p = find_task_by_vpid(pid);
c0deae8c 348 if (p && !has_group_leader_pid(p))
1da177e4
LT
349 p = NULL;
350 }
351 }
352 new_timer->it.cpu.task = p;
353 if (p) {
354 get_task_struct(p);
355 } else {
356 ret = -EINVAL;
357 }
c0deae8c 358 rcu_read_unlock();
1da177e4
LT
359
360 return ret;
361}
362
363/*
364 * Clean up a CPU-clock timer that is about to be destroyed.
365 * This is called from timer deletion with the timer already locked.
366 * If we return TIMER_RETRY, it's necessary to release the timer's lock
367 * and try again. (This happens when the timer is in the middle of firing.)
368 */
bc2c8ea4 369static int posix_cpu_timer_del(struct k_itimer *timer)
1da177e4 370{
108150ea 371 int ret = 0;
3d7a1427
FW
372 unsigned long flags;
373 struct sighand_struct *sighand;
374 struct task_struct *p = timer->it.cpu.task;
1da177e4 375
a3222f88 376 WARN_ON_ONCE(p == NULL);
108150ea 377
3d7a1427
FW
378 /*
379 * Protect against sighand release/switch in exit/exec and process/
380 * thread timer list entry concurrent read/writes.
381 */
382 sighand = lock_task_sighand(p, &flags);
383 if (unlikely(sighand == NULL)) {
a3222f88
FW
384 /*
385 * We raced with the reaping of the task.
386 * The deletion should have cleared us off the list.
387 */
531f64fd 388 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
a3222f88 389 } else {
a3222f88
FW
390 if (timer->it.cpu.firing)
391 ret = TIMER_RETRY;
392 else
393 list_del(&timer->it.cpu.entry);
3d7a1427
FW
394
395 unlock_task_sighand(p, &flags);
1da177e4 396 }
a3222f88
FW
397
398 if (!ret)
399 put_task_struct(p);
1da177e4 400
108150ea 401 return ret;
1da177e4
LT
402}
403
af82eb3c 404static void cleanup_timers_list(struct list_head *head)
1a7fa510
FW
405{
406 struct cpu_timer_list *timer, *next;
407
a0b2062b 408 list_for_each_entry_safe(timer, next, head, entry)
1a7fa510 409 list_del_init(&timer->entry);
1a7fa510
FW
410}
411
1da177e4
LT
412/*
413 * Clean out CPU timers still ticking when a thread exited. The task
414 * pointer is cleared, and the expiry time is replaced with the residual
415 * time for later timer_gettime calls to return.
416 * This must be called with the siglock held.
417 */
af82eb3c 418static void cleanup_timers(struct list_head *head)
1da177e4 419{
af82eb3c
FW
420 cleanup_timers_list(head);
421 cleanup_timers_list(++head);
422 cleanup_timers_list(++head);
1da177e4
LT
423}
424
425/*
426 * These are both called with the siglock held, when the current thread
427 * is being reaped. When the final (leader) thread in the group is reaped,
428 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
429 */
430void posix_cpu_timers_exit(struct task_struct *tsk)
431{
af82eb3c 432 cleanup_timers(tsk->cpu_timers);
1da177e4
LT
433}
434void posix_cpu_timers_exit_group(struct task_struct *tsk)
435{
af82eb3c 436 cleanup_timers(tsk->signal->cpu_timers);
1da177e4
LT
437}
438
ebd7e7fc 439static inline int expires_gt(u64 expires, u64 new_exp)
d1e3b6d1 440{
64861634 441 return expires == 0 || expires > new_exp;
d1e3b6d1
SG
442}
443
1da177e4
LT
444/*
445 * Insert the timer on the appropriate list before any timers that
e73d84e3 446 * expire later. This must be called with the sighand lock held.
1da177e4 447 */
5eb9aa64 448static void arm_timer(struct k_itimer *timer)
1da177e4
LT
449{
450 struct task_struct *p = timer->it.cpu.task;
451 struct list_head *head, *listpos;
ebd7e7fc 452 struct task_cputime *cputime_expires;
1da177e4
LT
453 struct cpu_timer_list *const nt = &timer->it.cpu;
454 struct cpu_timer_list *next;
1da177e4 455
5eb9aa64
SG
456 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
457 head = p->cpu_timers;
458 cputime_expires = &p->cputime_expires;
459 } else {
460 head = p->signal->cpu_timers;
461 cputime_expires = &p->signal->cputime_expires;
462 }
1da177e4
LT
463 head += CPUCLOCK_WHICH(timer->it_clock);
464
1da177e4 465 listpos = head;
5eb9aa64 466 list_for_each_entry(next, head, entry) {
55ccb616 467 if (nt->expires < next->expires)
5eb9aa64
SG
468 break;
469 listpos = &next->entry;
1da177e4
LT
470 }
471 list_add(&nt->entry, listpos);
472
473 if (listpos == head) {
ebd7e7fc 474 u64 exp = nt->expires;
5eb9aa64 475
1da177e4 476 /*
5eb9aa64
SG
477 * We are the new earliest-expiring POSIX 1.b timer, hence
478 * need to update expiration cache. Take into account that
479 * for process timers we share expiration cache with itimers
480 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
1da177e4
LT
481 */
482
5eb9aa64
SG
483 switch (CPUCLOCK_WHICH(timer->it_clock)) {
484 case CPUCLOCK_PROF:
ebd7e7fc
FW
485 if (expires_gt(cputime_expires->prof_exp, exp))
486 cputime_expires->prof_exp = exp;
5eb9aa64
SG
487 break;
488 case CPUCLOCK_VIRT:
ebd7e7fc
FW
489 if (expires_gt(cputime_expires->virt_exp, exp))
490 cputime_expires->virt_exp = exp;
5eb9aa64
SG
491 break;
492 case CPUCLOCK_SCHED:
ebd7e7fc 493 if (expires_gt(cputime_expires->sched_exp, exp))
55ccb616 494 cputime_expires->sched_exp = exp;
5eb9aa64 495 break;
1da177e4 496 }
b7878300
FW
497 if (CPUCLOCK_PERTHREAD(timer->it_clock))
498 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
499 else
500 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4 501 }
1da177e4
LT
502}
503
504/*
505 * The timer is locked, fire it and arrange for its reload.
506 */
507static void cpu_timer_fire(struct k_itimer *timer)
508{
1f169f84
SG
509 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
510 /*
511 * User don't want any signal.
512 */
55ccb616 513 timer->it.cpu.expires = 0;
1f169f84 514 } else if (unlikely(timer->sigq == NULL)) {
1da177e4
LT
515 /*
516 * This a special case for clock_nanosleep,
517 * not a normal timer from sys_timer_create.
518 */
519 wake_up_process(timer->it_process);
55ccb616
FW
520 timer->it.cpu.expires = 0;
521 } else if (timer->it.cpu.incr == 0) {
1da177e4
LT
522 /*
523 * One-shot timer. Clear it as soon as it's fired.
524 */
525 posix_timer_event(timer, 0);
55ccb616 526 timer->it.cpu.expires = 0;
1da177e4
LT
527 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
528 /*
529 * The signal did not get queued because the signal
530 * was ignored, so we won't get any callback to
531 * reload the timer. But we need to keep it
532 * ticking in case the signal is deliverable next time.
533 */
f37fb0aa 534 posix_cpu_timer_rearm(timer);
af888d67 535 ++timer->it_requeue_pending;
1da177e4
LT
536 }
537}
538
3997ad31
PZ
539/*
540 * Sample a process (thread group) timer for the given group_leader task.
e73d84e3
FW
541 * Must be called with task sighand lock held for safe while_each_thread()
542 * traversal.
3997ad31
PZ
543 */
544static int cpu_timer_sample_group(const clockid_t which_clock,
ebd7e7fc 545 struct task_struct *p, u64 *sample)
3997ad31 546{
ebd7e7fc 547 struct task_cputime cputime;
3997ad31
PZ
548
549 thread_group_cputimer(p, &cputime);
550 switch (CPUCLOCK_WHICH(which_clock)) {
551 default:
552 return -EINVAL;
553 case CPUCLOCK_PROF:
ebd7e7fc 554 *sample = cputime.utime + cputime.stime;
3997ad31
PZ
555 break;
556 case CPUCLOCK_VIRT:
ebd7e7fc 557 *sample = cputime.utime;
3997ad31
PZ
558 break;
559 case CPUCLOCK_SCHED:
23cfa361 560 *sample = cputime.sum_exec_runtime;
3997ad31
PZ
561 break;
562 }
563 return 0;
564}
565
1da177e4
LT
566/*
567 * Guts of sys_timer_settime for CPU timers.
568 * This is called with the timer locked and interrupts disabled.
569 * If we return TIMER_RETRY, it's necessary to release the timer's lock
570 * and try again. (This happens when the timer is in the middle of firing.)
571 */
e73d84e3 572static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
5f252b32 573 struct itimerspec64 *new, struct itimerspec64 *old)
1da177e4 574{
e73d84e3
FW
575 unsigned long flags;
576 struct sighand_struct *sighand;
1da177e4 577 struct task_struct *p = timer->it.cpu.task;
ebd7e7fc 578 u64 old_expires, new_expires, old_incr, val;
1da177e4
LT
579 int ret;
580
a3222f88 581 WARN_ON_ONCE(p == NULL);
1da177e4 582
5f252b32 583 new_expires = timespec64_to_ns(&new->it_value);
1da177e4 584
1da177e4 585 /*
e73d84e3
FW
586 * Protect against sighand release/switch in exit/exec and p->cpu_timers
587 * and p->signal->cpu_timers read/write in arm_timer()
588 */
589 sighand = lock_task_sighand(p, &flags);
590 /*
591 * If p has just been reaped, we can no
1da177e4
LT
592 * longer get any information about it at all.
593 */
e73d84e3 594 if (unlikely(sighand == NULL)) {
1da177e4
LT
595 return -ESRCH;
596 }
597
598 /*
599 * Disarm any old timer after extracting its expiry time.
600 */
531f64fd 601 WARN_ON_ONCE(!irqs_disabled());
a69ac4a7
ON
602
603 ret = 0;
ae1a78ee 604 old_incr = timer->it.cpu.incr;
1da177e4 605 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
606 if (unlikely(timer->it.cpu.firing)) {
607 timer->it.cpu.firing = -1;
608 ret = TIMER_RETRY;
609 } else
610 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
611
612 /*
613 * We need to sample the current value to convert the new
614 * value from to relative and absolute, and to convert the
615 * old value from absolute to relative. To set a process
616 * timer, we need a sample to balance the thread expiry
617 * times (in arm_timer). With an absolute time, we must
618 * check if it's already passed. In short, we need a sample.
619 */
620 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
621 cpu_clock_sample(timer->it_clock, p, &val);
622 } else {
3997ad31 623 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
624 }
625
626 if (old) {
55ccb616 627 if (old_expires == 0) {
1da177e4
LT
628 old->it_value.tv_sec = 0;
629 old->it_value.tv_nsec = 0;
630 } else {
631 /*
632 * Update the timer in case it has
633 * overrun already. If it has,
634 * we'll report it as having overrun
635 * and with the next reloaded timer
636 * already ticking, though we are
637 * swallowing that pending
638 * notification here to install the
639 * new setting.
640 */
641 bump_cpu_timer(timer, val);
55ccb616
FW
642 if (val < timer->it.cpu.expires) {
643 old_expires = timer->it.cpu.expires - val;
5f252b32 644 old->it_value = ns_to_timespec64(old_expires);
1da177e4
LT
645 } else {
646 old->it_value.tv_nsec = 1;
647 old->it_value.tv_sec = 0;
648 }
649 }
650 }
651
a69ac4a7 652 if (unlikely(ret)) {
1da177e4
LT
653 /*
654 * We are colliding with the timer actually firing.
655 * Punt after filling in the timer's old value, and
656 * disable this firing since we are already reporting
657 * it as an overrun (thanks to bump_cpu_timer above).
658 */
e73d84e3 659 unlock_task_sighand(p, &flags);
1da177e4
LT
660 goto out;
661 }
662
e73d84e3 663 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
55ccb616 664 new_expires += val;
1da177e4
LT
665 }
666
667 /*
668 * Install the new expiry time (or zero).
669 * For a timer with no notification action, we don't actually
670 * arm the timer (we'll just fake it for timer_gettime).
671 */
672 timer->it.cpu.expires = new_expires;
55ccb616 673 if (new_expires != 0 && val < new_expires) {
5eb9aa64 674 arm_timer(timer);
1da177e4
LT
675 }
676
e73d84e3 677 unlock_task_sighand(p, &flags);
1da177e4
LT
678 /*
679 * Install the new reload setting, and
680 * set up the signal and overrun bookkeeping.
681 */
5f252b32 682 timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
1da177e4
LT
683
684 /*
685 * This acts as a modification timestamp for the timer,
686 * so any automatic reload attempt will punt on seeing
687 * that we have reset the timer manually.
688 */
689 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
690 ~REQUEUE_PENDING;
691 timer->it_overrun_last = 0;
692 timer->it_overrun = -1;
693
55ccb616 694 if (new_expires != 0 && !(val < new_expires)) {
1da177e4
LT
695 /*
696 * The designated time already passed, so we notify
697 * immediately, even if the thread never runs to
698 * accumulate more time on this clock.
699 */
700 cpu_timer_fire(timer);
701 }
702
703 ret = 0;
704 out:
ebd7e7fc 705 if (old)
5f252b32 706 old->it_interval = ns_to_timespec64(old_incr);
b7878300 707
1da177e4
LT
708 return ret;
709}
710
5f252b32 711static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
1da177e4 712{
ebd7e7fc 713 u64 now;
1da177e4 714 struct task_struct *p = timer->it.cpu.task;
1da177e4 715
a3222f88
FW
716 WARN_ON_ONCE(p == NULL);
717
1da177e4
LT
718 /*
719 * Easy part: convert the reload time.
720 */
5f252b32 721 itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
1da177e4 722
eabdec04 723 if (!timer->it.cpu.expires)
1da177e4 724 return;
1da177e4 725
1da177e4
LT
726 /*
727 * Sample the clock to take the difference with the expiry time.
728 */
729 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
730 cpu_clock_sample(timer->it_clock, p, &now);
1da177e4 731 } else {
e73d84e3
FW
732 struct sighand_struct *sighand;
733 unsigned long flags;
734
735 /*
736 * Protect against sighand release/switch in exit/exec and
737 * also make timer sampling safe if it ends up calling
ebd7e7fc 738 * thread_group_cputime().
e73d84e3
FW
739 */
740 sighand = lock_task_sighand(p, &flags);
741 if (unlikely(sighand == NULL)) {
1da177e4
LT
742 /*
743 * The process has been reaped.
744 * We can't even collect a sample any more.
745 * Call the timer disarmed, nothing else to do.
746 */
55ccb616 747 timer->it.cpu.expires = 0;
2c13ce8f 748 return;
1da177e4 749 } else {
3997ad31 750 cpu_timer_sample_group(timer->it_clock, p, &now);
e73d84e3 751 unlock_task_sighand(p, &flags);
1da177e4 752 }
1da177e4
LT
753 }
754
55ccb616 755 if (now < timer->it.cpu.expires) {
5f252b32 756 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
1da177e4
LT
757 } else {
758 /*
759 * The timer should have expired already, but the firing
760 * hasn't taken place yet. Say it's just about to expire.
761 */
762 itp->it_value.tv_nsec = 1;
763 itp->it_value.tv_sec = 0;
764 }
765}
766
2473f3e7
FW
767static unsigned long long
768check_timers_list(struct list_head *timers,
769 struct list_head *firing,
770 unsigned long long curr)
771{
772 int maxfire = 20;
773
774 while (!list_empty(timers)) {
775 struct cpu_timer_list *t;
776
777 t = list_first_entry(timers, struct cpu_timer_list, entry);
778
779 if (!--maxfire || curr < t->expires)
780 return t->expires;
781
782 t->firing = 1;
783 list_move_tail(&t->entry, firing);
784 }
785
786 return 0;
787}
788
1da177e4
LT
789/*
790 * Check for any per-thread CPU timers that have fired and move them off
791 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
792 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
793 */
794static void check_thread_timers(struct task_struct *tsk,
795 struct list_head *firing)
796{
797 struct list_head *timers = tsk->cpu_timers;
78f2c7db 798 struct signal_struct *const sig = tsk->signal;
ebd7e7fc
FW
799 struct task_cputime *tsk_expires = &tsk->cputime_expires;
800 u64 expires;
d4bb5274 801 unsigned long soft;
1da177e4 802
934715a1
JL
803 /*
804 * If cputime_expires is zero, then there are no active
805 * per thread CPU timers.
806 */
807 if (task_cputime_zero(&tsk->cputime_expires))
808 return;
809
2473f3e7 810 expires = check_timers_list(timers, firing, prof_ticks(tsk));
ebd7e7fc 811 tsk_expires->prof_exp = expires;
1da177e4 812
2473f3e7 813 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
ebd7e7fc 814 tsk_expires->virt_exp = expires;
1da177e4 815
2473f3e7
FW
816 tsk_expires->sched_exp = check_timers_list(++timers, firing,
817 tsk->se.sum_exec_runtime);
78f2c7db
PZ
818
819 /*
820 * Check for the special case thread timers.
821 */
316c1608 822 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
d4bb5274 823 if (soft != RLIM_INFINITY) {
78d7d407 824 unsigned long hard =
316c1608 825 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
78f2c7db 826
5a52dd50
PZ
827 if (hard != RLIM_INFINITY &&
828 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
829 /*
830 * At the hard limit, we just die.
831 * No need to calculate anything else now.
832 */
43fe8b8e
TG
833 if (print_fatal_signals) {
834 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
835 tsk->comm, task_pid_nr(tsk));
836 }
78f2c7db
PZ
837 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
838 return;
839 }
d4bb5274 840 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
841 /*
842 * At the soft limit, send a SIGXCPU every second.
843 */
d4bb5274
JS
844 if (soft < hard) {
845 soft += USEC_PER_SEC;
846 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
78f2c7db 847 }
43fe8b8e
TG
848 if (print_fatal_signals) {
849 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
850 tsk->comm, task_pid_nr(tsk));
851 }
78f2c7db
PZ
852 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
853 }
854 }
b7878300
FW
855 if (task_cputime_zero(tsk_expires))
856 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
857}
858
1018016c 859static inline void stop_process_timers(struct signal_struct *sig)
3fccfd67 860{
15365c10 861 struct thread_group_cputimer *cputimer = &sig->cputimer;
3fccfd67 862
1018016c 863 /* Turn off cputimer->running. This is done without locking. */
d5c373eb 864 WRITE_ONCE(cputimer->running, false);
b7878300 865 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
3fccfd67
PZ
866}
867
42c4ab41 868static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
ebd7e7fc 869 u64 *expires, u64 cur_time, int signo)
42c4ab41 870{
64861634 871 if (!it->expires)
42c4ab41
SG
872 return;
873
858cf3a8
FW
874 if (cur_time >= it->expires) {
875 if (it->incr)
64861634 876 it->expires += it->incr;
858cf3a8 877 else
64861634 878 it->expires = 0;
42c4ab41 879
3f0a525e
XG
880 trace_itimer_expire(signo == SIGPROF ?
881 ITIMER_PROF : ITIMER_VIRTUAL,
882 tsk->signal->leader_pid, cur_time);
42c4ab41
SG
883 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
884 }
885
858cf3a8
FW
886 if (it->expires && (!*expires || it->expires < *expires))
887 *expires = it->expires;
42c4ab41
SG
888}
889
1da177e4
LT
890/*
891 * Check for any per-thread CPU timers that have fired and move them
892 * off the tsk->*_timers list onto the firing list. Per-thread timers
893 * have already been taken off.
894 */
895static void check_process_timers(struct task_struct *tsk,
896 struct list_head *firing)
897{
898 struct signal_struct *const sig = tsk->signal;
ebd7e7fc
FW
899 u64 utime, ptime, virt_expires, prof_expires;
900 u64 sum_sched_runtime, sched_expires;
1da177e4 901 struct list_head *timers = sig->cpu_timers;
ebd7e7fc 902 struct task_cputime cputime;
d4bb5274 903 unsigned long soft;
1da177e4 904
934715a1
JL
905 /*
906 * If cputimer is not running, then there are no active
907 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
908 */
909 if (!READ_ONCE(tsk->signal->cputimer.running))
910 return;
911
c8d75aa4
JL
912 /*
913 * Signify that a thread is checking for process timers.
914 * Write access to this field is protected by the sighand lock.
915 */
916 sig->cputimer.checking_timer = true;
917
1da177e4
LT
918 /*
919 * Collect the current process totals.
920 */
4cd4c1b4 921 thread_group_cputimer(tsk, &cputime);
ebd7e7fc
FW
922 utime = cputime.utime;
923 ptime = utime + cputime.stime;
f06febc9 924 sum_sched_runtime = cputime.sum_exec_runtime;
1da177e4 925
2473f3e7
FW
926 prof_expires = check_timers_list(timers, firing, ptime);
927 virt_expires = check_timers_list(++timers, firing, utime);
928 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
1da177e4
LT
929
930 /*
931 * Check for the special case process timers.
932 */
42c4ab41
SG
933 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
934 SIGPROF);
935 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
936 SIGVTALRM);
316c1608 937 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
d4bb5274 938 if (soft != RLIM_INFINITY) {
ebd7e7fc 939 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
78d7d407 940 unsigned long hard =
316c1608 941 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
ebd7e7fc 942 u64 x;
d4bb5274 943 if (psecs >= hard) {
1da177e4
LT
944 /*
945 * At the hard limit, we just die.
946 * No need to calculate anything else now.
947 */
43fe8b8e
TG
948 if (print_fatal_signals) {
949 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
950 tsk->comm, task_pid_nr(tsk));
951 }
1da177e4
LT
952 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
953 return;
954 }
d4bb5274 955 if (psecs >= soft) {
1da177e4
LT
956 /*
957 * At the soft limit, send a SIGXCPU every second.
958 */
43fe8b8e
TG
959 if (print_fatal_signals) {
960 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
961 tsk->comm, task_pid_nr(tsk));
962 }
1da177e4 963 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
d4bb5274
JS
964 if (soft < hard) {
965 soft++;
966 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1da177e4
LT
967 }
968 }
ebd7e7fc
FW
969 x = soft * NSEC_PER_SEC;
970 if (!prof_expires || x < prof_expires)
1da177e4 971 prof_expires = x;
1da177e4
LT
972 }
973
ebd7e7fc
FW
974 sig->cputime_expires.prof_exp = prof_expires;
975 sig->cputime_expires.virt_exp = virt_expires;
29f87b79
SG
976 sig->cputime_expires.sched_exp = sched_expires;
977 if (task_cputime_zero(&sig->cputime_expires))
978 stop_process_timers(sig);
c8d75aa4
JL
979
980 sig->cputimer.checking_timer = false;
1da177e4
LT
981}
982
983/*
96fe3b07 984 * This is called from the signal code (via posixtimer_rearm)
1da177e4
LT
985 * when the last timer signal was delivered and we have to reload the timer.
986 */
f37fb0aa 987static void posix_cpu_timer_rearm(struct k_itimer *timer)
1da177e4 988{
e73d84e3
FW
989 struct sighand_struct *sighand;
990 unsigned long flags;
1da177e4 991 struct task_struct *p = timer->it.cpu.task;
ebd7e7fc 992 u64 now;
1da177e4 993
a3222f88 994 WARN_ON_ONCE(p == NULL);
1da177e4
LT
995
996 /*
997 * Fetch the current sample and update the timer's expiry time.
998 */
999 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1000 cpu_clock_sample(timer->it_clock, p, &now);
1001 bump_cpu_timer(timer, now);
724a3713 1002 if (unlikely(p->exit_state))
af888d67 1003 return;
724a3713 1004
e73d84e3
FW
1005 /* Protect timer list r/w in arm_timer() */
1006 sighand = lock_task_sighand(p, &flags);
1007 if (!sighand)
af888d67 1008 return;
1da177e4 1009 } else {
e73d84e3
FW
1010 /*
1011 * Protect arm_timer() and timer sampling in case of call to
ebd7e7fc 1012 * thread_group_cputime().
e73d84e3
FW
1013 */
1014 sighand = lock_task_sighand(p, &flags);
1015 if (unlikely(sighand == NULL)) {
1da177e4
LT
1016 /*
1017 * The process has been reaped.
1018 * We can't even collect a sample any more.
1019 */
55ccb616 1020 timer->it.cpu.expires = 0;
af888d67 1021 return;
1da177e4 1022 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
af888d67
TG
1023 /* If the process is dying, no need to rearm */
1024 goto unlock;
1da177e4 1025 }
3997ad31 1026 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4 1027 bump_cpu_timer(timer, now);
e73d84e3 1028 /* Leave the sighand locked for the call below. */
1da177e4
LT
1029 }
1030
1031 /*
1032 * Now re-arm for the new expiry time.
1033 */
531f64fd 1034 WARN_ON_ONCE(!irqs_disabled());
5eb9aa64 1035 arm_timer(timer);
af888d67 1036unlock:
e73d84e3 1037 unlock_task_sighand(p, &flags);
1da177e4
LT
1038}
1039
f06febc9
FM
1040/**
1041 * task_cputime_expired - Compare two task_cputime entities.
1042 *
1043 * @sample: The task_cputime structure to be checked for expiration.
1044 * @expires: Expiration times, against which @sample will be checked.
1045 *
1046 * Checks @sample against @expires to see if any field of @sample has expired.
1047 * Returns true if any field of the former is greater than the corresponding
1048 * field of the latter if the latter field is set. Otherwise returns false.
1049 */
ebd7e7fc
FW
1050static inline int task_cputime_expired(const struct task_cputime *sample,
1051 const struct task_cputime *expires)
f06febc9 1052{
64861634 1053 if (expires->utime && sample->utime >= expires->utime)
f06febc9 1054 return 1;
64861634 1055 if (expires->stime && sample->utime + sample->stime >= expires->stime)
f06febc9
FM
1056 return 1;
1057 if (expires->sum_exec_runtime != 0 &&
1058 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1059 return 1;
1060 return 0;
1061}
1062
1063/**
1064 * fastpath_timer_check - POSIX CPU timers fast path.
1065 *
1066 * @tsk: The task (thread) being checked.
f06febc9 1067 *
bb34d92f
FM
1068 * Check the task and thread group timers. If both are zero (there are no
1069 * timers set) return false. Otherwise snapshot the task and thread group
1070 * timers and compare them with the corresponding expiration times. Return
1071 * true if a timer has expired, else return false.
f06febc9 1072 */
bb34d92f 1073static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1074{
ad133ba3 1075 struct signal_struct *sig;
bb34d92f 1076
bb34d92f 1077 if (!task_cputime_zero(&tsk->cputime_expires)) {
ebd7e7fc 1078 struct task_cputime task_sample;
bb34d92f 1079
ebd7e7fc 1080 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
7c177d99 1081 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
bb34d92f
FM
1082 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1083 return 1;
1084 }
ad133ba3
ON
1085
1086 sig = tsk->signal;
c8d75aa4
JL
1087 /*
1088 * Check if thread group timers expired when the cputimer is
1089 * running and no other thread in the group is already checking
1090 * for thread group cputimers. These fields are read without the
1091 * sighand lock. However, this is fine because this is meant to
1092 * be a fastpath heuristic to determine whether we should try to
1093 * acquire the sighand lock to check/handle timers.
1094 *
1095 * In the worst case scenario, if 'running' or 'checking_timer' gets
1096 * set but the current thread doesn't see the change yet, we'll wait
1097 * until the next thread in the group gets a scheduler interrupt to
1098 * handle the timer. This isn't an issue in practice because these
1099 * types of delays with signals actually getting sent are expected.
1100 */
1101 if (READ_ONCE(sig->cputimer.running) &&
1102 !READ_ONCE(sig->cputimer.checking_timer)) {
ebd7e7fc 1103 struct task_cputime group_sample;
bb34d92f 1104
71107445 1105 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
8d1f431c 1106
bb34d92f
FM
1107 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1108 return 1;
1109 }
37bebc70 1110
f55db609 1111 return 0;
f06febc9
FM
1112}
1113
1da177e4
LT
1114/*
1115 * This is called from the timer interrupt handler. The irq handler has
1116 * already updated our counts. We need to check if any timers fire now.
1117 * Interrupts are disabled.
1118 */
1119void run_posix_cpu_timers(struct task_struct *tsk)
1120{
1121 LIST_HEAD(firing);
1122 struct k_itimer *timer, *next;
0bdd2ed4 1123 unsigned long flags;
1da177e4 1124
531f64fd 1125 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1126
1da177e4 1127 /*
f06febc9 1128 * The fast path checks that there are no expired thread or thread
bb34d92f 1129 * group timers. If that's so, just return.
1da177e4 1130 */
bb34d92f 1131 if (!fastpath_timer_check(tsk))
f06febc9 1132 return;
5ce73a4a 1133
0bdd2ed4
ON
1134 if (!lock_task_sighand(tsk, &flags))
1135 return;
bb34d92f
FM
1136 /*
1137 * Here we take off tsk->signal->cpu_timers[N] and
1138 * tsk->cpu_timers[N] all the timers that are firing, and
1139 * put them on the firing list.
1140 */
1141 check_thread_timers(tsk, &firing);
934715a1
JL
1142
1143 check_process_timers(tsk, &firing);
1da177e4 1144
bb34d92f
FM
1145 /*
1146 * We must release these locks before taking any timer's lock.
1147 * There is a potential race with timer deletion here, as the
1148 * siglock now protects our private firing list. We have set
1149 * the firing flag in each timer, so that a deletion attempt
1150 * that gets the timer lock before we do will give it up and
1151 * spin until we've taken care of that timer below.
1152 */
0bdd2ed4 1153 unlock_task_sighand(tsk, &flags);
1da177e4
LT
1154
1155 /*
1156 * Now that all the timers on our list have the firing flag,
25985edc 1157 * no one will touch their list entries but us. We'll take
1da177e4
LT
1158 * each timer's lock before clearing its firing flag, so no
1159 * timer call will interfere.
1160 */
1161 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1162 int cpu_firing;
1163
1da177e4
LT
1164 spin_lock(&timer->it_lock);
1165 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1166 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1167 timer->it.cpu.firing = 0;
1168 /*
1169 * The firing flag is -1 if we collided with a reset
1170 * of the timer, which already reported this
1171 * almost-firing as an overrun. So don't generate an event.
1172 */
6e85c5ba 1173 if (likely(cpu_firing >= 0))
1da177e4 1174 cpu_timer_fire(timer);
1da177e4
LT
1175 spin_unlock(&timer->it_lock);
1176 }
1177}
1178
1179/*
f55db609 1180 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1181 * The tsk->sighand->siglock must be held by the caller.
1da177e4
LT
1182 */
1183void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
858cf3a8 1184 u64 *newval, u64 *oldval)
1da177e4 1185{
858cf3a8 1186 u64 now;
1da177e4 1187
531f64fd 1188 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1189 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1190
1191 if (oldval) {
f55db609
SG
1192 /*
1193 * We are setting itimer. The *oldval is absolute and we update
1194 * it to be relative, *newval argument is relative and we update
1195 * it to be absolute.
1196 */
64861634 1197 if (*oldval) {
858cf3a8 1198 if (*oldval <= now) {
1da177e4 1199 /* Just about to fire. */
858cf3a8 1200 *oldval = TICK_NSEC;
1da177e4 1201 } else {
858cf3a8 1202 *oldval -= now;
1da177e4
LT
1203 }
1204 }
1205
64861634 1206 if (!*newval)
b7878300 1207 return;
858cf3a8 1208 *newval += now;
1da177e4
LT
1209 }
1210
1211 /*
f55db609
SG
1212 * Update expiration cache if we are the earliest timer, or eventually
1213 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1da177e4 1214 */
f55db609
SG
1215 switch (clock_idx) {
1216 case CPUCLOCK_PROF:
858cf3a8
FW
1217 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1218 tsk->signal->cputime_expires.prof_exp = *newval;
f55db609
SG
1219 break;
1220 case CPUCLOCK_VIRT:
858cf3a8
FW
1221 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1222 tsk->signal->cputime_expires.virt_exp = *newval;
f55db609 1223 break;
1da177e4 1224 }
b7878300
FW
1225
1226 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1da177e4
LT
1227}
1228
e4b76555 1229static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
343d8fc2 1230 const struct timespec64 *rqtp)
1da177e4 1231{
86a9c446 1232 struct itimerspec64 it;
343d8fc2
TG
1233 struct k_itimer timer;
1234 u64 expires;
1da177e4
LT
1235 int error;
1236
1da177e4
LT
1237 /*
1238 * Set up a temporary timer and then wait for it to go off.
1239 */
1240 memset(&timer, 0, sizeof timer);
1241 spin_lock_init(&timer.it_lock);
1242 timer.it_clock = which_clock;
1243 timer.it_overrun = -1;
1244 error = posix_cpu_timer_create(&timer);
1245 timer.it_process = current;
1246 if (!error) {
5f252b32 1247 static struct itimerspec64 zero_it;
edbeda46 1248 struct restart_block *restart;
e4b76555 1249
edbeda46 1250 memset(&it, 0, sizeof(it));
86a9c446 1251 it.it_value = *rqtp;
1da177e4
LT
1252
1253 spin_lock_irq(&timer.it_lock);
86a9c446 1254 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1da177e4
LT
1255 if (error) {
1256 spin_unlock_irq(&timer.it_lock);
1257 return error;
1258 }
1259
1260 while (!signal_pending(current)) {
55ccb616 1261 if (timer.it.cpu.expires == 0) {
1da177e4 1262 /*
e6c42c29
SG
1263 * Our timer fired and was reset, below
1264 * deletion can not fail.
1da177e4 1265 */
e6c42c29 1266 posix_cpu_timer_del(&timer);
1da177e4
LT
1267 spin_unlock_irq(&timer.it_lock);
1268 return 0;
1269 }
1270
1271 /*
1272 * Block until cpu_timer_fire (or a signal) wakes us.
1273 */
1274 __set_current_state(TASK_INTERRUPTIBLE);
1275 spin_unlock_irq(&timer.it_lock);
1276 schedule();
1277 spin_lock_irq(&timer.it_lock);
1278 }
1279
1280 /*
1281 * We were interrupted by a signal.
1282 */
343d8fc2 1283 expires = timer.it.cpu.expires;
86a9c446 1284 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
e6c42c29
SG
1285 if (!error) {
1286 /*
1287 * Timer is now unarmed, deletion can not fail.
1288 */
1289 posix_cpu_timer_del(&timer);
1290 }
1da177e4
LT
1291 spin_unlock_irq(&timer.it_lock);
1292
e6c42c29
SG
1293 while (error == TIMER_RETRY) {
1294 /*
1295 * We need to handle case when timer was or is in the
1296 * middle of firing. In other cases we already freed
1297 * resources.
1298 */
1299 spin_lock_irq(&timer.it_lock);
1300 error = posix_cpu_timer_del(&timer);
1301 spin_unlock_irq(&timer.it_lock);
1302 }
1303
86a9c446 1304 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1da177e4
LT
1305 /*
1306 * It actually did fire already.
1307 */
1308 return 0;
1309 }
1310
e4b76555 1311 error = -ERESTART_RESTARTBLOCK;
86a9c446
AV
1312 /*
1313 * Report back to the user the time still remaining.
1314 */
edbeda46 1315 restart = &current->restart_block;
343d8fc2 1316 restart->nanosleep.expires = expires;
edbeda46 1317 if (restart->nanosleep.type != TT_NONE) {
86a9c446
AV
1318 struct timespec ts;
1319
1320 ts = timespec64_to_timespec(it.it_value);
ce41aaf4 1321 error = nanosleep_copyout(restart, &ts);
86a9c446 1322 }
e4b76555
TA
1323 }
1324
1325 return error;
1326}
1327
bc2c8ea4
TG
1328static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1329
1330static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1331 const struct timespec64 *rqtp)
e4b76555 1332{
f56141e3 1333 struct restart_block *restart_block = &current->restart_block;
e4b76555
TA
1334 int error;
1335
1336 /*
1337 * Diagnose required errors first.
1338 */
1339 if (CPUCLOCK_PERTHREAD(which_clock) &&
1340 (CPUCLOCK_PID(which_clock) == 0 ||
01a21974 1341 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
e4b76555
TA
1342 return -EINVAL;
1343
86a9c446 1344 error = do_cpu_nanosleep(which_clock, flags, rqtp);
e4b76555
TA
1345
1346 if (error == -ERESTART_RESTARTBLOCK) {
1347
3751f9f2 1348 if (flags & TIMER_ABSTIME)
e4b76555 1349 return -ERESTARTNOHAND;
1da177e4 1350
1711ef38 1351 restart_block->fn = posix_cpu_nsleep_restart;
ab8177bc 1352 restart_block->nanosleep.clockid = which_clock;
1da177e4 1353 }
1da177e4
LT
1354 return error;
1355}
1356
bc2c8ea4 1357static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4 1358{
ab8177bc 1359 clockid_t which_clock = restart_block->nanosleep.clockid;
ad196384 1360 struct timespec64 t;
97735f25 1361
ad196384 1362 t = ns_to_timespec64(restart_block->nanosleep.expires);
97735f25 1363
86a9c446 1364 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1da177e4
LT
1365}
1366
1da177e4
LT
1367#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1368#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1369
a924b04d 1370static int process_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1371 struct timespec64 *tp)
1da177e4
LT
1372{
1373 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1374}
a924b04d 1375static int process_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1376 struct timespec64 *tp)
1da177e4
LT
1377{
1378 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1379}
1380static int process_cpu_timer_create(struct k_itimer *timer)
1381{
1382 timer->it_clock = PROCESS_CLOCK;
1383 return posix_cpu_timer_create(timer);
1384}
a924b04d 1385static int process_cpu_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1386 const struct timespec64 *rqtp)
1da177e4 1387{
99e6c0e6 1388 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1da177e4 1389}
a924b04d 1390static int thread_cpu_clock_getres(const clockid_t which_clock,
d2e3e0ca 1391 struct timespec64 *tp)
1da177e4
LT
1392{
1393 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1394}
a924b04d 1395static int thread_cpu_clock_get(const clockid_t which_clock,
3c9c12f4 1396 struct timespec64 *tp)
1da177e4
LT
1397{
1398 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1399}
1400static int thread_cpu_timer_create(struct k_itimer *timer)
1401{
1402 timer->it_clock = THREAD_CLOCK;
1403 return posix_cpu_timer_create(timer);
1404}
1da177e4 1405
d3ba5a9a 1406const struct k_clock clock_posix_cpu = {
1976945e
TG
1407 .clock_getres = posix_cpu_clock_getres,
1408 .clock_set = posix_cpu_clock_set,
1409 .clock_get = posix_cpu_clock_get,
1410 .timer_create = posix_cpu_timer_create,
1411 .nsleep = posix_cpu_nsleep,
1976945e
TG
1412 .timer_set = posix_cpu_timer_set,
1413 .timer_del = posix_cpu_timer_del,
1414 .timer_get = posix_cpu_timer_get,
f37fb0aa 1415 .timer_rearm = posix_cpu_timer_rearm,
1976945e
TG
1416};
1417
d3ba5a9a
CH
1418const struct k_clock clock_process = {
1419 .clock_getres = process_cpu_clock_getres,
1420 .clock_get = process_cpu_clock_get,
1421 .timer_create = process_cpu_timer_create,
1422 .nsleep = process_cpu_nsleep,
d3ba5a9a 1423};
1da177e4 1424
d3ba5a9a
CH
1425const struct k_clock clock_thread = {
1426 .clock_getres = thread_cpu_clock_getres,
1427 .clock_get = thread_cpu_clock_get,
1428 .timer_create = thread_cpu_timer_create,
1429};