tick/sched: Do not mess with an enqueued hrtimer
[linux-2.6-block.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
40#include <linux/interrupt.h>
79bf2bb3 41#include <linux/tick.h>
54cdfdb4
TG
42#include <linux/seq_file.h>
43#include <linux/err.h>
237fc6e7 44#include <linux/debugobjects.h>
174cd4b1 45#include <linux/sched/signal.h>
cf4aebc2 46#include <linux/sched/sysctl.h>
8bd75c77 47#include <linux/sched/rt.h>
aab03e05 48#include <linux/sched/deadline.h>
370c9135 49#include <linux/sched/nohz.h>
b17b0153 50#include <linux/sched/debug.h>
eea08f32 51#include <linux/timer.h>
b0f8c44f 52#include <linux/freezer.h>
edbeda46 53#include <linux/compat.h>
c0a31329 54
7c0f6ba6 55#include <linux/uaccess.h>
c0a31329 56
c6a2a177
XG
57#include <trace/events/timer.h>
58
c1797baf 59#include "tick-internal.h"
8b094cd0 60
c458b1d1
AMG
61/*
62 * Masks for selecting the soft and hard context timers from
63 * cpu_base->active
64 */
65#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
66#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
67#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
68#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
69
c0a31329
TG
70/*
71 * The timer bases:
7978672c 72 *
571af55a 73 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
74 * into the timer bases by the hrtimer_base_type enum. When trying
75 * to reach a base using a clockid, hrtimer_clockid_to_base()
76 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 77 */
54cdfdb4 78DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 79{
84cc8fd2 80 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 81 .clock_base =
c0a31329 82 {
3c8aa39d 83 {
ab8177bc
TG
84 .index = HRTIMER_BASE_MONOTONIC,
85 .clockid = CLOCK_MONOTONIC,
3c8aa39d 86 .get_time = &ktime_get,
3c8aa39d 87 },
68fa61c0
TG
88 {
89 .index = HRTIMER_BASE_REALTIME,
90 .clockid = CLOCK_REALTIME,
91 .get_time = &ktime_get_real,
68fa61c0 92 },
90adda98
JS
93 {
94 .index = HRTIMER_BASE_TAI,
95 .clockid = CLOCK_TAI,
96 .get_time = &ktime_get_clocktai,
90adda98 97 },
98ecadd4
AMG
98 {
99 .index = HRTIMER_BASE_MONOTONIC_SOFT,
100 .clockid = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
102 },
103 {
104 .index = HRTIMER_BASE_REALTIME_SOFT,
105 .clockid = CLOCK_REALTIME,
106 .get_time = &ktime_get_real,
107 },
98ecadd4
AMG
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
3c8aa39d 113 }
c0a31329
TG
114};
115
942c3c5c 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
ce31332d
TG
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
127bfa5f 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_MONOTONIC,
90adda98 123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 124};
e06383db 125
c0a31329
TG
126/*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130#ifdef CONFIG_SMP
131
887d9dc9
PZ
132/*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137static struct hrtimer_cpu_base migration_cpu_base = {
887d9dc9
PZ
138 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
139};
140
141#define migration_base migration_cpu_base.clock_base[0]
142
c0a31329
TG
143/*
144 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
145 * means that all timers which are tied to this base via timer->base are
146 * locked, and the base itself is locked too.
147 *
148 * So __run_timers/migrate_timers can safely modify all timers which could
149 * be found on the lists/queues.
150 *
151 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
152 * possible to set timer->base = &migration_base and drop the lock: the timer
153 * remains locked.
c0a31329 154 */
3c8aa39d
TG
155static
156struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
157 unsigned long *flags)
c0a31329 158{
3c8aa39d 159 struct hrtimer_clock_base *base;
c0a31329
TG
160
161 for (;;) {
162 base = timer->base;
887d9dc9 163 if (likely(base != &migration_base)) {
ecb49d1a 164 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
165 if (likely(base == timer->base))
166 return base;
167 /* The timer has migrated to another CPU: */
ecb49d1a 168 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
169 }
170 cpu_relax();
171 }
172}
173
6ff7041d 174/*
07a9a7ea
AMG
175 * We do not migrate the timer when it is expiring before the next
176 * event on the target cpu. When high resolution is enabled, we cannot
177 * reprogram the target cpu hardware and we would cause it to fire
178 * late. To keep it simple, we handle the high resolution enabled and
179 * disabled case similar.
6ff7041d
TG
180 *
181 * Called with cpu_base->lock of target cpu held.
182 */
183static int
184hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
185{
6ff7041d
TG
186 ktime_t expires;
187
6ff7041d 188 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2ac2dccc 189 return expires < new_base->cpu_base->expires_next;
6ff7041d
TG
190}
191
bc7a34b8
TG
192static inline
193struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
194 int pinned)
195{
ae67bada
TG
196#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
197 if (static_branch_likely(&timers_migration_enabled) && !pinned)
198 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
199#endif
662b3e19 200 return base;
bc7a34b8 201}
bc7a34b8 202
c0a31329 203/*
b48362d8
FW
204 * We switch the timer base to a power-optimized selected CPU target,
205 * if:
206 * - NO_HZ_COMMON is enabled
207 * - timer migration is enabled
208 * - the timer callback is not running
209 * - the timer is not the first expiring timer on the new target
210 *
211 * If one of the above requirements is not fulfilled we move the timer
212 * to the current CPU or leave it on the previously assigned CPU if
213 * the timer callback is currently running.
c0a31329 214 */
3c8aa39d 215static inline struct hrtimer_clock_base *
597d0275
AB
216switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
217 int pinned)
c0a31329 218{
b48362d8 219 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 220 struct hrtimer_clock_base *new_base;
ab8177bc 221 int basenum = base->index;
c0a31329 222
b48362d8
FW
223 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
224 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 225again:
e06383db 226 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
227
228 if (base != new_base) {
229 /*
6ff7041d 230 * We are trying to move timer to new_base.
c0a31329
TG
231 * However we can't change timer's base while it is running,
232 * so we keep it on the same CPU. No hassle vs. reprogramming
233 * the event source in the high resolution case. The softirq
234 * code will take care of this when the timer function has
235 * completed. There is no conflict as we hold the lock until
236 * the timer is enqueued.
237 */
54cdfdb4 238 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
239 return base;
240
887d9dc9
PZ
241 /* See the comment in lock_hrtimer_base() */
242 timer->base = &migration_base;
ecb49d1a
TG
243 raw_spin_unlock(&base->cpu_base->lock);
244 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 245
b48362d8 246 if (new_cpu_base != this_cpu_base &&
bc7a34b8 247 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
248 raw_spin_unlock(&new_base->cpu_base->lock);
249 raw_spin_lock(&base->cpu_base->lock);
b48362d8 250 new_cpu_base = this_cpu_base;
6ff7041d
TG
251 timer->base = base;
252 goto again;
eea08f32 253 }
c0a31329 254 timer->base = new_base;
012a45e3 255 } else {
b48362d8 256 if (new_cpu_base != this_cpu_base &&
bc7a34b8 257 hrtimer_check_target(timer, new_base)) {
b48362d8 258 new_cpu_base = this_cpu_base;
012a45e3
LM
259 goto again;
260 }
c0a31329
TG
261 }
262 return new_base;
263}
264
265#else /* CONFIG_SMP */
266
3c8aa39d 267static inline struct hrtimer_clock_base *
c0a31329
TG
268lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269{
3c8aa39d 270 struct hrtimer_clock_base *base = timer->base;
c0a31329 271
ecb49d1a 272 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
273
274 return base;
275}
276
eea08f32 277# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
278
279#endif /* !CONFIG_SMP */
280
281/*
282 * Functions for the union type storage format of ktime_t which are
283 * too large for inlining:
284 */
285#if BITS_PER_LONG < 64
c0a31329
TG
286/*
287 * Divide a ktime value by a nanosecond value
288 */
f7bcb70e 289s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 290{
c0a31329 291 int sft = 0;
f7bcb70e
JS
292 s64 dclc;
293 u64 tmp;
c0a31329 294
900cfa46 295 dclc = ktime_to_ns(kt);
f7bcb70e
JS
296 tmp = dclc < 0 ? -dclc : dclc;
297
c0a31329
TG
298 /* Make sure the divisor is less than 2^32: */
299 while (div >> 32) {
300 sft++;
301 div >>= 1;
302 }
f7bcb70e
JS
303 tmp >>= sft;
304 do_div(tmp, (unsigned long) div);
305 return dclc < 0 ? -tmp : tmp;
c0a31329 306}
8b618628 307EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
308#endif /* BITS_PER_LONG >= 64 */
309
5a7780e7
TG
310/*
311 * Add two ktime values and do a safety check for overflow:
312 */
313ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
314{
979515c5 315 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
316
317 /*
318 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 * return to user space in a timespec:
320 */
2456e855 321 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
322 res = ktime_set(KTIME_SEC_MAX, 0);
323
324 return res;
325}
326
8daa21e6
AB
327EXPORT_SYMBOL_GPL(ktime_add_safe);
328
237fc6e7
TG
329#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
330
331static struct debug_obj_descr hrtimer_debug_descr;
332
99777288
SG
333static void *hrtimer_debug_hint(void *addr)
334{
335 return ((struct hrtimer *) addr)->function;
336}
337
237fc6e7
TG
338/*
339 * fixup_init is called when:
340 * - an active object is initialized
341 */
e3252464 342static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
343{
344 struct hrtimer *timer = addr;
345
346 switch (state) {
347 case ODEBUG_STATE_ACTIVE:
348 hrtimer_cancel(timer);
349 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 350 return true;
237fc6e7 351 default:
e3252464 352 return false;
237fc6e7
TG
353 }
354}
355
356/*
357 * fixup_activate is called when:
358 * - an active object is activated
b9fdac7f 359 * - an unknown non-static object is activated
237fc6e7 360 */
e3252464 361static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
362{
363 switch (state) {
237fc6e7
TG
364 case ODEBUG_STATE_ACTIVE:
365 WARN_ON(1);
366
367 default:
e3252464 368 return false;
237fc6e7
TG
369 }
370}
371
372/*
373 * fixup_free is called when:
374 * - an active object is freed
375 */
e3252464 376static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
377{
378 struct hrtimer *timer = addr;
379
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 hrtimer_cancel(timer);
383 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 384 return true;
237fc6e7 385 default:
e3252464 386 return false;
237fc6e7
TG
387 }
388}
389
390static struct debug_obj_descr hrtimer_debug_descr = {
391 .name = "hrtimer",
99777288 392 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
393 .fixup_init = hrtimer_fixup_init,
394 .fixup_activate = hrtimer_fixup_activate,
395 .fixup_free = hrtimer_fixup_free,
396};
397
398static inline void debug_hrtimer_init(struct hrtimer *timer)
399{
400 debug_object_init(timer, &hrtimer_debug_descr);
401}
402
5da70160
AMG
403static inline void debug_hrtimer_activate(struct hrtimer *timer,
404 enum hrtimer_mode mode)
237fc6e7
TG
405{
406 debug_object_activate(timer, &hrtimer_debug_descr);
407}
408
409static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
410{
411 debug_object_deactivate(timer, &hrtimer_debug_descr);
412}
413
414static inline void debug_hrtimer_free(struct hrtimer *timer)
415{
416 debug_object_free(timer, &hrtimer_debug_descr);
417}
418
419static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
420 enum hrtimer_mode mode);
421
422void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
423 enum hrtimer_mode mode)
424{
425 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
426 __hrtimer_init(timer, clock_id, mode);
427}
2bc481cf 428EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
429
430void destroy_hrtimer_on_stack(struct hrtimer *timer)
431{
432 debug_object_free(timer, &hrtimer_debug_descr);
433}
c08376ac 434EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
435
436#else
5da70160 437
237fc6e7 438static inline void debug_hrtimer_init(struct hrtimer *timer) { }
5da70160
AMG
439static inline void debug_hrtimer_activate(struct hrtimer *timer,
440 enum hrtimer_mode mode) { }
237fc6e7
TG
441static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
442#endif
443
c6a2a177
XG
444static inline void
445debug_init(struct hrtimer *timer, clockid_t clockid,
446 enum hrtimer_mode mode)
447{
448 debug_hrtimer_init(timer);
449 trace_hrtimer_init(timer, clockid, mode);
450}
451
63e2ed36
AMG
452static inline void debug_activate(struct hrtimer *timer,
453 enum hrtimer_mode mode)
c6a2a177 454{
5da70160 455 debug_hrtimer_activate(timer, mode);
63e2ed36 456 trace_hrtimer_start(timer, mode);
c6a2a177
XG
457}
458
459static inline void debug_deactivate(struct hrtimer *timer)
460{
461 debug_hrtimer_deactivate(timer);
462 trace_hrtimer_cancel(timer);
463}
464
c272ca58
AMG
465static struct hrtimer_clock_base *
466__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
467{
468 unsigned int idx;
469
470 if (!*active)
471 return NULL;
472
473 idx = __ffs(*active);
474 *active &= ~(1U << idx);
475
476 return &cpu_base->clock_base[idx];
477}
478
479#define for_each_active_base(base, cpu_base, active) \
480 while ((base = __next_base((cpu_base), &(active))))
481
ad38f596 482static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
a59855cd 483 const struct hrtimer *exclude,
ad38f596
AMG
484 unsigned int active,
485 ktime_t expires_next)
9bc74919 486{
c272ca58 487 struct hrtimer_clock_base *base;
ad38f596 488 ktime_t expires;
9bc74919 489
c272ca58 490 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
491 struct timerqueue_node *next;
492 struct hrtimer *timer;
493
34aee88a 494 next = timerqueue_getnext(&base->active);
9bc74919 495 timer = container_of(next, struct hrtimer, node);
a59855cd
RW
496 if (timer == exclude) {
497 /* Get to the next timer in the queue. */
7d2f6abb 498 next = timerqueue_iterate_next(next);
a59855cd
RW
499 if (!next)
500 continue;
501
502 timer = container_of(next, struct hrtimer, node);
503 }
9bc74919 504 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 505 if (expires < expires_next) {
9bc74919 506 expires_next = expires;
a59855cd
RW
507
508 /* Skip cpu_base update if a timer is being excluded. */
509 if (exclude)
510 continue;
511
5da70160
AMG
512 if (timer->is_soft)
513 cpu_base->softirq_next_timer = timer;
514 else
515 cpu_base->next_timer = timer;
895bdfa7 516 }
9bc74919
TG
517 }
518 /*
519 * clock_was_set() might have changed base->offset of any of
520 * the clock bases so the result might be negative. Fix it up
521 * to prevent a false positive in clockevents_program_event().
522 */
2456e855
TG
523 if (expires_next < 0)
524 expires_next = 0;
9bc74919
TG
525 return expires_next;
526}
9bc74919 527
c458b1d1
AMG
528/*
529 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
530 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
531 *
5da70160
AMG
532 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
533 * those timers will get run whenever the softirq gets handled, at the end of
534 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
535 *
536 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
537 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
538 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
539 *
c458b1d1 540 * @active_mask must be one of:
5da70160 541 * - HRTIMER_ACTIVE_ALL,
c458b1d1
AMG
542 * - HRTIMER_ACTIVE_SOFT, or
543 * - HRTIMER_ACTIVE_HARD.
544 */
5da70160
AMG
545static ktime_t
546__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
ad38f596 547{
c458b1d1 548 unsigned int active;
5da70160 549 struct hrtimer *next_timer = NULL;
ad38f596
AMG
550 ktime_t expires_next = KTIME_MAX;
551
5da70160
AMG
552 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
553 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
554 cpu_base->softirq_next_timer = NULL;
a59855cd
RW
555 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
556 active, KTIME_MAX);
5da70160
AMG
557
558 next_timer = cpu_base->softirq_next_timer;
559 }
ad38f596 560
5da70160
AMG
561 if (active_mask & HRTIMER_ACTIVE_HARD) {
562 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
563 cpu_base->next_timer = next_timer;
a59855cd
RW
564 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
565 expires_next);
5da70160 566 }
ad38f596
AMG
567
568 return expires_next;
569}
570
21d6d52a
TG
571static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
572{
573 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
21d6d52a
TG
574 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
575
5da70160 576 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
127bfa5f 577 offs_real, offs_tai);
5da70160
AMG
578
579 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
5da70160
AMG
580 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
581
582 return now;
21d6d52a
TG
583}
584
28bfd18b
AMG
585/*
586 * Is the high resolution mode active ?
587 */
588static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
589{
590 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
591 cpu_base->hres_active : 0;
592}
593
594static inline int hrtimer_hres_active(void)
595{
596 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
597}
598
54cdfdb4
TG
599/*
600 * Reprogram the event source with checking both queues for the
601 * next event
602 * Called with interrupts disabled and base->lock held
603 */
7403f41f
AC
604static void
605hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 606{
21d6d52a
TG
607 ktime_t expires_next;
608
5da70160
AMG
609 /*
610 * Find the current next expiration time.
611 */
612 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
613
614 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
615 /*
616 * When the softirq is activated, hrtimer has to be
617 * programmed with the first hard hrtimer because soft
618 * timer interrupt could occur too late.
619 */
620 if (cpu_base->softirq_activated)
621 expires_next = __hrtimer_get_next_event(cpu_base,
622 HRTIMER_ACTIVE_HARD);
623 else
624 cpu_base->softirq_expires_next = expires_next;
625 }
54cdfdb4 626
2456e855 627 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
628 return;
629
2456e855 630 cpu_base->expires_next = expires_next;
7403f41f 631
6c6c0d5a 632 /*
61bb4bcb
AMG
633 * If hres is not active, hardware does not have to be
634 * reprogrammed yet.
635 *
6c6c0d5a
SH
636 * If a hang was detected in the last timer interrupt then we
637 * leave the hang delay active in the hardware. We want the
638 * system to make progress. That also prevents the following
639 * scenario:
640 * T1 expires 50ms from now
641 * T2 expires 5s from now
642 *
643 * T1 is removed, so this code is called and would reprogram
644 * the hardware to 5s from now. Any hrtimer_start after that
645 * will not reprogram the hardware due to hang_detected being
646 * set. So we'd effectivly block all timers until the T2 event
647 * fires.
648 */
61bb4bcb 649 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
6c6c0d5a
SH
650 return;
651
d2540875 652 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
653}
654
ebba2c72
AMG
655/* High resolution timer related functions */
656#ifdef CONFIG_HIGH_RES_TIMERS
657
658/*
659 * High resolution timer enabled ?
660 */
661static bool hrtimer_hres_enabled __read_mostly = true;
662unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
663EXPORT_SYMBOL_GPL(hrtimer_resolution);
664
665/*
666 * Enable / Disable high resolution mode
667 */
668static int __init setup_hrtimer_hres(char *str)
669{
670 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
671}
672
673__setup("highres=", setup_hrtimer_hres);
674
675/*
676 * hrtimer_high_res_enabled - query, if the highres mode is enabled
677 */
678static inline int hrtimer_is_hres_enabled(void)
679{
680 return hrtimer_hres_enabled;
681}
682
9ec26907
TG
683/*
684 * Retrigger next event is called after clock was set
685 *
686 * Called with interrupts disabled via on_each_cpu()
687 */
688static void retrigger_next_event(void *arg)
689{
dc5df73b 690 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 691
851cff8c 692 if (!__hrtimer_hres_active(base))
9ec26907
TG
693 return;
694
9ec26907 695 raw_spin_lock(&base->lock);
5baefd6d 696 hrtimer_update_base(base);
9ec26907
TG
697 hrtimer_force_reprogram(base, 0);
698 raw_spin_unlock(&base->lock);
699}
b12a03ce 700
54cdfdb4
TG
701/*
702 * Switch to high resolution mode
703 */
75e3b37d 704static void hrtimer_switch_to_hres(void)
54cdfdb4 705{
c6eb3f70 706 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
707
708 if (tick_init_highres()) {
820de5c3 709 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 710 "mode on CPU %d\n", base->cpu);
85e1cd6e 711 return;
54cdfdb4
TG
712 }
713 base->hres_active = 1;
398ca17f 714 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
715
716 tick_setup_sched_timer();
54cdfdb4
TG
717 /* "Retrigger" the interrupt to get things going */
718 retrigger_next_event(NULL);
54cdfdb4
TG
719}
720
5ec2481b
TG
721static void clock_was_set_work(struct work_struct *work)
722{
723 clock_was_set();
724}
725
726static DECLARE_WORK(hrtimer_work, clock_was_set_work);
727
f55a6faa 728/*
b4d90e9f 729 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 730 * interrupt device on all cpus.
f55a6faa
JS
731 */
732void clock_was_set_delayed(void)
733{
5ec2481b 734 schedule_work(&hrtimer_work);
f55a6faa
JS
735}
736
54cdfdb4
TG
737#else
738
54cdfdb4 739static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 740static inline void hrtimer_switch_to_hres(void) { }
9ec26907 741static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
742
743#endif /* CONFIG_HIGH_RES_TIMERS */
744
11a9fe06
AMG
745/*
746 * When a timer is enqueued and expires earlier than the already enqueued
747 * timers, we have to check, whether it expires earlier than the timer for
748 * which the clock event device was armed.
749 *
750 * Called with interrupts disabled and base->cpu_base.lock held
751 */
5da70160 752static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
11a9fe06
AMG
753{
754 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
3ec7a3ee 755 struct hrtimer_clock_base *base = timer->base;
11a9fe06
AMG
756 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
757
758 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
759
5da70160
AMG
760 /*
761 * CLOCK_REALTIME timer might be requested with an absolute
762 * expiry time which is less than base->offset. Set it to 0.
763 */
764 if (expires < 0)
765 expires = 0;
766
767 if (timer->is_soft) {
768 /*
769 * soft hrtimer could be started on a remote CPU. In this
770 * case softirq_expires_next needs to be updated on the
771 * remote CPU. The soft hrtimer will not expire before the
772 * first hard hrtimer on the remote CPU -
773 * hrtimer_check_target() prevents this case.
774 */
775 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
776
777 if (timer_cpu_base->softirq_activated)
778 return;
779
780 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
781 return;
782
783 timer_cpu_base->softirq_next_timer = timer;
784 timer_cpu_base->softirq_expires_next = expires;
785
786 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
787 !reprogram)
788 return;
789 }
790
11a9fe06
AMG
791 /*
792 * If the timer is not on the current cpu, we cannot reprogram
793 * the other cpus clock event device.
794 */
795 if (base->cpu_base != cpu_base)
796 return;
797
798 /*
799 * If the hrtimer interrupt is running, then it will
800 * reevaluate the clock bases and reprogram the clock event
801 * device. The callbacks are always executed in hard interrupt
802 * context so we don't need an extra check for a running
803 * callback.
804 */
805 if (cpu_base->in_hrtirq)
806 return;
807
11a9fe06
AMG
808 if (expires >= cpu_base->expires_next)
809 return;
810
811 /* Update the pointer to the next expiring timer */
812 cpu_base->next_timer = timer;
14c80341 813 cpu_base->expires_next = expires;
11a9fe06
AMG
814
815 /*
14c80341
AMG
816 * If hres is not active, hardware does not have to be
817 * programmed yet.
818 *
11a9fe06
AMG
819 * If a hang was detected in the last timer interrupt then we
820 * do not schedule a timer which is earlier than the expiry
821 * which we enforced in the hang detection. We want the system
822 * to make progress.
823 */
14c80341 824 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
11a9fe06
AMG
825 return;
826
827 /*
828 * Program the timer hardware. We enforce the expiry for
829 * events which are already in the past.
830 */
11a9fe06
AMG
831 tick_program_event(expires, 1);
832}
833
b12a03ce
TG
834/*
835 * Clock realtime was set
836 *
837 * Change the offset of the realtime clock vs. the monotonic
838 * clock.
839 *
840 * We might have to reprogram the high resolution timer interrupt. On
841 * SMP we call the architecture specific code to retrigger _all_ high
842 * resolution timer interrupts. On UP we just disable interrupts and
843 * call the high resolution interrupt code.
844 */
845void clock_was_set(void)
846{
90ff1f30 847#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
848 /* Retrigger the CPU local events everywhere */
849 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
850#endif
851 timerfd_clock_was_set();
b12a03ce
TG
852}
853
854/*
855 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
856 * interrupt on all online CPUs. However, all other CPUs will be
857 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 858 * must be deferred.
b12a03ce
TG
859 */
860void hrtimers_resume(void)
861{
53bef3fd 862 lockdep_assert_irqs_disabled();
5ec2481b 863 /* Retrigger on the local CPU */
b12a03ce 864 retrigger_next_event(NULL);
5ec2481b
TG
865 /* And schedule a retrigger for all others */
866 clock_was_set_delayed();
b12a03ce
TG
867}
868
c0a31329 869/*
6506f2aa 870 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
871 */
872static inline
873void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
874{
ecb49d1a 875 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
876}
877
878/**
879 * hrtimer_forward - forward the timer expiry
c0a31329 880 * @timer: hrtimer to forward
44f21475 881 * @now: forward past this time
c0a31329
TG
882 * @interval: the interval to forward
883 *
884 * Forward the timer expiry so it will expire in the future.
8dca6f33 885 * Returns the number of overruns.
91e5a217
TG
886 *
887 * Can be safely called from the callback function of @timer. If
888 * called from other contexts @timer must neither be enqueued nor
889 * running the callback and the caller needs to take care of
890 * serialization.
891 *
892 * Note: This only updates the timer expiry value and does not requeue
893 * the timer.
c0a31329 894 */
4d672e7a 895u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 896{
4d672e7a 897 u64 orun = 1;
44f21475 898 ktime_t delta;
c0a31329 899
cc584b21 900 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 901
2456e855 902 if (delta < 0)
c0a31329
TG
903 return 0;
904
5de2755c
PZ
905 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
906 return 0;
907
2456e855
TG
908 if (interval < hrtimer_resolution)
909 interval = hrtimer_resolution;
c9db4fa1 910
2456e855 911 if (unlikely(delta >= interval)) {
df869b63 912 s64 incr = ktime_to_ns(interval);
c0a31329
TG
913
914 orun = ktime_divns(delta, incr);
cc584b21 915 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 916 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
917 return orun;
918 /*
919 * This (and the ktime_add() below) is the
920 * correction for exact:
921 */
922 orun++;
923 }
cc584b21 924 hrtimer_add_expires(timer, interval);
c0a31329
TG
925
926 return orun;
927}
6bdb6b62 928EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
929
930/*
931 * enqueue_hrtimer - internal function to (re)start a timer
932 *
933 * The timer is inserted in expiry order. Insertion into the
934 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
935 *
936 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 937 */
a6037b61 938static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
939 struct hrtimer_clock_base *base,
940 enum hrtimer_mode mode)
c0a31329 941{
63e2ed36 942 debug_activate(timer, mode);
237fc6e7 943
ab8177bc 944 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 945
887d9dc9 946 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 947
b97f44c9 948 return timerqueue_add(&base->active, &timer->node);
288867ec 949}
c0a31329
TG
950
951/*
952 * __remove_hrtimer - internal function to remove a timer
953 *
954 * Caller must hold the base lock.
54cdfdb4
TG
955 *
956 * High resolution timer mode reprograms the clock event device when the
957 * timer is the one which expires next. The caller can disable this by setting
958 * reprogram to zero. This is useful, when the context does a reprogramming
959 * anyway (e.g. timer interrupt)
c0a31329 960 */
3c8aa39d 961static void __remove_hrtimer(struct hrtimer *timer,
303e967f 962 struct hrtimer_clock_base *base,
203cbf77 963 u8 newstate, int reprogram)
c0a31329 964{
e19ffe8b 965 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 966 u8 state = timer->state;
e19ffe8b 967
895bdfa7
TG
968 timer->state = newstate;
969 if (!(state & HRTIMER_STATE_ENQUEUED))
970 return;
7403f41f 971
b97f44c9 972 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 973 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 974
895bdfa7
TG
975 /*
976 * Note: If reprogram is false we do not update
977 * cpu_base->next_timer. This happens when we remove the first
978 * timer on a remote cpu. No harm as we never dereference
979 * cpu_base->next_timer. So the worst thing what can happen is
980 * an superflous call to hrtimer_force_reprogram() on the
981 * remote cpu later on if the same timer gets enqueued again.
982 */
983 if (reprogram && timer == cpu_base->next_timer)
984 hrtimer_force_reprogram(cpu_base, 1);
c0a31329
TG
985}
986
987/*
988 * remove hrtimer, called with base lock held
989 */
990static inline int
8edfb036 991remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 992{
303e967f 993 if (hrtimer_is_queued(timer)) {
203cbf77 994 u8 state = timer->state;
54cdfdb4
TG
995 int reprogram;
996
997 /*
998 * Remove the timer and force reprogramming when high
999 * resolution mode is active and the timer is on the current
1000 * CPU. If we remove a timer on another CPU, reprogramming is
1001 * skipped. The interrupt event on this CPU is fired and
1002 * reprogramming happens in the interrupt handler. This is a
1003 * rare case and less expensive than a smp call.
1004 */
c6a2a177 1005 debug_deactivate(timer);
dc5df73b 1006 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 1007
887d9dc9
PZ
1008 if (!restart)
1009 state = HRTIMER_STATE_INACTIVE;
1010
f13d4f97 1011 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
1012 return 1;
1013 }
1014 return 0;
1015}
1016
203cbf77
TG
1017static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1018 const enum hrtimer_mode mode)
1019{
1020#ifdef CONFIG_TIME_LOW_RES
1021 /*
1022 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1023 * granular time values. For relative timers we add hrtimer_resolution
1024 * (i.e. one jiffie) to prevent short timeouts.
1025 */
1026 timer->is_rel = mode & HRTIMER_MODE_REL;
1027 if (timer->is_rel)
8b0e1953 1028 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
1029#endif
1030 return tim;
1031}
1032
5da70160
AMG
1033static void
1034hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1035{
1036 ktime_t expires;
1037
1038 /*
1039 * Find the next SOFT expiration.
1040 */
1041 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1042
1043 /*
1044 * reprogramming needs to be triggered, even if the next soft
1045 * hrtimer expires at the same time than the next hard
1046 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1047 */
1048 if (expires == KTIME_MAX)
1049 return;
1050
1051 /*
1052 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1053 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1054 */
1055 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1056}
1057
138a6b7a
AMG
1058static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1059 u64 delta_ns, const enum hrtimer_mode mode,
1060 struct hrtimer_clock_base *base)
c0a31329 1061{
138a6b7a 1062 struct hrtimer_clock_base *new_base;
c0a31329
TG
1063
1064 /* Remove an active timer from the queue: */
8edfb036 1065 remove_hrtimer(timer, base, true);
c0a31329 1066
203cbf77 1067 if (mode & HRTIMER_MODE_REL)
84ea7fe3 1068 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
1069
1070 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 1071
da8f2e17 1072 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 1073
84ea7fe3
VK
1074 /* Switch the timer base, if necessary: */
1075 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1076
138a6b7a
AMG
1077 return enqueue_hrtimer(timer, new_base, mode);
1078}
5da70160 1079
138a6b7a
AMG
1080/**
1081 * hrtimer_start_range_ns - (re)start an hrtimer
1082 * @timer: the timer to be added
1083 * @tim: expiry time
1084 * @delta_ns: "slack" range for the timer
1085 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
5da70160
AMG
1086 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1087 * softirq based mode is considered for debug purpose only!
138a6b7a
AMG
1088 */
1089void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1090 u64 delta_ns, const enum hrtimer_mode mode)
1091{
1092 struct hrtimer_clock_base *base;
1093 unsigned long flags;
1094
5da70160
AMG
1095 /*
1096 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1097 * match.
1098 */
1099 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1100
138a6b7a
AMG
1101 base = lock_hrtimer_base(timer, &flags);
1102
1103 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
5da70160 1104 hrtimer_reprogram(timer, true);
49a2a075 1105
c0a31329 1106 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 1107}
da8f2e17
AV
1108EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1109
c0a31329
TG
1110/**
1111 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1112 * @timer: hrtimer to stop
1113 *
1114 * Returns:
1115 * 0 when the timer was not active
1116 * 1 when the timer was active
0ba42a59 1117 * -1 when the timer is currently executing the callback function and
fa9799e3 1118 * cannot be stopped
c0a31329
TG
1119 */
1120int hrtimer_try_to_cancel(struct hrtimer *timer)
1121{
3c8aa39d 1122 struct hrtimer_clock_base *base;
c0a31329
TG
1123 unsigned long flags;
1124 int ret = -1;
1125
19d9f422
TG
1126 /*
1127 * Check lockless first. If the timer is not active (neither
1128 * enqueued nor running the callback, nothing to do here. The
1129 * base lock does not serialize against a concurrent enqueue,
1130 * so we can avoid taking it.
1131 */
1132 if (!hrtimer_active(timer))
1133 return 0;
1134
c0a31329
TG
1135 base = lock_hrtimer_base(timer, &flags);
1136
303e967f 1137 if (!hrtimer_callback_running(timer))
8edfb036 1138 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1139
1140 unlock_hrtimer_base(timer, &flags);
1141
1142 return ret;
1143
1144}
8d16b764 1145EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1146
1147/**
1148 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1149 * @timer: the timer to be cancelled
1150 *
1151 * Returns:
1152 * 0 when the timer was not active
1153 * 1 when the timer was active
1154 */
1155int hrtimer_cancel(struct hrtimer *timer)
1156{
1157 for (;;) {
1158 int ret = hrtimer_try_to_cancel(timer);
1159
1160 if (ret >= 0)
1161 return ret;
5ef37b19 1162 cpu_relax();
c0a31329
TG
1163 }
1164}
8d16b764 1165EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1166
1167/**
1168 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1169 * @timer: the timer to read
203cbf77 1170 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1171 */
203cbf77 1172ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1173{
c0a31329
TG
1174 unsigned long flags;
1175 ktime_t rem;
1176
b3bd3de6 1177 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1178 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1179 rem = hrtimer_expires_remaining_adjusted(timer);
1180 else
1181 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1182 unlock_hrtimer_base(timer, &flags);
1183
1184 return rem;
1185}
203cbf77 1186EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1187
3451d024 1188#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1189/**
1190 * hrtimer_get_next_event - get the time until next expiry event
1191 *
c1ad348b 1192 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1193 */
c1ad348b 1194u64 hrtimer_get_next_event(void)
69239749 1195{
dc5df73b 1196 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1197 u64 expires = KTIME_MAX;
69239749 1198 unsigned long flags;
69239749 1199
ecb49d1a 1200 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1201
e19ffe8b 1202 if (!__hrtimer_hres_active(cpu_base))
5da70160 1203 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
3c8aa39d 1204
ecb49d1a 1205 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1206
c1ad348b 1207 return expires;
69239749 1208}
a59855cd
RW
1209
1210/**
1211 * hrtimer_next_event_without - time until next expiry event w/o one timer
1212 * @exclude: timer to exclude
1213 *
1214 * Returns the next expiry time over all timers except for the @exclude one or
1215 * KTIME_MAX if none of them is pending.
1216 */
1217u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1218{
1219 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1220 u64 expires = KTIME_MAX;
1221 unsigned long flags;
1222
1223 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1224
1225 if (__hrtimer_hres_active(cpu_base)) {
1226 unsigned int active;
1227
1228 if (!cpu_base->softirq_activated) {
1229 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1230 expires = __hrtimer_next_event_base(cpu_base, exclude,
1231 active, KTIME_MAX);
1232 }
1233 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1234 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1235 expires);
1236 }
1237
1238 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1239
1240 return expires;
1241}
69239749
TL
1242#endif
1243
336a9cde
MZ
1244static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1245{
1246 if (likely(clock_id < MAX_CLOCKS)) {
1247 int base = hrtimer_clock_to_base_table[clock_id];
1248
1249 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1250 return base;
1251 }
1252 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1253 return HRTIMER_BASE_MONOTONIC;
1254}
1255
237fc6e7
TG
1256static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1257 enum hrtimer_mode mode)
c0a31329 1258{
42f42da4
AMG
1259 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1260 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
3c8aa39d 1261 struct hrtimer_cpu_base *cpu_base;
c0a31329 1262
7978672c
GA
1263 memset(timer, 0, sizeof(struct hrtimer));
1264
22127e93 1265 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1266
48d0c9be
AMG
1267 /*
1268 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1269 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1270 * ensure POSIX compliance.
1271 */
1272 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1273 clock_id = CLOCK_MONOTONIC;
1274
42f42da4
AMG
1275 base += hrtimer_clockid_to_base(clock_id);
1276 timer->is_soft = softtimer;
e06383db 1277 timer->base = &cpu_base->clock_base[base];
998adc3d 1278 timerqueue_init(&timer->node);
c0a31329 1279}
237fc6e7
TG
1280
1281/**
1282 * hrtimer_init - initialize a timer to the given clock
1283 * @timer: the timer to be initialized
1284 * @clock_id: the clock to be used
42f42da4
AMG
1285 * @mode: The modes which are relevant for intitialization:
1286 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1287 * HRTIMER_MODE_REL_SOFT
1288 *
1289 * The PINNED variants of the above can be handed in,
1290 * but the PINNED bit is ignored as pinning happens
1291 * when the hrtimer is started
237fc6e7
TG
1292 */
1293void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1294 enum hrtimer_mode mode)
1295{
c6a2a177 1296 debug_init(timer, clock_id, mode);
237fc6e7
TG
1297 __hrtimer_init(timer, clock_id, mode);
1298}
8d16b764 1299EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1300
887d9dc9
PZ
1301/*
1302 * A timer is active, when it is enqueued into the rbtree or the
1303 * callback function is running or it's in the state of being migrated
1304 * to another cpu.
c0a31329 1305 *
887d9dc9 1306 * It is important for this function to not return a false negative.
c0a31329 1307 */
887d9dc9 1308bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1309{
3f0b9e8e 1310 struct hrtimer_clock_base *base;
887d9dc9 1311 unsigned int seq;
c0a31329 1312
887d9dc9 1313 do {
3f0b9e8e
AMG
1314 base = READ_ONCE(timer->base);
1315 seq = raw_read_seqcount_begin(&base->seq);
c0a31329 1316
887d9dc9 1317 if (timer->state != HRTIMER_STATE_INACTIVE ||
3f0b9e8e 1318 base->running == timer)
887d9dc9
PZ
1319 return true;
1320
3f0b9e8e
AMG
1321 } while (read_seqcount_retry(&base->seq, seq) ||
1322 base != READ_ONCE(timer->base));
887d9dc9
PZ
1323
1324 return false;
c0a31329 1325}
887d9dc9 1326EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1327
887d9dc9
PZ
1328/*
1329 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1330 * distinct sections:
1331 *
1332 * - queued: the timer is queued
1333 * - callback: the timer is being ran
1334 * - post: the timer is inactive or (re)queued
1335 *
1336 * On the read side we ensure we observe timer->state and cpu_base->running
1337 * from the same section, if anything changed while we looked at it, we retry.
1338 * This includes timer->base changing because sequence numbers alone are
1339 * insufficient for that.
1340 *
1341 * The sequence numbers are required because otherwise we could still observe
1342 * a false negative if the read side got smeared over multiple consequtive
1343 * __run_hrtimer() invocations.
1344 */
1345
21d6d52a
TG
1346static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1347 struct hrtimer_clock_base *base,
dd934aa8
AMG
1348 struct hrtimer *timer, ktime_t *now,
1349 unsigned long flags)
d3d74453 1350{
d3d74453
PZ
1351 enum hrtimer_restart (*fn)(struct hrtimer *);
1352 int restart;
1353
887d9dc9 1354 lockdep_assert_held(&cpu_base->lock);
ca109491 1355
c6a2a177 1356 debug_deactivate(timer);
3f0b9e8e 1357 base->running = timer;
887d9dc9
PZ
1358
1359 /*
1360 * Separate the ->running assignment from the ->state assignment.
1361 *
1362 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1363 * hrtimer_active() cannot observe base->running == NULL &&
887d9dc9
PZ
1364 * timer->state == INACTIVE.
1365 */
3f0b9e8e 1366 raw_write_seqcount_barrier(&base->seq);
887d9dc9
PZ
1367
1368 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1369 fn = timer->function;
ca109491 1370
203cbf77
TG
1371 /*
1372 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1373 * timer is restarted with a period then it becomes an absolute
1374 * timer. If its not restarted it does not matter.
1375 */
1376 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1377 timer->is_rel = false;
1378
ca109491 1379 /*
d05ca13b
TG
1380 * The timer is marked as running in the CPU base, so it is
1381 * protected against migration to a different CPU even if the lock
1382 * is dropped.
ca109491 1383 */
dd934aa8 1384 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c6a2a177 1385 trace_hrtimer_expire_entry(timer, now);
ca109491 1386 restart = fn(timer);
c6a2a177 1387 trace_hrtimer_expire_exit(timer);
dd934aa8 1388 raw_spin_lock_irq(&cpu_base->lock);
d3d74453
PZ
1389
1390 /*
887d9dc9 1391 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1392 * we do not reprogram the event hardware. Happens either in
e3f1d883 1393 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1394 *
1395 * Note: Because we dropped the cpu_base->lock above,
1396 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1397 * for us already.
d3d74453 1398 */
5de2755c
PZ
1399 if (restart != HRTIMER_NORESTART &&
1400 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1401 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1402
887d9dc9
PZ
1403 /*
1404 * Separate the ->running assignment from the ->state assignment.
1405 *
1406 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1407 * hrtimer_active() cannot observe base->running.timer == NULL &&
887d9dc9
PZ
1408 * timer->state == INACTIVE.
1409 */
3f0b9e8e 1410 raw_write_seqcount_barrier(&base->seq);
f13d4f97 1411
3f0b9e8e
AMG
1412 WARN_ON_ONCE(base->running != timer);
1413 base->running = NULL;
d3d74453
PZ
1414}
1415
dd934aa8 1416static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
c458b1d1 1417 unsigned long flags, unsigned int active_mask)
54cdfdb4 1418{
c272ca58 1419 struct hrtimer_clock_base *base;
c458b1d1 1420 unsigned int active = cpu_base->active_bases & active_mask;
6ff7041d 1421
c272ca58 1422 for_each_active_base(base, cpu_base, active) {
998adc3d 1423 struct timerqueue_node *node;
ab8177bc
TG
1424 ktime_t basenow;
1425
54cdfdb4
TG
1426 basenow = ktime_add(now, base->offset);
1427
998adc3d 1428 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1429 struct hrtimer *timer;
1430
998adc3d 1431 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1432
654c8e0b
AV
1433 /*
1434 * The immediate goal for using the softexpires is
1435 * minimizing wakeups, not running timers at the
1436 * earliest interrupt after their soft expiration.
1437 * This allows us to avoid using a Priority Search
1438 * Tree, which can answer a stabbing querry for
1439 * overlapping intervals and instead use the simple
1440 * BST we already have.
1441 * We don't add extra wakeups by delaying timers that
1442 * are right-of a not yet expired timer, because that
1443 * timer will have to trigger a wakeup anyway.
1444 */
2456e855 1445 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1446 break;
54cdfdb4 1447
dd934aa8 1448 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
54cdfdb4 1449 }
54cdfdb4 1450 }
21d6d52a
TG
1451}
1452
5da70160
AMG
1453static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1454{
1455 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1456 unsigned long flags;
1457 ktime_t now;
1458
1459 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1460
1461 now = hrtimer_update_base(cpu_base);
1462 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1463
1464 cpu_base->softirq_activated = 0;
1465 hrtimer_update_softirq_timer(cpu_base, true);
1466
1467 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1468}
1469
21d6d52a
TG
1470#ifdef CONFIG_HIGH_RES_TIMERS
1471
1472/*
1473 * High resolution timer interrupt
1474 * Called with interrupts disabled
1475 */
1476void hrtimer_interrupt(struct clock_event_device *dev)
1477{
1478 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1479 ktime_t expires_next, now, entry_time, delta;
dd934aa8 1480 unsigned long flags;
21d6d52a
TG
1481 int retries = 0;
1482
1483 BUG_ON(!cpu_base->hres_active);
1484 cpu_base->nr_events++;
2456e855 1485 dev->next_event = KTIME_MAX;
21d6d52a 1486
dd934aa8 1487 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a
TG
1488 entry_time = now = hrtimer_update_base(cpu_base);
1489retry:
1490 cpu_base->in_hrtirq = 1;
1491 /*
1492 * We set expires_next to KTIME_MAX here with cpu_base->lock
1493 * held to prevent that a timer is enqueued in our queue via
1494 * the migration code. This does not affect enqueueing of
1495 * timers which run their callback and need to be requeued on
1496 * this CPU.
1497 */
2456e855 1498 cpu_base->expires_next = KTIME_MAX;
21d6d52a 1499
5da70160
AMG
1500 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1501 cpu_base->softirq_expires_next = KTIME_MAX;
1502 cpu_base->softirq_activated = 1;
1503 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1504 }
1505
c458b1d1 1506 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
21d6d52a 1507
9bc74919 1508 /* Reevaluate the clock bases for the next expiry */
5da70160 1509 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
6ff7041d
TG
1510 /*
1511 * Store the new expiry value so the migration code can verify
1512 * against it.
1513 */
54cdfdb4 1514 cpu_base->expires_next = expires_next;
9bc74919 1515 cpu_base->in_hrtirq = 0;
dd934aa8 1516 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
54cdfdb4
TG
1517
1518 /* Reprogramming necessary ? */
d2540875 1519 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1520 cpu_base->hang_detected = 0;
1521 return;
54cdfdb4 1522 }
41d2e494
TG
1523
1524 /*
1525 * The next timer was already expired due to:
1526 * - tracing
1527 * - long lasting callbacks
1528 * - being scheduled away when running in a VM
1529 *
1530 * We need to prevent that we loop forever in the hrtimer
1531 * interrupt routine. We give it 3 attempts to avoid
1532 * overreacting on some spurious event.
5baefd6d
JS
1533 *
1534 * Acquire base lock for updating the offsets and retrieving
1535 * the current time.
41d2e494 1536 */
dd934aa8 1537 raw_spin_lock_irqsave(&cpu_base->lock, flags);
5baefd6d 1538 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1539 cpu_base->nr_retries++;
1540 if (++retries < 3)
1541 goto retry;
1542 /*
1543 * Give the system a chance to do something else than looping
1544 * here. We stored the entry time, so we know exactly how long
1545 * we spent here. We schedule the next event this amount of
1546 * time away.
1547 */
1548 cpu_base->nr_hangs++;
1549 cpu_base->hang_detected = 1;
dd934aa8
AMG
1550 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1551
41d2e494 1552 delta = ktime_sub(now, entry_time);
2456e855
TG
1553 if ((unsigned int)delta > cpu_base->max_hang_time)
1554 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1555 /*
1556 * Limit it to a sensible value as we enforce a longer
1557 * delay. Give the CPU at least 100ms to catch up.
1558 */
2456e855 1559 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1560 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1561 else
1562 expires_next = ktime_add(now, delta);
1563 tick_program_event(expires_next, 1);
1564 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1565 ktime_to_ns(delta));
54cdfdb4
TG
1566}
1567
016da201 1568/* called with interrupts disabled */
c6eb3f70 1569static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1570{
1571 struct tick_device *td;
1572
1573 if (!hrtimer_hres_active())
1574 return;
1575
22127e93 1576 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1577 if (td && td->evtdev)
1578 hrtimer_interrupt(td->evtdev);
1579}
1580
82c5b7b5
IM
1581#else /* CONFIG_HIGH_RES_TIMERS */
1582
1583static inline void __hrtimer_peek_ahead_timers(void) { }
1584
1585#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1586
d3d74453 1587/*
c6eb3f70 1588 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1589 */
833883d9 1590void hrtimer_run_queues(void)
d3d74453 1591{
dc5df73b 1592 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
dd934aa8 1593 unsigned long flags;
21d6d52a 1594 ktime_t now;
c0a31329 1595
e19ffe8b 1596 if (__hrtimer_hres_active(cpu_base))
d3d74453 1597 return;
54cdfdb4 1598
d3d74453 1599 /*
c6eb3f70
TG
1600 * This _is_ ugly: We have to check periodically, whether we
1601 * can switch to highres and / or nohz mode. The clocksource
1602 * switch happens with xtime_lock held. Notification from
1603 * there only sets the check bit in the tick_oneshot code,
1604 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1605 */
c6eb3f70 1606 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1607 hrtimer_switch_to_hres();
3055adda 1608 return;
833883d9 1609 }
c6eb3f70 1610
dd934aa8 1611 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a 1612 now = hrtimer_update_base(cpu_base);
5da70160
AMG
1613
1614 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1615 cpu_base->softirq_expires_next = KTIME_MAX;
1616 cpu_base->softirq_activated = 1;
1617 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1618 }
1619
c458b1d1 1620 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
dd934aa8 1621 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c0a31329
TG
1622}
1623
10c94ec1
TG
1624/*
1625 * Sleep related functions:
1626 */
c9cb2e3d 1627static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1628{
1629 struct hrtimer_sleeper *t =
1630 container_of(timer, struct hrtimer_sleeper, timer);
1631 struct task_struct *task = t->task;
1632
1633 t->task = NULL;
1634 if (task)
1635 wake_up_process(task);
1636
1637 return HRTIMER_NORESTART;
1638}
1639
36c8b586 1640void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1641{
1642 sl->timer.function = hrtimer_wakeup;
1643 sl->task = task;
1644}
2bc481cf 1645EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1646
c0edd7c9 1647int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1648{
1649 switch(restart->nanosleep.type) {
1650#ifdef CONFIG_COMPAT
1651 case TT_COMPAT:
c0edd7c9 1652 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1653 return -EFAULT;
1654 break;
1655#endif
1656 case TT_NATIVE:
c0edd7c9 1657 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1658 return -EFAULT;
1659 break;
1660 default:
1661 BUG();
1662 }
1663 return -ERESTART_RESTARTBLOCK;
1664}
1665
669d7868 1666static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1667{
edbeda46
AV
1668 struct restart_block *restart;
1669
669d7868 1670 hrtimer_init_sleeper(t, current);
10c94ec1 1671
432569bb
RZ
1672 do {
1673 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1674 hrtimer_start_expires(&t->timer, mode);
432569bb 1675
54cdfdb4 1676 if (likely(t->task))
b0f8c44f 1677 freezable_schedule();
432569bb 1678
669d7868 1679 hrtimer_cancel(&t->timer);
c9cb2e3d 1680 mode = HRTIMER_MODE_ABS;
669d7868
TG
1681
1682 } while (t->task && !signal_pending(current));
432569bb 1683
3588a085
PZ
1684 __set_current_state(TASK_RUNNING);
1685
a7602681 1686 if (!t->task)
080344b9 1687 return 0;
080344b9 1688
edbeda46
AV
1689 restart = &current->restart_block;
1690 if (restart->nanosleep.type != TT_NONE) {
a7602681 1691 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1692 struct timespec64 rmt;
edbeda46 1693
a7602681
AV
1694 if (rem <= 0)
1695 return 0;
c0edd7c9 1696 rmt = ktime_to_timespec64(rem);
a7602681 1697
ce41aaf4 1698 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1699 }
1700 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1701}
1702
fb923c4a 1703static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1704{
669d7868 1705 struct hrtimer_sleeper t;
a7602681 1706 int ret;
10c94ec1 1707
ab8177bc 1708 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1709 HRTIMER_MODE_ABS);
cc584b21 1710 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1711
a7602681 1712 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1713 destroy_hrtimer_on_stack(&t.timer);
1714 return ret;
10c94ec1
TG
1715}
1716
938e7cf2 1717long hrtimer_nanosleep(const struct timespec64 *rqtp,
10c94ec1
TG
1718 const enum hrtimer_mode mode, const clockid_t clockid)
1719{
a7602681 1720 struct restart_block *restart;
669d7868 1721 struct hrtimer_sleeper t;
237fc6e7 1722 int ret = 0;
da8b44d5 1723 u64 slack;
3bd01206
AV
1724
1725 slack = current->timer_slack_ns;
aab03e05 1726 if (dl_task(current) || rt_task(current))
3bd01206 1727 slack = 0;
10c94ec1 1728
237fc6e7 1729 hrtimer_init_on_stack(&t.timer, clockid, mode);
ad196384 1730 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
a7602681
AV
1731 ret = do_nanosleep(&t, mode);
1732 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1733 goto out;
10c94ec1 1734
7978672c 1735 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1736 if (mode == HRTIMER_MODE_ABS) {
1737 ret = -ERESTARTNOHAND;
1738 goto out;
1739 }
10c94ec1 1740
a7602681 1741 restart = &current->restart_block;
1711ef38 1742 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1743 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1744 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1745out:
1746 destroy_hrtimer_on_stack(&t.timer);
1747 return ret;
10c94ec1
TG
1748}
1749
58fd3aa2
HC
1750SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1751 struct timespec __user *, rmtp)
6ba1b912 1752{
c0edd7c9 1753 struct timespec64 tu;
6ba1b912 1754
c0edd7c9 1755 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1756 return -EFAULT;
1757
c0edd7c9 1758 if (!timespec64_valid(&tu))
6ba1b912
TG
1759 return -EINVAL;
1760
edbeda46 1761 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1762 current->restart_block.nanosleep.rmtp = rmtp;
c0edd7c9 1763 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1764}
1765
edbeda46
AV
1766#ifdef CONFIG_COMPAT
1767
1768COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1769 struct compat_timespec __user *, rmtp)
1770{
c0edd7c9 1771 struct timespec64 tu;
edbeda46 1772
c0edd7c9 1773 if (compat_get_timespec64(&tu, rqtp))
edbeda46
AV
1774 return -EFAULT;
1775
c0edd7c9 1776 if (!timespec64_valid(&tu))
edbeda46
AV
1777 return -EINVAL;
1778
1779 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1780 current->restart_block.nanosleep.compat_rmtp = rmtp;
c0edd7c9 1781 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
edbeda46
AV
1782}
1783#endif
1784
c0a31329
TG
1785/*
1786 * Functions related to boot-time initialization:
1787 */
27590dc1 1788int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1789{
3c8aa39d 1790 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1791 int i;
1792
998adc3d 1793 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1794 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1795 timerqueue_init_head(&cpu_base->clock_base[i].active);
1796 }
3c8aa39d 1797
cddd0248 1798 cpu_base->cpu = cpu;
303c146d 1799 cpu_base->active_bases = 0;
28bfd18b 1800 cpu_base->hres_active = 0;
303c146d
TG
1801 cpu_base->hang_detected = 0;
1802 cpu_base->next_timer = NULL;
1803 cpu_base->softirq_next_timer = NULL;
07a9a7ea 1804 cpu_base->expires_next = KTIME_MAX;
5da70160 1805 cpu_base->softirq_expires_next = KTIME_MAX;
27590dc1 1806 return 0;
c0a31329
TG
1807}
1808
1809#ifdef CONFIG_HOTPLUG_CPU
1810
ca109491 1811static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1812 struct hrtimer_clock_base *new_base)
c0a31329
TG
1813{
1814 struct hrtimer *timer;
998adc3d 1815 struct timerqueue_node *node;
c0a31329 1816
998adc3d
JS
1817 while ((node = timerqueue_getnext(&old_base->active))) {
1818 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1819 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1820 debug_deactivate(timer);
b00c1a99
TG
1821
1822 /*
c04dca02 1823 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1824 * timer could be seen as !active and just vanish away
1825 * under us on another CPU
1826 */
c04dca02 1827 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1828 timer->base = new_base;
54cdfdb4 1829 /*
e3f1d883
TG
1830 * Enqueue the timers on the new cpu. This does not
1831 * reprogram the event device in case the timer
1832 * expires before the earliest on this CPU, but we run
1833 * hrtimer_interrupt after we migrated everything to
1834 * sort out already expired timers and reprogram the
1835 * event device.
54cdfdb4 1836 */
63e2ed36 1837 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
1838 }
1839}
1840
27590dc1 1841int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 1842{
3c8aa39d 1843 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1844 int i;
c0a31329 1845
37810659 1846 BUG_ON(cpu_online(scpu));
37810659 1847 tick_cancel_sched_timer(scpu);
731a55ba 1848
5da70160
AMG
1849 /*
1850 * this BH disable ensures that raise_softirq_irqoff() does
1851 * not wakeup ksoftirqd (and acquire the pi-lock) while
1852 * holding the cpu_base lock
1853 */
1854 local_bh_disable();
731a55ba
TG
1855 local_irq_disable();
1856 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1857 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1858 /*
1859 * The caller is globally serialized and nobody else
1860 * takes two locks at once, deadlock is not possible.
1861 */
ecb49d1a
TG
1862 raw_spin_lock(&new_base->lock);
1863 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1864
3c8aa39d 1865 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1866 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1867 &new_base->clock_base[i]);
c0a31329
TG
1868 }
1869
5da70160
AMG
1870 /*
1871 * The migration might have changed the first expiring softirq
1872 * timer on this CPU. Update it.
1873 */
1874 hrtimer_update_softirq_timer(new_base, false);
1875
ecb49d1a
TG
1876 raw_spin_unlock(&old_base->lock);
1877 raw_spin_unlock(&new_base->lock);
37810659 1878
731a55ba
TG
1879 /* Check, if we got expired work to do */
1880 __hrtimer_peek_ahead_timers();
1881 local_irq_enable();
5da70160 1882 local_bh_enable();
27590dc1 1883 return 0;
c0a31329 1884}
37810659 1885
c0a31329
TG
1886#endif /* CONFIG_HOTPLUG_CPU */
1887
c0a31329
TG
1888void __init hrtimers_init(void)
1889{
27590dc1 1890 hrtimers_prepare_cpu(smp_processor_id());
5da70160 1891 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
c0a31329
TG
1892}
1893
7bb67439 1894/**
351b3f7a 1895 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1896 * @expires: timeout value (ktime_t)
654c8e0b 1897 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
1898 * @mode: timer mode
1899 * @clock_id: timer clock to be used
7bb67439 1900 */
351b3f7a 1901int __sched
da8b44d5 1902schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 1903 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
1904{
1905 struct hrtimer_sleeper t;
1906
1907 /*
1908 * Optimize when a zero timeout value is given. It does not
1909 * matter whether this is an absolute or a relative time.
1910 */
2456e855 1911 if (expires && *expires == 0) {
7bb67439
AV
1912 __set_current_state(TASK_RUNNING);
1913 return 0;
1914 }
1915
1916 /*
43b21013 1917 * A NULL parameter means "infinite"
7bb67439
AV
1918 */
1919 if (!expires) {
1920 schedule();
7bb67439
AV
1921 return -EINTR;
1922 }
1923
90777713 1924 hrtimer_init_on_stack(&t.timer, clock_id, mode);
654c8e0b 1925 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1926
1927 hrtimer_init_sleeper(&t, current);
1928
cc584b21 1929 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1930
1931 if (likely(t.task))
1932 schedule();
1933
1934 hrtimer_cancel(&t.timer);
1935 destroy_hrtimer_on_stack(&t.timer);
1936
1937 __set_current_state(TASK_RUNNING);
1938
1939 return !t.task ? 0 : -EINTR;
1940}
351b3f7a
CE
1941
1942/**
1943 * schedule_hrtimeout_range - sleep until timeout
1944 * @expires: timeout value (ktime_t)
1945 * @delta: slack in expires timeout (ktime_t)
90777713 1946 * @mode: timer mode
351b3f7a
CE
1947 *
1948 * Make the current task sleep until the given expiry time has
1949 * elapsed. The routine will return immediately unless
1950 * the current task state has been set (see set_current_state()).
1951 *
1952 * The @delta argument gives the kernel the freedom to schedule the
1953 * actual wakeup to a time that is both power and performance friendly.
1954 * The kernel give the normal best effort behavior for "@expires+@delta",
1955 * but may decide to fire the timer earlier, but no earlier than @expires.
1956 *
1957 * You can set the task state as follows -
1958 *
1959 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1960 * pass before the routine returns unless the current task is explicitly
1961 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
1962 *
1963 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1964 * delivered to the current task or the current task is explicitly woken
1965 * up.
351b3f7a
CE
1966 *
1967 * The current task state is guaranteed to be TASK_RUNNING when this
1968 * routine returns.
1969 *
4b7e9cf9
DA
1970 * Returns 0 when the timer has expired. If the task was woken before the
1971 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1972 * by an explicit wakeup, it returns -EINTR.
351b3f7a 1973 */
da8b44d5 1974int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
1975 const enum hrtimer_mode mode)
1976{
1977 return schedule_hrtimeout_range_clock(expires, delta, mode,
1978 CLOCK_MONOTONIC);
1979}
654c8e0b
AV
1980EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1981
1982/**
1983 * schedule_hrtimeout - sleep until timeout
1984 * @expires: timeout value (ktime_t)
90777713 1985 * @mode: timer mode
654c8e0b
AV
1986 *
1987 * Make the current task sleep until the given expiry time has
1988 * elapsed. The routine will return immediately unless
1989 * the current task state has been set (see set_current_state()).
1990 *
1991 * You can set the task state as follows -
1992 *
1993 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1994 * pass before the routine returns unless the current task is explicitly
1995 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
1996 *
1997 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1998 * delivered to the current task or the current task is explicitly woken
1999 * up.
654c8e0b
AV
2000 *
2001 * The current task state is guaranteed to be TASK_RUNNING when this
2002 * routine returns.
2003 *
4b7e9cf9
DA
2004 * Returns 0 when the timer has expired. If the task was woken before the
2005 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2006 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
2007 */
2008int __sched schedule_hrtimeout(ktime_t *expires,
2009 const enum hrtimer_mode mode)
2010{
2011 return schedule_hrtimeout_range(expires, 0, mode);
2012}
7bb67439 2013EXPORT_SYMBOL_GPL(schedule_hrtimeout);