hrtimer: Determine hard/soft expiry mode for hrtimer sleepers on RT
[linux-2.6-block.git] / kernel / time / hrtimer.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
c0a31329 2/*
3c8aa39d 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
6 *
7 * High-resolution kernel timers
8 *
58c5fc2b
TG
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
c0a31329
TG
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
58c5fc2b 16 * Based on the original timer wheel code
c0a31329 17 *
66188fae
TG
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
c0a31329
TG
23 */
24
25#include <linux/cpu.h>
9984de1a 26#include <linux/export.h>
c0a31329
TG
27#include <linux/percpu.h>
28#include <linux/hrtimer.h>
29#include <linux/notifier.h>
30#include <linux/syscalls.h>
31#include <linux/interrupt.h>
79bf2bb3 32#include <linux/tick.h>
54cdfdb4 33#include <linux/err.h>
237fc6e7 34#include <linux/debugobjects.h>
174cd4b1 35#include <linux/sched/signal.h>
cf4aebc2 36#include <linux/sched/sysctl.h>
8bd75c77 37#include <linux/sched/rt.h>
aab03e05 38#include <linux/sched/deadline.h>
370c9135 39#include <linux/sched/nohz.h>
b17b0153 40#include <linux/sched/debug.h>
eea08f32 41#include <linux/timer.h>
b0f8c44f 42#include <linux/freezer.h>
edbeda46 43#include <linux/compat.h>
c0a31329 44
7c0f6ba6 45#include <linux/uaccess.h>
c0a31329 46
c6a2a177
XG
47#include <trace/events/timer.h>
48
c1797baf 49#include "tick-internal.h"
8b094cd0 50
c458b1d1
AMG
51/*
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
54 */
55#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59
c0a31329
TG
60/*
61 * The timer bases:
7978672c 62 *
571af55a 63 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 67 */
54cdfdb4 68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 69{
84cc8fd2 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 71 .clock_base =
c0a31329 72 {
3c8aa39d 73 {
ab8177bc
TG
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
3c8aa39d 76 .get_time = &ktime_get,
3c8aa39d 77 },
68fa61c0
TG
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
68fa61c0 82 },
a3ed0e43
TG
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
90adda98
JS
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
90adda98 92 },
98ecadd4
AMG
93 {
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
97 },
98 {
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
102 },
a3ed0e43
TG
103 {
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
107 },
98ecadd4
AMG
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
3c8aa39d 113 }
c0a31329
TG
114};
115
942c3c5c 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
ce31332d
TG
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
a3ed0e43 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 124};
e06383db 125
c0a31329
TG
126/*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130#ifdef CONFIG_SMP
131
887d9dc9
PZ
132/*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137static struct hrtimer_cpu_base migration_cpu_base = {
887d9dc9
PZ
138 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
139};
140
141#define migration_base migration_cpu_base.clock_base[0]
142
c0a31329
TG
143/*
144 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
145 * means that all timers which are tied to this base via timer->base are
146 * locked, and the base itself is locked too.
147 *
148 * So __run_timers/migrate_timers can safely modify all timers which could
149 * be found on the lists/queues.
150 *
151 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
152 * possible to set timer->base = &migration_base and drop the lock: the timer
153 * remains locked.
c0a31329 154 */
3c8aa39d
TG
155static
156struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
157 unsigned long *flags)
c0a31329 158{
3c8aa39d 159 struct hrtimer_clock_base *base;
c0a31329
TG
160
161 for (;;) {
162 base = timer->base;
887d9dc9 163 if (likely(base != &migration_base)) {
ecb49d1a 164 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
165 if (likely(base == timer->base))
166 return base;
167 /* The timer has migrated to another CPU: */
ecb49d1a 168 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
169 }
170 cpu_relax();
171 }
172}
173
6ff7041d 174/*
07a9a7ea
AMG
175 * We do not migrate the timer when it is expiring before the next
176 * event on the target cpu. When high resolution is enabled, we cannot
177 * reprogram the target cpu hardware and we would cause it to fire
178 * late. To keep it simple, we handle the high resolution enabled and
179 * disabled case similar.
6ff7041d
TG
180 *
181 * Called with cpu_base->lock of target cpu held.
182 */
183static int
184hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
185{
6ff7041d
TG
186 ktime_t expires;
187
6ff7041d 188 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2ac2dccc 189 return expires < new_base->cpu_base->expires_next;
6ff7041d
TG
190}
191
bc7a34b8
TG
192static inline
193struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
194 int pinned)
195{
ae67bada
TG
196#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
197 if (static_branch_likely(&timers_migration_enabled) && !pinned)
198 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
199#endif
662b3e19 200 return base;
bc7a34b8 201}
bc7a34b8 202
c0a31329 203/*
b48362d8
FW
204 * We switch the timer base to a power-optimized selected CPU target,
205 * if:
206 * - NO_HZ_COMMON is enabled
207 * - timer migration is enabled
208 * - the timer callback is not running
209 * - the timer is not the first expiring timer on the new target
210 *
211 * If one of the above requirements is not fulfilled we move the timer
212 * to the current CPU or leave it on the previously assigned CPU if
213 * the timer callback is currently running.
c0a31329 214 */
3c8aa39d 215static inline struct hrtimer_clock_base *
597d0275
AB
216switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
217 int pinned)
c0a31329 218{
b48362d8 219 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 220 struct hrtimer_clock_base *new_base;
ab8177bc 221 int basenum = base->index;
c0a31329 222
b48362d8
FW
223 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
224 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 225again:
e06383db 226 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
227
228 if (base != new_base) {
229 /*
6ff7041d 230 * We are trying to move timer to new_base.
c0a31329
TG
231 * However we can't change timer's base while it is running,
232 * so we keep it on the same CPU. No hassle vs. reprogramming
233 * the event source in the high resolution case. The softirq
234 * code will take care of this when the timer function has
235 * completed. There is no conflict as we hold the lock until
236 * the timer is enqueued.
237 */
54cdfdb4 238 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
239 return base;
240
887d9dc9
PZ
241 /* See the comment in lock_hrtimer_base() */
242 timer->base = &migration_base;
ecb49d1a
TG
243 raw_spin_unlock(&base->cpu_base->lock);
244 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 245
b48362d8 246 if (new_cpu_base != this_cpu_base &&
bc7a34b8 247 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
248 raw_spin_unlock(&new_base->cpu_base->lock);
249 raw_spin_lock(&base->cpu_base->lock);
b48362d8 250 new_cpu_base = this_cpu_base;
6ff7041d
TG
251 timer->base = base;
252 goto again;
eea08f32 253 }
c0a31329 254 timer->base = new_base;
012a45e3 255 } else {
b48362d8 256 if (new_cpu_base != this_cpu_base &&
bc7a34b8 257 hrtimer_check_target(timer, new_base)) {
b48362d8 258 new_cpu_base = this_cpu_base;
012a45e3
LM
259 goto again;
260 }
c0a31329
TG
261 }
262 return new_base;
263}
264
265#else /* CONFIG_SMP */
266
3c8aa39d 267static inline struct hrtimer_clock_base *
c0a31329
TG
268lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269{
3c8aa39d 270 struct hrtimer_clock_base *base = timer->base;
c0a31329 271
ecb49d1a 272 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
273
274 return base;
275}
276
eea08f32 277# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
278
279#endif /* !CONFIG_SMP */
280
281/*
282 * Functions for the union type storage format of ktime_t which are
283 * too large for inlining:
284 */
285#if BITS_PER_LONG < 64
c0a31329
TG
286/*
287 * Divide a ktime value by a nanosecond value
288 */
f7bcb70e 289s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 290{
c0a31329 291 int sft = 0;
f7bcb70e
JS
292 s64 dclc;
293 u64 tmp;
c0a31329 294
900cfa46 295 dclc = ktime_to_ns(kt);
f7bcb70e
JS
296 tmp = dclc < 0 ? -dclc : dclc;
297
c0a31329
TG
298 /* Make sure the divisor is less than 2^32: */
299 while (div >> 32) {
300 sft++;
301 div >>= 1;
302 }
f7bcb70e
JS
303 tmp >>= sft;
304 do_div(tmp, (unsigned long) div);
305 return dclc < 0 ? -tmp : tmp;
c0a31329 306}
8b618628 307EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
308#endif /* BITS_PER_LONG >= 64 */
309
5a7780e7
TG
310/*
311 * Add two ktime values and do a safety check for overflow:
312 */
313ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
314{
979515c5 315 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
316
317 /*
318 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 * return to user space in a timespec:
320 */
2456e855 321 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
322 res = ktime_set(KTIME_SEC_MAX, 0);
323
324 return res;
325}
326
8daa21e6
AB
327EXPORT_SYMBOL_GPL(ktime_add_safe);
328
237fc6e7
TG
329#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
330
331static struct debug_obj_descr hrtimer_debug_descr;
332
99777288
SG
333static void *hrtimer_debug_hint(void *addr)
334{
335 return ((struct hrtimer *) addr)->function;
336}
337
237fc6e7
TG
338/*
339 * fixup_init is called when:
340 * - an active object is initialized
341 */
e3252464 342static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
343{
344 struct hrtimer *timer = addr;
345
346 switch (state) {
347 case ODEBUG_STATE_ACTIVE:
348 hrtimer_cancel(timer);
349 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 350 return true;
237fc6e7 351 default:
e3252464 352 return false;
237fc6e7
TG
353 }
354}
355
356/*
357 * fixup_activate is called when:
358 * - an active object is activated
b9fdac7f 359 * - an unknown non-static object is activated
237fc6e7 360 */
e3252464 361static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
362{
363 switch (state) {
237fc6e7
TG
364 case ODEBUG_STATE_ACTIVE:
365 WARN_ON(1);
75b710af 366 /* fall through */
237fc6e7 367 default:
e3252464 368 return false;
237fc6e7
TG
369 }
370}
371
372/*
373 * fixup_free is called when:
374 * - an active object is freed
375 */
e3252464 376static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
377{
378 struct hrtimer *timer = addr;
379
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 hrtimer_cancel(timer);
383 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 384 return true;
237fc6e7 385 default:
e3252464 386 return false;
237fc6e7
TG
387 }
388}
389
390static struct debug_obj_descr hrtimer_debug_descr = {
391 .name = "hrtimer",
99777288 392 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
393 .fixup_init = hrtimer_fixup_init,
394 .fixup_activate = hrtimer_fixup_activate,
395 .fixup_free = hrtimer_fixup_free,
396};
397
398static inline void debug_hrtimer_init(struct hrtimer *timer)
399{
400 debug_object_init(timer, &hrtimer_debug_descr);
401}
402
5da70160
AMG
403static inline void debug_hrtimer_activate(struct hrtimer *timer,
404 enum hrtimer_mode mode)
237fc6e7
TG
405{
406 debug_object_activate(timer, &hrtimer_debug_descr);
407}
408
409static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
410{
411 debug_object_deactivate(timer, &hrtimer_debug_descr);
412}
413
414static inline void debug_hrtimer_free(struct hrtimer *timer)
415{
416 debug_object_free(timer, &hrtimer_debug_descr);
417}
418
419static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
420 enum hrtimer_mode mode);
421
422void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
423 enum hrtimer_mode mode)
424{
425 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
426 __hrtimer_init(timer, clock_id, mode);
427}
2bc481cf 428EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7 429
dbc1625f
SAS
430static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
431 clockid_t clock_id, enum hrtimer_mode mode);
432
433void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
434 clockid_t clock_id, enum hrtimer_mode mode)
435{
436 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
437 __hrtimer_init_sleeper(sl, clock_id, mode);
438}
439EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
440
237fc6e7
TG
441void destroy_hrtimer_on_stack(struct hrtimer *timer)
442{
443 debug_object_free(timer, &hrtimer_debug_descr);
444}
c08376ac 445EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
446
447#else
5da70160 448
237fc6e7 449static inline void debug_hrtimer_init(struct hrtimer *timer) { }
5da70160
AMG
450static inline void debug_hrtimer_activate(struct hrtimer *timer,
451 enum hrtimer_mode mode) { }
237fc6e7
TG
452static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
453#endif
454
c6a2a177
XG
455static inline void
456debug_init(struct hrtimer *timer, clockid_t clockid,
457 enum hrtimer_mode mode)
458{
459 debug_hrtimer_init(timer);
460 trace_hrtimer_init(timer, clockid, mode);
461}
462
63e2ed36
AMG
463static inline void debug_activate(struct hrtimer *timer,
464 enum hrtimer_mode mode)
c6a2a177 465{
5da70160 466 debug_hrtimer_activate(timer, mode);
63e2ed36 467 trace_hrtimer_start(timer, mode);
c6a2a177
XG
468}
469
470static inline void debug_deactivate(struct hrtimer *timer)
471{
472 debug_hrtimer_deactivate(timer);
473 trace_hrtimer_cancel(timer);
474}
475
c272ca58
AMG
476static struct hrtimer_clock_base *
477__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
478{
479 unsigned int idx;
480
481 if (!*active)
482 return NULL;
483
484 idx = __ffs(*active);
485 *active &= ~(1U << idx);
486
487 return &cpu_base->clock_base[idx];
488}
489
490#define for_each_active_base(base, cpu_base, active) \
491 while ((base = __next_base((cpu_base), &(active))))
492
ad38f596 493static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
a59855cd 494 const struct hrtimer *exclude,
ad38f596
AMG
495 unsigned int active,
496 ktime_t expires_next)
9bc74919 497{
c272ca58 498 struct hrtimer_clock_base *base;
ad38f596 499 ktime_t expires;
9bc74919 500
c272ca58 501 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
502 struct timerqueue_node *next;
503 struct hrtimer *timer;
504
34aee88a 505 next = timerqueue_getnext(&base->active);
9bc74919 506 timer = container_of(next, struct hrtimer, node);
a59855cd
RW
507 if (timer == exclude) {
508 /* Get to the next timer in the queue. */
7d2f6abb 509 next = timerqueue_iterate_next(next);
a59855cd
RW
510 if (!next)
511 continue;
512
513 timer = container_of(next, struct hrtimer, node);
514 }
9bc74919 515 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 516 if (expires < expires_next) {
9bc74919 517 expires_next = expires;
a59855cd
RW
518
519 /* Skip cpu_base update if a timer is being excluded. */
520 if (exclude)
521 continue;
522
5da70160
AMG
523 if (timer->is_soft)
524 cpu_base->softirq_next_timer = timer;
525 else
526 cpu_base->next_timer = timer;
895bdfa7 527 }
9bc74919
TG
528 }
529 /*
530 * clock_was_set() might have changed base->offset of any of
531 * the clock bases so the result might be negative. Fix it up
532 * to prevent a false positive in clockevents_program_event().
533 */
2456e855
TG
534 if (expires_next < 0)
535 expires_next = 0;
9bc74919
TG
536 return expires_next;
537}
9bc74919 538
c458b1d1
AMG
539/*
540 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
541 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
542 *
5da70160
AMG
543 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
544 * those timers will get run whenever the softirq gets handled, at the end of
545 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
546 *
547 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
548 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
549 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
550 *
c458b1d1 551 * @active_mask must be one of:
5da70160 552 * - HRTIMER_ACTIVE_ALL,
c458b1d1
AMG
553 * - HRTIMER_ACTIVE_SOFT, or
554 * - HRTIMER_ACTIVE_HARD.
555 */
5da70160
AMG
556static ktime_t
557__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
ad38f596 558{
c458b1d1 559 unsigned int active;
5da70160 560 struct hrtimer *next_timer = NULL;
ad38f596
AMG
561 ktime_t expires_next = KTIME_MAX;
562
5da70160
AMG
563 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
564 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
565 cpu_base->softirq_next_timer = NULL;
a59855cd
RW
566 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
567 active, KTIME_MAX);
5da70160
AMG
568
569 next_timer = cpu_base->softirq_next_timer;
570 }
ad38f596 571
5da70160
AMG
572 if (active_mask & HRTIMER_ACTIVE_HARD) {
573 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
574 cpu_base->next_timer = next_timer;
a59855cd
RW
575 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
576 expires_next);
5da70160 577 }
ad38f596
AMG
578
579 return expires_next;
580}
581
21d6d52a
TG
582static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
583{
584 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
a3ed0e43 585 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
21d6d52a
TG
586 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
587
5da70160 588 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
a3ed0e43 589 offs_real, offs_boot, offs_tai);
5da70160
AMG
590
591 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
a3ed0e43 592 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
5da70160
AMG
593 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
594
595 return now;
21d6d52a
TG
596}
597
28bfd18b
AMG
598/*
599 * Is the high resolution mode active ?
600 */
601static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
602{
603 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
604 cpu_base->hres_active : 0;
605}
606
607static inline int hrtimer_hres_active(void)
608{
609 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
610}
611
54cdfdb4
TG
612/*
613 * Reprogram the event source with checking both queues for the
614 * next event
615 * Called with interrupts disabled and base->lock held
616 */
7403f41f
AC
617static void
618hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 619{
21d6d52a
TG
620 ktime_t expires_next;
621
5da70160
AMG
622 /*
623 * Find the current next expiration time.
624 */
625 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
626
627 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
628 /*
629 * When the softirq is activated, hrtimer has to be
630 * programmed with the first hard hrtimer because soft
631 * timer interrupt could occur too late.
632 */
633 if (cpu_base->softirq_activated)
634 expires_next = __hrtimer_get_next_event(cpu_base,
635 HRTIMER_ACTIVE_HARD);
636 else
637 cpu_base->softirq_expires_next = expires_next;
638 }
54cdfdb4 639
2456e855 640 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
641 return;
642
2456e855 643 cpu_base->expires_next = expires_next;
7403f41f 644
6c6c0d5a 645 /*
61bb4bcb
AMG
646 * If hres is not active, hardware does not have to be
647 * reprogrammed yet.
648 *
6c6c0d5a
SH
649 * If a hang was detected in the last timer interrupt then we
650 * leave the hang delay active in the hardware. We want the
651 * system to make progress. That also prevents the following
652 * scenario:
653 * T1 expires 50ms from now
654 * T2 expires 5s from now
655 *
656 * T1 is removed, so this code is called and would reprogram
657 * the hardware to 5s from now. Any hrtimer_start after that
658 * will not reprogram the hardware due to hang_detected being
659 * set. So we'd effectivly block all timers until the T2 event
660 * fires.
661 */
61bb4bcb 662 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
6c6c0d5a
SH
663 return;
664
d2540875 665 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
666}
667
ebba2c72
AMG
668/* High resolution timer related functions */
669#ifdef CONFIG_HIGH_RES_TIMERS
670
671/*
672 * High resolution timer enabled ?
673 */
674static bool hrtimer_hres_enabled __read_mostly = true;
675unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
676EXPORT_SYMBOL_GPL(hrtimer_resolution);
677
678/*
679 * Enable / Disable high resolution mode
680 */
681static int __init setup_hrtimer_hres(char *str)
682{
683 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
684}
685
686__setup("highres=", setup_hrtimer_hres);
687
688/*
689 * hrtimer_high_res_enabled - query, if the highres mode is enabled
690 */
691static inline int hrtimer_is_hres_enabled(void)
692{
693 return hrtimer_hres_enabled;
694}
695
9ec26907
TG
696/*
697 * Retrigger next event is called after clock was set
698 *
699 * Called with interrupts disabled via on_each_cpu()
700 */
701static void retrigger_next_event(void *arg)
702{
dc5df73b 703 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 704
851cff8c 705 if (!__hrtimer_hres_active(base))
9ec26907
TG
706 return;
707
9ec26907 708 raw_spin_lock(&base->lock);
5baefd6d 709 hrtimer_update_base(base);
9ec26907
TG
710 hrtimer_force_reprogram(base, 0);
711 raw_spin_unlock(&base->lock);
712}
b12a03ce 713
54cdfdb4
TG
714/*
715 * Switch to high resolution mode
716 */
75e3b37d 717static void hrtimer_switch_to_hres(void)
54cdfdb4 718{
c6eb3f70 719 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
720
721 if (tick_init_highres()) {
7a6e5537
GU
722 pr_warn("Could not switch to high resolution mode on CPU %u\n",
723 base->cpu);
85e1cd6e 724 return;
54cdfdb4
TG
725 }
726 base->hres_active = 1;
398ca17f 727 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
728
729 tick_setup_sched_timer();
54cdfdb4
TG
730 /* "Retrigger" the interrupt to get things going */
731 retrigger_next_event(NULL);
54cdfdb4
TG
732}
733
5ec2481b
TG
734static void clock_was_set_work(struct work_struct *work)
735{
736 clock_was_set();
737}
738
739static DECLARE_WORK(hrtimer_work, clock_was_set_work);
740
f55a6faa 741/*
b4d90e9f 742 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 743 * interrupt device on all cpus.
f55a6faa
JS
744 */
745void clock_was_set_delayed(void)
746{
5ec2481b 747 schedule_work(&hrtimer_work);
f55a6faa
JS
748}
749
54cdfdb4
TG
750#else
751
54cdfdb4 752static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 753static inline void hrtimer_switch_to_hres(void) { }
9ec26907 754static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
755
756#endif /* CONFIG_HIGH_RES_TIMERS */
757
11a9fe06
AMG
758/*
759 * When a timer is enqueued and expires earlier than the already enqueued
760 * timers, we have to check, whether it expires earlier than the timer for
761 * which the clock event device was armed.
762 *
763 * Called with interrupts disabled and base->cpu_base.lock held
764 */
5da70160 765static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
11a9fe06
AMG
766{
767 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
3ec7a3ee 768 struct hrtimer_clock_base *base = timer->base;
11a9fe06
AMG
769 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
770
771 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
772
5da70160
AMG
773 /*
774 * CLOCK_REALTIME timer might be requested with an absolute
775 * expiry time which is less than base->offset. Set it to 0.
776 */
777 if (expires < 0)
778 expires = 0;
779
780 if (timer->is_soft) {
781 /*
782 * soft hrtimer could be started on a remote CPU. In this
783 * case softirq_expires_next needs to be updated on the
784 * remote CPU. The soft hrtimer will not expire before the
785 * first hard hrtimer on the remote CPU -
786 * hrtimer_check_target() prevents this case.
787 */
788 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
789
790 if (timer_cpu_base->softirq_activated)
791 return;
792
793 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
794 return;
795
796 timer_cpu_base->softirq_next_timer = timer;
797 timer_cpu_base->softirq_expires_next = expires;
798
799 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
800 !reprogram)
801 return;
802 }
803
11a9fe06
AMG
804 /*
805 * If the timer is not on the current cpu, we cannot reprogram
806 * the other cpus clock event device.
807 */
808 if (base->cpu_base != cpu_base)
809 return;
810
811 /*
812 * If the hrtimer interrupt is running, then it will
813 * reevaluate the clock bases and reprogram the clock event
814 * device. The callbacks are always executed in hard interrupt
815 * context so we don't need an extra check for a running
816 * callback.
817 */
818 if (cpu_base->in_hrtirq)
819 return;
820
11a9fe06
AMG
821 if (expires >= cpu_base->expires_next)
822 return;
823
824 /* Update the pointer to the next expiring timer */
825 cpu_base->next_timer = timer;
14c80341 826 cpu_base->expires_next = expires;
11a9fe06
AMG
827
828 /*
14c80341
AMG
829 * If hres is not active, hardware does not have to be
830 * programmed yet.
831 *
11a9fe06
AMG
832 * If a hang was detected in the last timer interrupt then we
833 * do not schedule a timer which is earlier than the expiry
834 * which we enforced in the hang detection. We want the system
835 * to make progress.
836 */
14c80341 837 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
11a9fe06
AMG
838 return;
839
840 /*
841 * Program the timer hardware. We enforce the expiry for
842 * events which are already in the past.
843 */
11a9fe06
AMG
844 tick_program_event(expires, 1);
845}
846
b12a03ce
TG
847/*
848 * Clock realtime was set
849 *
850 * Change the offset of the realtime clock vs. the monotonic
851 * clock.
852 *
853 * We might have to reprogram the high resolution timer interrupt. On
854 * SMP we call the architecture specific code to retrigger _all_ high
855 * resolution timer interrupts. On UP we just disable interrupts and
856 * call the high resolution interrupt code.
857 */
858void clock_was_set(void)
859{
90ff1f30 860#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
861 /* Retrigger the CPU local events everywhere */
862 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
863#endif
864 timerfd_clock_was_set();
b12a03ce
TG
865}
866
867/*
868 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
869 * interrupt on all online CPUs. However, all other CPUs will be
870 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 871 * must be deferred.
b12a03ce
TG
872 */
873void hrtimers_resume(void)
874{
53bef3fd 875 lockdep_assert_irqs_disabled();
5ec2481b 876 /* Retrigger on the local CPU */
b12a03ce 877 retrigger_next_event(NULL);
5ec2481b
TG
878 /* And schedule a retrigger for all others */
879 clock_was_set_delayed();
b12a03ce
TG
880}
881
c0a31329 882/*
6506f2aa 883 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
884 */
885static inline
886void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
887{
ecb49d1a 888 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
889}
890
891/**
892 * hrtimer_forward - forward the timer expiry
c0a31329 893 * @timer: hrtimer to forward
44f21475 894 * @now: forward past this time
c0a31329
TG
895 * @interval: the interval to forward
896 *
897 * Forward the timer expiry so it will expire in the future.
8dca6f33 898 * Returns the number of overruns.
91e5a217
TG
899 *
900 * Can be safely called from the callback function of @timer. If
901 * called from other contexts @timer must neither be enqueued nor
902 * running the callback and the caller needs to take care of
903 * serialization.
904 *
905 * Note: This only updates the timer expiry value and does not requeue
906 * the timer.
c0a31329 907 */
4d672e7a 908u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 909{
4d672e7a 910 u64 orun = 1;
44f21475 911 ktime_t delta;
c0a31329 912
cc584b21 913 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 914
2456e855 915 if (delta < 0)
c0a31329
TG
916 return 0;
917
5de2755c
PZ
918 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
919 return 0;
920
2456e855
TG
921 if (interval < hrtimer_resolution)
922 interval = hrtimer_resolution;
c9db4fa1 923
2456e855 924 if (unlikely(delta >= interval)) {
df869b63 925 s64 incr = ktime_to_ns(interval);
c0a31329
TG
926
927 orun = ktime_divns(delta, incr);
cc584b21 928 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 929 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
930 return orun;
931 /*
932 * This (and the ktime_add() below) is the
933 * correction for exact:
934 */
935 orun++;
936 }
cc584b21 937 hrtimer_add_expires(timer, interval);
c0a31329
TG
938
939 return orun;
940}
6bdb6b62 941EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
942
943/*
944 * enqueue_hrtimer - internal function to (re)start a timer
945 *
946 * The timer is inserted in expiry order. Insertion into the
947 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
948 *
949 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 950 */
a6037b61 951static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
952 struct hrtimer_clock_base *base,
953 enum hrtimer_mode mode)
c0a31329 954{
63e2ed36 955 debug_activate(timer, mode);
237fc6e7 956
ab8177bc 957 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 958
887d9dc9 959 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 960
b97f44c9 961 return timerqueue_add(&base->active, &timer->node);
288867ec 962}
c0a31329
TG
963
964/*
965 * __remove_hrtimer - internal function to remove a timer
966 *
967 * Caller must hold the base lock.
54cdfdb4
TG
968 *
969 * High resolution timer mode reprograms the clock event device when the
970 * timer is the one which expires next. The caller can disable this by setting
971 * reprogram to zero. This is useful, when the context does a reprogramming
972 * anyway (e.g. timer interrupt)
c0a31329 973 */
3c8aa39d 974static void __remove_hrtimer(struct hrtimer *timer,
303e967f 975 struct hrtimer_clock_base *base,
203cbf77 976 u8 newstate, int reprogram)
c0a31329 977{
e19ffe8b 978 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 979 u8 state = timer->state;
e19ffe8b 980
895bdfa7
TG
981 timer->state = newstate;
982 if (!(state & HRTIMER_STATE_ENQUEUED))
983 return;
7403f41f 984
b97f44c9 985 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 986 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 987
895bdfa7
TG
988 /*
989 * Note: If reprogram is false we do not update
990 * cpu_base->next_timer. This happens when we remove the first
991 * timer on a remote cpu. No harm as we never dereference
992 * cpu_base->next_timer. So the worst thing what can happen is
993 * an superflous call to hrtimer_force_reprogram() on the
994 * remote cpu later on if the same timer gets enqueued again.
995 */
996 if (reprogram && timer == cpu_base->next_timer)
997 hrtimer_force_reprogram(cpu_base, 1);
c0a31329
TG
998}
999
1000/*
1001 * remove hrtimer, called with base lock held
1002 */
1003static inline int
8edfb036 1004remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 1005{
303e967f 1006 if (hrtimer_is_queued(timer)) {
203cbf77 1007 u8 state = timer->state;
54cdfdb4
TG
1008 int reprogram;
1009
1010 /*
1011 * Remove the timer and force reprogramming when high
1012 * resolution mode is active and the timer is on the current
1013 * CPU. If we remove a timer on another CPU, reprogramming is
1014 * skipped. The interrupt event on this CPU is fired and
1015 * reprogramming happens in the interrupt handler. This is a
1016 * rare case and less expensive than a smp call.
1017 */
c6a2a177 1018 debug_deactivate(timer);
dc5df73b 1019 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 1020
887d9dc9
PZ
1021 if (!restart)
1022 state = HRTIMER_STATE_INACTIVE;
1023
f13d4f97 1024 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
1025 return 1;
1026 }
1027 return 0;
1028}
1029
203cbf77
TG
1030static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1031 const enum hrtimer_mode mode)
1032{
1033#ifdef CONFIG_TIME_LOW_RES
1034 /*
1035 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1036 * granular time values. For relative timers we add hrtimer_resolution
1037 * (i.e. one jiffie) to prevent short timeouts.
1038 */
1039 timer->is_rel = mode & HRTIMER_MODE_REL;
1040 if (timer->is_rel)
8b0e1953 1041 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
1042#endif
1043 return tim;
1044}
1045
5da70160
AMG
1046static void
1047hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1048{
1049 ktime_t expires;
1050
1051 /*
1052 * Find the next SOFT expiration.
1053 */
1054 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1055
1056 /*
1057 * reprogramming needs to be triggered, even if the next soft
1058 * hrtimer expires at the same time than the next hard
1059 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1060 */
1061 if (expires == KTIME_MAX)
1062 return;
1063
1064 /*
1065 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1066 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1067 */
1068 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1069}
1070
138a6b7a
AMG
1071static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1072 u64 delta_ns, const enum hrtimer_mode mode,
1073 struct hrtimer_clock_base *base)
c0a31329 1074{
138a6b7a 1075 struct hrtimer_clock_base *new_base;
c0a31329
TG
1076
1077 /* Remove an active timer from the queue: */
8edfb036 1078 remove_hrtimer(timer, base, true);
c0a31329 1079
203cbf77 1080 if (mode & HRTIMER_MODE_REL)
84ea7fe3 1081 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
1082
1083 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 1084
da8f2e17 1085 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 1086
84ea7fe3
VK
1087 /* Switch the timer base, if necessary: */
1088 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1089
138a6b7a
AMG
1090 return enqueue_hrtimer(timer, new_base, mode);
1091}
5da70160 1092
138a6b7a
AMG
1093/**
1094 * hrtimer_start_range_ns - (re)start an hrtimer
1095 * @timer: the timer to be added
1096 * @tim: expiry time
1097 * @delta_ns: "slack" range for the timer
1098 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
5da70160
AMG
1099 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1100 * softirq based mode is considered for debug purpose only!
138a6b7a
AMG
1101 */
1102void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1103 u64 delta_ns, const enum hrtimer_mode mode)
1104{
1105 struct hrtimer_clock_base *base;
1106 unsigned long flags;
1107
5da70160
AMG
1108 /*
1109 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
0ab6a3dd
TG
1110 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1111 * expiry mode because unmarked timers are moved to softirq expiry.
5da70160 1112 */
0ab6a3dd
TG
1113 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1114 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1115 else
1116 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
5da70160 1117
138a6b7a
AMG
1118 base = lock_hrtimer_base(timer, &flags);
1119
1120 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
5da70160 1121 hrtimer_reprogram(timer, true);
49a2a075 1122
c0a31329 1123 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 1124}
da8f2e17
AV
1125EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1126
c0a31329
TG
1127/**
1128 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1129 * @timer: hrtimer to stop
1130 *
1131 * Returns:
51633704
MCC
1132 *
1133 * * 0 when the timer was not active
1134 * * 1 when the timer was active
1135 * * -1 when the timer is currently executing the callback function and
fa9799e3 1136 * cannot be stopped
c0a31329
TG
1137 */
1138int hrtimer_try_to_cancel(struct hrtimer *timer)
1139{
3c8aa39d 1140 struct hrtimer_clock_base *base;
c0a31329
TG
1141 unsigned long flags;
1142 int ret = -1;
1143
19d9f422
TG
1144 /*
1145 * Check lockless first. If the timer is not active (neither
1146 * enqueued nor running the callback, nothing to do here. The
1147 * base lock does not serialize against a concurrent enqueue,
1148 * so we can avoid taking it.
1149 */
1150 if (!hrtimer_active(timer))
1151 return 0;
1152
c0a31329
TG
1153 base = lock_hrtimer_base(timer, &flags);
1154
303e967f 1155 if (!hrtimer_callback_running(timer))
8edfb036 1156 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1157
1158 unlock_hrtimer_base(timer, &flags);
1159
1160 return ret;
1161
1162}
8d16b764 1163EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1164
1165/**
1166 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1167 * @timer: the timer to be cancelled
1168 *
1169 * Returns:
1170 * 0 when the timer was not active
1171 * 1 when the timer was active
1172 */
1173int hrtimer_cancel(struct hrtimer *timer)
1174{
1175 for (;;) {
1176 int ret = hrtimer_try_to_cancel(timer);
1177
1178 if (ret >= 0)
1179 return ret;
5ef37b19 1180 cpu_relax();
c0a31329
TG
1181 }
1182}
8d16b764 1183EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1184
1185/**
1186 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1187 * @timer: the timer to read
203cbf77 1188 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1189 */
203cbf77 1190ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1191{
c0a31329
TG
1192 unsigned long flags;
1193 ktime_t rem;
1194
b3bd3de6 1195 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1196 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1197 rem = hrtimer_expires_remaining_adjusted(timer);
1198 else
1199 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1200 unlock_hrtimer_base(timer, &flags);
1201
1202 return rem;
1203}
203cbf77 1204EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1205
3451d024 1206#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1207/**
1208 * hrtimer_get_next_event - get the time until next expiry event
1209 *
c1ad348b 1210 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1211 */
c1ad348b 1212u64 hrtimer_get_next_event(void)
69239749 1213{
dc5df73b 1214 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1215 u64 expires = KTIME_MAX;
69239749 1216 unsigned long flags;
69239749 1217
ecb49d1a 1218 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1219
e19ffe8b 1220 if (!__hrtimer_hres_active(cpu_base))
5da70160 1221 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
3c8aa39d 1222
ecb49d1a 1223 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1224
c1ad348b 1225 return expires;
69239749 1226}
a59855cd
RW
1227
1228/**
1229 * hrtimer_next_event_without - time until next expiry event w/o one timer
1230 * @exclude: timer to exclude
1231 *
1232 * Returns the next expiry time over all timers except for the @exclude one or
1233 * KTIME_MAX if none of them is pending.
1234 */
1235u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1236{
1237 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1238 u64 expires = KTIME_MAX;
1239 unsigned long flags;
1240
1241 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1242
1243 if (__hrtimer_hres_active(cpu_base)) {
1244 unsigned int active;
1245
1246 if (!cpu_base->softirq_activated) {
1247 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1248 expires = __hrtimer_next_event_base(cpu_base, exclude,
1249 active, KTIME_MAX);
1250 }
1251 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1252 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1253 expires);
1254 }
1255
1256 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1257
1258 return expires;
1259}
69239749
TL
1260#endif
1261
336a9cde
MZ
1262static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1263{
1264 if (likely(clock_id < MAX_CLOCKS)) {
1265 int base = hrtimer_clock_to_base_table[clock_id];
1266
1267 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1268 return base;
1269 }
1270 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1271 return HRTIMER_BASE_MONOTONIC;
1272}
1273
237fc6e7
TG
1274static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1275 enum hrtimer_mode mode)
c0a31329 1276{
42f42da4 1277 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
3c8aa39d 1278 struct hrtimer_cpu_base *cpu_base;
f5c2f021
SAS
1279 int base;
1280
1281 /*
1282 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1283 * marked for hard interrupt expiry mode are moved into soft
1284 * interrupt context for latency reasons and because the callbacks
1285 * can invoke functions which might sleep on RT, e.g. spin_lock().
1286 */
1287 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1288 softtimer = true;
c0a31329 1289
7978672c
GA
1290 memset(timer, 0, sizeof(struct hrtimer));
1291
22127e93 1292 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1293
48d0c9be
AMG
1294 /*
1295 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1296 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1297 * ensure POSIX compliance.
1298 */
1299 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1300 clock_id = CLOCK_MONOTONIC;
1301
f5c2f021 1302 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
42f42da4
AMG
1303 base += hrtimer_clockid_to_base(clock_id);
1304 timer->is_soft = softtimer;
0ab6a3dd 1305 timer->is_hard = !softtimer;
e06383db 1306 timer->base = &cpu_base->clock_base[base];
998adc3d 1307 timerqueue_init(&timer->node);
c0a31329 1308}
237fc6e7
TG
1309
1310/**
1311 * hrtimer_init - initialize a timer to the given clock
1312 * @timer: the timer to be initialized
1313 * @clock_id: the clock to be used
42f42da4
AMG
1314 * @mode: The modes which are relevant for intitialization:
1315 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1316 * HRTIMER_MODE_REL_SOFT
1317 *
1318 * The PINNED variants of the above can be handed in,
1319 * but the PINNED bit is ignored as pinning happens
1320 * when the hrtimer is started
237fc6e7
TG
1321 */
1322void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1323 enum hrtimer_mode mode)
1324{
c6a2a177 1325 debug_init(timer, clock_id, mode);
237fc6e7
TG
1326 __hrtimer_init(timer, clock_id, mode);
1327}
8d16b764 1328EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1329
887d9dc9
PZ
1330/*
1331 * A timer is active, when it is enqueued into the rbtree or the
1332 * callback function is running or it's in the state of being migrated
1333 * to another cpu.
c0a31329 1334 *
887d9dc9 1335 * It is important for this function to not return a false negative.
c0a31329 1336 */
887d9dc9 1337bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1338{
3f0b9e8e 1339 struct hrtimer_clock_base *base;
887d9dc9 1340 unsigned int seq;
c0a31329 1341
887d9dc9 1342 do {
3f0b9e8e
AMG
1343 base = READ_ONCE(timer->base);
1344 seq = raw_read_seqcount_begin(&base->seq);
c0a31329 1345
887d9dc9 1346 if (timer->state != HRTIMER_STATE_INACTIVE ||
3f0b9e8e 1347 base->running == timer)
887d9dc9
PZ
1348 return true;
1349
3f0b9e8e
AMG
1350 } while (read_seqcount_retry(&base->seq, seq) ||
1351 base != READ_ONCE(timer->base));
887d9dc9
PZ
1352
1353 return false;
c0a31329 1354}
887d9dc9 1355EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1356
887d9dc9
PZ
1357/*
1358 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1359 * distinct sections:
1360 *
1361 * - queued: the timer is queued
1362 * - callback: the timer is being ran
1363 * - post: the timer is inactive or (re)queued
1364 *
1365 * On the read side we ensure we observe timer->state and cpu_base->running
1366 * from the same section, if anything changed while we looked at it, we retry.
1367 * This includes timer->base changing because sequence numbers alone are
1368 * insufficient for that.
1369 *
1370 * The sequence numbers are required because otherwise we could still observe
1371 * a false negative if the read side got smeared over multiple consequtive
1372 * __run_hrtimer() invocations.
1373 */
1374
21d6d52a
TG
1375static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1376 struct hrtimer_clock_base *base,
dd934aa8
AMG
1377 struct hrtimer *timer, ktime_t *now,
1378 unsigned long flags)
d3d74453 1379{
d3d74453
PZ
1380 enum hrtimer_restart (*fn)(struct hrtimer *);
1381 int restart;
1382
887d9dc9 1383 lockdep_assert_held(&cpu_base->lock);
ca109491 1384
c6a2a177 1385 debug_deactivate(timer);
3f0b9e8e 1386 base->running = timer;
887d9dc9
PZ
1387
1388 /*
1389 * Separate the ->running assignment from the ->state assignment.
1390 *
1391 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1392 * hrtimer_active() cannot observe base->running == NULL &&
887d9dc9
PZ
1393 * timer->state == INACTIVE.
1394 */
3f0b9e8e 1395 raw_write_seqcount_barrier(&base->seq);
887d9dc9
PZ
1396
1397 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1398 fn = timer->function;
ca109491 1399
203cbf77
TG
1400 /*
1401 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1402 * timer is restarted with a period then it becomes an absolute
1403 * timer. If its not restarted it does not matter.
1404 */
1405 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1406 timer->is_rel = false;
1407
ca109491 1408 /*
d05ca13b
TG
1409 * The timer is marked as running in the CPU base, so it is
1410 * protected against migration to a different CPU even if the lock
1411 * is dropped.
ca109491 1412 */
dd934aa8 1413 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c6a2a177 1414 trace_hrtimer_expire_entry(timer, now);
ca109491 1415 restart = fn(timer);
c6a2a177 1416 trace_hrtimer_expire_exit(timer);
dd934aa8 1417 raw_spin_lock_irq(&cpu_base->lock);
d3d74453
PZ
1418
1419 /*
887d9dc9 1420 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1421 * we do not reprogram the event hardware. Happens either in
e3f1d883 1422 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1423 *
1424 * Note: Because we dropped the cpu_base->lock above,
1425 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1426 * for us already.
d3d74453 1427 */
5de2755c
PZ
1428 if (restart != HRTIMER_NORESTART &&
1429 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1430 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1431
887d9dc9
PZ
1432 /*
1433 * Separate the ->running assignment from the ->state assignment.
1434 *
1435 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1436 * hrtimer_active() cannot observe base->running.timer == NULL &&
887d9dc9
PZ
1437 * timer->state == INACTIVE.
1438 */
3f0b9e8e 1439 raw_write_seqcount_barrier(&base->seq);
f13d4f97 1440
3f0b9e8e
AMG
1441 WARN_ON_ONCE(base->running != timer);
1442 base->running = NULL;
d3d74453
PZ
1443}
1444
dd934aa8 1445static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
c458b1d1 1446 unsigned long flags, unsigned int active_mask)
54cdfdb4 1447{
c272ca58 1448 struct hrtimer_clock_base *base;
c458b1d1 1449 unsigned int active = cpu_base->active_bases & active_mask;
6ff7041d 1450
c272ca58 1451 for_each_active_base(base, cpu_base, active) {
998adc3d 1452 struct timerqueue_node *node;
ab8177bc
TG
1453 ktime_t basenow;
1454
54cdfdb4
TG
1455 basenow = ktime_add(now, base->offset);
1456
998adc3d 1457 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1458 struct hrtimer *timer;
1459
998adc3d 1460 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1461
654c8e0b
AV
1462 /*
1463 * The immediate goal for using the softexpires is
1464 * minimizing wakeups, not running timers at the
1465 * earliest interrupt after their soft expiration.
1466 * This allows us to avoid using a Priority Search
1467 * Tree, which can answer a stabbing querry for
1468 * overlapping intervals and instead use the simple
1469 * BST we already have.
1470 * We don't add extra wakeups by delaying timers that
1471 * are right-of a not yet expired timer, because that
1472 * timer will have to trigger a wakeup anyway.
1473 */
2456e855 1474 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1475 break;
54cdfdb4 1476
dd934aa8 1477 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
54cdfdb4 1478 }
54cdfdb4 1479 }
21d6d52a
TG
1480}
1481
5da70160
AMG
1482static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1483{
1484 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1485 unsigned long flags;
1486 ktime_t now;
1487
1488 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1489
1490 now = hrtimer_update_base(cpu_base);
1491 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1492
1493 cpu_base->softirq_activated = 0;
1494 hrtimer_update_softirq_timer(cpu_base, true);
1495
1496 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1497}
1498
21d6d52a
TG
1499#ifdef CONFIG_HIGH_RES_TIMERS
1500
1501/*
1502 * High resolution timer interrupt
1503 * Called with interrupts disabled
1504 */
1505void hrtimer_interrupt(struct clock_event_device *dev)
1506{
1507 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1508 ktime_t expires_next, now, entry_time, delta;
dd934aa8 1509 unsigned long flags;
21d6d52a
TG
1510 int retries = 0;
1511
1512 BUG_ON(!cpu_base->hres_active);
1513 cpu_base->nr_events++;
2456e855 1514 dev->next_event = KTIME_MAX;
21d6d52a 1515
dd934aa8 1516 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a
TG
1517 entry_time = now = hrtimer_update_base(cpu_base);
1518retry:
1519 cpu_base->in_hrtirq = 1;
1520 /*
1521 * We set expires_next to KTIME_MAX here with cpu_base->lock
1522 * held to prevent that a timer is enqueued in our queue via
1523 * the migration code. This does not affect enqueueing of
1524 * timers which run their callback and need to be requeued on
1525 * this CPU.
1526 */
2456e855 1527 cpu_base->expires_next = KTIME_MAX;
21d6d52a 1528
5da70160
AMG
1529 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1530 cpu_base->softirq_expires_next = KTIME_MAX;
1531 cpu_base->softirq_activated = 1;
1532 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1533 }
1534
c458b1d1 1535 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
21d6d52a 1536
9bc74919 1537 /* Reevaluate the clock bases for the next expiry */
5da70160 1538 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
6ff7041d
TG
1539 /*
1540 * Store the new expiry value so the migration code can verify
1541 * against it.
1542 */
54cdfdb4 1543 cpu_base->expires_next = expires_next;
9bc74919 1544 cpu_base->in_hrtirq = 0;
dd934aa8 1545 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
54cdfdb4
TG
1546
1547 /* Reprogramming necessary ? */
d2540875 1548 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1549 cpu_base->hang_detected = 0;
1550 return;
54cdfdb4 1551 }
41d2e494
TG
1552
1553 /*
1554 * The next timer was already expired due to:
1555 * - tracing
1556 * - long lasting callbacks
1557 * - being scheduled away when running in a VM
1558 *
1559 * We need to prevent that we loop forever in the hrtimer
1560 * interrupt routine. We give it 3 attempts to avoid
1561 * overreacting on some spurious event.
5baefd6d
JS
1562 *
1563 * Acquire base lock for updating the offsets and retrieving
1564 * the current time.
41d2e494 1565 */
dd934aa8 1566 raw_spin_lock_irqsave(&cpu_base->lock, flags);
5baefd6d 1567 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1568 cpu_base->nr_retries++;
1569 if (++retries < 3)
1570 goto retry;
1571 /*
1572 * Give the system a chance to do something else than looping
1573 * here. We stored the entry time, so we know exactly how long
1574 * we spent here. We schedule the next event this amount of
1575 * time away.
1576 */
1577 cpu_base->nr_hangs++;
1578 cpu_base->hang_detected = 1;
dd934aa8
AMG
1579 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1580
41d2e494 1581 delta = ktime_sub(now, entry_time);
2456e855
TG
1582 if ((unsigned int)delta > cpu_base->max_hang_time)
1583 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1584 /*
1585 * Limit it to a sensible value as we enforce a longer
1586 * delay. Give the CPU at least 100ms to catch up.
1587 */
2456e855 1588 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1589 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1590 else
1591 expires_next = ktime_add(now, delta);
1592 tick_program_event(expires_next, 1);
7a6e5537 1593 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
54cdfdb4
TG
1594}
1595
016da201 1596/* called with interrupts disabled */
c6eb3f70 1597static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1598{
1599 struct tick_device *td;
1600
1601 if (!hrtimer_hres_active())
1602 return;
1603
22127e93 1604 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1605 if (td && td->evtdev)
1606 hrtimer_interrupt(td->evtdev);
1607}
1608
82c5b7b5
IM
1609#else /* CONFIG_HIGH_RES_TIMERS */
1610
1611static inline void __hrtimer_peek_ahead_timers(void) { }
1612
1613#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1614
d3d74453 1615/*
c6eb3f70 1616 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1617 */
833883d9 1618void hrtimer_run_queues(void)
d3d74453 1619{
dc5df73b 1620 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
dd934aa8 1621 unsigned long flags;
21d6d52a 1622 ktime_t now;
c0a31329 1623
e19ffe8b 1624 if (__hrtimer_hres_active(cpu_base))
d3d74453 1625 return;
54cdfdb4 1626
d3d74453 1627 /*
c6eb3f70
TG
1628 * This _is_ ugly: We have to check periodically, whether we
1629 * can switch to highres and / or nohz mode. The clocksource
1630 * switch happens with xtime_lock held. Notification from
1631 * there only sets the check bit in the tick_oneshot code,
1632 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1633 */
c6eb3f70 1634 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1635 hrtimer_switch_to_hres();
3055adda 1636 return;
833883d9 1637 }
c6eb3f70 1638
dd934aa8 1639 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a 1640 now = hrtimer_update_base(cpu_base);
5da70160
AMG
1641
1642 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1643 cpu_base->softirq_expires_next = KTIME_MAX;
1644 cpu_base->softirq_activated = 1;
1645 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1646 }
1647
c458b1d1 1648 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
dd934aa8 1649 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c0a31329
TG
1650}
1651
10c94ec1
TG
1652/*
1653 * Sleep related functions:
1654 */
c9cb2e3d 1655static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1656{
1657 struct hrtimer_sleeper *t =
1658 container_of(timer, struct hrtimer_sleeper, timer);
1659 struct task_struct *task = t->task;
1660
1661 t->task = NULL;
1662 if (task)
1663 wake_up_process(task);
1664
1665 return HRTIMER_NORESTART;
1666}
1667
01656464
TG
1668/**
1669 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1670 * @sl: sleeper to be started
1671 * @mode: timer mode abs/rel
1672 *
1673 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1674 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1675 */
1676void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1677 enum hrtimer_mode mode)
1678{
1842f5a4
SAS
1679 /*
1680 * Make the enqueue delivery mode check work on RT. If the sleeper
1681 * was initialized for hard interrupt delivery, force the mode bit.
1682 * This is a special case for hrtimer_sleepers because
1683 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1684 * fiddling with this decision is avoided at the call sites.
1685 */
1686 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1687 mode |= HRTIMER_MODE_HARD;
1688
01656464
TG
1689 hrtimer_start_expires(&sl->timer, mode);
1690}
1691EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1692
dbc1625f
SAS
1693static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1694 clockid_t clock_id, enum hrtimer_mode mode)
00362e33 1695{
1842f5a4
SAS
1696 /*
1697 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1698 * marked for hard interrupt expiry mode are moved into soft
1699 * interrupt context either for latency reasons or because the
1700 * hrtimer callback takes regular spinlocks or invokes other
1701 * functions which are not suitable for hard interrupt context on
1702 * PREEMPT_RT.
1703 *
1704 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1705 * context, but there is a latency concern: Untrusted userspace can
1706 * spawn many threads which arm timers for the same expiry time on
1707 * the same CPU. That causes a latency spike due to the wakeup of
1708 * a gazillion threads.
1709 *
1710 * OTOH, priviledged real-time user space applications rely on the
1711 * low latency of hard interrupt wakeups. If the current task is in
1712 * a real-time scheduling class, mark the mode for hard interrupt
1713 * expiry.
1714 */
1715 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1716 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1717 mode |= HRTIMER_MODE_HARD;
1718 }
1719
dbc1625f 1720 __hrtimer_init(&sl->timer, clock_id, mode);
00362e33 1721 sl->timer.function = hrtimer_wakeup;
b7449487 1722 sl->task = current;
00362e33 1723}
dbc1625f
SAS
1724
1725/**
1726 * hrtimer_init_sleeper - initialize sleeper to the given clock
1727 * @sl: sleeper to be initialized
1728 * @clock_id: the clock to be used
1729 * @mode: timer mode abs/rel
1730 */
1731void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1732 enum hrtimer_mode mode)
1733{
1734 debug_init(&sl->timer, clock_id, mode);
1735 __hrtimer_init_sleeper(sl, clock_id, mode);
1736
1737}
2bc481cf 1738EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1739
c0edd7c9 1740int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1741{
1742 switch(restart->nanosleep.type) {
0fe27955 1743#ifdef CONFIG_COMPAT_32BIT_TIME
ce41aaf4 1744 case TT_COMPAT:
9afc5eee 1745 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1746 return -EFAULT;
1747 break;
1748#endif
1749 case TT_NATIVE:
c0edd7c9 1750 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1751 return -EFAULT;
1752 break;
1753 default:
1754 BUG();
1755 }
1756 return -ERESTART_RESTARTBLOCK;
1757}
1758
669d7868 1759static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1760{
edbeda46
AV
1761 struct restart_block *restart;
1762
432569bb
RZ
1763 do {
1764 set_current_state(TASK_INTERRUPTIBLE);
01656464 1765 hrtimer_sleeper_start_expires(t, mode);
432569bb 1766
54cdfdb4 1767 if (likely(t->task))
b0f8c44f 1768 freezable_schedule();
432569bb 1769
669d7868 1770 hrtimer_cancel(&t->timer);
c9cb2e3d 1771 mode = HRTIMER_MODE_ABS;
669d7868
TG
1772
1773 } while (t->task && !signal_pending(current));
432569bb 1774
3588a085
PZ
1775 __set_current_state(TASK_RUNNING);
1776
a7602681 1777 if (!t->task)
080344b9 1778 return 0;
080344b9 1779
edbeda46
AV
1780 restart = &current->restart_block;
1781 if (restart->nanosleep.type != TT_NONE) {
a7602681 1782 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1783 struct timespec64 rmt;
edbeda46 1784
a7602681
AV
1785 if (rem <= 0)
1786 return 0;
c0edd7c9 1787 rmt = ktime_to_timespec64(rem);
a7602681 1788
ce41aaf4 1789 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1790 }
1791 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1792}
1793
fb923c4a 1794static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1795{
669d7868 1796 struct hrtimer_sleeper t;
a7602681 1797 int ret;
10c94ec1 1798
dbc1625f
SAS
1799 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1800 HRTIMER_MODE_ABS);
cc584b21 1801 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
a7602681 1802 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1803 destroy_hrtimer_on_stack(&t.timer);
1804 return ret;
10c94ec1
TG
1805}
1806
938e7cf2 1807long hrtimer_nanosleep(const struct timespec64 *rqtp,
10c94ec1
TG
1808 const enum hrtimer_mode mode, const clockid_t clockid)
1809{
a7602681 1810 struct restart_block *restart;
669d7868 1811 struct hrtimer_sleeper t;
237fc6e7 1812 int ret = 0;
da8b44d5 1813 u64 slack;
3bd01206
AV
1814
1815 slack = current->timer_slack_ns;
aab03e05 1816 if (dl_task(current) || rt_task(current))
3bd01206 1817 slack = 0;
10c94ec1 1818
dbc1625f 1819 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
ad196384 1820 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
a7602681
AV
1821 ret = do_nanosleep(&t, mode);
1822 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1823 goto out;
10c94ec1 1824
7978672c 1825 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1826 if (mode == HRTIMER_MODE_ABS) {
1827 ret = -ERESTARTNOHAND;
1828 goto out;
1829 }
10c94ec1 1830
a7602681 1831 restart = &current->restart_block;
1711ef38 1832 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1833 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1834 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1835out:
1836 destroy_hrtimer_on_stack(&t.timer);
1837 return ret;
10c94ec1
TG
1838}
1839
01909974
DD
1840#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1841
1842SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1843 struct __kernel_timespec __user *, rmtp)
6ba1b912 1844{
c0edd7c9 1845 struct timespec64 tu;
6ba1b912 1846
c0edd7c9 1847 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1848 return -EFAULT;
1849
c0edd7c9 1850 if (!timespec64_valid(&tu))
6ba1b912
TG
1851 return -EINVAL;
1852
edbeda46 1853 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1854 current->restart_block.nanosleep.rmtp = rmtp;
c0edd7c9 1855 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1856}
1857
01909974
DD
1858#endif
1859
b5793b0d 1860#ifdef CONFIG_COMPAT_32BIT_TIME
edbeda46 1861
8dabe724 1862SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
9afc5eee 1863 struct old_timespec32 __user *, rmtp)
edbeda46 1864{
c0edd7c9 1865 struct timespec64 tu;
edbeda46 1866
9afc5eee 1867 if (get_old_timespec32(&tu, rqtp))
edbeda46
AV
1868 return -EFAULT;
1869
c0edd7c9 1870 if (!timespec64_valid(&tu))
edbeda46
AV
1871 return -EINVAL;
1872
1873 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1874 current->restart_block.nanosleep.compat_rmtp = rmtp;
c0edd7c9 1875 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
edbeda46
AV
1876}
1877#endif
1878
c0a31329
TG
1879/*
1880 * Functions related to boot-time initialization:
1881 */
27590dc1 1882int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1883{
3c8aa39d 1884 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1885 int i;
1886
998adc3d 1887 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1888 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1889 timerqueue_init_head(&cpu_base->clock_base[i].active);
1890 }
3c8aa39d 1891
cddd0248 1892 cpu_base->cpu = cpu;
303c146d 1893 cpu_base->active_bases = 0;
28bfd18b 1894 cpu_base->hres_active = 0;
303c146d
TG
1895 cpu_base->hang_detected = 0;
1896 cpu_base->next_timer = NULL;
1897 cpu_base->softirq_next_timer = NULL;
07a9a7ea 1898 cpu_base->expires_next = KTIME_MAX;
5da70160 1899 cpu_base->softirq_expires_next = KTIME_MAX;
27590dc1 1900 return 0;
c0a31329
TG
1901}
1902
1903#ifdef CONFIG_HOTPLUG_CPU
1904
ca109491 1905static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1906 struct hrtimer_clock_base *new_base)
c0a31329
TG
1907{
1908 struct hrtimer *timer;
998adc3d 1909 struct timerqueue_node *node;
c0a31329 1910
998adc3d
JS
1911 while ((node = timerqueue_getnext(&old_base->active))) {
1912 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1913 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1914 debug_deactivate(timer);
b00c1a99
TG
1915
1916 /*
c04dca02 1917 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1918 * timer could be seen as !active and just vanish away
1919 * under us on another CPU
1920 */
c04dca02 1921 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1922 timer->base = new_base;
54cdfdb4 1923 /*
e3f1d883
TG
1924 * Enqueue the timers on the new cpu. This does not
1925 * reprogram the event device in case the timer
1926 * expires before the earliest on this CPU, but we run
1927 * hrtimer_interrupt after we migrated everything to
1928 * sort out already expired timers and reprogram the
1929 * event device.
54cdfdb4 1930 */
63e2ed36 1931 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
1932 }
1933}
1934
27590dc1 1935int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 1936{
3c8aa39d 1937 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1938 int i;
c0a31329 1939
37810659 1940 BUG_ON(cpu_online(scpu));
37810659 1941 tick_cancel_sched_timer(scpu);
731a55ba 1942
5da70160
AMG
1943 /*
1944 * this BH disable ensures that raise_softirq_irqoff() does
1945 * not wakeup ksoftirqd (and acquire the pi-lock) while
1946 * holding the cpu_base lock
1947 */
1948 local_bh_disable();
731a55ba
TG
1949 local_irq_disable();
1950 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1951 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1952 /*
1953 * The caller is globally serialized and nobody else
1954 * takes two locks at once, deadlock is not possible.
1955 */
ecb49d1a
TG
1956 raw_spin_lock(&new_base->lock);
1957 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1958
3c8aa39d 1959 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1960 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1961 &new_base->clock_base[i]);
c0a31329
TG
1962 }
1963
5da70160
AMG
1964 /*
1965 * The migration might have changed the first expiring softirq
1966 * timer on this CPU. Update it.
1967 */
1968 hrtimer_update_softirq_timer(new_base, false);
1969
ecb49d1a
TG
1970 raw_spin_unlock(&old_base->lock);
1971 raw_spin_unlock(&new_base->lock);
37810659 1972
731a55ba
TG
1973 /* Check, if we got expired work to do */
1974 __hrtimer_peek_ahead_timers();
1975 local_irq_enable();
5da70160 1976 local_bh_enable();
27590dc1 1977 return 0;
c0a31329 1978}
37810659 1979
c0a31329
TG
1980#endif /* CONFIG_HOTPLUG_CPU */
1981
c0a31329
TG
1982void __init hrtimers_init(void)
1983{
27590dc1 1984 hrtimers_prepare_cpu(smp_processor_id());
5da70160 1985 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
c0a31329
TG
1986}
1987
7bb67439 1988/**
351b3f7a 1989 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1990 * @expires: timeout value (ktime_t)
654c8e0b 1991 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
1992 * @mode: timer mode
1993 * @clock_id: timer clock to be used
7bb67439 1994 */
351b3f7a 1995int __sched
da8b44d5 1996schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 1997 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
1998{
1999 struct hrtimer_sleeper t;
2000
2001 /*
2002 * Optimize when a zero timeout value is given. It does not
2003 * matter whether this is an absolute or a relative time.
2004 */
2456e855 2005 if (expires && *expires == 0) {
7bb67439
AV
2006 __set_current_state(TASK_RUNNING);
2007 return 0;
2008 }
2009
2010 /*
43b21013 2011 * A NULL parameter means "infinite"
7bb67439
AV
2012 */
2013 if (!expires) {
2014 schedule();
7bb67439
AV
2015 return -EINTR;
2016 }
2017
dbc1625f 2018 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
654c8e0b 2019 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
01656464 2020 hrtimer_sleeper_start_expires(&t, mode);
7bb67439
AV
2021
2022 if (likely(t.task))
2023 schedule();
2024
2025 hrtimer_cancel(&t.timer);
2026 destroy_hrtimer_on_stack(&t.timer);
2027
2028 __set_current_state(TASK_RUNNING);
2029
2030 return !t.task ? 0 : -EINTR;
2031}
351b3f7a
CE
2032
2033/**
2034 * schedule_hrtimeout_range - sleep until timeout
2035 * @expires: timeout value (ktime_t)
2036 * @delta: slack in expires timeout (ktime_t)
90777713 2037 * @mode: timer mode
351b3f7a
CE
2038 *
2039 * Make the current task sleep until the given expiry time has
2040 * elapsed. The routine will return immediately unless
2041 * the current task state has been set (see set_current_state()).
2042 *
2043 * The @delta argument gives the kernel the freedom to schedule the
2044 * actual wakeup to a time that is both power and performance friendly.
2045 * The kernel give the normal best effort behavior for "@expires+@delta",
2046 * but may decide to fire the timer earlier, but no earlier than @expires.
2047 *
2048 * You can set the task state as follows -
2049 *
2050 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
2051 * pass before the routine returns unless the current task is explicitly
2052 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
2053 *
2054 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
2055 * delivered to the current task or the current task is explicitly woken
2056 * up.
351b3f7a
CE
2057 *
2058 * The current task state is guaranteed to be TASK_RUNNING when this
2059 * routine returns.
2060 *
4b7e9cf9
DA
2061 * Returns 0 when the timer has expired. If the task was woken before the
2062 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2063 * by an explicit wakeup, it returns -EINTR.
351b3f7a 2064 */
da8b44d5 2065int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
2066 const enum hrtimer_mode mode)
2067{
2068 return schedule_hrtimeout_range_clock(expires, delta, mode,
2069 CLOCK_MONOTONIC);
2070}
654c8e0b
AV
2071EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2072
2073/**
2074 * schedule_hrtimeout - sleep until timeout
2075 * @expires: timeout value (ktime_t)
90777713 2076 * @mode: timer mode
654c8e0b
AV
2077 *
2078 * Make the current task sleep until the given expiry time has
2079 * elapsed. The routine will return immediately unless
2080 * the current task state has been set (see set_current_state()).
2081 *
2082 * You can set the task state as follows -
2083 *
2084 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
2085 * pass before the routine returns unless the current task is explicitly
2086 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
2087 *
2088 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
2089 * delivered to the current task or the current task is explicitly woken
2090 * up.
654c8e0b
AV
2091 *
2092 * The current task state is guaranteed to be TASK_RUNNING when this
2093 * routine returns.
2094 *
4b7e9cf9
DA
2095 * Returns 0 when the timer has expired. If the task was woken before the
2096 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2097 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
2098 */
2099int __sched schedule_hrtimeout(ktime_t *expires,
2100 const enum hrtimer_mode mode)
2101{
2102 return schedule_hrtimeout_range(expires, 0, mode);
2103}
7bb67439 2104EXPORT_SYMBOL_GPL(schedule_hrtimeout);