Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
174cd4b1 46#include <linux/sched/signal.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
370c9135 50#include <linux/sched/nohz.h>
b17b0153 51#include <linux/sched/debug.h>
eea08f32 52#include <linux/timer.h>
b0f8c44f 53#include <linux/freezer.h>
edbeda46 54#include <linux/compat.h>
c0a31329 55
7c0f6ba6 56#include <linux/uaccess.h>
c0a31329 57
c6a2a177
XG
58#include <trace/events/timer.h>
59
c1797baf 60#include "tick-internal.h"
8b094cd0 61
c458b1d1
AMG
62/*
63 * Masks for selecting the soft and hard context timers from
64 * cpu_base->active
65 */
66#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
67#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
68#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
69#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
70
c0a31329
TG
71/*
72 * The timer bases:
7978672c 73 *
571af55a 74 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
75 * into the timer bases by the hrtimer_base_type enum. When trying
76 * to reach a base using a clockid, hrtimer_clockid_to_base()
77 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 78 */
54cdfdb4 79DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 80{
84cc8fd2 81 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 82 .clock_base =
c0a31329 83 {
3c8aa39d 84 {
ab8177bc
TG
85 .index = HRTIMER_BASE_MONOTONIC,
86 .clockid = CLOCK_MONOTONIC,
3c8aa39d 87 .get_time = &ktime_get,
3c8aa39d 88 },
68fa61c0
TG
89 {
90 .index = HRTIMER_BASE_REALTIME,
91 .clockid = CLOCK_REALTIME,
92 .get_time = &ktime_get_real,
68fa61c0 93 },
70a08cca 94 {
ab8177bc
TG
95 .index = HRTIMER_BASE_BOOTTIME,
96 .clockid = CLOCK_BOOTTIME,
70a08cca 97 .get_time = &ktime_get_boottime,
70a08cca 98 },
90adda98
JS
99 {
100 .index = HRTIMER_BASE_TAI,
101 .clockid = CLOCK_TAI,
102 .get_time = &ktime_get_clocktai,
90adda98 103 },
98ecadd4
AMG
104 {
105 .index = HRTIMER_BASE_MONOTONIC_SOFT,
106 .clockid = CLOCK_MONOTONIC,
107 .get_time = &ktime_get,
108 },
109 {
110 .index = HRTIMER_BASE_REALTIME_SOFT,
111 .clockid = CLOCK_REALTIME,
112 .get_time = &ktime_get_real,
113 },
114 {
115 .index = HRTIMER_BASE_BOOTTIME_SOFT,
116 .clockid = CLOCK_BOOTTIME,
117 .get_time = &ktime_get_boottime,
118 },
119 {
120 .index = HRTIMER_BASE_TAI_SOFT,
121 .clockid = CLOCK_TAI,
122 .get_time = &ktime_get_clocktai,
123 },
3c8aa39d 124 }
c0a31329
TG
125};
126
942c3c5c 127static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
128 /* Make sure we catch unsupported clockids */
129 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
130
ce31332d
TG
131 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
132 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
133 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 134 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 135};
e06383db 136
c0a31329
TG
137/*
138 * Functions and macros which are different for UP/SMP systems are kept in a
139 * single place
140 */
141#ifdef CONFIG_SMP
142
887d9dc9
PZ
143/*
144 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
145 * such that hrtimer_callback_running() can unconditionally dereference
146 * timer->base->cpu_base
147 */
148static struct hrtimer_cpu_base migration_cpu_base = {
887d9dc9
PZ
149 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
150};
151
152#define migration_base migration_cpu_base.clock_base[0]
153
c0a31329
TG
154/*
155 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
156 * means that all timers which are tied to this base via timer->base are
157 * locked, and the base itself is locked too.
158 *
159 * So __run_timers/migrate_timers can safely modify all timers which could
160 * be found on the lists/queues.
161 *
162 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
163 * possible to set timer->base = &migration_base and drop the lock: the timer
164 * remains locked.
c0a31329 165 */
3c8aa39d
TG
166static
167struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
168 unsigned long *flags)
c0a31329 169{
3c8aa39d 170 struct hrtimer_clock_base *base;
c0a31329
TG
171
172 for (;;) {
173 base = timer->base;
887d9dc9 174 if (likely(base != &migration_base)) {
ecb49d1a 175 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
176 if (likely(base == timer->base))
177 return base;
178 /* The timer has migrated to another CPU: */
ecb49d1a 179 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
180 }
181 cpu_relax();
182 }
183}
184
6ff7041d 185/*
07a9a7ea
AMG
186 * We do not migrate the timer when it is expiring before the next
187 * event on the target cpu. When high resolution is enabled, we cannot
188 * reprogram the target cpu hardware and we would cause it to fire
189 * late. To keep it simple, we handle the high resolution enabled and
190 * disabled case similar.
6ff7041d
TG
191 *
192 * Called with cpu_base->lock of target cpu held.
193 */
194static int
195hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
196{
6ff7041d
TG
197 ktime_t expires;
198
6ff7041d 199 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2ac2dccc 200 return expires < new_base->cpu_base->expires_next;
6ff7041d
TG
201}
202
bc7a34b8
TG
203static inline
204struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
205 int pinned)
206{
ae67bada
TG
207#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
208 if (static_branch_likely(&timers_migration_enabled) && !pinned)
209 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
210#endif
662b3e19 211 return base;
bc7a34b8 212}
bc7a34b8 213
c0a31329 214/*
b48362d8
FW
215 * We switch the timer base to a power-optimized selected CPU target,
216 * if:
217 * - NO_HZ_COMMON is enabled
218 * - timer migration is enabled
219 * - the timer callback is not running
220 * - the timer is not the first expiring timer on the new target
221 *
222 * If one of the above requirements is not fulfilled we move the timer
223 * to the current CPU or leave it on the previously assigned CPU if
224 * the timer callback is currently running.
c0a31329 225 */
3c8aa39d 226static inline struct hrtimer_clock_base *
597d0275
AB
227switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
228 int pinned)
c0a31329 229{
b48362d8 230 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 231 struct hrtimer_clock_base *new_base;
ab8177bc 232 int basenum = base->index;
c0a31329 233
b48362d8
FW
234 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
235 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 236again:
e06383db 237 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
238
239 if (base != new_base) {
240 /*
6ff7041d 241 * We are trying to move timer to new_base.
c0a31329
TG
242 * However we can't change timer's base while it is running,
243 * so we keep it on the same CPU. No hassle vs. reprogramming
244 * the event source in the high resolution case. The softirq
245 * code will take care of this when the timer function has
246 * completed. There is no conflict as we hold the lock until
247 * the timer is enqueued.
248 */
54cdfdb4 249 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
250 return base;
251
887d9dc9
PZ
252 /* See the comment in lock_hrtimer_base() */
253 timer->base = &migration_base;
ecb49d1a
TG
254 raw_spin_unlock(&base->cpu_base->lock);
255 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 256
b48362d8 257 if (new_cpu_base != this_cpu_base &&
bc7a34b8 258 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
259 raw_spin_unlock(&new_base->cpu_base->lock);
260 raw_spin_lock(&base->cpu_base->lock);
b48362d8 261 new_cpu_base = this_cpu_base;
6ff7041d
TG
262 timer->base = base;
263 goto again;
eea08f32 264 }
c0a31329 265 timer->base = new_base;
012a45e3 266 } else {
b48362d8 267 if (new_cpu_base != this_cpu_base &&
bc7a34b8 268 hrtimer_check_target(timer, new_base)) {
b48362d8 269 new_cpu_base = this_cpu_base;
012a45e3
LM
270 goto again;
271 }
c0a31329
TG
272 }
273 return new_base;
274}
275
276#else /* CONFIG_SMP */
277
3c8aa39d 278static inline struct hrtimer_clock_base *
c0a31329
TG
279lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
280{
3c8aa39d 281 struct hrtimer_clock_base *base = timer->base;
c0a31329 282
ecb49d1a 283 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
284
285 return base;
286}
287
eea08f32 288# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
289
290#endif /* !CONFIG_SMP */
291
292/*
293 * Functions for the union type storage format of ktime_t which are
294 * too large for inlining:
295 */
296#if BITS_PER_LONG < 64
c0a31329
TG
297/*
298 * Divide a ktime value by a nanosecond value
299 */
f7bcb70e 300s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 301{
c0a31329 302 int sft = 0;
f7bcb70e
JS
303 s64 dclc;
304 u64 tmp;
c0a31329 305
900cfa46 306 dclc = ktime_to_ns(kt);
f7bcb70e
JS
307 tmp = dclc < 0 ? -dclc : dclc;
308
c0a31329
TG
309 /* Make sure the divisor is less than 2^32: */
310 while (div >> 32) {
311 sft++;
312 div >>= 1;
313 }
f7bcb70e
JS
314 tmp >>= sft;
315 do_div(tmp, (unsigned long) div);
316 return dclc < 0 ? -tmp : tmp;
c0a31329 317}
8b618628 318EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
319#endif /* BITS_PER_LONG >= 64 */
320
5a7780e7
TG
321/*
322 * Add two ktime values and do a safety check for overflow:
323 */
324ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
325{
979515c5 326 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
327
328 /*
329 * We use KTIME_SEC_MAX here, the maximum timeout which we can
330 * return to user space in a timespec:
331 */
2456e855 332 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
333 res = ktime_set(KTIME_SEC_MAX, 0);
334
335 return res;
336}
337
8daa21e6
AB
338EXPORT_SYMBOL_GPL(ktime_add_safe);
339
237fc6e7
TG
340#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
341
342static struct debug_obj_descr hrtimer_debug_descr;
343
99777288
SG
344static void *hrtimer_debug_hint(void *addr)
345{
346 return ((struct hrtimer *) addr)->function;
347}
348
237fc6e7
TG
349/*
350 * fixup_init is called when:
351 * - an active object is initialized
352 */
e3252464 353static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
354{
355 struct hrtimer *timer = addr;
356
357 switch (state) {
358 case ODEBUG_STATE_ACTIVE:
359 hrtimer_cancel(timer);
360 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 361 return true;
237fc6e7 362 default:
e3252464 363 return false;
237fc6e7
TG
364 }
365}
366
367/*
368 * fixup_activate is called when:
369 * - an active object is activated
b9fdac7f 370 * - an unknown non-static object is activated
237fc6e7 371 */
e3252464 372static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
373{
374 switch (state) {
237fc6e7
TG
375 case ODEBUG_STATE_ACTIVE:
376 WARN_ON(1);
377
378 default:
e3252464 379 return false;
237fc6e7
TG
380 }
381}
382
383/*
384 * fixup_free is called when:
385 * - an active object is freed
386 */
e3252464 387static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
388{
389 struct hrtimer *timer = addr;
390
391 switch (state) {
392 case ODEBUG_STATE_ACTIVE:
393 hrtimer_cancel(timer);
394 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 395 return true;
237fc6e7 396 default:
e3252464 397 return false;
237fc6e7
TG
398 }
399}
400
401static struct debug_obj_descr hrtimer_debug_descr = {
402 .name = "hrtimer",
99777288 403 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
404 .fixup_init = hrtimer_fixup_init,
405 .fixup_activate = hrtimer_fixup_activate,
406 .fixup_free = hrtimer_fixup_free,
407};
408
409static inline void debug_hrtimer_init(struct hrtimer *timer)
410{
411 debug_object_init(timer, &hrtimer_debug_descr);
412}
413
5da70160
AMG
414static inline void debug_hrtimer_activate(struct hrtimer *timer,
415 enum hrtimer_mode mode)
237fc6e7
TG
416{
417 debug_object_activate(timer, &hrtimer_debug_descr);
418}
419
420static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
421{
422 debug_object_deactivate(timer, &hrtimer_debug_descr);
423}
424
425static inline void debug_hrtimer_free(struct hrtimer *timer)
426{
427 debug_object_free(timer, &hrtimer_debug_descr);
428}
429
430static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
431 enum hrtimer_mode mode);
432
433void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
434 enum hrtimer_mode mode)
435{
436 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
437 __hrtimer_init(timer, clock_id, mode);
438}
2bc481cf 439EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
440
441void destroy_hrtimer_on_stack(struct hrtimer *timer)
442{
443 debug_object_free(timer, &hrtimer_debug_descr);
444}
c08376ac 445EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
446
447#else
5da70160 448
237fc6e7 449static inline void debug_hrtimer_init(struct hrtimer *timer) { }
5da70160
AMG
450static inline void debug_hrtimer_activate(struct hrtimer *timer,
451 enum hrtimer_mode mode) { }
237fc6e7
TG
452static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
453#endif
454
c6a2a177
XG
455static inline void
456debug_init(struct hrtimer *timer, clockid_t clockid,
457 enum hrtimer_mode mode)
458{
459 debug_hrtimer_init(timer);
460 trace_hrtimer_init(timer, clockid, mode);
461}
462
63e2ed36
AMG
463static inline void debug_activate(struct hrtimer *timer,
464 enum hrtimer_mode mode)
c6a2a177 465{
5da70160 466 debug_hrtimer_activate(timer, mode);
63e2ed36 467 trace_hrtimer_start(timer, mode);
c6a2a177
XG
468}
469
470static inline void debug_deactivate(struct hrtimer *timer)
471{
472 debug_hrtimer_deactivate(timer);
473 trace_hrtimer_cancel(timer);
474}
475
c272ca58
AMG
476static struct hrtimer_clock_base *
477__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
478{
479 unsigned int idx;
480
481 if (!*active)
482 return NULL;
483
484 idx = __ffs(*active);
485 *active &= ~(1U << idx);
486
487 return &cpu_base->clock_base[idx];
488}
489
490#define for_each_active_base(base, cpu_base, active) \
491 while ((base = __next_base((cpu_base), &(active))))
492
ad38f596
AMG
493static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
494 unsigned int active,
495 ktime_t expires_next)
9bc74919 496{
c272ca58 497 struct hrtimer_clock_base *base;
ad38f596 498 ktime_t expires;
9bc74919 499
c272ca58 500 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
501 struct timerqueue_node *next;
502 struct hrtimer *timer;
503
34aee88a 504 next = timerqueue_getnext(&base->active);
9bc74919
TG
505 timer = container_of(next, struct hrtimer, node);
506 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 507 if (expires < expires_next) {
9bc74919 508 expires_next = expires;
5da70160
AMG
509 if (timer->is_soft)
510 cpu_base->softirq_next_timer = timer;
511 else
512 cpu_base->next_timer = timer;
895bdfa7 513 }
9bc74919
TG
514 }
515 /*
516 * clock_was_set() might have changed base->offset of any of
517 * the clock bases so the result might be negative. Fix it up
518 * to prevent a false positive in clockevents_program_event().
519 */
2456e855
TG
520 if (expires_next < 0)
521 expires_next = 0;
9bc74919
TG
522 return expires_next;
523}
9bc74919 524
c458b1d1
AMG
525/*
526 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
527 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
528 *
5da70160
AMG
529 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
530 * those timers will get run whenever the softirq gets handled, at the end of
531 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
532 *
533 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
534 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
535 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
536 *
c458b1d1 537 * @active_mask must be one of:
5da70160 538 * - HRTIMER_ACTIVE_ALL,
c458b1d1
AMG
539 * - HRTIMER_ACTIVE_SOFT, or
540 * - HRTIMER_ACTIVE_HARD.
541 */
5da70160
AMG
542static ktime_t
543__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
ad38f596 544{
c458b1d1 545 unsigned int active;
5da70160 546 struct hrtimer *next_timer = NULL;
ad38f596
AMG
547 ktime_t expires_next = KTIME_MAX;
548
5da70160
AMG
549 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
550 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
551 cpu_base->softirq_next_timer = NULL;
552 expires_next = __hrtimer_next_event_base(cpu_base, active, KTIME_MAX);
553
554 next_timer = cpu_base->softirq_next_timer;
555 }
ad38f596 556
5da70160
AMG
557 if (active_mask & HRTIMER_ACTIVE_HARD) {
558 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
559 cpu_base->next_timer = next_timer;
560 expires_next = __hrtimer_next_event_base(cpu_base, active, expires_next);
561 }
ad38f596
AMG
562
563 return expires_next;
564}
565
21d6d52a
TG
566static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
567{
568 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
569 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
570 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
571
5da70160 572 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
868a3e91 573 offs_real, offs_boot, offs_tai);
5da70160
AMG
574
575 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
576 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
577 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
578
579 return now;
21d6d52a
TG
580}
581
28bfd18b
AMG
582/*
583 * Is the high resolution mode active ?
584 */
585static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
586{
587 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
588 cpu_base->hres_active : 0;
589}
590
591static inline int hrtimer_hres_active(void)
592{
593 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
594}
595
54cdfdb4
TG
596/*
597 * Reprogram the event source with checking both queues for the
598 * next event
599 * Called with interrupts disabled and base->lock held
600 */
7403f41f
AC
601static void
602hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 603{
21d6d52a
TG
604 ktime_t expires_next;
605
5da70160
AMG
606 /*
607 * Find the current next expiration time.
608 */
609 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
610
611 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
612 /*
613 * When the softirq is activated, hrtimer has to be
614 * programmed with the first hard hrtimer because soft
615 * timer interrupt could occur too late.
616 */
617 if (cpu_base->softirq_activated)
618 expires_next = __hrtimer_get_next_event(cpu_base,
619 HRTIMER_ACTIVE_HARD);
620 else
621 cpu_base->softirq_expires_next = expires_next;
622 }
54cdfdb4 623
2456e855 624 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
625 return;
626
2456e855 627 cpu_base->expires_next = expires_next;
7403f41f 628
6c6c0d5a 629 /*
61bb4bcb
AMG
630 * If hres is not active, hardware does not have to be
631 * reprogrammed yet.
632 *
6c6c0d5a
SH
633 * If a hang was detected in the last timer interrupt then we
634 * leave the hang delay active in the hardware. We want the
635 * system to make progress. That also prevents the following
636 * scenario:
637 * T1 expires 50ms from now
638 * T2 expires 5s from now
639 *
640 * T1 is removed, so this code is called and would reprogram
641 * the hardware to 5s from now. Any hrtimer_start after that
642 * will not reprogram the hardware due to hang_detected being
643 * set. So we'd effectivly block all timers until the T2 event
644 * fires.
645 */
61bb4bcb 646 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
6c6c0d5a
SH
647 return;
648
d2540875 649 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
650}
651
ebba2c72
AMG
652/* High resolution timer related functions */
653#ifdef CONFIG_HIGH_RES_TIMERS
654
655/*
656 * High resolution timer enabled ?
657 */
658static bool hrtimer_hres_enabled __read_mostly = true;
659unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
660EXPORT_SYMBOL_GPL(hrtimer_resolution);
661
662/*
663 * Enable / Disable high resolution mode
664 */
665static int __init setup_hrtimer_hres(char *str)
666{
667 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
668}
669
670__setup("highres=", setup_hrtimer_hres);
671
672/*
673 * hrtimer_high_res_enabled - query, if the highres mode is enabled
674 */
675static inline int hrtimer_is_hres_enabled(void)
676{
677 return hrtimer_hres_enabled;
678}
679
9ec26907
TG
680/*
681 * Retrigger next event is called after clock was set
682 *
683 * Called with interrupts disabled via on_each_cpu()
684 */
685static void retrigger_next_event(void *arg)
686{
dc5df73b 687 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 688
851cff8c 689 if (!__hrtimer_hres_active(base))
9ec26907
TG
690 return;
691
9ec26907 692 raw_spin_lock(&base->lock);
5baefd6d 693 hrtimer_update_base(base);
9ec26907
TG
694 hrtimer_force_reprogram(base, 0);
695 raw_spin_unlock(&base->lock);
696}
b12a03ce 697
54cdfdb4
TG
698/*
699 * Switch to high resolution mode
700 */
75e3b37d 701static void hrtimer_switch_to_hres(void)
54cdfdb4 702{
c6eb3f70 703 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
704
705 if (tick_init_highres()) {
820de5c3 706 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 707 "mode on CPU %d\n", base->cpu);
85e1cd6e 708 return;
54cdfdb4
TG
709 }
710 base->hres_active = 1;
398ca17f 711 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
712
713 tick_setup_sched_timer();
54cdfdb4
TG
714 /* "Retrigger" the interrupt to get things going */
715 retrigger_next_event(NULL);
54cdfdb4
TG
716}
717
5ec2481b
TG
718static void clock_was_set_work(struct work_struct *work)
719{
720 clock_was_set();
721}
722
723static DECLARE_WORK(hrtimer_work, clock_was_set_work);
724
f55a6faa 725/*
b4d90e9f 726 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 727 * interrupt device on all cpus.
f55a6faa
JS
728 */
729void clock_was_set_delayed(void)
730{
5ec2481b 731 schedule_work(&hrtimer_work);
f55a6faa
JS
732}
733
54cdfdb4
TG
734#else
735
54cdfdb4 736static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 737static inline void hrtimer_switch_to_hres(void) { }
9ec26907 738static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
739
740#endif /* CONFIG_HIGH_RES_TIMERS */
741
11a9fe06
AMG
742/*
743 * When a timer is enqueued and expires earlier than the already enqueued
744 * timers, we have to check, whether it expires earlier than the timer for
745 * which the clock event device was armed.
746 *
747 * Called with interrupts disabled and base->cpu_base.lock held
748 */
5da70160 749static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
11a9fe06
AMG
750{
751 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
3ec7a3ee 752 struct hrtimer_clock_base *base = timer->base;
11a9fe06
AMG
753 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
754
755 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
756
5da70160
AMG
757 /*
758 * CLOCK_REALTIME timer might be requested with an absolute
759 * expiry time which is less than base->offset. Set it to 0.
760 */
761 if (expires < 0)
762 expires = 0;
763
764 if (timer->is_soft) {
765 /*
766 * soft hrtimer could be started on a remote CPU. In this
767 * case softirq_expires_next needs to be updated on the
768 * remote CPU. The soft hrtimer will not expire before the
769 * first hard hrtimer on the remote CPU -
770 * hrtimer_check_target() prevents this case.
771 */
772 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
773
774 if (timer_cpu_base->softirq_activated)
775 return;
776
777 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
778 return;
779
780 timer_cpu_base->softirq_next_timer = timer;
781 timer_cpu_base->softirq_expires_next = expires;
782
783 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
784 !reprogram)
785 return;
786 }
787
11a9fe06
AMG
788 /*
789 * If the timer is not on the current cpu, we cannot reprogram
790 * the other cpus clock event device.
791 */
792 if (base->cpu_base != cpu_base)
793 return;
794
795 /*
796 * If the hrtimer interrupt is running, then it will
797 * reevaluate the clock bases and reprogram the clock event
798 * device. The callbacks are always executed in hard interrupt
799 * context so we don't need an extra check for a running
800 * callback.
801 */
802 if (cpu_base->in_hrtirq)
803 return;
804
11a9fe06
AMG
805 if (expires >= cpu_base->expires_next)
806 return;
807
808 /* Update the pointer to the next expiring timer */
809 cpu_base->next_timer = timer;
14c80341 810 cpu_base->expires_next = expires;
11a9fe06
AMG
811
812 /*
14c80341
AMG
813 * If hres is not active, hardware does not have to be
814 * programmed yet.
815 *
11a9fe06
AMG
816 * If a hang was detected in the last timer interrupt then we
817 * do not schedule a timer which is earlier than the expiry
818 * which we enforced in the hang detection. We want the system
819 * to make progress.
820 */
14c80341 821 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
11a9fe06
AMG
822 return;
823
824 /*
825 * Program the timer hardware. We enforce the expiry for
826 * events which are already in the past.
827 */
11a9fe06
AMG
828 tick_program_event(expires, 1);
829}
830
b12a03ce
TG
831/*
832 * Clock realtime was set
833 *
834 * Change the offset of the realtime clock vs. the monotonic
835 * clock.
836 *
837 * We might have to reprogram the high resolution timer interrupt. On
838 * SMP we call the architecture specific code to retrigger _all_ high
839 * resolution timer interrupts. On UP we just disable interrupts and
840 * call the high resolution interrupt code.
841 */
842void clock_was_set(void)
843{
90ff1f30 844#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
845 /* Retrigger the CPU local events everywhere */
846 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
847#endif
848 timerfd_clock_was_set();
b12a03ce
TG
849}
850
851/*
852 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
853 * interrupt on all online CPUs. However, all other CPUs will be
854 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 855 * must be deferred.
b12a03ce
TG
856 */
857void hrtimers_resume(void)
858{
53bef3fd 859 lockdep_assert_irqs_disabled();
5ec2481b 860 /* Retrigger on the local CPU */
b12a03ce 861 retrigger_next_event(NULL);
5ec2481b
TG
862 /* And schedule a retrigger for all others */
863 clock_was_set_delayed();
b12a03ce
TG
864}
865
c0a31329 866/*
6506f2aa 867 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
868 */
869static inline
870void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
871{
ecb49d1a 872 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
873}
874
875/**
876 * hrtimer_forward - forward the timer expiry
c0a31329 877 * @timer: hrtimer to forward
44f21475 878 * @now: forward past this time
c0a31329
TG
879 * @interval: the interval to forward
880 *
881 * Forward the timer expiry so it will expire in the future.
8dca6f33 882 * Returns the number of overruns.
91e5a217
TG
883 *
884 * Can be safely called from the callback function of @timer. If
885 * called from other contexts @timer must neither be enqueued nor
886 * running the callback and the caller needs to take care of
887 * serialization.
888 *
889 * Note: This only updates the timer expiry value and does not requeue
890 * the timer.
c0a31329 891 */
4d672e7a 892u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 893{
4d672e7a 894 u64 orun = 1;
44f21475 895 ktime_t delta;
c0a31329 896
cc584b21 897 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 898
2456e855 899 if (delta < 0)
c0a31329
TG
900 return 0;
901
5de2755c
PZ
902 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
903 return 0;
904
2456e855
TG
905 if (interval < hrtimer_resolution)
906 interval = hrtimer_resolution;
c9db4fa1 907
2456e855 908 if (unlikely(delta >= interval)) {
df869b63 909 s64 incr = ktime_to_ns(interval);
c0a31329
TG
910
911 orun = ktime_divns(delta, incr);
cc584b21 912 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 913 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
914 return orun;
915 /*
916 * This (and the ktime_add() below) is the
917 * correction for exact:
918 */
919 orun++;
920 }
cc584b21 921 hrtimer_add_expires(timer, interval);
c0a31329
TG
922
923 return orun;
924}
6bdb6b62 925EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
926
927/*
928 * enqueue_hrtimer - internal function to (re)start a timer
929 *
930 * The timer is inserted in expiry order. Insertion into the
931 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
932 *
933 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 934 */
a6037b61 935static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
936 struct hrtimer_clock_base *base,
937 enum hrtimer_mode mode)
c0a31329 938{
63e2ed36 939 debug_activate(timer, mode);
237fc6e7 940
ab8177bc 941 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 942
887d9dc9 943 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 944
b97f44c9 945 return timerqueue_add(&base->active, &timer->node);
288867ec 946}
c0a31329
TG
947
948/*
949 * __remove_hrtimer - internal function to remove a timer
950 *
951 * Caller must hold the base lock.
54cdfdb4
TG
952 *
953 * High resolution timer mode reprograms the clock event device when the
954 * timer is the one which expires next. The caller can disable this by setting
955 * reprogram to zero. This is useful, when the context does a reprogramming
956 * anyway (e.g. timer interrupt)
c0a31329 957 */
3c8aa39d 958static void __remove_hrtimer(struct hrtimer *timer,
303e967f 959 struct hrtimer_clock_base *base,
203cbf77 960 u8 newstate, int reprogram)
c0a31329 961{
e19ffe8b 962 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 963 u8 state = timer->state;
e19ffe8b 964
895bdfa7
TG
965 timer->state = newstate;
966 if (!(state & HRTIMER_STATE_ENQUEUED))
967 return;
7403f41f 968
b97f44c9 969 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 970 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 971
895bdfa7
TG
972 /*
973 * Note: If reprogram is false we do not update
974 * cpu_base->next_timer. This happens when we remove the first
975 * timer on a remote cpu. No harm as we never dereference
976 * cpu_base->next_timer. So the worst thing what can happen is
977 * an superflous call to hrtimer_force_reprogram() on the
978 * remote cpu later on if the same timer gets enqueued again.
979 */
980 if (reprogram && timer == cpu_base->next_timer)
981 hrtimer_force_reprogram(cpu_base, 1);
c0a31329
TG
982}
983
984/*
985 * remove hrtimer, called with base lock held
986 */
987static inline int
8edfb036 988remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 989{
303e967f 990 if (hrtimer_is_queued(timer)) {
203cbf77 991 u8 state = timer->state;
54cdfdb4
TG
992 int reprogram;
993
994 /*
995 * Remove the timer and force reprogramming when high
996 * resolution mode is active and the timer is on the current
997 * CPU. If we remove a timer on another CPU, reprogramming is
998 * skipped. The interrupt event on this CPU is fired and
999 * reprogramming happens in the interrupt handler. This is a
1000 * rare case and less expensive than a smp call.
1001 */
c6a2a177 1002 debug_deactivate(timer);
dc5df73b 1003 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 1004
887d9dc9
PZ
1005 if (!restart)
1006 state = HRTIMER_STATE_INACTIVE;
1007
f13d4f97 1008 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
1009 return 1;
1010 }
1011 return 0;
1012}
1013
203cbf77
TG
1014static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1015 const enum hrtimer_mode mode)
1016{
1017#ifdef CONFIG_TIME_LOW_RES
1018 /*
1019 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1020 * granular time values. For relative timers we add hrtimer_resolution
1021 * (i.e. one jiffie) to prevent short timeouts.
1022 */
1023 timer->is_rel = mode & HRTIMER_MODE_REL;
1024 if (timer->is_rel)
8b0e1953 1025 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
1026#endif
1027 return tim;
1028}
1029
5da70160
AMG
1030static void
1031hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1032{
1033 ktime_t expires;
1034
1035 /*
1036 * Find the next SOFT expiration.
1037 */
1038 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1039
1040 /*
1041 * reprogramming needs to be triggered, even if the next soft
1042 * hrtimer expires at the same time than the next hard
1043 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1044 */
1045 if (expires == KTIME_MAX)
1046 return;
1047
1048 /*
1049 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1050 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1051 */
1052 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1053}
1054
138a6b7a
AMG
1055static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1056 u64 delta_ns, const enum hrtimer_mode mode,
1057 struct hrtimer_clock_base *base)
c0a31329 1058{
138a6b7a 1059 struct hrtimer_clock_base *new_base;
c0a31329
TG
1060
1061 /* Remove an active timer from the queue: */
8edfb036 1062 remove_hrtimer(timer, base, true);
c0a31329 1063
203cbf77 1064 if (mode & HRTIMER_MODE_REL)
84ea7fe3 1065 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
1066
1067 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 1068
da8f2e17 1069 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 1070
84ea7fe3
VK
1071 /* Switch the timer base, if necessary: */
1072 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1073
138a6b7a
AMG
1074 return enqueue_hrtimer(timer, new_base, mode);
1075}
5da70160 1076
138a6b7a
AMG
1077/**
1078 * hrtimer_start_range_ns - (re)start an hrtimer
1079 * @timer: the timer to be added
1080 * @tim: expiry time
1081 * @delta_ns: "slack" range for the timer
1082 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
5da70160
AMG
1083 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1084 * softirq based mode is considered for debug purpose only!
138a6b7a
AMG
1085 */
1086void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1087 u64 delta_ns, const enum hrtimer_mode mode)
1088{
1089 struct hrtimer_clock_base *base;
1090 unsigned long flags;
1091
5da70160
AMG
1092 /*
1093 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1094 * match.
1095 */
1096 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1097
138a6b7a
AMG
1098 base = lock_hrtimer_base(timer, &flags);
1099
1100 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
5da70160 1101 hrtimer_reprogram(timer, true);
49a2a075 1102
c0a31329 1103 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 1104}
da8f2e17
AV
1105EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1106
c0a31329
TG
1107/**
1108 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1109 * @timer: hrtimer to stop
1110 *
1111 * Returns:
1112 * 0 when the timer was not active
1113 * 1 when the timer was active
0ba42a59 1114 * -1 when the timer is currently executing the callback function and
fa9799e3 1115 * cannot be stopped
c0a31329
TG
1116 */
1117int hrtimer_try_to_cancel(struct hrtimer *timer)
1118{
3c8aa39d 1119 struct hrtimer_clock_base *base;
c0a31329
TG
1120 unsigned long flags;
1121 int ret = -1;
1122
19d9f422
TG
1123 /*
1124 * Check lockless first. If the timer is not active (neither
1125 * enqueued nor running the callback, nothing to do here. The
1126 * base lock does not serialize against a concurrent enqueue,
1127 * so we can avoid taking it.
1128 */
1129 if (!hrtimer_active(timer))
1130 return 0;
1131
c0a31329
TG
1132 base = lock_hrtimer_base(timer, &flags);
1133
303e967f 1134 if (!hrtimer_callback_running(timer))
8edfb036 1135 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1136
1137 unlock_hrtimer_base(timer, &flags);
1138
1139 return ret;
1140
1141}
8d16b764 1142EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1143
1144/**
1145 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1146 * @timer: the timer to be cancelled
1147 *
1148 * Returns:
1149 * 0 when the timer was not active
1150 * 1 when the timer was active
1151 */
1152int hrtimer_cancel(struct hrtimer *timer)
1153{
1154 for (;;) {
1155 int ret = hrtimer_try_to_cancel(timer);
1156
1157 if (ret >= 0)
1158 return ret;
5ef37b19 1159 cpu_relax();
c0a31329
TG
1160 }
1161}
8d16b764 1162EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1163
1164/**
1165 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1166 * @timer: the timer to read
203cbf77 1167 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1168 */
203cbf77 1169ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1170{
c0a31329
TG
1171 unsigned long flags;
1172 ktime_t rem;
1173
b3bd3de6 1174 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1175 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1176 rem = hrtimer_expires_remaining_adjusted(timer);
1177 else
1178 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1179 unlock_hrtimer_base(timer, &flags);
1180
1181 return rem;
1182}
203cbf77 1183EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1184
3451d024 1185#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1186/**
1187 * hrtimer_get_next_event - get the time until next expiry event
1188 *
c1ad348b 1189 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1190 */
c1ad348b 1191u64 hrtimer_get_next_event(void)
69239749 1192{
dc5df73b 1193 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1194 u64 expires = KTIME_MAX;
69239749 1195 unsigned long flags;
69239749 1196
ecb49d1a 1197 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1198
e19ffe8b 1199 if (!__hrtimer_hres_active(cpu_base))
5da70160 1200 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
3c8aa39d 1201
ecb49d1a 1202 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1203
c1ad348b 1204 return expires;
69239749
TL
1205}
1206#endif
1207
336a9cde
MZ
1208static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1209{
1210 if (likely(clock_id < MAX_CLOCKS)) {
1211 int base = hrtimer_clock_to_base_table[clock_id];
1212
1213 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1214 return base;
1215 }
1216 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1217 return HRTIMER_BASE_MONOTONIC;
1218}
1219
237fc6e7
TG
1220static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1221 enum hrtimer_mode mode)
c0a31329 1222{
42f42da4
AMG
1223 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1224 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
3c8aa39d 1225 struct hrtimer_cpu_base *cpu_base;
c0a31329 1226
7978672c
GA
1227 memset(timer, 0, sizeof(struct hrtimer));
1228
22127e93 1229 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1230
48d0c9be
AMG
1231 /*
1232 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1233 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1234 * ensure POSIX compliance.
1235 */
1236 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1237 clock_id = CLOCK_MONOTONIC;
1238
42f42da4
AMG
1239 base += hrtimer_clockid_to_base(clock_id);
1240 timer->is_soft = softtimer;
e06383db 1241 timer->base = &cpu_base->clock_base[base];
998adc3d 1242 timerqueue_init(&timer->node);
c0a31329 1243}
237fc6e7
TG
1244
1245/**
1246 * hrtimer_init - initialize a timer to the given clock
1247 * @timer: the timer to be initialized
1248 * @clock_id: the clock to be used
42f42da4
AMG
1249 * @mode: The modes which are relevant for intitialization:
1250 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1251 * HRTIMER_MODE_REL_SOFT
1252 *
1253 * The PINNED variants of the above can be handed in,
1254 * but the PINNED bit is ignored as pinning happens
1255 * when the hrtimer is started
237fc6e7
TG
1256 */
1257void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1258 enum hrtimer_mode mode)
1259{
c6a2a177 1260 debug_init(timer, clock_id, mode);
237fc6e7
TG
1261 __hrtimer_init(timer, clock_id, mode);
1262}
8d16b764 1263EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1264
887d9dc9
PZ
1265/*
1266 * A timer is active, when it is enqueued into the rbtree or the
1267 * callback function is running or it's in the state of being migrated
1268 * to another cpu.
c0a31329 1269 *
887d9dc9 1270 * It is important for this function to not return a false negative.
c0a31329 1271 */
887d9dc9 1272bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1273{
3f0b9e8e 1274 struct hrtimer_clock_base *base;
887d9dc9 1275 unsigned int seq;
c0a31329 1276
887d9dc9 1277 do {
3f0b9e8e
AMG
1278 base = READ_ONCE(timer->base);
1279 seq = raw_read_seqcount_begin(&base->seq);
c0a31329 1280
887d9dc9 1281 if (timer->state != HRTIMER_STATE_INACTIVE ||
3f0b9e8e 1282 base->running == timer)
887d9dc9
PZ
1283 return true;
1284
3f0b9e8e
AMG
1285 } while (read_seqcount_retry(&base->seq, seq) ||
1286 base != READ_ONCE(timer->base));
887d9dc9
PZ
1287
1288 return false;
c0a31329 1289}
887d9dc9 1290EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1291
887d9dc9
PZ
1292/*
1293 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1294 * distinct sections:
1295 *
1296 * - queued: the timer is queued
1297 * - callback: the timer is being ran
1298 * - post: the timer is inactive or (re)queued
1299 *
1300 * On the read side we ensure we observe timer->state and cpu_base->running
1301 * from the same section, if anything changed while we looked at it, we retry.
1302 * This includes timer->base changing because sequence numbers alone are
1303 * insufficient for that.
1304 *
1305 * The sequence numbers are required because otherwise we could still observe
1306 * a false negative if the read side got smeared over multiple consequtive
1307 * __run_hrtimer() invocations.
1308 */
1309
21d6d52a
TG
1310static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1311 struct hrtimer_clock_base *base,
dd934aa8
AMG
1312 struct hrtimer *timer, ktime_t *now,
1313 unsigned long flags)
d3d74453 1314{
d3d74453
PZ
1315 enum hrtimer_restart (*fn)(struct hrtimer *);
1316 int restart;
1317
887d9dc9 1318 lockdep_assert_held(&cpu_base->lock);
ca109491 1319
c6a2a177 1320 debug_deactivate(timer);
3f0b9e8e 1321 base->running = timer;
887d9dc9
PZ
1322
1323 /*
1324 * Separate the ->running assignment from the ->state assignment.
1325 *
1326 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1327 * hrtimer_active() cannot observe base->running == NULL &&
887d9dc9
PZ
1328 * timer->state == INACTIVE.
1329 */
3f0b9e8e 1330 raw_write_seqcount_barrier(&base->seq);
887d9dc9
PZ
1331
1332 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1333 fn = timer->function;
ca109491 1334
203cbf77
TG
1335 /*
1336 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1337 * timer is restarted with a period then it becomes an absolute
1338 * timer. If its not restarted it does not matter.
1339 */
1340 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1341 timer->is_rel = false;
1342
ca109491 1343 /*
d05ca13b
TG
1344 * The timer is marked as running in the CPU base, so it is
1345 * protected against migration to a different CPU even if the lock
1346 * is dropped.
ca109491 1347 */
dd934aa8 1348 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c6a2a177 1349 trace_hrtimer_expire_entry(timer, now);
ca109491 1350 restart = fn(timer);
c6a2a177 1351 trace_hrtimer_expire_exit(timer);
dd934aa8 1352 raw_spin_lock_irq(&cpu_base->lock);
d3d74453
PZ
1353
1354 /*
887d9dc9 1355 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1356 * we do not reprogram the event hardware. Happens either in
e3f1d883 1357 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1358 *
1359 * Note: Because we dropped the cpu_base->lock above,
1360 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1361 * for us already.
d3d74453 1362 */
5de2755c
PZ
1363 if (restart != HRTIMER_NORESTART &&
1364 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1365 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1366
887d9dc9
PZ
1367 /*
1368 * Separate the ->running assignment from the ->state assignment.
1369 *
1370 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1371 * hrtimer_active() cannot observe base->running.timer == NULL &&
887d9dc9
PZ
1372 * timer->state == INACTIVE.
1373 */
3f0b9e8e 1374 raw_write_seqcount_barrier(&base->seq);
f13d4f97 1375
3f0b9e8e
AMG
1376 WARN_ON_ONCE(base->running != timer);
1377 base->running = NULL;
d3d74453
PZ
1378}
1379
dd934aa8 1380static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
c458b1d1 1381 unsigned long flags, unsigned int active_mask)
54cdfdb4 1382{
c272ca58 1383 struct hrtimer_clock_base *base;
c458b1d1 1384 unsigned int active = cpu_base->active_bases & active_mask;
6ff7041d 1385
c272ca58 1386 for_each_active_base(base, cpu_base, active) {
998adc3d 1387 struct timerqueue_node *node;
ab8177bc
TG
1388 ktime_t basenow;
1389
54cdfdb4
TG
1390 basenow = ktime_add(now, base->offset);
1391
998adc3d 1392 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1393 struct hrtimer *timer;
1394
998adc3d 1395 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1396
654c8e0b
AV
1397 /*
1398 * The immediate goal for using the softexpires is
1399 * minimizing wakeups, not running timers at the
1400 * earliest interrupt after their soft expiration.
1401 * This allows us to avoid using a Priority Search
1402 * Tree, which can answer a stabbing querry for
1403 * overlapping intervals and instead use the simple
1404 * BST we already have.
1405 * We don't add extra wakeups by delaying timers that
1406 * are right-of a not yet expired timer, because that
1407 * timer will have to trigger a wakeup anyway.
1408 */
2456e855 1409 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1410 break;
54cdfdb4 1411
dd934aa8 1412 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
54cdfdb4 1413 }
54cdfdb4 1414 }
21d6d52a
TG
1415}
1416
5da70160
AMG
1417static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1418{
1419 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1420 unsigned long flags;
1421 ktime_t now;
1422
1423 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1424
1425 now = hrtimer_update_base(cpu_base);
1426 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1427
1428 cpu_base->softirq_activated = 0;
1429 hrtimer_update_softirq_timer(cpu_base, true);
1430
1431 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1432}
1433
21d6d52a
TG
1434#ifdef CONFIG_HIGH_RES_TIMERS
1435
1436/*
1437 * High resolution timer interrupt
1438 * Called with interrupts disabled
1439 */
1440void hrtimer_interrupt(struct clock_event_device *dev)
1441{
1442 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1443 ktime_t expires_next, now, entry_time, delta;
dd934aa8 1444 unsigned long flags;
21d6d52a
TG
1445 int retries = 0;
1446
1447 BUG_ON(!cpu_base->hres_active);
1448 cpu_base->nr_events++;
2456e855 1449 dev->next_event = KTIME_MAX;
21d6d52a 1450
dd934aa8 1451 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a
TG
1452 entry_time = now = hrtimer_update_base(cpu_base);
1453retry:
1454 cpu_base->in_hrtirq = 1;
1455 /*
1456 * We set expires_next to KTIME_MAX here with cpu_base->lock
1457 * held to prevent that a timer is enqueued in our queue via
1458 * the migration code. This does not affect enqueueing of
1459 * timers which run their callback and need to be requeued on
1460 * this CPU.
1461 */
2456e855 1462 cpu_base->expires_next = KTIME_MAX;
21d6d52a 1463
5da70160
AMG
1464 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1465 cpu_base->softirq_expires_next = KTIME_MAX;
1466 cpu_base->softirq_activated = 1;
1467 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1468 }
1469
c458b1d1 1470 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
21d6d52a 1471
9bc74919 1472 /* Reevaluate the clock bases for the next expiry */
5da70160 1473 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
6ff7041d
TG
1474 /*
1475 * Store the new expiry value so the migration code can verify
1476 * against it.
1477 */
54cdfdb4 1478 cpu_base->expires_next = expires_next;
9bc74919 1479 cpu_base->in_hrtirq = 0;
dd934aa8 1480 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
54cdfdb4
TG
1481
1482 /* Reprogramming necessary ? */
d2540875 1483 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1484 cpu_base->hang_detected = 0;
1485 return;
54cdfdb4 1486 }
41d2e494
TG
1487
1488 /*
1489 * The next timer was already expired due to:
1490 * - tracing
1491 * - long lasting callbacks
1492 * - being scheduled away when running in a VM
1493 *
1494 * We need to prevent that we loop forever in the hrtimer
1495 * interrupt routine. We give it 3 attempts to avoid
1496 * overreacting on some spurious event.
5baefd6d
JS
1497 *
1498 * Acquire base lock for updating the offsets and retrieving
1499 * the current time.
41d2e494 1500 */
dd934aa8 1501 raw_spin_lock_irqsave(&cpu_base->lock, flags);
5baefd6d 1502 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1503 cpu_base->nr_retries++;
1504 if (++retries < 3)
1505 goto retry;
1506 /*
1507 * Give the system a chance to do something else than looping
1508 * here. We stored the entry time, so we know exactly how long
1509 * we spent here. We schedule the next event this amount of
1510 * time away.
1511 */
1512 cpu_base->nr_hangs++;
1513 cpu_base->hang_detected = 1;
dd934aa8
AMG
1514 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1515
41d2e494 1516 delta = ktime_sub(now, entry_time);
2456e855
TG
1517 if ((unsigned int)delta > cpu_base->max_hang_time)
1518 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1519 /*
1520 * Limit it to a sensible value as we enforce a longer
1521 * delay. Give the CPU at least 100ms to catch up.
1522 */
2456e855 1523 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1524 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1525 else
1526 expires_next = ktime_add(now, delta);
1527 tick_program_event(expires_next, 1);
1528 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1529 ktime_to_ns(delta));
54cdfdb4
TG
1530}
1531
016da201 1532/* called with interrupts disabled */
c6eb3f70 1533static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1534{
1535 struct tick_device *td;
1536
1537 if (!hrtimer_hres_active())
1538 return;
1539
22127e93 1540 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1541 if (td && td->evtdev)
1542 hrtimer_interrupt(td->evtdev);
1543}
1544
82c5b7b5
IM
1545#else /* CONFIG_HIGH_RES_TIMERS */
1546
1547static inline void __hrtimer_peek_ahead_timers(void) { }
1548
1549#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1550
d3d74453 1551/*
c6eb3f70 1552 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1553 */
833883d9 1554void hrtimer_run_queues(void)
d3d74453 1555{
dc5df73b 1556 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
dd934aa8 1557 unsigned long flags;
21d6d52a 1558 ktime_t now;
c0a31329 1559
e19ffe8b 1560 if (__hrtimer_hres_active(cpu_base))
d3d74453 1561 return;
54cdfdb4 1562
d3d74453 1563 /*
c6eb3f70
TG
1564 * This _is_ ugly: We have to check periodically, whether we
1565 * can switch to highres and / or nohz mode. The clocksource
1566 * switch happens with xtime_lock held. Notification from
1567 * there only sets the check bit in the tick_oneshot code,
1568 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1569 */
c6eb3f70 1570 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1571 hrtimer_switch_to_hres();
3055adda 1572 return;
833883d9 1573 }
c6eb3f70 1574
dd934aa8 1575 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a 1576 now = hrtimer_update_base(cpu_base);
5da70160
AMG
1577
1578 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1579 cpu_base->softirq_expires_next = KTIME_MAX;
1580 cpu_base->softirq_activated = 1;
1581 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1582 }
1583
c458b1d1 1584 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
dd934aa8 1585 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c0a31329
TG
1586}
1587
10c94ec1
TG
1588/*
1589 * Sleep related functions:
1590 */
c9cb2e3d 1591static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1592{
1593 struct hrtimer_sleeper *t =
1594 container_of(timer, struct hrtimer_sleeper, timer);
1595 struct task_struct *task = t->task;
1596
1597 t->task = NULL;
1598 if (task)
1599 wake_up_process(task);
1600
1601 return HRTIMER_NORESTART;
1602}
1603
36c8b586 1604void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1605{
1606 sl->timer.function = hrtimer_wakeup;
1607 sl->task = task;
1608}
2bc481cf 1609EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1610
c0edd7c9 1611int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1612{
1613 switch(restart->nanosleep.type) {
1614#ifdef CONFIG_COMPAT
1615 case TT_COMPAT:
c0edd7c9 1616 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1617 return -EFAULT;
1618 break;
1619#endif
1620 case TT_NATIVE:
c0edd7c9 1621 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1622 return -EFAULT;
1623 break;
1624 default:
1625 BUG();
1626 }
1627 return -ERESTART_RESTARTBLOCK;
1628}
1629
669d7868 1630static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1631{
edbeda46
AV
1632 struct restart_block *restart;
1633
669d7868 1634 hrtimer_init_sleeper(t, current);
10c94ec1 1635
432569bb
RZ
1636 do {
1637 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1638 hrtimer_start_expires(&t->timer, mode);
432569bb 1639
54cdfdb4 1640 if (likely(t->task))
b0f8c44f 1641 freezable_schedule();
432569bb 1642
669d7868 1643 hrtimer_cancel(&t->timer);
c9cb2e3d 1644 mode = HRTIMER_MODE_ABS;
669d7868
TG
1645
1646 } while (t->task && !signal_pending(current));
432569bb 1647
3588a085
PZ
1648 __set_current_state(TASK_RUNNING);
1649
a7602681 1650 if (!t->task)
080344b9 1651 return 0;
080344b9 1652
edbeda46
AV
1653 restart = &current->restart_block;
1654 if (restart->nanosleep.type != TT_NONE) {
a7602681 1655 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1656 struct timespec64 rmt;
edbeda46 1657
a7602681
AV
1658 if (rem <= 0)
1659 return 0;
c0edd7c9 1660 rmt = ktime_to_timespec64(rem);
a7602681 1661
ce41aaf4 1662 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1663 }
1664 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1665}
1666
fb923c4a 1667static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1668{
669d7868 1669 struct hrtimer_sleeper t;
a7602681 1670 int ret;
10c94ec1 1671
ab8177bc 1672 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1673 HRTIMER_MODE_ABS);
cc584b21 1674 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1675
a7602681 1676 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1677 destroy_hrtimer_on_stack(&t.timer);
1678 return ret;
10c94ec1
TG
1679}
1680
938e7cf2 1681long hrtimer_nanosleep(const struct timespec64 *rqtp,
10c94ec1
TG
1682 const enum hrtimer_mode mode, const clockid_t clockid)
1683{
a7602681 1684 struct restart_block *restart;
669d7868 1685 struct hrtimer_sleeper t;
237fc6e7 1686 int ret = 0;
da8b44d5 1687 u64 slack;
3bd01206
AV
1688
1689 slack = current->timer_slack_ns;
aab03e05 1690 if (dl_task(current) || rt_task(current))
3bd01206 1691 slack = 0;
10c94ec1 1692
237fc6e7 1693 hrtimer_init_on_stack(&t.timer, clockid, mode);
ad196384 1694 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
a7602681
AV
1695 ret = do_nanosleep(&t, mode);
1696 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1697 goto out;
10c94ec1 1698
7978672c 1699 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1700 if (mode == HRTIMER_MODE_ABS) {
1701 ret = -ERESTARTNOHAND;
1702 goto out;
1703 }
10c94ec1 1704
a7602681 1705 restart = &current->restart_block;
1711ef38 1706 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1707 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1708 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1709out:
1710 destroy_hrtimer_on_stack(&t.timer);
1711 return ret;
10c94ec1
TG
1712}
1713
58fd3aa2
HC
1714SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1715 struct timespec __user *, rmtp)
6ba1b912 1716{
c0edd7c9 1717 struct timespec64 tu;
6ba1b912 1718
c0edd7c9 1719 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1720 return -EFAULT;
1721
c0edd7c9 1722 if (!timespec64_valid(&tu))
6ba1b912
TG
1723 return -EINVAL;
1724
edbeda46 1725 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1726 current->restart_block.nanosleep.rmtp = rmtp;
c0edd7c9 1727 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1728}
1729
edbeda46
AV
1730#ifdef CONFIG_COMPAT
1731
1732COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1733 struct compat_timespec __user *, rmtp)
1734{
c0edd7c9 1735 struct timespec64 tu;
edbeda46 1736
c0edd7c9 1737 if (compat_get_timespec64(&tu, rqtp))
edbeda46
AV
1738 return -EFAULT;
1739
c0edd7c9 1740 if (!timespec64_valid(&tu))
edbeda46
AV
1741 return -EINVAL;
1742
1743 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1744 current->restart_block.nanosleep.compat_rmtp = rmtp;
c0edd7c9 1745 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
edbeda46
AV
1746}
1747#endif
1748
c0a31329
TG
1749/*
1750 * Functions related to boot-time initialization:
1751 */
27590dc1 1752int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1753{
3c8aa39d 1754 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1755 int i;
1756
998adc3d 1757 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1758 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1759 timerqueue_init_head(&cpu_base->clock_base[i].active);
1760 }
3c8aa39d 1761
cddd0248 1762 cpu_base->cpu = cpu;
303c146d 1763 cpu_base->active_bases = 0;
28bfd18b 1764 cpu_base->hres_active = 0;
303c146d
TG
1765 cpu_base->hang_detected = 0;
1766 cpu_base->next_timer = NULL;
1767 cpu_base->softirq_next_timer = NULL;
07a9a7ea 1768 cpu_base->expires_next = KTIME_MAX;
5da70160 1769 cpu_base->softirq_expires_next = KTIME_MAX;
27590dc1 1770 return 0;
c0a31329
TG
1771}
1772
1773#ifdef CONFIG_HOTPLUG_CPU
1774
ca109491 1775static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1776 struct hrtimer_clock_base *new_base)
c0a31329
TG
1777{
1778 struct hrtimer *timer;
998adc3d 1779 struct timerqueue_node *node;
c0a31329 1780
998adc3d
JS
1781 while ((node = timerqueue_getnext(&old_base->active))) {
1782 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1783 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1784 debug_deactivate(timer);
b00c1a99
TG
1785
1786 /*
c04dca02 1787 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1788 * timer could be seen as !active and just vanish away
1789 * under us on another CPU
1790 */
c04dca02 1791 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1792 timer->base = new_base;
54cdfdb4 1793 /*
e3f1d883
TG
1794 * Enqueue the timers on the new cpu. This does not
1795 * reprogram the event device in case the timer
1796 * expires before the earliest on this CPU, but we run
1797 * hrtimer_interrupt after we migrated everything to
1798 * sort out already expired timers and reprogram the
1799 * event device.
54cdfdb4 1800 */
63e2ed36 1801 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
1802 }
1803}
1804
27590dc1 1805int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 1806{
3c8aa39d 1807 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1808 int i;
c0a31329 1809
37810659 1810 BUG_ON(cpu_online(scpu));
37810659 1811 tick_cancel_sched_timer(scpu);
731a55ba 1812
5da70160
AMG
1813 /*
1814 * this BH disable ensures that raise_softirq_irqoff() does
1815 * not wakeup ksoftirqd (and acquire the pi-lock) while
1816 * holding the cpu_base lock
1817 */
1818 local_bh_disable();
731a55ba
TG
1819 local_irq_disable();
1820 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1821 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1822 /*
1823 * The caller is globally serialized and nobody else
1824 * takes two locks at once, deadlock is not possible.
1825 */
ecb49d1a
TG
1826 raw_spin_lock(&new_base->lock);
1827 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1828
3c8aa39d 1829 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1830 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1831 &new_base->clock_base[i]);
c0a31329
TG
1832 }
1833
5da70160
AMG
1834 /*
1835 * The migration might have changed the first expiring softirq
1836 * timer on this CPU. Update it.
1837 */
1838 hrtimer_update_softirq_timer(new_base, false);
1839
ecb49d1a
TG
1840 raw_spin_unlock(&old_base->lock);
1841 raw_spin_unlock(&new_base->lock);
37810659 1842
731a55ba
TG
1843 /* Check, if we got expired work to do */
1844 __hrtimer_peek_ahead_timers();
1845 local_irq_enable();
5da70160 1846 local_bh_enable();
27590dc1 1847 return 0;
c0a31329 1848}
37810659 1849
c0a31329
TG
1850#endif /* CONFIG_HOTPLUG_CPU */
1851
c0a31329
TG
1852void __init hrtimers_init(void)
1853{
27590dc1 1854 hrtimers_prepare_cpu(smp_processor_id());
5da70160 1855 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
c0a31329
TG
1856}
1857
7bb67439 1858/**
351b3f7a 1859 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1860 * @expires: timeout value (ktime_t)
654c8e0b 1861 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
1862 * @mode: timer mode
1863 * @clock_id: timer clock to be used
7bb67439 1864 */
351b3f7a 1865int __sched
da8b44d5 1866schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 1867 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
1868{
1869 struct hrtimer_sleeper t;
1870
1871 /*
1872 * Optimize when a zero timeout value is given. It does not
1873 * matter whether this is an absolute or a relative time.
1874 */
2456e855 1875 if (expires && *expires == 0) {
7bb67439
AV
1876 __set_current_state(TASK_RUNNING);
1877 return 0;
1878 }
1879
1880 /*
43b21013 1881 * A NULL parameter means "infinite"
7bb67439
AV
1882 */
1883 if (!expires) {
1884 schedule();
7bb67439
AV
1885 return -EINTR;
1886 }
1887
90777713 1888 hrtimer_init_on_stack(&t.timer, clock_id, mode);
654c8e0b 1889 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1890
1891 hrtimer_init_sleeper(&t, current);
1892
cc584b21 1893 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1894
1895 if (likely(t.task))
1896 schedule();
1897
1898 hrtimer_cancel(&t.timer);
1899 destroy_hrtimer_on_stack(&t.timer);
1900
1901 __set_current_state(TASK_RUNNING);
1902
1903 return !t.task ? 0 : -EINTR;
1904}
351b3f7a
CE
1905
1906/**
1907 * schedule_hrtimeout_range - sleep until timeout
1908 * @expires: timeout value (ktime_t)
1909 * @delta: slack in expires timeout (ktime_t)
90777713 1910 * @mode: timer mode
351b3f7a
CE
1911 *
1912 * Make the current task sleep until the given expiry time has
1913 * elapsed. The routine will return immediately unless
1914 * the current task state has been set (see set_current_state()).
1915 *
1916 * The @delta argument gives the kernel the freedom to schedule the
1917 * actual wakeup to a time that is both power and performance friendly.
1918 * The kernel give the normal best effort behavior for "@expires+@delta",
1919 * but may decide to fire the timer earlier, but no earlier than @expires.
1920 *
1921 * You can set the task state as follows -
1922 *
1923 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1924 * pass before the routine returns unless the current task is explicitly
1925 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
1926 *
1927 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1928 * delivered to the current task or the current task is explicitly woken
1929 * up.
351b3f7a
CE
1930 *
1931 * The current task state is guaranteed to be TASK_RUNNING when this
1932 * routine returns.
1933 *
4b7e9cf9
DA
1934 * Returns 0 when the timer has expired. If the task was woken before the
1935 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1936 * by an explicit wakeup, it returns -EINTR.
351b3f7a 1937 */
da8b44d5 1938int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
1939 const enum hrtimer_mode mode)
1940{
1941 return schedule_hrtimeout_range_clock(expires, delta, mode,
1942 CLOCK_MONOTONIC);
1943}
654c8e0b
AV
1944EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1945
1946/**
1947 * schedule_hrtimeout - sleep until timeout
1948 * @expires: timeout value (ktime_t)
90777713 1949 * @mode: timer mode
654c8e0b
AV
1950 *
1951 * Make the current task sleep until the given expiry time has
1952 * elapsed. The routine will return immediately unless
1953 * the current task state has been set (see set_current_state()).
1954 *
1955 * You can set the task state as follows -
1956 *
1957 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1958 * pass before the routine returns unless the current task is explicitly
1959 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
1960 *
1961 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1962 * delivered to the current task or the current task is explicitly woken
1963 * up.
654c8e0b
AV
1964 *
1965 * The current task state is guaranteed to be TASK_RUNNING when this
1966 * routine returns.
1967 *
4b7e9cf9
DA
1968 * Returns 0 when the timer has expired. If the task was woken before the
1969 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1970 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
1971 */
1972int __sched schedule_hrtimeout(ktime_t *expires,
1973 const enum hrtimer_mode mode)
1974{
1975 return schedule_hrtimeout_range(expires, 0, mode);
1976}
7bb67439 1977EXPORT_SYMBOL_GPL(schedule_hrtimeout);