Merge tag 'nios2-v4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/lftan...
[linux-2.6-block.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
40#include <linux/interrupt.h>
79bf2bb3 41#include <linux/tick.h>
54cdfdb4
TG
42#include <linux/seq_file.h>
43#include <linux/err.h>
237fc6e7 44#include <linux/debugobjects.h>
174cd4b1 45#include <linux/sched/signal.h>
cf4aebc2 46#include <linux/sched/sysctl.h>
8bd75c77 47#include <linux/sched/rt.h>
aab03e05 48#include <linux/sched/deadline.h>
370c9135 49#include <linux/sched/nohz.h>
b17b0153 50#include <linux/sched/debug.h>
eea08f32 51#include <linux/timer.h>
b0f8c44f 52#include <linux/freezer.h>
edbeda46 53#include <linux/compat.h>
c0a31329 54
7c0f6ba6 55#include <linux/uaccess.h>
c0a31329 56
c6a2a177
XG
57#include <trace/events/timer.h>
58
c1797baf 59#include "tick-internal.h"
8b094cd0 60
c458b1d1
AMG
61/*
62 * Masks for selecting the soft and hard context timers from
63 * cpu_base->active
64 */
65#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
66#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
67#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
68#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
69
c0a31329
TG
70/*
71 * The timer bases:
7978672c 72 *
571af55a 73 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
74 * into the timer bases by the hrtimer_base_type enum. When trying
75 * to reach a base using a clockid, hrtimer_clockid_to_base()
76 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 77 */
54cdfdb4 78DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 79{
84cc8fd2 80 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 81 .clock_base =
c0a31329 82 {
3c8aa39d 83 {
ab8177bc
TG
84 .index = HRTIMER_BASE_MONOTONIC,
85 .clockid = CLOCK_MONOTONIC,
3c8aa39d 86 .get_time = &ktime_get,
3c8aa39d 87 },
68fa61c0
TG
88 {
89 .index = HRTIMER_BASE_REALTIME,
90 .clockid = CLOCK_REALTIME,
91 .get_time = &ktime_get_real,
68fa61c0 92 },
90adda98
JS
93 {
94 .index = HRTIMER_BASE_TAI,
95 .clockid = CLOCK_TAI,
96 .get_time = &ktime_get_clocktai,
90adda98 97 },
98ecadd4
AMG
98 {
99 .index = HRTIMER_BASE_MONOTONIC_SOFT,
100 .clockid = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
102 },
103 {
104 .index = HRTIMER_BASE_REALTIME_SOFT,
105 .clockid = CLOCK_REALTIME,
106 .get_time = &ktime_get_real,
107 },
98ecadd4
AMG
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
3c8aa39d 113 }
c0a31329
TG
114};
115
942c3c5c 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
ce31332d
TG
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
127bfa5f 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_MONOTONIC,
90adda98 123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 124};
e06383db 125
c0a31329
TG
126/*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130#ifdef CONFIG_SMP
131
887d9dc9
PZ
132/*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137static struct hrtimer_cpu_base migration_cpu_base = {
887d9dc9
PZ
138 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
139};
140
141#define migration_base migration_cpu_base.clock_base[0]
142
c0a31329
TG
143/*
144 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
145 * means that all timers which are tied to this base via timer->base are
146 * locked, and the base itself is locked too.
147 *
148 * So __run_timers/migrate_timers can safely modify all timers which could
149 * be found on the lists/queues.
150 *
151 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
152 * possible to set timer->base = &migration_base and drop the lock: the timer
153 * remains locked.
c0a31329 154 */
3c8aa39d
TG
155static
156struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
157 unsigned long *flags)
c0a31329 158{
3c8aa39d 159 struct hrtimer_clock_base *base;
c0a31329
TG
160
161 for (;;) {
162 base = timer->base;
887d9dc9 163 if (likely(base != &migration_base)) {
ecb49d1a 164 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
165 if (likely(base == timer->base))
166 return base;
167 /* The timer has migrated to another CPU: */
ecb49d1a 168 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
169 }
170 cpu_relax();
171 }
172}
173
6ff7041d 174/*
07a9a7ea
AMG
175 * We do not migrate the timer when it is expiring before the next
176 * event on the target cpu. When high resolution is enabled, we cannot
177 * reprogram the target cpu hardware and we would cause it to fire
178 * late. To keep it simple, we handle the high resolution enabled and
179 * disabled case similar.
6ff7041d
TG
180 *
181 * Called with cpu_base->lock of target cpu held.
182 */
183static int
184hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
185{
6ff7041d
TG
186 ktime_t expires;
187
6ff7041d 188 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2ac2dccc 189 return expires < new_base->cpu_base->expires_next;
6ff7041d
TG
190}
191
bc7a34b8
TG
192static inline
193struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
194 int pinned)
195{
ae67bada
TG
196#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
197 if (static_branch_likely(&timers_migration_enabled) && !pinned)
198 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
199#endif
662b3e19 200 return base;
bc7a34b8 201}
bc7a34b8 202
c0a31329 203/*
b48362d8
FW
204 * We switch the timer base to a power-optimized selected CPU target,
205 * if:
206 * - NO_HZ_COMMON is enabled
207 * - timer migration is enabled
208 * - the timer callback is not running
209 * - the timer is not the first expiring timer on the new target
210 *
211 * If one of the above requirements is not fulfilled we move the timer
212 * to the current CPU or leave it on the previously assigned CPU if
213 * the timer callback is currently running.
c0a31329 214 */
3c8aa39d 215static inline struct hrtimer_clock_base *
597d0275
AB
216switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
217 int pinned)
c0a31329 218{
b48362d8 219 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 220 struct hrtimer_clock_base *new_base;
ab8177bc 221 int basenum = base->index;
c0a31329 222
b48362d8
FW
223 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
224 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 225again:
e06383db 226 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
227
228 if (base != new_base) {
229 /*
6ff7041d 230 * We are trying to move timer to new_base.
c0a31329
TG
231 * However we can't change timer's base while it is running,
232 * so we keep it on the same CPU. No hassle vs. reprogramming
233 * the event source in the high resolution case. The softirq
234 * code will take care of this when the timer function has
235 * completed. There is no conflict as we hold the lock until
236 * the timer is enqueued.
237 */
54cdfdb4 238 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
239 return base;
240
887d9dc9
PZ
241 /* See the comment in lock_hrtimer_base() */
242 timer->base = &migration_base;
ecb49d1a
TG
243 raw_spin_unlock(&base->cpu_base->lock);
244 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 245
b48362d8 246 if (new_cpu_base != this_cpu_base &&
bc7a34b8 247 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
248 raw_spin_unlock(&new_base->cpu_base->lock);
249 raw_spin_lock(&base->cpu_base->lock);
b48362d8 250 new_cpu_base = this_cpu_base;
6ff7041d
TG
251 timer->base = base;
252 goto again;
eea08f32 253 }
c0a31329 254 timer->base = new_base;
012a45e3 255 } else {
b48362d8 256 if (new_cpu_base != this_cpu_base &&
bc7a34b8 257 hrtimer_check_target(timer, new_base)) {
b48362d8 258 new_cpu_base = this_cpu_base;
012a45e3
LM
259 goto again;
260 }
c0a31329
TG
261 }
262 return new_base;
263}
264
265#else /* CONFIG_SMP */
266
3c8aa39d 267static inline struct hrtimer_clock_base *
c0a31329
TG
268lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269{
3c8aa39d 270 struct hrtimer_clock_base *base = timer->base;
c0a31329 271
ecb49d1a 272 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
273
274 return base;
275}
276
eea08f32 277# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
278
279#endif /* !CONFIG_SMP */
280
281/*
282 * Functions for the union type storage format of ktime_t which are
283 * too large for inlining:
284 */
285#if BITS_PER_LONG < 64
c0a31329
TG
286/*
287 * Divide a ktime value by a nanosecond value
288 */
f7bcb70e 289s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 290{
c0a31329 291 int sft = 0;
f7bcb70e
JS
292 s64 dclc;
293 u64 tmp;
c0a31329 294
900cfa46 295 dclc = ktime_to_ns(kt);
f7bcb70e
JS
296 tmp = dclc < 0 ? -dclc : dclc;
297
c0a31329
TG
298 /* Make sure the divisor is less than 2^32: */
299 while (div >> 32) {
300 sft++;
301 div >>= 1;
302 }
f7bcb70e
JS
303 tmp >>= sft;
304 do_div(tmp, (unsigned long) div);
305 return dclc < 0 ? -tmp : tmp;
c0a31329 306}
8b618628 307EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
308#endif /* BITS_PER_LONG >= 64 */
309
5a7780e7
TG
310/*
311 * Add two ktime values and do a safety check for overflow:
312 */
313ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
314{
979515c5 315 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
316
317 /*
318 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 * return to user space in a timespec:
320 */
2456e855 321 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
322 res = ktime_set(KTIME_SEC_MAX, 0);
323
324 return res;
325}
326
8daa21e6
AB
327EXPORT_SYMBOL_GPL(ktime_add_safe);
328
237fc6e7
TG
329#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
330
331static struct debug_obj_descr hrtimer_debug_descr;
332
99777288
SG
333static void *hrtimer_debug_hint(void *addr)
334{
335 return ((struct hrtimer *) addr)->function;
336}
337
237fc6e7
TG
338/*
339 * fixup_init is called when:
340 * - an active object is initialized
341 */
e3252464 342static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
343{
344 struct hrtimer *timer = addr;
345
346 switch (state) {
347 case ODEBUG_STATE_ACTIVE:
348 hrtimer_cancel(timer);
349 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 350 return true;
237fc6e7 351 default:
e3252464 352 return false;
237fc6e7
TG
353 }
354}
355
356/*
357 * fixup_activate is called when:
358 * - an active object is activated
b9fdac7f 359 * - an unknown non-static object is activated
237fc6e7 360 */
e3252464 361static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
362{
363 switch (state) {
237fc6e7
TG
364 case ODEBUG_STATE_ACTIVE:
365 WARN_ON(1);
366
367 default:
e3252464 368 return false;
237fc6e7
TG
369 }
370}
371
372/*
373 * fixup_free is called when:
374 * - an active object is freed
375 */
e3252464 376static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
377{
378 struct hrtimer *timer = addr;
379
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 hrtimer_cancel(timer);
383 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 384 return true;
237fc6e7 385 default:
e3252464 386 return false;
237fc6e7
TG
387 }
388}
389
390static struct debug_obj_descr hrtimer_debug_descr = {
391 .name = "hrtimer",
99777288 392 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
393 .fixup_init = hrtimer_fixup_init,
394 .fixup_activate = hrtimer_fixup_activate,
395 .fixup_free = hrtimer_fixup_free,
396};
397
398static inline void debug_hrtimer_init(struct hrtimer *timer)
399{
400 debug_object_init(timer, &hrtimer_debug_descr);
401}
402
5da70160
AMG
403static inline void debug_hrtimer_activate(struct hrtimer *timer,
404 enum hrtimer_mode mode)
237fc6e7
TG
405{
406 debug_object_activate(timer, &hrtimer_debug_descr);
407}
408
409static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
410{
411 debug_object_deactivate(timer, &hrtimer_debug_descr);
412}
413
414static inline void debug_hrtimer_free(struct hrtimer *timer)
415{
416 debug_object_free(timer, &hrtimer_debug_descr);
417}
418
419static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
420 enum hrtimer_mode mode);
421
422void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
423 enum hrtimer_mode mode)
424{
425 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
426 __hrtimer_init(timer, clock_id, mode);
427}
2bc481cf 428EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
429
430void destroy_hrtimer_on_stack(struct hrtimer *timer)
431{
432 debug_object_free(timer, &hrtimer_debug_descr);
433}
c08376ac 434EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
435
436#else
5da70160 437
237fc6e7 438static inline void debug_hrtimer_init(struct hrtimer *timer) { }
5da70160
AMG
439static inline void debug_hrtimer_activate(struct hrtimer *timer,
440 enum hrtimer_mode mode) { }
237fc6e7
TG
441static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
442#endif
443
c6a2a177
XG
444static inline void
445debug_init(struct hrtimer *timer, clockid_t clockid,
446 enum hrtimer_mode mode)
447{
448 debug_hrtimer_init(timer);
449 trace_hrtimer_init(timer, clockid, mode);
450}
451
63e2ed36
AMG
452static inline void debug_activate(struct hrtimer *timer,
453 enum hrtimer_mode mode)
c6a2a177 454{
5da70160 455 debug_hrtimer_activate(timer, mode);
63e2ed36 456 trace_hrtimer_start(timer, mode);
c6a2a177
XG
457}
458
459static inline void debug_deactivate(struct hrtimer *timer)
460{
461 debug_hrtimer_deactivate(timer);
462 trace_hrtimer_cancel(timer);
463}
464
c272ca58
AMG
465static struct hrtimer_clock_base *
466__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
467{
468 unsigned int idx;
469
470 if (!*active)
471 return NULL;
472
473 idx = __ffs(*active);
474 *active &= ~(1U << idx);
475
476 return &cpu_base->clock_base[idx];
477}
478
479#define for_each_active_base(base, cpu_base, active) \
480 while ((base = __next_base((cpu_base), &(active))))
481
ad38f596
AMG
482static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
483 unsigned int active,
484 ktime_t expires_next)
9bc74919 485{
c272ca58 486 struct hrtimer_clock_base *base;
ad38f596 487 ktime_t expires;
9bc74919 488
c272ca58 489 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
490 struct timerqueue_node *next;
491 struct hrtimer *timer;
492
34aee88a 493 next = timerqueue_getnext(&base->active);
9bc74919
TG
494 timer = container_of(next, struct hrtimer, node);
495 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 496 if (expires < expires_next) {
9bc74919 497 expires_next = expires;
5da70160
AMG
498 if (timer->is_soft)
499 cpu_base->softirq_next_timer = timer;
500 else
501 cpu_base->next_timer = timer;
895bdfa7 502 }
9bc74919
TG
503 }
504 /*
505 * clock_was_set() might have changed base->offset of any of
506 * the clock bases so the result might be negative. Fix it up
507 * to prevent a false positive in clockevents_program_event().
508 */
2456e855
TG
509 if (expires_next < 0)
510 expires_next = 0;
9bc74919
TG
511 return expires_next;
512}
9bc74919 513
c458b1d1
AMG
514/*
515 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
516 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
517 *
5da70160
AMG
518 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
519 * those timers will get run whenever the softirq gets handled, at the end of
520 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
521 *
522 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
523 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
524 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
525 *
c458b1d1 526 * @active_mask must be one of:
5da70160 527 * - HRTIMER_ACTIVE_ALL,
c458b1d1
AMG
528 * - HRTIMER_ACTIVE_SOFT, or
529 * - HRTIMER_ACTIVE_HARD.
530 */
5da70160
AMG
531static ktime_t
532__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
ad38f596 533{
c458b1d1 534 unsigned int active;
5da70160 535 struct hrtimer *next_timer = NULL;
ad38f596
AMG
536 ktime_t expires_next = KTIME_MAX;
537
5da70160
AMG
538 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
539 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
540 cpu_base->softirq_next_timer = NULL;
541 expires_next = __hrtimer_next_event_base(cpu_base, active, KTIME_MAX);
542
543 next_timer = cpu_base->softirq_next_timer;
544 }
ad38f596 545
5da70160
AMG
546 if (active_mask & HRTIMER_ACTIVE_HARD) {
547 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
548 cpu_base->next_timer = next_timer;
549 expires_next = __hrtimer_next_event_base(cpu_base, active, expires_next);
550 }
ad38f596
AMG
551
552 return expires_next;
553}
554
21d6d52a
TG
555static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
556{
557 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
21d6d52a
TG
558 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
559
5da70160 560 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
127bfa5f 561 offs_real, offs_tai);
5da70160
AMG
562
563 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
5da70160
AMG
564 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
565
566 return now;
21d6d52a
TG
567}
568
28bfd18b
AMG
569/*
570 * Is the high resolution mode active ?
571 */
572static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
573{
574 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
575 cpu_base->hres_active : 0;
576}
577
578static inline int hrtimer_hres_active(void)
579{
580 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
581}
582
54cdfdb4
TG
583/*
584 * Reprogram the event source with checking both queues for the
585 * next event
586 * Called with interrupts disabled and base->lock held
587 */
7403f41f
AC
588static void
589hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 590{
21d6d52a
TG
591 ktime_t expires_next;
592
5da70160
AMG
593 /*
594 * Find the current next expiration time.
595 */
596 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
597
598 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
599 /*
600 * When the softirq is activated, hrtimer has to be
601 * programmed with the first hard hrtimer because soft
602 * timer interrupt could occur too late.
603 */
604 if (cpu_base->softirq_activated)
605 expires_next = __hrtimer_get_next_event(cpu_base,
606 HRTIMER_ACTIVE_HARD);
607 else
608 cpu_base->softirq_expires_next = expires_next;
609 }
54cdfdb4 610
2456e855 611 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
612 return;
613
2456e855 614 cpu_base->expires_next = expires_next;
7403f41f 615
6c6c0d5a 616 /*
61bb4bcb
AMG
617 * If hres is not active, hardware does not have to be
618 * reprogrammed yet.
619 *
6c6c0d5a
SH
620 * If a hang was detected in the last timer interrupt then we
621 * leave the hang delay active in the hardware. We want the
622 * system to make progress. That also prevents the following
623 * scenario:
624 * T1 expires 50ms from now
625 * T2 expires 5s from now
626 *
627 * T1 is removed, so this code is called and would reprogram
628 * the hardware to 5s from now. Any hrtimer_start after that
629 * will not reprogram the hardware due to hang_detected being
630 * set. So we'd effectivly block all timers until the T2 event
631 * fires.
632 */
61bb4bcb 633 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
6c6c0d5a
SH
634 return;
635
d2540875 636 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
637}
638
ebba2c72
AMG
639/* High resolution timer related functions */
640#ifdef CONFIG_HIGH_RES_TIMERS
641
642/*
643 * High resolution timer enabled ?
644 */
645static bool hrtimer_hres_enabled __read_mostly = true;
646unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
647EXPORT_SYMBOL_GPL(hrtimer_resolution);
648
649/*
650 * Enable / Disable high resolution mode
651 */
652static int __init setup_hrtimer_hres(char *str)
653{
654 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
655}
656
657__setup("highres=", setup_hrtimer_hres);
658
659/*
660 * hrtimer_high_res_enabled - query, if the highres mode is enabled
661 */
662static inline int hrtimer_is_hres_enabled(void)
663{
664 return hrtimer_hres_enabled;
665}
666
9ec26907
TG
667/*
668 * Retrigger next event is called after clock was set
669 *
670 * Called with interrupts disabled via on_each_cpu()
671 */
672static void retrigger_next_event(void *arg)
673{
dc5df73b 674 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 675
851cff8c 676 if (!__hrtimer_hres_active(base))
9ec26907
TG
677 return;
678
9ec26907 679 raw_spin_lock(&base->lock);
5baefd6d 680 hrtimer_update_base(base);
9ec26907
TG
681 hrtimer_force_reprogram(base, 0);
682 raw_spin_unlock(&base->lock);
683}
b12a03ce 684
54cdfdb4
TG
685/*
686 * Switch to high resolution mode
687 */
75e3b37d 688static void hrtimer_switch_to_hres(void)
54cdfdb4 689{
c6eb3f70 690 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
691
692 if (tick_init_highres()) {
820de5c3 693 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 694 "mode on CPU %d\n", base->cpu);
85e1cd6e 695 return;
54cdfdb4
TG
696 }
697 base->hres_active = 1;
398ca17f 698 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
699
700 tick_setup_sched_timer();
54cdfdb4
TG
701 /* "Retrigger" the interrupt to get things going */
702 retrigger_next_event(NULL);
54cdfdb4
TG
703}
704
5ec2481b
TG
705static void clock_was_set_work(struct work_struct *work)
706{
707 clock_was_set();
708}
709
710static DECLARE_WORK(hrtimer_work, clock_was_set_work);
711
f55a6faa 712/*
b4d90e9f 713 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 714 * interrupt device on all cpus.
f55a6faa
JS
715 */
716void clock_was_set_delayed(void)
717{
5ec2481b 718 schedule_work(&hrtimer_work);
f55a6faa
JS
719}
720
54cdfdb4
TG
721#else
722
54cdfdb4 723static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 724static inline void hrtimer_switch_to_hres(void) { }
9ec26907 725static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
726
727#endif /* CONFIG_HIGH_RES_TIMERS */
728
11a9fe06
AMG
729/*
730 * When a timer is enqueued and expires earlier than the already enqueued
731 * timers, we have to check, whether it expires earlier than the timer for
732 * which the clock event device was armed.
733 *
734 * Called with interrupts disabled and base->cpu_base.lock held
735 */
5da70160 736static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
11a9fe06
AMG
737{
738 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
3ec7a3ee 739 struct hrtimer_clock_base *base = timer->base;
11a9fe06
AMG
740 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
741
742 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
743
5da70160
AMG
744 /*
745 * CLOCK_REALTIME timer might be requested with an absolute
746 * expiry time which is less than base->offset. Set it to 0.
747 */
748 if (expires < 0)
749 expires = 0;
750
751 if (timer->is_soft) {
752 /*
753 * soft hrtimer could be started on a remote CPU. In this
754 * case softirq_expires_next needs to be updated on the
755 * remote CPU. The soft hrtimer will not expire before the
756 * first hard hrtimer on the remote CPU -
757 * hrtimer_check_target() prevents this case.
758 */
759 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
760
761 if (timer_cpu_base->softirq_activated)
762 return;
763
764 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
765 return;
766
767 timer_cpu_base->softirq_next_timer = timer;
768 timer_cpu_base->softirq_expires_next = expires;
769
770 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
771 !reprogram)
772 return;
773 }
774
11a9fe06
AMG
775 /*
776 * If the timer is not on the current cpu, we cannot reprogram
777 * the other cpus clock event device.
778 */
779 if (base->cpu_base != cpu_base)
780 return;
781
782 /*
783 * If the hrtimer interrupt is running, then it will
784 * reevaluate the clock bases and reprogram the clock event
785 * device. The callbacks are always executed in hard interrupt
786 * context so we don't need an extra check for a running
787 * callback.
788 */
789 if (cpu_base->in_hrtirq)
790 return;
791
11a9fe06
AMG
792 if (expires >= cpu_base->expires_next)
793 return;
794
795 /* Update the pointer to the next expiring timer */
796 cpu_base->next_timer = timer;
14c80341 797 cpu_base->expires_next = expires;
11a9fe06
AMG
798
799 /*
14c80341
AMG
800 * If hres is not active, hardware does not have to be
801 * programmed yet.
802 *
11a9fe06
AMG
803 * If a hang was detected in the last timer interrupt then we
804 * do not schedule a timer which is earlier than the expiry
805 * which we enforced in the hang detection. We want the system
806 * to make progress.
807 */
14c80341 808 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
11a9fe06
AMG
809 return;
810
811 /*
812 * Program the timer hardware. We enforce the expiry for
813 * events which are already in the past.
814 */
11a9fe06
AMG
815 tick_program_event(expires, 1);
816}
817
b12a03ce
TG
818/*
819 * Clock realtime was set
820 *
821 * Change the offset of the realtime clock vs. the monotonic
822 * clock.
823 *
824 * We might have to reprogram the high resolution timer interrupt. On
825 * SMP we call the architecture specific code to retrigger _all_ high
826 * resolution timer interrupts. On UP we just disable interrupts and
827 * call the high resolution interrupt code.
828 */
829void clock_was_set(void)
830{
90ff1f30 831#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
832 /* Retrigger the CPU local events everywhere */
833 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
834#endif
835 timerfd_clock_was_set();
b12a03ce
TG
836}
837
838/*
839 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
840 * interrupt on all online CPUs. However, all other CPUs will be
841 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 842 * must be deferred.
b12a03ce
TG
843 */
844void hrtimers_resume(void)
845{
53bef3fd 846 lockdep_assert_irqs_disabled();
5ec2481b 847 /* Retrigger on the local CPU */
b12a03ce 848 retrigger_next_event(NULL);
5ec2481b
TG
849 /* And schedule a retrigger for all others */
850 clock_was_set_delayed();
b12a03ce
TG
851}
852
c0a31329 853/*
6506f2aa 854 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
855 */
856static inline
857void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
858{
ecb49d1a 859 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
860}
861
862/**
863 * hrtimer_forward - forward the timer expiry
c0a31329 864 * @timer: hrtimer to forward
44f21475 865 * @now: forward past this time
c0a31329
TG
866 * @interval: the interval to forward
867 *
868 * Forward the timer expiry so it will expire in the future.
8dca6f33 869 * Returns the number of overruns.
91e5a217
TG
870 *
871 * Can be safely called from the callback function of @timer. If
872 * called from other contexts @timer must neither be enqueued nor
873 * running the callback and the caller needs to take care of
874 * serialization.
875 *
876 * Note: This only updates the timer expiry value and does not requeue
877 * the timer.
c0a31329 878 */
4d672e7a 879u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 880{
4d672e7a 881 u64 orun = 1;
44f21475 882 ktime_t delta;
c0a31329 883
cc584b21 884 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 885
2456e855 886 if (delta < 0)
c0a31329
TG
887 return 0;
888
5de2755c
PZ
889 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
890 return 0;
891
2456e855
TG
892 if (interval < hrtimer_resolution)
893 interval = hrtimer_resolution;
c9db4fa1 894
2456e855 895 if (unlikely(delta >= interval)) {
df869b63 896 s64 incr = ktime_to_ns(interval);
c0a31329
TG
897
898 orun = ktime_divns(delta, incr);
cc584b21 899 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 900 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
901 return orun;
902 /*
903 * This (and the ktime_add() below) is the
904 * correction for exact:
905 */
906 orun++;
907 }
cc584b21 908 hrtimer_add_expires(timer, interval);
c0a31329
TG
909
910 return orun;
911}
6bdb6b62 912EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
913
914/*
915 * enqueue_hrtimer - internal function to (re)start a timer
916 *
917 * The timer is inserted in expiry order. Insertion into the
918 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
919 *
920 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 921 */
a6037b61 922static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
923 struct hrtimer_clock_base *base,
924 enum hrtimer_mode mode)
c0a31329 925{
63e2ed36 926 debug_activate(timer, mode);
237fc6e7 927
ab8177bc 928 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 929
887d9dc9 930 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 931
b97f44c9 932 return timerqueue_add(&base->active, &timer->node);
288867ec 933}
c0a31329
TG
934
935/*
936 * __remove_hrtimer - internal function to remove a timer
937 *
938 * Caller must hold the base lock.
54cdfdb4
TG
939 *
940 * High resolution timer mode reprograms the clock event device when the
941 * timer is the one which expires next. The caller can disable this by setting
942 * reprogram to zero. This is useful, when the context does a reprogramming
943 * anyway (e.g. timer interrupt)
c0a31329 944 */
3c8aa39d 945static void __remove_hrtimer(struct hrtimer *timer,
303e967f 946 struct hrtimer_clock_base *base,
203cbf77 947 u8 newstate, int reprogram)
c0a31329 948{
e19ffe8b 949 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 950 u8 state = timer->state;
e19ffe8b 951
895bdfa7
TG
952 timer->state = newstate;
953 if (!(state & HRTIMER_STATE_ENQUEUED))
954 return;
7403f41f 955
b97f44c9 956 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 957 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 958
895bdfa7
TG
959 /*
960 * Note: If reprogram is false we do not update
961 * cpu_base->next_timer. This happens when we remove the first
962 * timer on a remote cpu. No harm as we never dereference
963 * cpu_base->next_timer. So the worst thing what can happen is
964 * an superflous call to hrtimer_force_reprogram() on the
965 * remote cpu later on if the same timer gets enqueued again.
966 */
967 if (reprogram && timer == cpu_base->next_timer)
968 hrtimer_force_reprogram(cpu_base, 1);
c0a31329
TG
969}
970
971/*
972 * remove hrtimer, called with base lock held
973 */
974static inline int
8edfb036 975remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 976{
303e967f 977 if (hrtimer_is_queued(timer)) {
203cbf77 978 u8 state = timer->state;
54cdfdb4
TG
979 int reprogram;
980
981 /*
982 * Remove the timer and force reprogramming when high
983 * resolution mode is active and the timer is on the current
984 * CPU. If we remove a timer on another CPU, reprogramming is
985 * skipped. The interrupt event on this CPU is fired and
986 * reprogramming happens in the interrupt handler. This is a
987 * rare case and less expensive than a smp call.
988 */
c6a2a177 989 debug_deactivate(timer);
dc5df73b 990 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 991
887d9dc9
PZ
992 if (!restart)
993 state = HRTIMER_STATE_INACTIVE;
994
f13d4f97 995 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
996 return 1;
997 }
998 return 0;
999}
1000
203cbf77
TG
1001static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1002 const enum hrtimer_mode mode)
1003{
1004#ifdef CONFIG_TIME_LOW_RES
1005 /*
1006 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1007 * granular time values. For relative timers we add hrtimer_resolution
1008 * (i.e. one jiffie) to prevent short timeouts.
1009 */
1010 timer->is_rel = mode & HRTIMER_MODE_REL;
1011 if (timer->is_rel)
8b0e1953 1012 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
1013#endif
1014 return tim;
1015}
1016
5da70160
AMG
1017static void
1018hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1019{
1020 ktime_t expires;
1021
1022 /*
1023 * Find the next SOFT expiration.
1024 */
1025 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1026
1027 /*
1028 * reprogramming needs to be triggered, even if the next soft
1029 * hrtimer expires at the same time than the next hard
1030 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1031 */
1032 if (expires == KTIME_MAX)
1033 return;
1034
1035 /*
1036 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1037 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1038 */
1039 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1040}
1041
138a6b7a
AMG
1042static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1043 u64 delta_ns, const enum hrtimer_mode mode,
1044 struct hrtimer_clock_base *base)
c0a31329 1045{
138a6b7a 1046 struct hrtimer_clock_base *new_base;
c0a31329
TG
1047
1048 /* Remove an active timer from the queue: */
8edfb036 1049 remove_hrtimer(timer, base, true);
c0a31329 1050
203cbf77 1051 if (mode & HRTIMER_MODE_REL)
84ea7fe3 1052 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
1053
1054 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 1055
da8f2e17 1056 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 1057
84ea7fe3
VK
1058 /* Switch the timer base, if necessary: */
1059 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1060
138a6b7a
AMG
1061 return enqueue_hrtimer(timer, new_base, mode);
1062}
5da70160 1063
138a6b7a
AMG
1064/**
1065 * hrtimer_start_range_ns - (re)start an hrtimer
1066 * @timer: the timer to be added
1067 * @tim: expiry time
1068 * @delta_ns: "slack" range for the timer
1069 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
5da70160
AMG
1070 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1071 * softirq based mode is considered for debug purpose only!
138a6b7a
AMG
1072 */
1073void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1074 u64 delta_ns, const enum hrtimer_mode mode)
1075{
1076 struct hrtimer_clock_base *base;
1077 unsigned long flags;
1078
5da70160
AMG
1079 /*
1080 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1081 * match.
1082 */
1083 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1084
138a6b7a
AMG
1085 base = lock_hrtimer_base(timer, &flags);
1086
1087 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
5da70160 1088 hrtimer_reprogram(timer, true);
49a2a075 1089
c0a31329 1090 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 1091}
da8f2e17
AV
1092EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1093
c0a31329
TG
1094/**
1095 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1096 * @timer: hrtimer to stop
1097 *
1098 * Returns:
1099 * 0 when the timer was not active
1100 * 1 when the timer was active
0ba42a59 1101 * -1 when the timer is currently executing the callback function and
fa9799e3 1102 * cannot be stopped
c0a31329
TG
1103 */
1104int hrtimer_try_to_cancel(struct hrtimer *timer)
1105{
3c8aa39d 1106 struct hrtimer_clock_base *base;
c0a31329
TG
1107 unsigned long flags;
1108 int ret = -1;
1109
19d9f422
TG
1110 /*
1111 * Check lockless first. If the timer is not active (neither
1112 * enqueued nor running the callback, nothing to do here. The
1113 * base lock does not serialize against a concurrent enqueue,
1114 * so we can avoid taking it.
1115 */
1116 if (!hrtimer_active(timer))
1117 return 0;
1118
c0a31329
TG
1119 base = lock_hrtimer_base(timer, &flags);
1120
303e967f 1121 if (!hrtimer_callback_running(timer))
8edfb036 1122 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1123
1124 unlock_hrtimer_base(timer, &flags);
1125
1126 return ret;
1127
1128}
8d16b764 1129EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1130
1131/**
1132 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1133 * @timer: the timer to be cancelled
1134 *
1135 * Returns:
1136 * 0 when the timer was not active
1137 * 1 when the timer was active
1138 */
1139int hrtimer_cancel(struct hrtimer *timer)
1140{
1141 for (;;) {
1142 int ret = hrtimer_try_to_cancel(timer);
1143
1144 if (ret >= 0)
1145 return ret;
5ef37b19 1146 cpu_relax();
c0a31329
TG
1147 }
1148}
8d16b764 1149EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1150
1151/**
1152 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1153 * @timer: the timer to read
203cbf77 1154 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1155 */
203cbf77 1156ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1157{
c0a31329
TG
1158 unsigned long flags;
1159 ktime_t rem;
1160
b3bd3de6 1161 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1162 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1163 rem = hrtimer_expires_remaining_adjusted(timer);
1164 else
1165 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1166 unlock_hrtimer_base(timer, &flags);
1167
1168 return rem;
1169}
203cbf77 1170EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1171
3451d024 1172#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1173/**
1174 * hrtimer_get_next_event - get the time until next expiry event
1175 *
c1ad348b 1176 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1177 */
c1ad348b 1178u64 hrtimer_get_next_event(void)
69239749 1179{
dc5df73b 1180 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1181 u64 expires = KTIME_MAX;
69239749 1182 unsigned long flags;
69239749 1183
ecb49d1a 1184 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1185
e19ffe8b 1186 if (!__hrtimer_hres_active(cpu_base))
5da70160 1187 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
3c8aa39d 1188
ecb49d1a 1189 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1190
c1ad348b 1191 return expires;
69239749
TL
1192}
1193#endif
1194
336a9cde
MZ
1195static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1196{
1197 if (likely(clock_id < MAX_CLOCKS)) {
1198 int base = hrtimer_clock_to_base_table[clock_id];
1199
1200 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1201 return base;
1202 }
1203 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1204 return HRTIMER_BASE_MONOTONIC;
1205}
1206
237fc6e7
TG
1207static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1208 enum hrtimer_mode mode)
c0a31329 1209{
42f42da4
AMG
1210 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1211 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
3c8aa39d 1212 struct hrtimer_cpu_base *cpu_base;
c0a31329 1213
7978672c
GA
1214 memset(timer, 0, sizeof(struct hrtimer));
1215
22127e93 1216 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1217
48d0c9be
AMG
1218 /*
1219 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1220 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1221 * ensure POSIX compliance.
1222 */
1223 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1224 clock_id = CLOCK_MONOTONIC;
1225
42f42da4
AMG
1226 base += hrtimer_clockid_to_base(clock_id);
1227 timer->is_soft = softtimer;
e06383db 1228 timer->base = &cpu_base->clock_base[base];
998adc3d 1229 timerqueue_init(&timer->node);
c0a31329 1230}
237fc6e7
TG
1231
1232/**
1233 * hrtimer_init - initialize a timer to the given clock
1234 * @timer: the timer to be initialized
1235 * @clock_id: the clock to be used
42f42da4
AMG
1236 * @mode: The modes which are relevant for intitialization:
1237 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1238 * HRTIMER_MODE_REL_SOFT
1239 *
1240 * The PINNED variants of the above can be handed in,
1241 * but the PINNED bit is ignored as pinning happens
1242 * when the hrtimer is started
237fc6e7
TG
1243 */
1244void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1245 enum hrtimer_mode mode)
1246{
c6a2a177 1247 debug_init(timer, clock_id, mode);
237fc6e7
TG
1248 __hrtimer_init(timer, clock_id, mode);
1249}
8d16b764 1250EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1251
887d9dc9
PZ
1252/*
1253 * A timer is active, when it is enqueued into the rbtree or the
1254 * callback function is running or it's in the state of being migrated
1255 * to another cpu.
c0a31329 1256 *
887d9dc9 1257 * It is important for this function to not return a false negative.
c0a31329 1258 */
887d9dc9 1259bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1260{
3f0b9e8e 1261 struct hrtimer_clock_base *base;
887d9dc9 1262 unsigned int seq;
c0a31329 1263
887d9dc9 1264 do {
3f0b9e8e
AMG
1265 base = READ_ONCE(timer->base);
1266 seq = raw_read_seqcount_begin(&base->seq);
c0a31329 1267
887d9dc9 1268 if (timer->state != HRTIMER_STATE_INACTIVE ||
3f0b9e8e 1269 base->running == timer)
887d9dc9
PZ
1270 return true;
1271
3f0b9e8e
AMG
1272 } while (read_seqcount_retry(&base->seq, seq) ||
1273 base != READ_ONCE(timer->base));
887d9dc9
PZ
1274
1275 return false;
c0a31329 1276}
887d9dc9 1277EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1278
887d9dc9
PZ
1279/*
1280 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1281 * distinct sections:
1282 *
1283 * - queued: the timer is queued
1284 * - callback: the timer is being ran
1285 * - post: the timer is inactive or (re)queued
1286 *
1287 * On the read side we ensure we observe timer->state and cpu_base->running
1288 * from the same section, if anything changed while we looked at it, we retry.
1289 * This includes timer->base changing because sequence numbers alone are
1290 * insufficient for that.
1291 *
1292 * The sequence numbers are required because otherwise we could still observe
1293 * a false negative if the read side got smeared over multiple consequtive
1294 * __run_hrtimer() invocations.
1295 */
1296
21d6d52a
TG
1297static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1298 struct hrtimer_clock_base *base,
dd934aa8
AMG
1299 struct hrtimer *timer, ktime_t *now,
1300 unsigned long flags)
d3d74453 1301{
d3d74453
PZ
1302 enum hrtimer_restart (*fn)(struct hrtimer *);
1303 int restart;
1304
887d9dc9 1305 lockdep_assert_held(&cpu_base->lock);
ca109491 1306
c6a2a177 1307 debug_deactivate(timer);
3f0b9e8e 1308 base->running = timer;
887d9dc9
PZ
1309
1310 /*
1311 * Separate the ->running assignment from the ->state assignment.
1312 *
1313 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1314 * hrtimer_active() cannot observe base->running == NULL &&
887d9dc9
PZ
1315 * timer->state == INACTIVE.
1316 */
3f0b9e8e 1317 raw_write_seqcount_barrier(&base->seq);
887d9dc9
PZ
1318
1319 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1320 fn = timer->function;
ca109491 1321
203cbf77
TG
1322 /*
1323 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1324 * timer is restarted with a period then it becomes an absolute
1325 * timer. If its not restarted it does not matter.
1326 */
1327 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1328 timer->is_rel = false;
1329
ca109491 1330 /*
d05ca13b
TG
1331 * The timer is marked as running in the CPU base, so it is
1332 * protected against migration to a different CPU even if the lock
1333 * is dropped.
ca109491 1334 */
dd934aa8 1335 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c6a2a177 1336 trace_hrtimer_expire_entry(timer, now);
ca109491 1337 restart = fn(timer);
c6a2a177 1338 trace_hrtimer_expire_exit(timer);
dd934aa8 1339 raw_spin_lock_irq(&cpu_base->lock);
d3d74453
PZ
1340
1341 /*
887d9dc9 1342 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1343 * we do not reprogram the event hardware. Happens either in
e3f1d883 1344 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1345 *
1346 * Note: Because we dropped the cpu_base->lock above,
1347 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1348 * for us already.
d3d74453 1349 */
5de2755c
PZ
1350 if (restart != HRTIMER_NORESTART &&
1351 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1352 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1353
887d9dc9
PZ
1354 /*
1355 * Separate the ->running assignment from the ->state assignment.
1356 *
1357 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1358 * hrtimer_active() cannot observe base->running.timer == NULL &&
887d9dc9
PZ
1359 * timer->state == INACTIVE.
1360 */
3f0b9e8e 1361 raw_write_seqcount_barrier(&base->seq);
f13d4f97 1362
3f0b9e8e
AMG
1363 WARN_ON_ONCE(base->running != timer);
1364 base->running = NULL;
d3d74453
PZ
1365}
1366
dd934aa8 1367static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
c458b1d1 1368 unsigned long flags, unsigned int active_mask)
54cdfdb4 1369{
c272ca58 1370 struct hrtimer_clock_base *base;
c458b1d1 1371 unsigned int active = cpu_base->active_bases & active_mask;
6ff7041d 1372
c272ca58 1373 for_each_active_base(base, cpu_base, active) {
998adc3d 1374 struct timerqueue_node *node;
ab8177bc
TG
1375 ktime_t basenow;
1376
54cdfdb4
TG
1377 basenow = ktime_add(now, base->offset);
1378
998adc3d 1379 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1380 struct hrtimer *timer;
1381
998adc3d 1382 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1383
654c8e0b
AV
1384 /*
1385 * The immediate goal for using the softexpires is
1386 * minimizing wakeups, not running timers at the
1387 * earliest interrupt after their soft expiration.
1388 * This allows us to avoid using a Priority Search
1389 * Tree, which can answer a stabbing querry for
1390 * overlapping intervals and instead use the simple
1391 * BST we already have.
1392 * We don't add extra wakeups by delaying timers that
1393 * are right-of a not yet expired timer, because that
1394 * timer will have to trigger a wakeup anyway.
1395 */
2456e855 1396 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1397 break;
54cdfdb4 1398
dd934aa8 1399 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
54cdfdb4 1400 }
54cdfdb4 1401 }
21d6d52a
TG
1402}
1403
5da70160
AMG
1404static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1405{
1406 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1407 unsigned long flags;
1408 ktime_t now;
1409
1410 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1411
1412 now = hrtimer_update_base(cpu_base);
1413 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1414
1415 cpu_base->softirq_activated = 0;
1416 hrtimer_update_softirq_timer(cpu_base, true);
1417
1418 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1419}
1420
21d6d52a
TG
1421#ifdef CONFIG_HIGH_RES_TIMERS
1422
1423/*
1424 * High resolution timer interrupt
1425 * Called with interrupts disabled
1426 */
1427void hrtimer_interrupt(struct clock_event_device *dev)
1428{
1429 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1430 ktime_t expires_next, now, entry_time, delta;
dd934aa8 1431 unsigned long flags;
21d6d52a
TG
1432 int retries = 0;
1433
1434 BUG_ON(!cpu_base->hres_active);
1435 cpu_base->nr_events++;
2456e855 1436 dev->next_event = KTIME_MAX;
21d6d52a 1437
dd934aa8 1438 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a
TG
1439 entry_time = now = hrtimer_update_base(cpu_base);
1440retry:
1441 cpu_base->in_hrtirq = 1;
1442 /*
1443 * We set expires_next to KTIME_MAX here with cpu_base->lock
1444 * held to prevent that a timer is enqueued in our queue via
1445 * the migration code. This does not affect enqueueing of
1446 * timers which run their callback and need to be requeued on
1447 * this CPU.
1448 */
2456e855 1449 cpu_base->expires_next = KTIME_MAX;
21d6d52a 1450
5da70160
AMG
1451 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1452 cpu_base->softirq_expires_next = KTIME_MAX;
1453 cpu_base->softirq_activated = 1;
1454 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1455 }
1456
c458b1d1 1457 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
21d6d52a 1458
9bc74919 1459 /* Reevaluate the clock bases for the next expiry */
5da70160 1460 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
6ff7041d
TG
1461 /*
1462 * Store the new expiry value so the migration code can verify
1463 * against it.
1464 */
54cdfdb4 1465 cpu_base->expires_next = expires_next;
9bc74919 1466 cpu_base->in_hrtirq = 0;
dd934aa8 1467 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
54cdfdb4
TG
1468
1469 /* Reprogramming necessary ? */
d2540875 1470 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1471 cpu_base->hang_detected = 0;
1472 return;
54cdfdb4 1473 }
41d2e494
TG
1474
1475 /*
1476 * The next timer was already expired due to:
1477 * - tracing
1478 * - long lasting callbacks
1479 * - being scheduled away when running in a VM
1480 *
1481 * We need to prevent that we loop forever in the hrtimer
1482 * interrupt routine. We give it 3 attempts to avoid
1483 * overreacting on some spurious event.
5baefd6d
JS
1484 *
1485 * Acquire base lock for updating the offsets and retrieving
1486 * the current time.
41d2e494 1487 */
dd934aa8 1488 raw_spin_lock_irqsave(&cpu_base->lock, flags);
5baefd6d 1489 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1490 cpu_base->nr_retries++;
1491 if (++retries < 3)
1492 goto retry;
1493 /*
1494 * Give the system a chance to do something else than looping
1495 * here. We stored the entry time, so we know exactly how long
1496 * we spent here. We schedule the next event this amount of
1497 * time away.
1498 */
1499 cpu_base->nr_hangs++;
1500 cpu_base->hang_detected = 1;
dd934aa8
AMG
1501 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1502
41d2e494 1503 delta = ktime_sub(now, entry_time);
2456e855
TG
1504 if ((unsigned int)delta > cpu_base->max_hang_time)
1505 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1506 /*
1507 * Limit it to a sensible value as we enforce a longer
1508 * delay. Give the CPU at least 100ms to catch up.
1509 */
2456e855 1510 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1511 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1512 else
1513 expires_next = ktime_add(now, delta);
1514 tick_program_event(expires_next, 1);
1515 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1516 ktime_to_ns(delta));
54cdfdb4
TG
1517}
1518
016da201 1519/* called with interrupts disabled */
c6eb3f70 1520static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1521{
1522 struct tick_device *td;
1523
1524 if (!hrtimer_hres_active())
1525 return;
1526
22127e93 1527 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1528 if (td && td->evtdev)
1529 hrtimer_interrupt(td->evtdev);
1530}
1531
82c5b7b5
IM
1532#else /* CONFIG_HIGH_RES_TIMERS */
1533
1534static inline void __hrtimer_peek_ahead_timers(void) { }
1535
1536#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1537
d3d74453 1538/*
c6eb3f70 1539 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1540 */
833883d9 1541void hrtimer_run_queues(void)
d3d74453 1542{
dc5df73b 1543 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
dd934aa8 1544 unsigned long flags;
21d6d52a 1545 ktime_t now;
c0a31329 1546
e19ffe8b 1547 if (__hrtimer_hres_active(cpu_base))
d3d74453 1548 return;
54cdfdb4 1549
d3d74453 1550 /*
c6eb3f70
TG
1551 * This _is_ ugly: We have to check periodically, whether we
1552 * can switch to highres and / or nohz mode. The clocksource
1553 * switch happens with xtime_lock held. Notification from
1554 * there only sets the check bit in the tick_oneshot code,
1555 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1556 */
c6eb3f70 1557 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1558 hrtimer_switch_to_hres();
3055adda 1559 return;
833883d9 1560 }
c6eb3f70 1561
dd934aa8 1562 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a 1563 now = hrtimer_update_base(cpu_base);
5da70160
AMG
1564
1565 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1566 cpu_base->softirq_expires_next = KTIME_MAX;
1567 cpu_base->softirq_activated = 1;
1568 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1569 }
1570
c458b1d1 1571 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
dd934aa8 1572 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c0a31329
TG
1573}
1574
10c94ec1
TG
1575/*
1576 * Sleep related functions:
1577 */
c9cb2e3d 1578static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1579{
1580 struct hrtimer_sleeper *t =
1581 container_of(timer, struct hrtimer_sleeper, timer);
1582 struct task_struct *task = t->task;
1583
1584 t->task = NULL;
1585 if (task)
1586 wake_up_process(task);
1587
1588 return HRTIMER_NORESTART;
1589}
1590
36c8b586 1591void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1592{
1593 sl->timer.function = hrtimer_wakeup;
1594 sl->task = task;
1595}
2bc481cf 1596EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1597
c0edd7c9 1598int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1599{
1600 switch(restart->nanosleep.type) {
1601#ifdef CONFIG_COMPAT
1602 case TT_COMPAT:
c0edd7c9 1603 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1604 return -EFAULT;
1605 break;
1606#endif
1607 case TT_NATIVE:
c0edd7c9 1608 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1609 return -EFAULT;
1610 break;
1611 default:
1612 BUG();
1613 }
1614 return -ERESTART_RESTARTBLOCK;
1615}
1616
669d7868 1617static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1618{
edbeda46
AV
1619 struct restart_block *restart;
1620
669d7868 1621 hrtimer_init_sleeper(t, current);
10c94ec1 1622
432569bb
RZ
1623 do {
1624 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1625 hrtimer_start_expires(&t->timer, mode);
432569bb 1626
54cdfdb4 1627 if (likely(t->task))
b0f8c44f 1628 freezable_schedule();
432569bb 1629
669d7868 1630 hrtimer_cancel(&t->timer);
c9cb2e3d 1631 mode = HRTIMER_MODE_ABS;
669d7868
TG
1632
1633 } while (t->task && !signal_pending(current));
432569bb 1634
3588a085
PZ
1635 __set_current_state(TASK_RUNNING);
1636
a7602681 1637 if (!t->task)
080344b9 1638 return 0;
080344b9 1639
edbeda46
AV
1640 restart = &current->restart_block;
1641 if (restart->nanosleep.type != TT_NONE) {
a7602681 1642 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1643 struct timespec64 rmt;
edbeda46 1644
a7602681
AV
1645 if (rem <= 0)
1646 return 0;
c0edd7c9 1647 rmt = ktime_to_timespec64(rem);
a7602681 1648
ce41aaf4 1649 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1650 }
1651 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1652}
1653
fb923c4a 1654static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1655{
669d7868 1656 struct hrtimer_sleeper t;
a7602681 1657 int ret;
10c94ec1 1658
ab8177bc 1659 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1660 HRTIMER_MODE_ABS);
cc584b21 1661 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1662
a7602681 1663 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1664 destroy_hrtimer_on_stack(&t.timer);
1665 return ret;
10c94ec1
TG
1666}
1667
938e7cf2 1668long hrtimer_nanosleep(const struct timespec64 *rqtp,
10c94ec1
TG
1669 const enum hrtimer_mode mode, const clockid_t clockid)
1670{
a7602681 1671 struct restart_block *restart;
669d7868 1672 struct hrtimer_sleeper t;
237fc6e7 1673 int ret = 0;
da8b44d5 1674 u64 slack;
3bd01206
AV
1675
1676 slack = current->timer_slack_ns;
aab03e05 1677 if (dl_task(current) || rt_task(current))
3bd01206 1678 slack = 0;
10c94ec1 1679
237fc6e7 1680 hrtimer_init_on_stack(&t.timer, clockid, mode);
ad196384 1681 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
a7602681
AV
1682 ret = do_nanosleep(&t, mode);
1683 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1684 goto out;
10c94ec1 1685
7978672c 1686 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1687 if (mode == HRTIMER_MODE_ABS) {
1688 ret = -ERESTARTNOHAND;
1689 goto out;
1690 }
10c94ec1 1691
a7602681 1692 restart = &current->restart_block;
1711ef38 1693 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1694 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1695 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1696out:
1697 destroy_hrtimer_on_stack(&t.timer);
1698 return ret;
10c94ec1
TG
1699}
1700
58fd3aa2
HC
1701SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1702 struct timespec __user *, rmtp)
6ba1b912 1703{
c0edd7c9 1704 struct timespec64 tu;
6ba1b912 1705
c0edd7c9 1706 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1707 return -EFAULT;
1708
c0edd7c9 1709 if (!timespec64_valid(&tu))
6ba1b912
TG
1710 return -EINVAL;
1711
edbeda46 1712 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1713 current->restart_block.nanosleep.rmtp = rmtp;
c0edd7c9 1714 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1715}
1716
edbeda46
AV
1717#ifdef CONFIG_COMPAT
1718
1719COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1720 struct compat_timespec __user *, rmtp)
1721{
c0edd7c9 1722 struct timespec64 tu;
edbeda46 1723
c0edd7c9 1724 if (compat_get_timespec64(&tu, rqtp))
edbeda46
AV
1725 return -EFAULT;
1726
c0edd7c9 1727 if (!timespec64_valid(&tu))
edbeda46
AV
1728 return -EINVAL;
1729
1730 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1731 current->restart_block.nanosleep.compat_rmtp = rmtp;
c0edd7c9 1732 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
edbeda46
AV
1733}
1734#endif
1735
c0a31329
TG
1736/*
1737 * Functions related to boot-time initialization:
1738 */
27590dc1 1739int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1740{
3c8aa39d 1741 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1742 int i;
1743
998adc3d 1744 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1745 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1746 timerqueue_init_head(&cpu_base->clock_base[i].active);
1747 }
3c8aa39d 1748
cddd0248 1749 cpu_base->cpu = cpu;
303c146d 1750 cpu_base->active_bases = 0;
28bfd18b 1751 cpu_base->hres_active = 0;
303c146d
TG
1752 cpu_base->hang_detected = 0;
1753 cpu_base->next_timer = NULL;
1754 cpu_base->softirq_next_timer = NULL;
07a9a7ea 1755 cpu_base->expires_next = KTIME_MAX;
5da70160 1756 cpu_base->softirq_expires_next = KTIME_MAX;
27590dc1 1757 return 0;
c0a31329
TG
1758}
1759
1760#ifdef CONFIG_HOTPLUG_CPU
1761
ca109491 1762static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1763 struct hrtimer_clock_base *new_base)
c0a31329
TG
1764{
1765 struct hrtimer *timer;
998adc3d 1766 struct timerqueue_node *node;
c0a31329 1767
998adc3d
JS
1768 while ((node = timerqueue_getnext(&old_base->active))) {
1769 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1770 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1771 debug_deactivate(timer);
b00c1a99
TG
1772
1773 /*
c04dca02 1774 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1775 * timer could be seen as !active and just vanish away
1776 * under us on another CPU
1777 */
c04dca02 1778 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1779 timer->base = new_base;
54cdfdb4 1780 /*
e3f1d883
TG
1781 * Enqueue the timers on the new cpu. This does not
1782 * reprogram the event device in case the timer
1783 * expires before the earliest on this CPU, but we run
1784 * hrtimer_interrupt after we migrated everything to
1785 * sort out already expired timers and reprogram the
1786 * event device.
54cdfdb4 1787 */
63e2ed36 1788 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
1789 }
1790}
1791
27590dc1 1792int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 1793{
3c8aa39d 1794 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1795 int i;
c0a31329 1796
37810659 1797 BUG_ON(cpu_online(scpu));
37810659 1798 tick_cancel_sched_timer(scpu);
731a55ba 1799
5da70160
AMG
1800 /*
1801 * this BH disable ensures that raise_softirq_irqoff() does
1802 * not wakeup ksoftirqd (and acquire the pi-lock) while
1803 * holding the cpu_base lock
1804 */
1805 local_bh_disable();
731a55ba
TG
1806 local_irq_disable();
1807 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1808 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1809 /*
1810 * The caller is globally serialized and nobody else
1811 * takes two locks at once, deadlock is not possible.
1812 */
ecb49d1a
TG
1813 raw_spin_lock(&new_base->lock);
1814 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1815
3c8aa39d 1816 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1817 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1818 &new_base->clock_base[i]);
c0a31329
TG
1819 }
1820
5da70160
AMG
1821 /*
1822 * The migration might have changed the first expiring softirq
1823 * timer on this CPU. Update it.
1824 */
1825 hrtimer_update_softirq_timer(new_base, false);
1826
ecb49d1a
TG
1827 raw_spin_unlock(&old_base->lock);
1828 raw_spin_unlock(&new_base->lock);
37810659 1829
731a55ba
TG
1830 /* Check, if we got expired work to do */
1831 __hrtimer_peek_ahead_timers();
1832 local_irq_enable();
5da70160 1833 local_bh_enable();
27590dc1 1834 return 0;
c0a31329 1835}
37810659 1836
c0a31329
TG
1837#endif /* CONFIG_HOTPLUG_CPU */
1838
c0a31329
TG
1839void __init hrtimers_init(void)
1840{
27590dc1 1841 hrtimers_prepare_cpu(smp_processor_id());
5da70160 1842 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
c0a31329
TG
1843}
1844
7bb67439 1845/**
351b3f7a 1846 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1847 * @expires: timeout value (ktime_t)
654c8e0b 1848 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
1849 * @mode: timer mode
1850 * @clock_id: timer clock to be used
7bb67439 1851 */
351b3f7a 1852int __sched
da8b44d5 1853schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 1854 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
1855{
1856 struct hrtimer_sleeper t;
1857
1858 /*
1859 * Optimize when a zero timeout value is given. It does not
1860 * matter whether this is an absolute or a relative time.
1861 */
2456e855 1862 if (expires && *expires == 0) {
7bb67439
AV
1863 __set_current_state(TASK_RUNNING);
1864 return 0;
1865 }
1866
1867 /*
43b21013 1868 * A NULL parameter means "infinite"
7bb67439
AV
1869 */
1870 if (!expires) {
1871 schedule();
7bb67439
AV
1872 return -EINTR;
1873 }
1874
90777713 1875 hrtimer_init_on_stack(&t.timer, clock_id, mode);
654c8e0b 1876 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1877
1878 hrtimer_init_sleeper(&t, current);
1879
cc584b21 1880 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1881
1882 if (likely(t.task))
1883 schedule();
1884
1885 hrtimer_cancel(&t.timer);
1886 destroy_hrtimer_on_stack(&t.timer);
1887
1888 __set_current_state(TASK_RUNNING);
1889
1890 return !t.task ? 0 : -EINTR;
1891}
351b3f7a
CE
1892
1893/**
1894 * schedule_hrtimeout_range - sleep until timeout
1895 * @expires: timeout value (ktime_t)
1896 * @delta: slack in expires timeout (ktime_t)
90777713 1897 * @mode: timer mode
351b3f7a
CE
1898 *
1899 * Make the current task sleep until the given expiry time has
1900 * elapsed. The routine will return immediately unless
1901 * the current task state has been set (see set_current_state()).
1902 *
1903 * The @delta argument gives the kernel the freedom to schedule the
1904 * actual wakeup to a time that is both power and performance friendly.
1905 * The kernel give the normal best effort behavior for "@expires+@delta",
1906 * but may decide to fire the timer earlier, but no earlier than @expires.
1907 *
1908 * You can set the task state as follows -
1909 *
1910 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1911 * pass before the routine returns unless the current task is explicitly
1912 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
1913 *
1914 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1915 * delivered to the current task or the current task is explicitly woken
1916 * up.
351b3f7a
CE
1917 *
1918 * The current task state is guaranteed to be TASK_RUNNING when this
1919 * routine returns.
1920 *
4b7e9cf9
DA
1921 * Returns 0 when the timer has expired. If the task was woken before the
1922 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1923 * by an explicit wakeup, it returns -EINTR.
351b3f7a 1924 */
da8b44d5 1925int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
1926 const enum hrtimer_mode mode)
1927{
1928 return schedule_hrtimeout_range_clock(expires, delta, mode,
1929 CLOCK_MONOTONIC);
1930}
654c8e0b
AV
1931EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1932
1933/**
1934 * schedule_hrtimeout - sleep until timeout
1935 * @expires: timeout value (ktime_t)
90777713 1936 * @mode: timer mode
654c8e0b
AV
1937 *
1938 * Make the current task sleep until the given expiry time has
1939 * elapsed. The routine will return immediately unless
1940 * the current task state has been set (see set_current_state()).
1941 *
1942 * You can set the task state as follows -
1943 *
1944 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1945 * pass before the routine returns unless the current task is explicitly
1946 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
1947 *
1948 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1949 * delivered to the current task or the current task is explicitly woken
1950 * up.
654c8e0b
AV
1951 *
1952 * The current task state is guaranteed to be TASK_RUNNING when this
1953 * routine returns.
1954 *
4b7e9cf9
DA
1955 * Returns 0 when the timer has expired. If the task was woken before the
1956 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1957 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
1958 */
1959int __sched schedule_hrtimeout(ktime_t *expires,
1960 const enum hrtimer_mode mode)
1961{
1962 return schedule_hrtimeout_range(expires, 0, mode);
1963}
7bb67439 1964EXPORT_SYMBOL_GPL(schedule_hrtimeout);