Merge tag 'compiler-attributes-for-linus-v5.4' of git://github.com/ojeda/linux
[linux-2.6-block.git] / kernel / time / hrtimer.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
c0a31329 2/*
3c8aa39d 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
6 *
7 * High-resolution kernel timers
8 *
58c5fc2b
TG
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
c0a31329
TG
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
58c5fc2b 16 * Based on the original timer wheel code
c0a31329 17 *
66188fae
TG
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
c0a31329
TG
23 */
24
25#include <linux/cpu.h>
9984de1a 26#include <linux/export.h>
c0a31329
TG
27#include <linux/percpu.h>
28#include <linux/hrtimer.h>
29#include <linux/notifier.h>
30#include <linux/syscalls.h>
31#include <linux/interrupt.h>
79bf2bb3 32#include <linux/tick.h>
54cdfdb4 33#include <linux/err.h>
237fc6e7 34#include <linux/debugobjects.h>
174cd4b1 35#include <linux/sched/signal.h>
cf4aebc2 36#include <linux/sched/sysctl.h>
8bd75c77 37#include <linux/sched/rt.h>
aab03e05 38#include <linux/sched/deadline.h>
370c9135 39#include <linux/sched/nohz.h>
b17b0153 40#include <linux/sched/debug.h>
eea08f32 41#include <linux/timer.h>
b0f8c44f 42#include <linux/freezer.h>
edbeda46 43#include <linux/compat.h>
c0a31329 44
7c0f6ba6 45#include <linux/uaccess.h>
c0a31329 46
c6a2a177
XG
47#include <trace/events/timer.h>
48
c1797baf 49#include "tick-internal.h"
8b094cd0 50
c458b1d1
AMG
51/*
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
54 */
55#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59
c0a31329
TG
60/*
61 * The timer bases:
7978672c 62 *
571af55a 63 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 67 */
54cdfdb4 68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 69{
84cc8fd2 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 71 .clock_base =
c0a31329 72 {
3c8aa39d 73 {
ab8177bc
TG
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
3c8aa39d 76 .get_time = &ktime_get,
3c8aa39d 77 },
68fa61c0
TG
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
68fa61c0 82 },
a3ed0e43
TG
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
90adda98
JS
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
90adda98 92 },
98ecadd4
AMG
93 {
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
97 },
98 {
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
102 },
a3ed0e43
TG
103 {
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
107 },
98ecadd4
AMG
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
3c8aa39d 113 }
c0a31329
TG
114};
115
942c3c5c 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
ce31332d
TG
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
a3ed0e43 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 124};
e06383db 125
c0a31329
TG
126/*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130#ifdef CONFIG_SMP
131
887d9dc9
PZ
132/*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137static struct hrtimer_cpu_base migration_cpu_base = {
887d9dc9
PZ
138 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
139};
140
141#define migration_base migration_cpu_base.clock_base[0]
142
5d2295f3
SAS
143static inline bool is_migration_base(struct hrtimer_clock_base *base)
144{
145 return base == &migration_base;
146}
147
c0a31329
TG
148/*
149 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
150 * means that all timers which are tied to this base via timer->base are
151 * locked, and the base itself is locked too.
152 *
153 * So __run_timers/migrate_timers can safely modify all timers which could
154 * be found on the lists/queues.
155 *
156 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
157 * possible to set timer->base = &migration_base and drop the lock: the timer
158 * remains locked.
c0a31329 159 */
3c8aa39d
TG
160static
161struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
162 unsigned long *flags)
c0a31329 163{
3c8aa39d 164 struct hrtimer_clock_base *base;
c0a31329
TG
165
166 for (;;) {
167 base = timer->base;
887d9dc9 168 if (likely(base != &migration_base)) {
ecb49d1a 169 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
170 if (likely(base == timer->base))
171 return base;
172 /* The timer has migrated to another CPU: */
ecb49d1a 173 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
174 }
175 cpu_relax();
176 }
177}
178
6ff7041d 179/*
07a9a7ea
AMG
180 * We do not migrate the timer when it is expiring before the next
181 * event on the target cpu. When high resolution is enabled, we cannot
182 * reprogram the target cpu hardware and we would cause it to fire
183 * late. To keep it simple, we handle the high resolution enabled and
184 * disabled case similar.
6ff7041d
TG
185 *
186 * Called with cpu_base->lock of target cpu held.
187 */
188static int
189hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
190{
6ff7041d
TG
191 ktime_t expires;
192
6ff7041d 193 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2ac2dccc 194 return expires < new_base->cpu_base->expires_next;
6ff7041d
TG
195}
196
bc7a34b8
TG
197static inline
198struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
199 int pinned)
200{
ae67bada
TG
201#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
202 if (static_branch_likely(&timers_migration_enabled) && !pinned)
203 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
204#endif
662b3e19 205 return base;
bc7a34b8 206}
bc7a34b8 207
c0a31329 208/*
b48362d8
FW
209 * We switch the timer base to a power-optimized selected CPU target,
210 * if:
211 * - NO_HZ_COMMON is enabled
212 * - timer migration is enabled
213 * - the timer callback is not running
214 * - the timer is not the first expiring timer on the new target
215 *
216 * If one of the above requirements is not fulfilled we move the timer
217 * to the current CPU or leave it on the previously assigned CPU if
218 * the timer callback is currently running.
c0a31329 219 */
3c8aa39d 220static inline struct hrtimer_clock_base *
597d0275
AB
221switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
222 int pinned)
c0a31329 223{
b48362d8 224 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 225 struct hrtimer_clock_base *new_base;
ab8177bc 226 int basenum = base->index;
c0a31329 227
b48362d8
FW
228 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
229 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 230again:
e06383db 231 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
232
233 if (base != new_base) {
234 /*
6ff7041d 235 * We are trying to move timer to new_base.
c0a31329
TG
236 * However we can't change timer's base while it is running,
237 * so we keep it on the same CPU. No hassle vs. reprogramming
238 * the event source in the high resolution case. The softirq
239 * code will take care of this when the timer function has
240 * completed. There is no conflict as we hold the lock until
241 * the timer is enqueued.
242 */
54cdfdb4 243 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
244 return base;
245
887d9dc9
PZ
246 /* See the comment in lock_hrtimer_base() */
247 timer->base = &migration_base;
ecb49d1a
TG
248 raw_spin_unlock(&base->cpu_base->lock);
249 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 250
b48362d8 251 if (new_cpu_base != this_cpu_base &&
bc7a34b8 252 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
253 raw_spin_unlock(&new_base->cpu_base->lock);
254 raw_spin_lock(&base->cpu_base->lock);
b48362d8 255 new_cpu_base = this_cpu_base;
6ff7041d
TG
256 timer->base = base;
257 goto again;
eea08f32 258 }
c0a31329 259 timer->base = new_base;
012a45e3 260 } else {
b48362d8 261 if (new_cpu_base != this_cpu_base &&
bc7a34b8 262 hrtimer_check_target(timer, new_base)) {
b48362d8 263 new_cpu_base = this_cpu_base;
012a45e3
LM
264 goto again;
265 }
c0a31329
TG
266 }
267 return new_base;
268}
269
270#else /* CONFIG_SMP */
271
5d2295f3
SAS
272static inline bool is_migration_base(struct hrtimer_clock_base *base)
273{
274 return false;
275}
276
3c8aa39d 277static inline struct hrtimer_clock_base *
c0a31329
TG
278lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
279{
3c8aa39d 280 struct hrtimer_clock_base *base = timer->base;
c0a31329 281
ecb49d1a 282 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
283
284 return base;
285}
286
eea08f32 287# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
288
289#endif /* !CONFIG_SMP */
290
291/*
292 * Functions for the union type storage format of ktime_t which are
293 * too large for inlining:
294 */
295#if BITS_PER_LONG < 64
c0a31329
TG
296/*
297 * Divide a ktime value by a nanosecond value
298 */
f7bcb70e 299s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 300{
c0a31329 301 int sft = 0;
f7bcb70e
JS
302 s64 dclc;
303 u64 tmp;
c0a31329 304
900cfa46 305 dclc = ktime_to_ns(kt);
f7bcb70e
JS
306 tmp = dclc < 0 ? -dclc : dclc;
307
c0a31329
TG
308 /* Make sure the divisor is less than 2^32: */
309 while (div >> 32) {
310 sft++;
311 div >>= 1;
312 }
f7bcb70e
JS
313 tmp >>= sft;
314 do_div(tmp, (unsigned long) div);
315 return dclc < 0 ? -tmp : tmp;
c0a31329 316}
8b618628 317EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
318#endif /* BITS_PER_LONG >= 64 */
319
5a7780e7
TG
320/*
321 * Add two ktime values and do a safety check for overflow:
322 */
323ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
324{
979515c5 325 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
326
327 /*
328 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 * return to user space in a timespec:
330 */
2456e855 331 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
332 res = ktime_set(KTIME_SEC_MAX, 0);
333
334 return res;
335}
336
8daa21e6
AB
337EXPORT_SYMBOL_GPL(ktime_add_safe);
338
237fc6e7
TG
339#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
340
341static struct debug_obj_descr hrtimer_debug_descr;
342
99777288
SG
343static void *hrtimer_debug_hint(void *addr)
344{
345 return ((struct hrtimer *) addr)->function;
346}
347
237fc6e7
TG
348/*
349 * fixup_init is called when:
350 * - an active object is initialized
351 */
e3252464 352static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
353{
354 struct hrtimer *timer = addr;
355
356 switch (state) {
357 case ODEBUG_STATE_ACTIVE:
358 hrtimer_cancel(timer);
359 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 360 return true;
237fc6e7 361 default:
e3252464 362 return false;
237fc6e7
TG
363 }
364}
365
366/*
367 * fixup_activate is called when:
368 * - an active object is activated
b9fdac7f 369 * - an unknown non-static object is activated
237fc6e7 370 */
e3252464 371static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
372{
373 switch (state) {
237fc6e7
TG
374 case ODEBUG_STATE_ACTIVE:
375 WARN_ON(1);
75b710af 376 /* fall through */
237fc6e7 377 default:
e3252464 378 return false;
237fc6e7
TG
379 }
380}
381
382/*
383 * fixup_free is called when:
384 * - an active object is freed
385 */
e3252464 386static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
387{
388 struct hrtimer *timer = addr;
389
390 switch (state) {
391 case ODEBUG_STATE_ACTIVE:
392 hrtimer_cancel(timer);
393 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 394 return true;
237fc6e7 395 default:
e3252464 396 return false;
237fc6e7
TG
397 }
398}
399
400static struct debug_obj_descr hrtimer_debug_descr = {
401 .name = "hrtimer",
99777288 402 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
403 .fixup_init = hrtimer_fixup_init,
404 .fixup_activate = hrtimer_fixup_activate,
405 .fixup_free = hrtimer_fixup_free,
406};
407
408static inline void debug_hrtimer_init(struct hrtimer *timer)
409{
410 debug_object_init(timer, &hrtimer_debug_descr);
411}
412
5da70160
AMG
413static inline void debug_hrtimer_activate(struct hrtimer *timer,
414 enum hrtimer_mode mode)
237fc6e7
TG
415{
416 debug_object_activate(timer, &hrtimer_debug_descr);
417}
418
419static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
420{
421 debug_object_deactivate(timer, &hrtimer_debug_descr);
422}
423
424static inline void debug_hrtimer_free(struct hrtimer *timer)
425{
426 debug_object_free(timer, &hrtimer_debug_descr);
427}
428
429static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
430 enum hrtimer_mode mode);
431
432void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
433 enum hrtimer_mode mode)
434{
435 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
436 __hrtimer_init(timer, clock_id, mode);
437}
2bc481cf 438EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7 439
dbc1625f
SAS
440static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
441 clockid_t clock_id, enum hrtimer_mode mode);
442
443void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
444 clockid_t clock_id, enum hrtimer_mode mode)
445{
446 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
447 __hrtimer_init_sleeper(sl, clock_id, mode);
448}
449EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
450
237fc6e7
TG
451void destroy_hrtimer_on_stack(struct hrtimer *timer)
452{
453 debug_object_free(timer, &hrtimer_debug_descr);
454}
c08376ac 455EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
456
457#else
5da70160 458
237fc6e7 459static inline void debug_hrtimer_init(struct hrtimer *timer) { }
5da70160
AMG
460static inline void debug_hrtimer_activate(struct hrtimer *timer,
461 enum hrtimer_mode mode) { }
237fc6e7
TG
462static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463#endif
464
c6a2a177
XG
465static inline void
466debug_init(struct hrtimer *timer, clockid_t clockid,
467 enum hrtimer_mode mode)
468{
469 debug_hrtimer_init(timer);
470 trace_hrtimer_init(timer, clockid, mode);
471}
472
63e2ed36
AMG
473static inline void debug_activate(struct hrtimer *timer,
474 enum hrtimer_mode mode)
c6a2a177 475{
5da70160 476 debug_hrtimer_activate(timer, mode);
63e2ed36 477 trace_hrtimer_start(timer, mode);
c6a2a177
XG
478}
479
480static inline void debug_deactivate(struct hrtimer *timer)
481{
482 debug_hrtimer_deactivate(timer);
483 trace_hrtimer_cancel(timer);
484}
485
c272ca58
AMG
486static struct hrtimer_clock_base *
487__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
488{
489 unsigned int idx;
490
491 if (!*active)
492 return NULL;
493
494 idx = __ffs(*active);
495 *active &= ~(1U << idx);
496
497 return &cpu_base->clock_base[idx];
498}
499
500#define for_each_active_base(base, cpu_base, active) \
501 while ((base = __next_base((cpu_base), &(active))))
502
ad38f596 503static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
a59855cd 504 const struct hrtimer *exclude,
ad38f596
AMG
505 unsigned int active,
506 ktime_t expires_next)
9bc74919 507{
c272ca58 508 struct hrtimer_clock_base *base;
ad38f596 509 ktime_t expires;
9bc74919 510
c272ca58 511 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
512 struct timerqueue_node *next;
513 struct hrtimer *timer;
514
34aee88a 515 next = timerqueue_getnext(&base->active);
9bc74919 516 timer = container_of(next, struct hrtimer, node);
a59855cd
RW
517 if (timer == exclude) {
518 /* Get to the next timer in the queue. */
7d2f6abb 519 next = timerqueue_iterate_next(next);
a59855cd
RW
520 if (!next)
521 continue;
522
523 timer = container_of(next, struct hrtimer, node);
524 }
9bc74919 525 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 526 if (expires < expires_next) {
9bc74919 527 expires_next = expires;
a59855cd
RW
528
529 /* Skip cpu_base update if a timer is being excluded. */
530 if (exclude)
531 continue;
532
5da70160
AMG
533 if (timer->is_soft)
534 cpu_base->softirq_next_timer = timer;
535 else
536 cpu_base->next_timer = timer;
895bdfa7 537 }
9bc74919
TG
538 }
539 /*
540 * clock_was_set() might have changed base->offset of any of
541 * the clock bases so the result might be negative. Fix it up
542 * to prevent a false positive in clockevents_program_event().
543 */
2456e855
TG
544 if (expires_next < 0)
545 expires_next = 0;
9bc74919
TG
546 return expires_next;
547}
9bc74919 548
c458b1d1
AMG
549/*
550 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
551 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
552 *
5da70160
AMG
553 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
554 * those timers will get run whenever the softirq gets handled, at the end of
555 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
556 *
557 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
558 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
559 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
560 *
c458b1d1 561 * @active_mask must be one of:
5da70160 562 * - HRTIMER_ACTIVE_ALL,
c458b1d1
AMG
563 * - HRTIMER_ACTIVE_SOFT, or
564 * - HRTIMER_ACTIVE_HARD.
565 */
5da70160
AMG
566static ktime_t
567__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
ad38f596 568{
c458b1d1 569 unsigned int active;
5da70160 570 struct hrtimer *next_timer = NULL;
ad38f596
AMG
571 ktime_t expires_next = KTIME_MAX;
572
5da70160
AMG
573 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
574 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
575 cpu_base->softirq_next_timer = NULL;
a59855cd
RW
576 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
577 active, KTIME_MAX);
5da70160
AMG
578
579 next_timer = cpu_base->softirq_next_timer;
580 }
ad38f596 581
5da70160
AMG
582 if (active_mask & HRTIMER_ACTIVE_HARD) {
583 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
584 cpu_base->next_timer = next_timer;
a59855cd
RW
585 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
586 expires_next);
5da70160 587 }
ad38f596
AMG
588
589 return expires_next;
590}
591
21d6d52a
TG
592static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
593{
594 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
a3ed0e43 595 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
21d6d52a
TG
596 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
597
5da70160 598 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
a3ed0e43 599 offs_real, offs_boot, offs_tai);
5da70160
AMG
600
601 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
a3ed0e43 602 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
5da70160
AMG
603 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
604
605 return now;
21d6d52a
TG
606}
607
28bfd18b
AMG
608/*
609 * Is the high resolution mode active ?
610 */
611static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
612{
613 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
614 cpu_base->hres_active : 0;
615}
616
617static inline int hrtimer_hres_active(void)
618{
619 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
620}
621
54cdfdb4
TG
622/*
623 * Reprogram the event source with checking both queues for the
624 * next event
625 * Called with interrupts disabled and base->lock held
626 */
7403f41f
AC
627static void
628hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 629{
21d6d52a
TG
630 ktime_t expires_next;
631
5da70160
AMG
632 /*
633 * Find the current next expiration time.
634 */
635 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
636
637 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
638 /*
639 * When the softirq is activated, hrtimer has to be
640 * programmed with the first hard hrtimer because soft
641 * timer interrupt could occur too late.
642 */
643 if (cpu_base->softirq_activated)
644 expires_next = __hrtimer_get_next_event(cpu_base,
645 HRTIMER_ACTIVE_HARD);
646 else
647 cpu_base->softirq_expires_next = expires_next;
648 }
54cdfdb4 649
2456e855 650 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
651 return;
652
2456e855 653 cpu_base->expires_next = expires_next;
7403f41f 654
6c6c0d5a 655 /*
61bb4bcb
AMG
656 * If hres is not active, hardware does not have to be
657 * reprogrammed yet.
658 *
6c6c0d5a
SH
659 * If a hang was detected in the last timer interrupt then we
660 * leave the hang delay active in the hardware. We want the
661 * system to make progress. That also prevents the following
662 * scenario:
663 * T1 expires 50ms from now
664 * T2 expires 5s from now
665 *
666 * T1 is removed, so this code is called and would reprogram
667 * the hardware to 5s from now. Any hrtimer_start after that
668 * will not reprogram the hardware due to hang_detected being
669 * set. So we'd effectivly block all timers until the T2 event
670 * fires.
671 */
61bb4bcb 672 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
6c6c0d5a
SH
673 return;
674
d2540875 675 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
676}
677
ebba2c72
AMG
678/* High resolution timer related functions */
679#ifdef CONFIG_HIGH_RES_TIMERS
680
681/*
682 * High resolution timer enabled ?
683 */
684static bool hrtimer_hres_enabled __read_mostly = true;
685unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
686EXPORT_SYMBOL_GPL(hrtimer_resolution);
687
688/*
689 * Enable / Disable high resolution mode
690 */
691static int __init setup_hrtimer_hres(char *str)
692{
693 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
694}
695
696__setup("highres=", setup_hrtimer_hres);
697
698/*
699 * hrtimer_high_res_enabled - query, if the highres mode is enabled
700 */
701static inline int hrtimer_is_hres_enabled(void)
702{
703 return hrtimer_hres_enabled;
704}
705
9ec26907
TG
706/*
707 * Retrigger next event is called after clock was set
708 *
709 * Called with interrupts disabled via on_each_cpu()
710 */
711static void retrigger_next_event(void *arg)
712{
dc5df73b 713 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 714
851cff8c 715 if (!__hrtimer_hres_active(base))
9ec26907
TG
716 return;
717
9ec26907 718 raw_spin_lock(&base->lock);
5baefd6d 719 hrtimer_update_base(base);
9ec26907
TG
720 hrtimer_force_reprogram(base, 0);
721 raw_spin_unlock(&base->lock);
722}
b12a03ce 723
54cdfdb4
TG
724/*
725 * Switch to high resolution mode
726 */
75e3b37d 727static void hrtimer_switch_to_hres(void)
54cdfdb4 728{
c6eb3f70 729 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
730
731 if (tick_init_highres()) {
7a6e5537
GU
732 pr_warn("Could not switch to high resolution mode on CPU %u\n",
733 base->cpu);
85e1cd6e 734 return;
54cdfdb4
TG
735 }
736 base->hres_active = 1;
398ca17f 737 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
738
739 tick_setup_sched_timer();
54cdfdb4
TG
740 /* "Retrigger" the interrupt to get things going */
741 retrigger_next_event(NULL);
54cdfdb4
TG
742}
743
5ec2481b
TG
744static void clock_was_set_work(struct work_struct *work)
745{
746 clock_was_set();
747}
748
749static DECLARE_WORK(hrtimer_work, clock_was_set_work);
750
f55a6faa 751/*
b4d90e9f 752 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 753 * interrupt device on all cpus.
f55a6faa
JS
754 */
755void clock_was_set_delayed(void)
756{
5ec2481b 757 schedule_work(&hrtimer_work);
f55a6faa
JS
758}
759
54cdfdb4
TG
760#else
761
54cdfdb4 762static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 763static inline void hrtimer_switch_to_hres(void) { }
9ec26907 764static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
765
766#endif /* CONFIG_HIGH_RES_TIMERS */
767
11a9fe06
AMG
768/*
769 * When a timer is enqueued and expires earlier than the already enqueued
770 * timers, we have to check, whether it expires earlier than the timer for
771 * which the clock event device was armed.
772 *
773 * Called with interrupts disabled and base->cpu_base.lock held
774 */
5da70160 775static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
11a9fe06
AMG
776{
777 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
3ec7a3ee 778 struct hrtimer_clock_base *base = timer->base;
11a9fe06
AMG
779 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
780
781 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
782
5da70160
AMG
783 /*
784 * CLOCK_REALTIME timer might be requested with an absolute
785 * expiry time which is less than base->offset. Set it to 0.
786 */
787 if (expires < 0)
788 expires = 0;
789
790 if (timer->is_soft) {
791 /*
792 * soft hrtimer could be started on a remote CPU. In this
793 * case softirq_expires_next needs to be updated on the
794 * remote CPU. The soft hrtimer will not expire before the
795 * first hard hrtimer on the remote CPU -
796 * hrtimer_check_target() prevents this case.
797 */
798 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
799
800 if (timer_cpu_base->softirq_activated)
801 return;
802
803 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
804 return;
805
806 timer_cpu_base->softirq_next_timer = timer;
807 timer_cpu_base->softirq_expires_next = expires;
808
809 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
810 !reprogram)
811 return;
812 }
813
11a9fe06
AMG
814 /*
815 * If the timer is not on the current cpu, we cannot reprogram
816 * the other cpus clock event device.
817 */
818 if (base->cpu_base != cpu_base)
819 return;
820
821 /*
822 * If the hrtimer interrupt is running, then it will
823 * reevaluate the clock bases and reprogram the clock event
824 * device. The callbacks are always executed in hard interrupt
825 * context so we don't need an extra check for a running
826 * callback.
827 */
828 if (cpu_base->in_hrtirq)
829 return;
830
11a9fe06
AMG
831 if (expires >= cpu_base->expires_next)
832 return;
833
834 /* Update the pointer to the next expiring timer */
835 cpu_base->next_timer = timer;
14c80341 836 cpu_base->expires_next = expires;
11a9fe06
AMG
837
838 /*
14c80341
AMG
839 * If hres is not active, hardware does not have to be
840 * programmed yet.
841 *
11a9fe06
AMG
842 * If a hang was detected in the last timer interrupt then we
843 * do not schedule a timer which is earlier than the expiry
844 * which we enforced in the hang detection. We want the system
845 * to make progress.
846 */
14c80341 847 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
11a9fe06
AMG
848 return;
849
850 /*
851 * Program the timer hardware. We enforce the expiry for
852 * events which are already in the past.
853 */
11a9fe06
AMG
854 tick_program_event(expires, 1);
855}
856
b12a03ce
TG
857/*
858 * Clock realtime was set
859 *
860 * Change the offset of the realtime clock vs. the monotonic
861 * clock.
862 *
863 * We might have to reprogram the high resolution timer interrupt. On
864 * SMP we call the architecture specific code to retrigger _all_ high
865 * resolution timer interrupts. On UP we just disable interrupts and
866 * call the high resolution interrupt code.
867 */
868void clock_was_set(void)
869{
90ff1f30 870#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
871 /* Retrigger the CPU local events everywhere */
872 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
873#endif
874 timerfd_clock_was_set();
b12a03ce
TG
875}
876
877/*
878 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
879 * interrupt on all online CPUs. However, all other CPUs will be
880 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 881 * must be deferred.
b12a03ce
TG
882 */
883void hrtimers_resume(void)
884{
53bef3fd 885 lockdep_assert_irqs_disabled();
5ec2481b 886 /* Retrigger on the local CPU */
b12a03ce 887 retrigger_next_event(NULL);
5ec2481b
TG
888 /* And schedule a retrigger for all others */
889 clock_was_set_delayed();
b12a03ce
TG
890}
891
c0a31329 892/*
6506f2aa 893 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
894 */
895static inline
896void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
897{
ecb49d1a 898 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
899}
900
901/**
902 * hrtimer_forward - forward the timer expiry
c0a31329 903 * @timer: hrtimer to forward
44f21475 904 * @now: forward past this time
c0a31329
TG
905 * @interval: the interval to forward
906 *
907 * Forward the timer expiry so it will expire in the future.
8dca6f33 908 * Returns the number of overruns.
91e5a217
TG
909 *
910 * Can be safely called from the callback function of @timer. If
911 * called from other contexts @timer must neither be enqueued nor
912 * running the callback and the caller needs to take care of
913 * serialization.
914 *
915 * Note: This only updates the timer expiry value and does not requeue
916 * the timer.
c0a31329 917 */
4d672e7a 918u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 919{
4d672e7a 920 u64 orun = 1;
44f21475 921 ktime_t delta;
c0a31329 922
cc584b21 923 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 924
2456e855 925 if (delta < 0)
c0a31329
TG
926 return 0;
927
5de2755c
PZ
928 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
929 return 0;
930
2456e855
TG
931 if (interval < hrtimer_resolution)
932 interval = hrtimer_resolution;
c9db4fa1 933
2456e855 934 if (unlikely(delta >= interval)) {
df869b63 935 s64 incr = ktime_to_ns(interval);
c0a31329
TG
936
937 orun = ktime_divns(delta, incr);
cc584b21 938 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 939 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
940 return orun;
941 /*
942 * This (and the ktime_add() below) is the
943 * correction for exact:
944 */
945 orun++;
946 }
cc584b21 947 hrtimer_add_expires(timer, interval);
c0a31329
TG
948
949 return orun;
950}
6bdb6b62 951EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
952
953/*
954 * enqueue_hrtimer - internal function to (re)start a timer
955 *
956 * The timer is inserted in expiry order. Insertion into the
957 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
958 *
959 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 960 */
a6037b61 961static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
962 struct hrtimer_clock_base *base,
963 enum hrtimer_mode mode)
c0a31329 964{
63e2ed36 965 debug_activate(timer, mode);
237fc6e7 966
ab8177bc 967 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 968
887d9dc9 969 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 970
b97f44c9 971 return timerqueue_add(&base->active, &timer->node);
288867ec 972}
c0a31329
TG
973
974/*
975 * __remove_hrtimer - internal function to remove a timer
976 *
977 * Caller must hold the base lock.
54cdfdb4
TG
978 *
979 * High resolution timer mode reprograms the clock event device when the
980 * timer is the one which expires next. The caller can disable this by setting
981 * reprogram to zero. This is useful, when the context does a reprogramming
982 * anyway (e.g. timer interrupt)
c0a31329 983 */
3c8aa39d 984static void __remove_hrtimer(struct hrtimer *timer,
303e967f 985 struct hrtimer_clock_base *base,
203cbf77 986 u8 newstate, int reprogram)
c0a31329 987{
e19ffe8b 988 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 989 u8 state = timer->state;
e19ffe8b 990
895bdfa7
TG
991 timer->state = newstate;
992 if (!(state & HRTIMER_STATE_ENQUEUED))
993 return;
7403f41f 994
b97f44c9 995 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 996 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 997
895bdfa7
TG
998 /*
999 * Note: If reprogram is false we do not update
1000 * cpu_base->next_timer. This happens when we remove the first
1001 * timer on a remote cpu. No harm as we never dereference
1002 * cpu_base->next_timer. So the worst thing what can happen is
1003 * an superflous call to hrtimer_force_reprogram() on the
1004 * remote cpu later on if the same timer gets enqueued again.
1005 */
1006 if (reprogram && timer == cpu_base->next_timer)
1007 hrtimer_force_reprogram(cpu_base, 1);
c0a31329
TG
1008}
1009
1010/*
1011 * remove hrtimer, called with base lock held
1012 */
1013static inline int
8edfb036 1014remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 1015{
303e967f 1016 if (hrtimer_is_queued(timer)) {
203cbf77 1017 u8 state = timer->state;
54cdfdb4
TG
1018 int reprogram;
1019
1020 /*
1021 * Remove the timer and force reprogramming when high
1022 * resolution mode is active and the timer is on the current
1023 * CPU. If we remove a timer on another CPU, reprogramming is
1024 * skipped. The interrupt event on this CPU is fired and
1025 * reprogramming happens in the interrupt handler. This is a
1026 * rare case and less expensive than a smp call.
1027 */
c6a2a177 1028 debug_deactivate(timer);
dc5df73b 1029 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 1030
887d9dc9
PZ
1031 if (!restart)
1032 state = HRTIMER_STATE_INACTIVE;
1033
f13d4f97 1034 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
1035 return 1;
1036 }
1037 return 0;
1038}
1039
203cbf77
TG
1040static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1041 const enum hrtimer_mode mode)
1042{
1043#ifdef CONFIG_TIME_LOW_RES
1044 /*
1045 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1046 * granular time values. For relative timers we add hrtimer_resolution
1047 * (i.e. one jiffie) to prevent short timeouts.
1048 */
1049 timer->is_rel = mode & HRTIMER_MODE_REL;
1050 if (timer->is_rel)
8b0e1953 1051 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
1052#endif
1053 return tim;
1054}
1055
5da70160
AMG
1056static void
1057hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1058{
1059 ktime_t expires;
1060
1061 /*
1062 * Find the next SOFT expiration.
1063 */
1064 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1065
1066 /*
1067 * reprogramming needs to be triggered, even if the next soft
1068 * hrtimer expires at the same time than the next hard
1069 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1070 */
1071 if (expires == KTIME_MAX)
1072 return;
1073
1074 /*
1075 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1076 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1077 */
1078 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1079}
1080
138a6b7a
AMG
1081static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1082 u64 delta_ns, const enum hrtimer_mode mode,
1083 struct hrtimer_clock_base *base)
c0a31329 1084{
138a6b7a 1085 struct hrtimer_clock_base *new_base;
c0a31329
TG
1086
1087 /* Remove an active timer from the queue: */
8edfb036 1088 remove_hrtimer(timer, base, true);
c0a31329 1089
203cbf77 1090 if (mode & HRTIMER_MODE_REL)
84ea7fe3 1091 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
1092
1093 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 1094
da8f2e17 1095 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 1096
84ea7fe3
VK
1097 /* Switch the timer base, if necessary: */
1098 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1099
138a6b7a
AMG
1100 return enqueue_hrtimer(timer, new_base, mode);
1101}
5da70160 1102
138a6b7a
AMG
1103/**
1104 * hrtimer_start_range_ns - (re)start an hrtimer
1105 * @timer: the timer to be added
1106 * @tim: expiry time
1107 * @delta_ns: "slack" range for the timer
1108 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
5da70160
AMG
1109 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1110 * softirq based mode is considered for debug purpose only!
138a6b7a
AMG
1111 */
1112void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1113 u64 delta_ns, const enum hrtimer_mode mode)
1114{
1115 struct hrtimer_clock_base *base;
1116 unsigned long flags;
1117
5da70160
AMG
1118 /*
1119 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
0ab6a3dd
TG
1120 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1121 * expiry mode because unmarked timers are moved to softirq expiry.
5da70160 1122 */
0ab6a3dd
TG
1123 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1124 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1125 else
1126 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
5da70160 1127
138a6b7a
AMG
1128 base = lock_hrtimer_base(timer, &flags);
1129
1130 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
5da70160 1131 hrtimer_reprogram(timer, true);
49a2a075 1132
c0a31329 1133 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 1134}
da8f2e17
AV
1135EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1136
c0a31329
TG
1137/**
1138 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1139 * @timer: hrtimer to stop
1140 *
1141 * Returns:
51633704
MCC
1142 *
1143 * * 0 when the timer was not active
1144 * * 1 when the timer was active
1145 * * -1 when the timer is currently executing the callback function and
fa9799e3 1146 * cannot be stopped
c0a31329
TG
1147 */
1148int hrtimer_try_to_cancel(struct hrtimer *timer)
1149{
3c8aa39d 1150 struct hrtimer_clock_base *base;
c0a31329
TG
1151 unsigned long flags;
1152 int ret = -1;
1153
19d9f422
TG
1154 /*
1155 * Check lockless first. If the timer is not active (neither
1156 * enqueued nor running the callback, nothing to do here. The
1157 * base lock does not serialize against a concurrent enqueue,
1158 * so we can avoid taking it.
1159 */
1160 if (!hrtimer_active(timer))
1161 return 0;
1162
c0a31329
TG
1163 base = lock_hrtimer_base(timer, &flags);
1164
303e967f 1165 if (!hrtimer_callback_running(timer))
8edfb036 1166 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1167
1168 unlock_hrtimer_base(timer, &flags);
1169
1170 return ret;
1171
1172}
8d16b764 1173EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329 1174
f61eff83
AMG
1175#ifdef CONFIG_PREEMPT_RT
1176static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1177{
1178 spin_lock_init(&base->softirq_expiry_lock);
1179}
1180
1181static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1182{
1183 spin_lock(&base->softirq_expiry_lock);
1184}
1185
1186static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1187{
1188 spin_unlock(&base->softirq_expiry_lock);
1189}
1190
1191/*
1192 * The counterpart to hrtimer_cancel_wait_running().
1193 *
1194 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1195 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1196 * allows the waiter to acquire the lock and make progress.
1197 */
1198static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1199 unsigned long flags)
1200{
1201 if (atomic_read(&cpu_base->timer_waiters)) {
1202 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1203 spin_unlock(&cpu_base->softirq_expiry_lock);
1204 spin_lock(&cpu_base->softirq_expiry_lock);
1205 raw_spin_lock_irq(&cpu_base->lock);
1206 }
1207}
1208
1209/*
1210 * This function is called on PREEMPT_RT kernels when the fast path
1211 * deletion of a timer failed because the timer callback function was
1212 * running.
1213 *
0bee3b60
FW
1214 * This prevents priority inversion: if the soft irq thread is preempted
1215 * in the middle of a timer callback, then calling del_timer_sync() can
1216 * lead to two issues:
1217 *
1218 * - If the caller is on a remote CPU then it has to spin wait for the timer
1219 * handler to complete. This can result in unbound priority inversion.
1220 *
1221 * - If the caller originates from the task which preempted the timer
1222 * handler on the same CPU, then spin waiting for the timer handler to
1223 * complete is never going to end.
f61eff83
AMG
1224 */
1225void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1226{
dd2261ed
JG
1227 /* Lockless read. Prevent the compiler from reloading it below */
1228 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
f61eff83 1229
68b2c8c1
JG
1230 /*
1231 * Just relax if the timer expires in hard interrupt context or if
1232 * it is currently on the migration base.
1233 */
5d2295f3 1234 if (!timer->is_soft || is_migration_base(base)) {
f61eff83
AMG
1235 cpu_relax();
1236 return;
1237 }
1238
1239 /*
1240 * Mark the base as contended and grab the expiry lock, which is
1241 * held by the softirq across the timer callback. Drop the lock
1242 * immediately so the softirq can expire the next timer. In theory
1243 * the timer could already be running again, but that's more than
1244 * unlikely and just causes another wait loop.
1245 */
1246 atomic_inc(&base->cpu_base->timer_waiters);
1247 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1248 atomic_dec(&base->cpu_base->timer_waiters);
1249 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1250}
1251#else
1252static inline void
1253hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1254static inline void
1255hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1256static inline void
1257hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1258static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1259 unsigned long flags) { }
1260#endif
1261
c0a31329
TG
1262/**
1263 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1264 * @timer: the timer to be cancelled
1265 *
1266 * Returns:
1267 * 0 when the timer was not active
1268 * 1 when the timer was active
1269 */
1270int hrtimer_cancel(struct hrtimer *timer)
1271{
f61eff83 1272 int ret;
c0a31329 1273
f61eff83
AMG
1274 do {
1275 ret = hrtimer_try_to_cancel(timer);
1276
1277 if (ret < 0)
1278 hrtimer_cancel_wait_running(timer);
1279 } while (ret < 0);
1280 return ret;
c0a31329 1281}
8d16b764 1282EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1283
1284/**
1285 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1286 * @timer: the timer to read
203cbf77 1287 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1288 */
203cbf77 1289ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1290{
c0a31329
TG
1291 unsigned long flags;
1292 ktime_t rem;
1293
b3bd3de6 1294 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1295 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1296 rem = hrtimer_expires_remaining_adjusted(timer);
1297 else
1298 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1299 unlock_hrtimer_base(timer, &flags);
1300
1301 return rem;
1302}
203cbf77 1303EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1304
3451d024 1305#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1306/**
1307 * hrtimer_get_next_event - get the time until next expiry event
1308 *
c1ad348b 1309 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1310 */
c1ad348b 1311u64 hrtimer_get_next_event(void)
69239749 1312{
dc5df73b 1313 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1314 u64 expires = KTIME_MAX;
69239749 1315 unsigned long flags;
69239749 1316
ecb49d1a 1317 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1318
e19ffe8b 1319 if (!__hrtimer_hres_active(cpu_base))
5da70160 1320 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
3c8aa39d 1321
ecb49d1a 1322 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1323
c1ad348b 1324 return expires;
69239749 1325}
a59855cd
RW
1326
1327/**
1328 * hrtimer_next_event_without - time until next expiry event w/o one timer
1329 * @exclude: timer to exclude
1330 *
1331 * Returns the next expiry time over all timers except for the @exclude one or
1332 * KTIME_MAX if none of them is pending.
1333 */
1334u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1335{
1336 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1337 u64 expires = KTIME_MAX;
1338 unsigned long flags;
1339
1340 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1341
1342 if (__hrtimer_hres_active(cpu_base)) {
1343 unsigned int active;
1344
1345 if (!cpu_base->softirq_activated) {
1346 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1347 expires = __hrtimer_next_event_base(cpu_base, exclude,
1348 active, KTIME_MAX);
1349 }
1350 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1351 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1352 expires);
1353 }
1354
1355 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1356
1357 return expires;
1358}
69239749
TL
1359#endif
1360
336a9cde
MZ
1361static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1362{
1363 if (likely(clock_id < MAX_CLOCKS)) {
1364 int base = hrtimer_clock_to_base_table[clock_id];
1365
1366 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1367 return base;
1368 }
1369 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1370 return HRTIMER_BASE_MONOTONIC;
1371}
1372
237fc6e7
TG
1373static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1374 enum hrtimer_mode mode)
c0a31329 1375{
42f42da4 1376 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
3c8aa39d 1377 struct hrtimer_cpu_base *cpu_base;
f5c2f021
SAS
1378 int base;
1379
1380 /*
1381 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1382 * marked for hard interrupt expiry mode are moved into soft
1383 * interrupt context for latency reasons and because the callbacks
1384 * can invoke functions which might sleep on RT, e.g. spin_lock().
1385 */
1386 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1387 softtimer = true;
c0a31329 1388
7978672c
GA
1389 memset(timer, 0, sizeof(struct hrtimer));
1390
22127e93 1391 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1392
48d0c9be
AMG
1393 /*
1394 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1395 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1396 * ensure POSIX compliance.
1397 */
1398 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1399 clock_id = CLOCK_MONOTONIC;
1400
f5c2f021 1401 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
42f42da4
AMG
1402 base += hrtimer_clockid_to_base(clock_id);
1403 timer->is_soft = softtimer;
0ab6a3dd 1404 timer->is_hard = !softtimer;
e06383db 1405 timer->base = &cpu_base->clock_base[base];
998adc3d 1406 timerqueue_init(&timer->node);
c0a31329 1407}
237fc6e7
TG
1408
1409/**
1410 * hrtimer_init - initialize a timer to the given clock
1411 * @timer: the timer to be initialized
1412 * @clock_id: the clock to be used
42f42da4
AMG
1413 * @mode: The modes which are relevant for intitialization:
1414 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1415 * HRTIMER_MODE_REL_SOFT
1416 *
1417 * The PINNED variants of the above can be handed in,
1418 * but the PINNED bit is ignored as pinning happens
1419 * when the hrtimer is started
237fc6e7
TG
1420 */
1421void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1422 enum hrtimer_mode mode)
1423{
c6a2a177 1424 debug_init(timer, clock_id, mode);
237fc6e7
TG
1425 __hrtimer_init(timer, clock_id, mode);
1426}
8d16b764 1427EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1428
887d9dc9
PZ
1429/*
1430 * A timer is active, when it is enqueued into the rbtree or the
1431 * callback function is running or it's in the state of being migrated
1432 * to another cpu.
c0a31329 1433 *
887d9dc9 1434 * It is important for this function to not return a false negative.
c0a31329 1435 */
887d9dc9 1436bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1437{
3f0b9e8e 1438 struct hrtimer_clock_base *base;
887d9dc9 1439 unsigned int seq;
c0a31329 1440
887d9dc9 1441 do {
3f0b9e8e
AMG
1442 base = READ_ONCE(timer->base);
1443 seq = raw_read_seqcount_begin(&base->seq);
c0a31329 1444
887d9dc9 1445 if (timer->state != HRTIMER_STATE_INACTIVE ||
3f0b9e8e 1446 base->running == timer)
887d9dc9
PZ
1447 return true;
1448
3f0b9e8e
AMG
1449 } while (read_seqcount_retry(&base->seq, seq) ||
1450 base != READ_ONCE(timer->base));
887d9dc9
PZ
1451
1452 return false;
c0a31329 1453}
887d9dc9 1454EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1455
887d9dc9
PZ
1456/*
1457 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1458 * distinct sections:
1459 *
1460 * - queued: the timer is queued
1461 * - callback: the timer is being ran
1462 * - post: the timer is inactive or (re)queued
1463 *
1464 * On the read side we ensure we observe timer->state and cpu_base->running
1465 * from the same section, if anything changed while we looked at it, we retry.
1466 * This includes timer->base changing because sequence numbers alone are
1467 * insufficient for that.
1468 *
1469 * The sequence numbers are required because otherwise we could still observe
1470 * a false negative if the read side got smeared over multiple consequtive
1471 * __run_hrtimer() invocations.
1472 */
1473
21d6d52a
TG
1474static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1475 struct hrtimer_clock_base *base,
dd934aa8
AMG
1476 struct hrtimer *timer, ktime_t *now,
1477 unsigned long flags)
d3d74453 1478{
d3d74453
PZ
1479 enum hrtimer_restart (*fn)(struct hrtimer *);
1480 int restart;
1481
887d9dc9 1482 lockdep_assert_held(&cpu_base->lock);
ca109491 1483
c6a2a177 1484 debug_deactivate(timer);
3f0b9e8e 1485 base->running = timer;
887d9dc9
PZ
1486
1487 /*
1488 * Separate the ->running assignment from the ->state assignment.
1489 *
1490 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1491 * hrtimer_active() cannot observe base->running == NULL &&
887d9dc9
PZ
1492 * timer->state == INACTIVE.
1493 */
3f0b9e8e 1494 raw_write_seqcount_barrier(&base->seq);
887d9dc9
PZ
1495
1496 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1497 fn = timer->function;
ca109491 1498
203cbf77
TG
1499 /*
1500 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1501 * timer is restarted with a period then it becomes an absolute
1502 * timer. If its not restarted it does not matter.
1503 */
1504 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1505 timer->is_rel = false;
1506
ca109491 1507 /*
d05ca13b
TG
1508 * The timer is marked as running in the CPU base, so it is
1509 * protected against migration to a different CPU even if the lock
1510 * is dropped.
ca109491 1511 */
dd934aa8 1512 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c6a2a177 1513 trace_hrtimer_expire_entry(timer, now);
ca109491 1514 restart = fn(timer);
c6a2a177 1515 trace_hrtimer_expire_exit(timer);
dd934aa8 1516 raw_spin_lock_irq(&cpu_base->lock);
d3d74453
PZ
1517
1518 /*
887d9dc9 1519 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1520 * we do not reprogram the event hardware. Happens either in
e3f1d883 1521 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1522 *
1523 * Note: Because we dropped the cpu_base->lock above,
1524 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1525 * for us already.
d3d74453 1526 */
5de2755c
PZ
1527 if (restart != HRTIMER_NORESTART &&
1528 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1529 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1530
887d9dc9
PZ
1531 /*
1532 * Separate the ->running assignment from the ->state assignment.
1533 *
1534 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1535 * hrtimer_active() cannot observe base->running.timer == NULL &&
887d9dc9
PZ
1536 * timer->state == INACTIVE.
1537 */
3f0b9e8e 1538 raw_write_seqcount_barrier(&base->seq);
f13d4f97 1539
3f0b9e8e
AMG
1540 WARN_ON_ONCE(base->running != timer);
1541 base->running = NULL;
d3d74453
PZ
1542}
1543
dd934aa8 1544static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
c458b1d1 1545 unsigned long flags, unsigned int active_mask)
54cdfdb4 1546{
c272ca58 1547 struct hrtimer_clock_base *base;
c458b1d1 1548 unsigned int active = cpu_base->active_bases & active_mask;
6ff7041d 1549
c272ca58 1550 for_each_active_base(base, cpu_base, active) {
998adc3d 1551 struct timerqueue_node *node;
ab8177bc
TG
1552 ktime_t basenow;
1553
54cdfdb4
TG
1554 basenow = ktime_add(now, base->offset);
1555
998adc3d 1556 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1557 struct hrtimer *timer;
1558
998adc3d 1559 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1560
654c8e0b
AV
1561 /*
1562 * The immediate goal for using the softexpires is
1563 * minimizing wakeups, not running timers at the
1564 * earliest interrupt after their soft expiration.
1565 * This allows us to avoid using a Priority Search
1566 * Tree, which can answer a stabbing querry for
1567 * overlapping intervals and instead use the simple
1568 * BST we already have.
1569 * We don't add extra wakeups by delaying timers that
1570 * are right-of a not yet expired timer, because that
1571 * timer will have to trigger a wakeup anyway.
1572 */
2456e855 1573 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1574 break;
54cdfdb4 1575
dd934aa8 1576 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
f61eff83
AMG
1577 if (active_mask == HRTIMER_ACTIVE_SOFT)
1578 hrtimer_sync_wait_running(cpu_base, flags);
54cdfdb4 1579 }
54cdfdb4 1580 }
21d6d52a
TG
1581}
1582
5da70160
AMG
1583static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1584{
1585 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1586 unsigned long flags;
1587 ktime_t now;
1588
f61eff83 1589 hrtimer_cpu_base_lock_expiry(cpu_base);
5da70160
AMG
1590 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1591
1592 now = hrtimer_update_base(cpu_base);
1593 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1594
1595 cpu_base->softirq_activated = 0;
1596 hrtimer_update_softirq_timer(cpu_base, true);
1597
1598 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
f61eff83 1599 hrtimer_cpu_base_unlock_expiry(cpu_base);
5da70160
AMG
1600}
1601
21d6d52a
TG
1602#ifdef CONFIG_HIGH_RES_TIMERS
1603
1604/*
1605 * High resolution timer interrupt
1606 * Called with interrupts disabled
1607 */
1608void hrtimer_interrupt(struct clock_event_device *dev)
1609{
1610 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1611 ktime_t expires_next, now, entry_time, delta;
dd934aa8 1612 unsigned long flags;
21d6d52a
TG
1613 int retries = 0;
1614
1615 BUG_ON(!cpu_base->hres_active);
1616 cpu_base->nr_events++;
2456e855 1617 dev->next_event = KTIME_MAX;
21d6d52a 1618
dd934aa8 1619 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a
TG
1620 entry_time = now = hrtimer_update_base(cpu_base);
1621retry:
1622 cpu_base->in_hrtirq = 1;
1623 /*
1624 * We set expires_next to KTIME_MAX here with cpu_base->lock
1625 * held to prevent that a timer is enqueued in our queue via
1626 * the migration code. This does not affect enqueueing of
1627 * timers which run their callback and need to be requeued on
1628 * this CPU.
1629 */
2456e855 1630 cpu_base->expires_next = KTIME_MAX;
21d6d52a 1631
5da70160
AMG
1632 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1633 cpu_base->softirq_expires_next = KTIME_MAX;
1634 cpu_base->softirq_activated = 1;
1635 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1636 }
1637
c458b1d1 1638 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
21d6d52a 1639
9bc74919 1640 /* Reevaluate the clock bases for the next expiry */
5da70160 1641 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
6ff7041d
TG
1642 /*
1643 * Store the new expiry value so the migration code can verify
1644 * against it.
1645 */
54cdfdb4 1646 cpu_base->expires_next = expires_next;
9bc74919 1647 cpu_base->in_hrtirq = 0;
dd934aa8 1648 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
54cdfdb4
TG
1649
1650 /* Reprogramming necessary ? */
d2540875 1651 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1652 cpu_base->hang_detected = 0;
1653 return;
54cdfdb4 1654 }
41d2e494
TG
1655
1656 /*
1657 * The next timer was already expired due to:
1658 * - tracing
1659 * - long lasting callbacks
1660 * - being scheduled away when running in a VM
1661 *
1662 * We need to prevent that we loop forever in the hrtimer
1663 * interrupt routine. We give it 3 attempts to avoid
1664 * overreacting on some spurious event.
5baefd6d
JS
1665 *
1666 * Acquire base lock for updating the offsets and retrieving
1667 * the current time.
41d2e494 1668 */
dd934aa8 1669 raw_spin_lock_irqsave(&cpu_base->lock, flags);
5baefd6d 1670 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1671 cpu_base->nr_retries++;
1672 if (++retries < 3)
1673 goto retry;
1674 /*
1675 * Give the system a chance to do something else than looping
1676 * here. We stored the entry time, so we know exactly how long
1677 * we spent here. We schedule the next event this amount of
1678 * time away.
1679 */
1680 cpu_base->nr_hangs++;
1681 cpu_base->hang_detected = 1;
dd934aa8
AMG
1682 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1683
41d2e494 1684 delta = ktime_sub(now, entry_time);
2456e855
TG
1685 if ((unsigned int)delta > cpu_base->max_hang_time)
1686 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1687 /*
1688 * Limit it to a sensible value as we enforce a longer
1689 * delay. Give the CPU at least 100ms to catch up.
1690 */
2456e855 1691 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1692 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1693 else
1694 expires_next = ktime_add(now, delta);
1695 tick_program_event(expires_next, 1);
7a6e5537 1696 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
54cdfdb4
TG
1697}
1698
016da201 1699/* called with interrupts disabled */
c6eb3f70 1700static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1701{
1702 struct tick_device *td;
1703
1704 if (!hrtimer_hres_active())
1705 return;
1706
22127e93 1707 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1708 if (td && td->evtdev)
1709 hrtimer_interrupt(td->evtdev);
1710}
1711
82c5b7b5
IM
1712#else /* CONFIG_HIGH_RES_TIMERS */
1713
1714static inline void __hrtimer_peek_ahead_timers(void) { }
1715
1716#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1717
d3d74453 1718/*
c6eb3f70 1719 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1720 */
833883d9 1721void hrtimer_run_queues(void)
d3d74453 1722{
dc5df73b 1723 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
dd934aa8 1724 unsigned long flags;
21d6d52a 1725 ktime_t now;
c0a31329 1726
e19ffe8b 1727 if (__hrtimer_hres_active(cpu_base))
d3d74453 1728 return;
54cdfdb4 1729
d3d74453 1730 /*
c6eb3f70
TG
1731 * This _is_ ugly: We have to check periodically, whether we
1732 * can switch to highres and / or nohz mode. The clocksource
1733 * switch happens with xtime_lock held. Notification from
1734 * there only sets the check bit in the tick_oneshot code,
1735 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1736 */
c6eb3f70 1737 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1738 hrtimer_switch_to_hres();
3055adda 1739 return;
833883d9 1740 }
c6eb3f70 1741
dd934aa8 1742 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a 1743 now = hrtimer_update_base(cpu_base);
5da70160
AMG
1744
1745 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1746 cpu_base->softirq_expires_next = KTIME_MAX;
1747 cpu_base->softirq_activated = 1;
1748 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1749 }
1750
c458b1d1 1751 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
dd934aa8 1752 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c0a31329
TG
1753}
1754
10c94ec1
TG
1755/*
1756 * Sleep related functions:
1757 */
c9cb2e3d 1758static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1759{
1760 struct hrtimer_sleeper *t =
1761 container_of(timer, struct hrtimer_sleeper, timer);
1762 struct task_struct *task = t->task;
1763
1764 t->task = NULL;
1765 if (task)
1766 wake_up_process(task);
1767
1768 return HRTIMER_NORESTART;
1769}
1770
01656464
TG
1771/**
1772 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1773 * @sl: sleeper to be started
1774 * @mode: timer mode abs/rel
1775 *
1776 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1777 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1778 */
1779void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1780 enum hrtimer_mode mode)
1781{
1842f5a4
SAS
1782 /*
1783 * Make the enqueue delivery mode check work on RT. If the sleeper
1784 * was initialized for hard interrupt delivery, force the mode bit.
1785 * This is a special case for hrtimer_sleepers because
1786 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1787 * fiddling with this decision is avoided at the call sites.
1788 */
1789 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1790 mode |= HRTIMER_MODE_HARD;
1791
01656464
TG
1792 hrtimer_start_expires(&sl->timer, mode);
1793}
1794EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1795
dbc1625f
SAS
1796static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1797 clockid_t clock_id, enum hrtimer_mode mode)
00362e33 1798{
1842f5a4
SAS
1799 /*
1800 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1801 * marked for hard interrupt expiry mode are moved into soft
1802 * interrupt context either for latency reasons or because the
1803 * hrtimer callback takes regular spinlocks or invokes other
1804 * functions which are not suitable for hard interrupt context on
1805 * PREEMPT_RT.
1806 *
1807 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1808 * context, but there is a latency concern: Untrusted userspace can
1809 * spawn many threads which arm timers for the same expiry time on
1810 * the same CPU. That causes a latency spike due to the wakeup of
1811 * a gazillion threads.
1812 *
1813 * OTOH, priviledged real-time user space applications rely on the
1814 * low latency of hard interrupt wakeups. If the current task is in
1815 * a real-time scheduling class, mark the mode for hard interrupt
1816 * expiry.
1817 */
1818 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1819 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1820 mode |= HRTIMER_MODE_HARD;
1821 }
1822
dbc1625f 1823 __hrtimer_init(&sl->timer, clock_id, mode);
00362e33 1824 sl->timer.function = hrtimer_wakeup;
b7449487 1825 sl->task = current;
00362e33 1826}
dbc1625f
SAS
1827
1828/**
1829 * hrtimer_init_sleeper - initialize sleeper to the given clock
1830 * @sl: sleeper to be initialized
1831 * @clock_id: the clock to be used
1832 * @mode: timer mode abs/rel
1833 */
1834void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1835 enum hrtimer_mode mode)
1836{
1837 debug_init(&sl->timer, clock_id, mode);
1838 __hrtimer_init_sleeper(sl, clock_id, mode);
1839
1840}
2bc481cf 1841EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1842
c0edd7c9 1843int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1844{
1845 switch(restart->nanosleep.type) {
0fe27955 1846#ifdef CONFIG_COMPAT_32BIT_TIME
ce41aaf4 1847 case TT_COMPAT:
9afc5eee 1848 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1849 return -EFAULT;
1850 break;
1851#endif
1852 case TT_NATIVE:
c0edd7c9 1853 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1854 return -EFAULT;
1855 break;
1856 default:
1857 BUG();
1858 }
1859 return -ERESTART_RESTARTBLOCK;
1860}
1861
669d7868 1862static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1863{
edbeda46
AV
1864 struct restart_block *restart;
1865
432569bb
RZ
1866 do {
1867 set_current_state(TASK_INTERRUPTIBLE);
01656464 1868 hrtimer_sleeper_start_expires(t, mode);
432569bb 1869
54cdfdb4 1870 if (likely(t->task))
b0f8c44f 1871 freezable_schedule();
432569bb 1872
669d7868 1873 hrtimer_cancel(&t->timer);
c9cb2e3d 1874 mode = HRTIMER_MODE_ABS;
669d7868
TG
1875
1876 } while (t->task && !signal_pending(current));
432569bb 1877
3588a085
PZ
1878 __set_current_state(TASK_RUNNING);
1879
a7602681 1880 if (!t->task)
080344b9 1881 return 0;
080344b9 1882
edbeda46
AV
1883 restart = &current->restart_block;
1884 if (restart->nanosleep.type != TT_NONE) {
a7602681 1885 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1886 struct timespec64 rmt;
edbeda46 1887
a7602681
AV
1888 if (rem <= 0)
1889 return 0;
c0edd7c9 1890 rmt = ktime_to_timespec64(rem);
a7602681 1891
ce41aaf4 1892 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1893 }
1894 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1895}
1896
fb923c4a 1897static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1898{
669d7868 1899 struct hrtimer_sleeper t;
a7602681 1900 int ret;
10c94ec1 1901
dbc1625f
SAS
1902 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1903 HRTIMER_MODE_ABS);
cc584b21 1904 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
a7602681 1905 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1906 destroy_hrtimer_on_stack(&t.timer);
1907 return ret;
10c94ec1
TG
1908}
1909
938e7cf2 1910long hrtimer_nanosleep(const struct timespec64 *rqtp,
10c94ec1
TG
1911 const enum hrtimer_mode mode, const clockid_t clockid)
1912{
a7602681 1913 struct restart_block *restart;
669d7868 1914 struct hrtimer_sleeper t;
237fc6e7 1915 int ret = 0;
da8b44d5 1916 u64 slack;
3bd01206
AV
1917
1918 slack = current->timer_slack_ns;
aab03e05 1919 if (dl_task(current) || rt_task(current))
3bd01206 1920 slack = 0;
10c94ec1 1921
dbc1625f 1922 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
ad196384 1923 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
a7602681
AV
1924 ret = do_nanosleep(&t, mode);
1925 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1926 goto out;
10c94ec1 1927
7978672c 1928 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1929 if (mode == HRTIMER_MODE_ABS) {
1930 ret = -ERESTARTNOHAND;
1931 goto out;
1932 }
10c94ec1 1933
a7602681 1934 restart = &current->restart_block;
1711ef38 1935 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1936 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1937 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1938out:
1939 destroy_hrtimer_on_stack(&t.timer);
1940 return ret;
10c94ec1
TG
1941}
1942
01909974
DD
1943#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1944
1945SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1946 struct __kernel_timespec __user *, rmtp)
6ba1b912 1947{
c0edd7c9 1948 struct timespec64 tu;
6ba1b912 1949
c0edd7c9 1950 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1951 return -EFAULT;
1952
c0edd7c9 1953 if (!timespec64_valid(&tu))
6ba1b912
TG
1954 return -EINVAL;
1955
edbeda46 1956 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1957 current->restart_block.nanosleep.rmtp = rmtp;
c0edd7c9 1958 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1959}
1960
01909974
DD
1961#endif
1962
b5793b0d 1963#ifdef CONFIG_COMPAT_32BIT_TIME
edbeda46 1964
8dabe724 1965SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
9afc5eee 1966 struct old_timespec32 __user *, rmtp)
edbeda46 1967{
c0edd7c9 1968 struct timespec64 tu;
edbeda46 1969
9afc5eee 1970 if (get_old_timespec32(&tu, rqtp))
edbeda46
AV
1971 return -EFAULT;
1972
c0edd7c9 1973 if (!timespec64_valid(&tu))
edbeda46
AV
1974 return -EINVAL;
1975
1976 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1977 current->restart_block.nanosleep.compat_rmtp = rmtp;
c0edd7c9 1978 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
edbeda46
AV
1979}
1980#endif
1981
c0a31329
TG
1982/*
1983 * Functions related to boot-time initialization:
1984 */
27590dc1 1985int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1986{
3c8aa39d 1987 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1988 int i;
1989
998adc3d 1990 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1991 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1992 timerqueue_init_head(&cpu_base->clock_base[i].active);
1993 }
3c8aa39d 1994
cddd0248 1995 cpu_base->cpu = cpu;
303c146d 1996 cpu_base->active_bases = 0;
28bfd18b 1997 cpu_base->hres_active = 0;
303c146d
TG
1998 cpu_base->hang_detected = 0;
1999 cpu_base->next_timer = NULL;
2000 cpu_base->softirq_next_timer = NULL;
07a9a7ea 2001 cpu_base->expires_next = KTIME_MAX;
5da70160 2002 cpu_base->softirq_expires_next = KTIME_MAX;
f61eff83 2003 hrtimer_cpu_base_init_expiry_lock(cpu_base);
27590dc1 2004 return 0;
c0a31329
TG
2005}
2006
2007#ifdef CONFIG_HOTPLUG_CPU
2008
ca109491 2009static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 2010 struct hrtimer_clock_base *new_base)
c0a31329
TG
2011{
2012 struct hrtimer *timer;
998adc3d 2013 struct timerqueue_node *node;
c0a31329 2014
998adc3d
JS
2015 while ((node = timerqueue_getnext(&old_base->active))) {
2016 timer = container_of(node, struct hrtimer, node);
54cdfdb4 2017 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 2018 debug_deactivate(timer);
b00c1a99
TG
2019
2020 /*
c04dca02 2021 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
2022 * timer could be seen as !active and just vanish away
2023 * under us on another CPU
2024 */
c04dca02 2025 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 2026 timer->base = new_base;
54cdfdb4 2027 /*
e3f1d883
TG
2028 * Enqueue the timers on the new cpu. This does not
2029 * reprogram the event device in case the timer
2030 * expires before the earliest on this CPU, but we run
2031 * hrtimer_interrupt after we migrated everything to
2032 * sort out already expired timers and reprogram the
2033 * event device.
54cdfdb4 2034 */
63e2ed36 2035 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
2036 }
2037}
2038
27590dc1 2039int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 2040{
3c8aa39d 2041 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 2042 int i;
c0a31329 2043
37810659 2044 BUG_ON(cpu_online(scpu));
37810659 2045 tick_cancel_sched_timer(scpu);
731a55ba 2046
5da70160
AMG
2047 /*
2048 * this BH disable ensures that raise_softirq_irqoff() does
2049 * not wakeup ksoftirqd (and acquire the pi-lock) while
2050 * holding the cpu_base lock
2051 */
2052 local_bh_disable();
731a55ba
TG
2053 local_irq_disable();
2054 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 2055 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
2056 /*
2057 * The caller is globally serialized and nobody else
2058 * takes two locks at once, deadlock is not possible.
2059 */
ecb49d1a
TG
2060 raw_spin_lock(&new_base->lock);
2061 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 2062
3c8aa39d 2063 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 2064 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 2065 &new_base->clock_base[i]);
c0a31329
TG
2066 }
2067
5da70160
AMG
2068 /*
2069 * The migration might have changed the first expiring softirq
2070 * timer on this CPU. Update it.
2071 */
2072 hrtimer_update_softirq_timer(new_base, false);
2073
ecb49d1a
TG
2074 raw_spin_unlock(&old_base->lock);
2075 raw_spin_unlock(&new_base->lock);
37810659 2076
731a55ba
TG
2077 /* Check, if we got expired work to do */
2078 __hrtimer_peek_ahead_timers();
2079 local_irq_enable();
5da70160 2080 local_bh_enable();
27590dc1 2081 return 0;
c0a31329 2082}
37810659 2083
c0a31329
TG
2084#endif /* CONFIG_HOTPLUG_CPU */
2085
c0a31329
TG
2086void __init hrtimers_init(void)
2087{
27590dc1 2088 hrtimers_prepare_cpu(smp_processor_id());
5da70160 2089 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
c0a31329
TG
2090}
2091
7bb67439 2092/**
351b3f7a 2093 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 2094 * @expires: timeout value (ktime_t)
654c8e0b 2095 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
2096 * @mode: timer mode
2097 * @clock_id: timer clock to be used
7bb67439 2098 */
351b3f7a 2099int __sched
da8b44d5 2100schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 2101 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
2102{
2103 struct hrtimer_sleeper t;
2104
2105 /*
2106 * Optimize when a zero timeout value is given. It does not
2107 * matter whether this is an absolute or a relative time.
2108 */
2456e855 2109 if (expires && *expires == 0) {
7bb67439
AV
2110 __set_current_state(TASK_RUNNING);
2111 return 0;
2112 }
2113
2114 /*
43b21013 2115 * A NULL parameter means "infinite"
7bb67439
AV
2116 */
2117 if (!expires) {
2118 schedule();
7bb67439
AV
2119 return -EINTR;
2120 }
2121
dbc1625f 2122 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
654c8e0b 2123 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
01656464 2124 hrtimer_sleeper_start_expires(&t, mode);
7bb67439
AV
2125
2126 if (likely(t.task))
2127 schedule();
2128
2129 hrtimer_cancel(&t.timer);
2130 destroy_hrtimer_on_stack(&t.timer);
2131
2132 __set_current_state(TASK_RUNNING);
2133
2134 return !t.task ? 0 : -EINTR;
2135}
351b3f7a
CE
2136
2137/**
2138 * schedule_hrtimeout_range - sleep until timeout
2139 * @expires: timeout value (ktime_t)
2140 * @delta: slack in expires timeout (ktime_t)
90777713 2141 * @mode: timer mode
351b3f7a
CE
2142 *
2143 * Make the current task sleep until the given expiry time has
2144 * elapsed. The routine will return immediately unless
2145 * the current task state has been set (see set_current_state()).
2146 *
2147 * The @delta argument gives the kernel the freedom to schedule the
2148 * actual wakeup to a time that is both power and performance friendly.
2149 * The kernel give the normal best effort behavior for "@expires+@delta",
2150 * but may decide to fire the timer earlier, but no earlier than @expires.
2151 *
2152 * You can set the task state as follows -
2153 *
2154 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
2155 * pass before the routine returns unless the current task is explicitly
2156 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
2157 *
2158 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
2159 * delivered to the current task or the current task is explicitly woken
2160 * up.
351b3f7a
CE
2161 *
2162 * The current task state is guaranteed to be TASK_RUNNING when this
2163 * routine returns.
2164 *
4b7e9cf9
DA
2165 * Returns 0 when the timer has expired. If the task was woken before the
2166 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2167 * by an explicit wakeup, it returns -EINTR.
351b3f7a 2168 */
da8b44d5 2169int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
2170 const enum hrtimer_mode mode)
2171{
2172 return schedule_hrtimeout_range_clock(expires, delta, mode,
2173 CLOCK_MONOTONIC);
2174}
654c8e0b
AV
2175EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2176
2177/**
2178 * schedule_hrtimeout - sleep until timeout
2179 * @expires: timeout value (ktime_t)
90777713 2180 * @mode: timer mode
654c8e0b
AV
2181 *
2182 * Make the current task sleep until the given expiry time has
2183 * elapsed. The routine will return immediately unless
2184 * the current task state has been set (see set_current_state()).
2185 *
2186 * You can set the task state as follows -
2187 *
2188 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
2189 * pass before the routine returns unless the current task is explicitly
2190 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
2191 *
2192 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
2193 * delivered to the current task or the current task is explicitly woken
2194 * up.
654c8e0b
AV
2195 *
2196 * The current task state is guaranteed to be TASK_RUNNING when this
2197 * routine returns.
2198 *
4b7e9cf9
DA
2199 * Returns 0 when the timer has expired. If the task was woken before the
2200 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2201 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
2202 */
2203int __sched schedule_hrtimeout(ktime_t *expires,
2204 const enum hrtimer_mode mode)
2205{
2206 return schedule_hrtimeout_range(expires, 0, mode);
2207}
7bb67439 2208EXPORT_SYMBOL_GPL(schedule_hrtimeout);