CRED: Wrap current->cred and a few other accessors
[linux-2.6-block.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/smp_lock.h>
12#include <linux/notifier.h>
13#include <linux/reboot.h>
14#include <linux/prctl.h>
1da177e4
LT
15#include <linux/highuid.h>
16#include <linux/fs.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
1da177e4
LT
36
37#include <linux/compat.h>
38#include <linux/syscalls.h>
00d7c05a 39#include <linux/kprobes.h>
acce292c 40#include <linux/user_namespace.h>
1da177e4
LT
41
42#include <asm/uaccess.h>
43#include <asm/io.h>
44#include <asm/unistd.h>
45
46#ifndef SET_UNALIGN_CTL
47# define SET_UNALIGN_CTL(a,b) (-EINVAL)
48#endif
49#ifndef GET_UNALIGN_CTL
50# define GET_UNALIGN_CTL(a,b) (-EINVAL)
51#endif
52#ifndef SET_FPEMU_CTL
53# define SET_FPEMU_CTL(a,b) (-EINVAL)
54#endif
55#ifndef GET_FPEMU_CTL
56# define GET_FPEMU_CTL(a,b) (-EINVAL)
57#endif
58#ifndef SET_FPEXC_CTL
59# define SET_FPEXC_CTL(a,b) (-EINVAL)
60#endif
61#ifndef GET_FPEXC_CTL
62# define GET_FPEXC_CTL(a,b) (-EINVAL)
63#endif
651d765d
AB
64#ifndef GET_ENDIAN
65# define GET_ENDIAN(a,b) (-EINVAL)
66#endif
67#ifndef SET_ENDIAN
68# define SET_ENDIAN(a,b) (-EINVAL)
69#endif
8fb402bc
EB
70#ifndef GET_TSC_CTL
71# define GET_TSC_CTL(a) (-EINVAL)
72#endif
73#ifndef SET_TSC_CTL
74# define SET_TSC_CTL(a) (-EINVAL)
75#endif
1da177e4
LT
76
77/*
78 * this is where the system-wide overflow UID and GID are defined, for
79 * architectures that now have 32-bit UID/GID but didn't in the past
80 */
81
82int overflowuid = DEFAULT_OVERFLOWUID;
83int overflowgid = DEFAULT_OVERFLOWGID;
84
85#ifdef CONFIG_UID16
86EXPORT_SYMBOL(overflowuid);
87EXPORT_SYMBOL(overflowgid);
88#endif
89
90/*
91 * the same as above, but for filesystems which can only store a 16-bit
92 * UID and GID. as such, this is needed on all architectures
93 */
94
95int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
96int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
97
98EXPORT_SYMBOL(fs_overflowuid);
99EXPORT_SYMBOL(fs_overflowgid);
100
101/*
102 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
103 */
104
105int C_A_D = 1;
9ec52099
CLG
106struct pid *cad_pid;
107EXPORT_SYMBOL(cad_pid);
1da177e4 108
bd804eba
RW
109/*
110 * If set, this is used for preparing the system to power off.
111 */
112
113void (*pm_power_off_prepare)(void);
bd804eba 114
1da177e4
LT
115static int set_one_prio(struct task_struct *p, int niceval, int error)
116{
76aac0e9 117 uid_t euid = current_euid();
1da177e4
LT
118 int no_nice;
119
b6dff3ec
DH
120 if (p->cred->uid != euid &&
121 p->cred->euid != euid &&
122 !capable(CAP_SYS_NICE)) {
1da177e4
LT
123 error = -EPERM;
124 goto out;
125 }
e43379f1 126 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
127 error = -EACCES;
128 goto out;
129 }
130 no_nice = security_task_setnice(p, niceval);
131 if (no_nice) {
132 error = no_nice;
133 goto out;
134 }
135 if (error == -ESRCH)
136 error = 0;
137 set_user_nice(p, niceval);
138out:
139 return error;
140}
141
142asmlinkage long sys_setpriority(int which, int who, int niceval)
143{
144 struct task_struct *g, *p;
145 struct user_struct *user;
86a264ab 146 const struct cred *cred = current_cred();
1da177e4 147 int error = -EINVAL;
41487c65 148 struct pid *pgrp;
1da177e4 149
3e88c553 150 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
151 goto out;
152
153 /* normalize: avoid signed division (rounding problems) */
154 error = -ESRCH;
155 if (niceval < -20)
156 niceval = -20;
157 if (niceval > 19)
158 niceval = 19;
159
160 read_lock(&tasklist_lock);
161 switch (which) {
162 case PRIO_PROCESS:
41487c65 163 if (who)
228ebcbe 164 p = find_task_by_vpid(who);
41487c65
EB
165 else
166 p = current;
1da177e4
LT
167 if (p)
168 error = set_one_prio(p, niceval, error);
169 break;
170 case PRIO_PGRP:
41487c65 171 if (who)
b488893a 172 pgrp = find_vpid(who);
41487c65
EB
173 else
174 pgrp = task_pgrp(current);
2d70b68d 175 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 176 error = set_one_prio(p, niceval, error);
2d70b68d 177 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
178 break;
179 case PRIO_USER:
86a264ab 180 user = cred->user;
1da177e4 181 if (!who)
86a264ab
DH
182 who = cred->uid;
183 else if ((who != cred->uid) &&
184 !(user = find_user(who)))
185 goto out_unlock; /* No processes for this user */
1da177e4
LT
186
187 do_each_thread(g, p)
86a264ab 188 if (__task_cred(p)->uid == who)
1da177e4
LT
189 error = set_one_prio(p, niceval, error);
190 while_each_thread(g, p);
86a264ab 191 if (who != cred->uid)
1da177e4
LT
192 free_uid(user); /* For find_user() */
193 break;
194 }
195out_unlock:
196 read_unlock(&tasklist_lock);
197out:
198 return error;
199}
200
201/*
202 * Ugh. To avoid negative return values, "getpriority()" will
203 * not return the normal nice-value, but a negated value that
204 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
205 * to stay compatible.
206 */
207asmlinkage long sys_getpriority(int which, int who)
208{
209 struct task_struct *g, *p;
210 struct user_struct *user;
86a264ab 211 const struct cred *cred = current_cred();
1da177e4 212 long niceval, retval = -ESRCH;
41487c65 213 struct pid *pgrp;
1da177e4 214
3e88c553 215 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
216 return -EINVAL;
217
218 read_lock(&tasklist_lock);
219 switch (which) {
220 case PRIO_PROCESS:
41487c65 221 if (who)
228ebcbe 222 p = find_task_by_vpid(who);
41487c65
EB
223 else
224 p = current;
1da177e4
LT
225 if (p) {
226 niceval = 20 - task_nice(p);
227 if (niceval > retval)
228 retval = niceval;
229 }
230 break;
231 case PRIO_PGRP:
41487c65 232 if (who)
b488893a 233 pgrp = find_vpid(who);
41487c65
EB
234 else
235 pgrp = task_pgrp(current);
2d70b68d 236 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
237 niceval = 20 - task_nice(p);
238 if (niceval > retval)
239 retval = niceval;
2d70b68d 240 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
241 break;
242 case PRIO_USER:
86a264ab 243 user = (struct user_struct *) cred->user;
1da177e4 244 if (!who)
86a264ab
DH
245 who = cred->uid;
246 else if ((who != cred->uid) &&
247 !(user = find_user(who)))
248 goto out_unlock; /* No processes for this user */
1da177e4
LT
249
250 do_each_thread(g, p)
86a264ab 251 if (__task_cred(p)->uid == who) {
1da177e4
LT
252 niceval = 20 - task_nice(p);
253 if (niceval > retval)
254 retval = niceval;
255 }
256 while_each_thread(g, p);
86a264ab 257 if (who != cred->uid)
1da177e4
LT
258 free_uid(user); /* for find_user() */
259 break;
260 }
261out_unlock:
262 read_unlock(&tasklist_lock);
263
264 return retval;
265}
266
e4c94330
EB
267/**
268 * emergency_restart - reboot the system
269 *
270 * Without shutting down any hardware or taking any locks
271 * reboot the system. This is called when we know we are in
272 * trouble so this is our best effort to reboot. This is
273 * safe to call in interrupt context.
274 */
7c903473
EB
275void emergency_restart(void)
276{
277 machine_emergency_restart();
278}
279EXPORT_SYMBOL_GPL(emergency_restart);
280
ca195b7f 281void kernel_restart_prepare(char *cmd)
4a00ea1e 282{
e041c683 283 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 284 system_state = SYSTEM_RESTART;
4a00ea1e 285 device_shutdown();
58b3b71d 286 sysdev_shutdown();
e4c94330 287}
1e5d5331
RD
288
289/**
290 * kernel_restart - reboot the system
291 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 292 * or %NULL
1e5d5331
RD
293 *
294 * Shutdown everything and perform a clean reboot.
295 * This is not safe to call in interrupt context.
296 */
e4c94330
EB
297void kernel_restart(char *cmd)
298{
299 kernel_restart_prepare(cmd);
756184b7 300 if (!cmd)
4a00ea1e 301 printk(KERN_EMERG "Restarting system.\n");
756184b7 302 else
4a00ea1e 303 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
4a00ea1e
EB
304 machine_restart(cmd);
305}
306EXPORT_SYMBOL_GPL(kernel_restart);
307
4ef7229f 308static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 309{
e041c683 310 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
311 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
312 system_state = state;
313 device_shutdown();
314}
e4c94330
EB
315/**
316 * kernel_halt - halt the system
317 *
318 * Shutdown everything and perform a clean system halt.
319 */
e4c94330
EB
320void kernel_halt(void)
321{
729b4d4c 322 kernel_shutdown_prepare(SYSTEM_HALT);
58b3b71d 323 sysdev_shutdown();
4a00ea1e
EB
324 printk(KERN_EMERG "System halted.\n");
325 machine_halt();
326}
729b4d4c 327
4a00ea1e
EB
328EXPORT_SYMBOL_GPL(kernel_halt);
329
e4c94330
EB
330/**
331 * kernel_power_off - power_off the system
332 *
333 * Shutdown everything and perform a clean system power_off.
334 */
e4c94330
EB
335void kernel_power_off(void)
336{
729b4d4c 337 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
338 if (pm_power_off_prepare)
339 pm_power_off_prepare();
4047727e 340 disable_nonboot_cpus();
58b3b71d 341 sysdev_shutdown();
4a00ea1e
EB
342 printk(KERN_EMERG "Power down.\n");
343 machine_power_off();
344}
345EXPORT_SYMBOL_GPL(kernel_power_off);
1da177e4
LT
346/*
347 * Reboot system call: for obvious reasons only root may call it,
348 * and even root needs to set up some magic numbers in the registers
349 * so that some mistake won't make this reboot the whole machine.
350 * You can also set the meaning of the ctrl-alt-del-key here.
351 *
352 * reboot doesn't sync: do that yourself before calling this.
353 */
354asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
355{
356 char buffer[256];
357
358 /* We only trust the superuser with rebooting the system. */
359 if (!capable(CAP_SYS_BOOT))
360 return -EPERM;
361
362 /* For safety, we require "magic" arguments. */
363 if (magic1 != LINUX_REBOOT_MAGIC1 ||
364 (magic2 != LINUX_REBOOT_MAGIC2 &&
365 magic2 != LINUX_REBOOT_MAGIC2A &&
366 magic2 != LINUX_REBOOT_MAGIC2B &&
367 magic2 != LINUX_REBOOT_MAGIC2C))
368 return -EINVAL;
369
5e38291d
EB
370 /* Instead of trying to make the power_off code look like
371 * halt when pm_power_off is not set do it the easy way.
372 */
373 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
374 cmd = LINUX_REBOOT_CMD_HALT;
375
1da177e4
LT
376 lock_kernel();
377 switch (cmd) {
378 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 379 kernel_restart(NULL);
1da177e4
LT
380 break;
381
382 case LINUX_REBOOT_CMD_CAD_ON:
383 C_A_D = 1;
384 break;
385
386 case LINUX_REBOOT_CMD_CAD_OFF:
387 C_A_D = 0;
388 break;
389
390 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 391 kernel_halt();
1da177e4
LT
392 unlock_kernel();
393 do_exit(0);
394 break;
395
396 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 397 kernel_power_off();
1da177e4
LT
398 unlock_kernel();
399 do_exit(0);
400 break;
401
402 case LINUX_REBOOT_CMD_RESTART2:
403 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
404 unlock_kernel();
405 return -EFAULT;
406 }
407 buffer[sizeof(buffer) - 1] = '\0';
408
4a00ea1e 409 kernel_restart(buffer);
1da177e4
LT
410 break;
411
3ab83521 412#ifdef CONFIG_KEXEC
dc009d92 413 case LINUX_REBOOT_CMD_KEXEC:
3ab83521
HY
414 {
415 int ret;
416 ret = kernel_kexec();
417 unlock_kernel();
418 return ret;
419 }
420#endif
4a00ea1e 421
b0cb1a19 422#ifdef CONFIG_HIBERNATION
1da177e4
LT
423 case LINUX_REBOOT_CMD_SW_SUSPEND:
424 {
a3d25c27 425 int ret = hibernate();
1da177e4
LT
426 unlock_kernel();
427 return ret;
428 }
429#endif
430
431 default:
432 unlock_kernel();
433 return -EINVAL;
434 }
435 unlock_kernel();
436 return 0;
437}
438
65f27f38 439static void deferred_cad(struct work_struct *dummy)
1da177e4 440{
abcd9e51 441 kernel_restart(NULL);
1da177e4
LT
442}
443
444/*
445 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
446 * As it's called within an interrupt, it may NOT sync: the only choice
447 * is whether to reboot at once, or just ignore the ctrl-alt-del.
448 */
449void ctrl_alt_del(void)
450{
65f27f38 451 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
452
453 if (C_A_D)
454 schedule_work(&cad_work);
455 else
9ec52099 456 kill_cad_pid(SIGINT, 1);
1da177e4
LT
457}
458
1da177e4
LT
459/*
460 * Unprivileged users may change the real gid to the effective gid
461 * or vice versa. (BSD-style)
462 *
463 * If you set the real gid at all, or set the effective gid to a value not
464 * equal to the real gid, then the saved gid is set to the new effective gid.
465 *
466 * This makes it possible for a setgid program to completely drop its
467 * privileges, which is often a useful assertion to make when you are doing
468 * a security audit over a program.
469 *
470 * The general idea is that a program which uses just setregid() will be
471 * 100% compatible with BSD. A program which uses just setgid() will be
472 * 100% compatible with POSIX with saved IDs.
473 *
474 * SMP: There are not races, the GIDs are checked only by filesystem
475 * operations (as far as semantic preservation is concerned).
476 */
477asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
478{
b6dff3ec
DH
479 struct cred *cred = current->cred;
480 int old_rgid = cred->gid;
481 int old_egid = cred->egid;
1da177e4
LT
482 int new_rgid = old_rgid;
483 int new_egid = old_egid;
484 int retval;
485
486 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
487 if (retval)
488 return retval;
489
490 if (rgid != (gid_t) -1) {
491 if ((old_rgid == rgid) ||
b6dff3ec 492 (cred->egid == rgid) ||
1da177e4
LT
493 capable(CAP_SETGID))
494 new_rgid = rgid;
495 else
496 return -EPERM;
497 }
498 if (egid != (gid_t) -1) {
499 if ((old_rgid == egid) ||
b6dff3ec
DH
500 (cred->egid == egid) ||
501 (cred->sgid == egid) ||
1da177e4
LT
502 capable(CAP_SETGID))
503 new_egid = egid;
756184b7 504 else
1da177e4 505 return -EPERM;
1da177e4 506 }
756184b7 507 if (new_egid != old_egid) {
6c5d5238 508 set_dumpable(current->mm, suid_dumpable);
d59dd462 509 smp_wmb();
1da177e4
LT
510 }
511 if (rgid != (gid_t) -1 ||
512 (egid != (gid_t) -1 && egid != old_rgid))
b6dff3ec
DH
513 cred->sgid = new_egid;
514 cred->fsgid = new_egid;
515 cred->egid = new_egid;
516 cred->gid = new_rgid;
1da177e4 517 key_fsgid_changed(current);
9f46080c 518 proc_id_connector(current, PROC_EVENT_GID);
1da177e4
LT
519 return 0;
520}
521
522/*
523 * setgid() is implemented like SysV w/ SAVED_IDS
524 *
525 * SMP: Same implicit races as above.
526 */
527asmlinkage long sys_setgid(gid_t gid)
528{
b6dff3ec
DH
529 struct cred *cred = current->cred;
530 int old_egid = cred->egid;
1da177e4
LT
531 int retval;
532
533 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
534 if (retval)
535 return retval;
536
756184b7
CP
537 if (capable(CAP_SETGID)) {
538 if (old_egid != gid) {
6c5d5238 539 set_dumpable(current->mm, suid_dumpable);
d59dd462 540 smp_wmb();
1da177e4 541 }
b6dff3ec
DH
542 cred->gid = cred->egid = cred->sgid = cred->fsgid = gid;
543 } else if ((gid == cred->gid) || (gid == cred->sgid)) {
756184b7 544 if (old_egid != gid) {
6c5d5238 545 set_dumpable(current->mm, suid_dumpable);
d59dd462 546 smp_wmb();
1da177e4 547 }
b6dff3ec 548 cred->egid = cred->fsgid = gid;
1da177e4
LT
549 }
550 else
551 return -EPERM;
552
553 key_fsgid_changed(current);
9f46080c 554 proc_id_connector(current, PROC_EVENT_GID);
1da177e4
LT
555 return 0;
556}
557
558static int set_user(uid_t new_ruid, int dumpclear)
559{
560 struct user_struct *new_user;
561
acce292c 562 new_user = alloc_uid(current->nsproxy->user_ns, new_ruid);
1da177e4
LT
563 if (!new_user)
564 return -EAGAIN;
565
566 if (atomic_read(&new_user->processes) >=
567 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
acce292c 568 new_user != current->nsproxy->user_ns->root_user) {
1da177e4
LT
569 free_uid(new_user);
570 return -EAGAIN;
571 }
572
573 switch_uid(new_user);
574
756184b7 575 if (dumpclear) {
6c5d5238 576 set_dumpable(current->mm, suid_dumpable);
d59dd462 577 smp_wmb();
1da177e4 578 }
b6dff3ec 579 current->cred->uid = new_ruid;
1da177e4
LT
580 return 0;
581}
582
583/*
584 * Unprivileged users may change the real uid to the effective uid
585 * or vice versa. (BSD-style)
586 *
587 * If you set the real uid at all, or set the effective uid to a value not
588 * equal to the real uid, then the saved uid is set to the new effective uid.
589 *
590 * This makes it possible for a setuid program to completely drop its
591 * privileges, which is often a useful assertion to make when you are doing
592 * a security audit over a program.
593 *
594 * The general idea is that a program which uses just setreuid() will be
595 * 100% compatible with BSD. A program which uses just setuid() will be
596 * 100% compatible with POSIX with saved IDs.
597 */
598asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
599{
b6dff3ec 600 struct cred *cred = current->cred;
1da177e4
LT
601 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
602 int retval;
603
604 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
605 if (retval)
606 return retval;
607
b6dff3ec
DH
608 new_ruid = old_ruid = cred->uid;
609 new_euid = old_euid = cred->euid;
610 old_suid = cred->suid;
1da177e4
LT
611
612 if (ruid != (uid_t) -1) {
613 new_ruid = ruid;
614 if ((old_ruid != ruid) &&
b6dff3ec 615 (cred->euid != ruid) &&
1da177e4
LT
616 !capable(CAP_SETUID))
617 return -EPERM;
618 }
619
620 if (euid != (uid_t) -1) {
621 new_euid = euid;
622 if ((old_ruid != euid) &&
b6dff3ec
DH
623 (cred->euid != euid) &&
624 (cred->suid != euid) &&
1da177e4
LT
625 !capable(CAP_SETUID))
626 return -EPERM;
627 }
628
629 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
630 return -EAGAIN;
631
756184b7 632 if (new_euid != old_euid) {
6c5d5238 633 set_dumpable(current->mm, suid_dumpable);
d59dd462 634 smp_wmb();
1da177e4 635 }
b6dff3ec 636 cred->fsuid = cred->euid = new_euid;
1da177e4
LT
637 if (ruid != (uid_t) -1 ||
638 (euid != (uid_t) -1 && euid != old_ruid))
b6dff3ec
DH
639 cred->suid = cred->euid;
640 cred->fsuid = cred->euid;
1da177e4
LT
641
642 key_fsuid_changed(current);
9f46080c 643 proc_id_connector(current, PROC_EVENT_UID);
1da177e4
LT
644
645 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
646}
647
648
649
650/*
651 * setuid() is implemented like SysV with SAVED_IDS
652 *
653 * Note that SAVED_ID's is deficient in that a setuid root program
654 * like sendmail, for example, cannot set its uid to be a normal
655 * user and then switch back, because if you're root, setuid() sets
656 * the saved uid too. If you don't like this, blame the bright people
657 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
658 * will allow a root program to temporarily drop privileges and be able to
659 * regain them by swapping the real and effective uid.
660 */
661asmlinkage long sys_setuid(uid_t uid)
662{
b6dff3ec
DH
663 struct cred *cred = current->cred;
664 int old_euid = cred->euid;
a09c17a6 665 int old_ruid, old_suid, new_suid;
1da177e4
LT
666 int retval;
667
668 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
669 if (retval)
670 return retval;
671
b6dff3ec
DH
672 old_ruid = cred->uid;
673 old_suid = cred->suid;
1da177e4
LT
674 new_suid = old_suid;
675
676 if (capable(CAP_SETUID)) {
677 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
678 return -EAGAIN;
679 new_suid = uid;
b6dff3ec 680 } else if ((uid != cred->uid) && (uid != new_suid))
1da177e4
LT
681 return -EPERM;
682
756184b7 683 if (old_euid != uid) {
6c5d5238 684 set_dumpable(current->mm, suid_dumpable);
d59dd462 685 smp_wmb();
1da177e4 686 }
b6dff3ec
DH
687 cred->fsuid = cred->euid = uid;
688 cred->suid = new_suid;
1da177e4
LT
689
690 key_fsuid_changed(current);
9f46080c 691 proc_id_connector(current, PROC_EVENT_UID);
1da177e4
LT
692
693 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
694}
695
696
697/*
698 * This function implements a generic ability to update ruid, euid,
699 * and suid. This allows you to implement the 4.4 compatible seteuid().
700 */
701asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
702{
b6dff3ec
DH
703 struct cred *cred = current->cred;
704 int old_ruid = cred->uid;
705 int old_euid = cred->euid;
706 int old_suid = cred->suid;
1da177e4
LT
707 int retval;
708
709 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
710 if (retval)
711 return retval;
712
713 if (!capable(CAP_SETUID)) {
b6dff3ec
DH
714 if ((ruid != (uid_t) -1) && (ruid != cred->uid) &&
715 (ruid != cred->euid) && (ruid != cred->suid))
1da177e4 716 return -EPERM;
b6dff3ec
DH
717 if ((euid != (uid_t) -1) && (euid != cred->uid) &&
718 (euid != cred->euid) && (euid != cred->suid))
1da177e4 719 return -EPERM;
b6dff3ec
DH
720 if ((suid != (uid_t) -1) && (suid != cred->uid) &&
721 (suid != cred->euid) && (suid != cred->suid))
1da177e4
LT
722 return -EPERM;
723 }
724 if (ruid != (uid_t) -1) {
b6dff3ec
DH
725 if (ruid != cred->uid &&
726 set_user(ruid, euid != cred->euid) < 0)
1da177e4
LT
727 return -EAGAIN;
728 }
729 if (euid != (uid_t) -1) {
b6dff3ec 730 if (euid != cred->euid) {
6c5d5238 731 set_dumpable(current->mm, suid_dumpable);
d59dd462 732 smp_wmb();
1da177e4 733 }
b6dff3ec 734 cred->euid = euid;
1da177e4 735 }
b6dff3ec 736 cred->fsuid = cred->euid;
1da177e4 737 if (suid != (uid_t) -1)
b6dff3ec 738 cred->suid = suid;
1da177e4
LT
739
740 key_fsuid_changed(current);
9f46080c 741 proc_id_connector(current, PROC_EVENT_UID);
1da177e4
LT
742
743 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
744}
745
746asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
747{
86a264ab 748 const struct cred *cred = current_cred();
1da177e4
LT
749 int retval;
750
86a264ab
DH
751 if (!(retval = put_user(cred->uid, ruid)) &&
752 !(retval = put_user(cred->euid, euid)))
b6dff3ec 753 retval = put_user(cred->suid, suid);
1da177e4
LT
754
755 return retval;
756}
757
758/*
759 * Same as above, but for rgid, egid, sgid.
760 */
761asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
762{
b6dff3ec 763 struct cred *cred = current->cred;
1da177e4
LT
764 int retval;
765
766 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
767 if (retval)
768 return retval;
769
770 if (!capable(CAP_SETGID)) {
b6dff3ec
DH
771 if ((rgid != (gid_t) -1) && (rgid != cred->gid) &&
772 (rgid != cred->egid) && (rgid != cred->sgid))
1da177e4 773 return -EPERM;
b6dff3ec
DH
774 if ((egid != (gid_t) -1) && (egid != cred->gid) &&
775 (egid != cred->egid) && (egid != cred->sgid))
1da177e4 776 return -EPERM;
b6dff3ec
DH
777 if ((sgid != (gid_t) -1) && (sgid != cred->gid) &&
778 (sgid != cred->egid) && (sgid != cred->sgid))
1da177e4
LT
779 return -EPERM;
780 }
781 if (egid != (gid_t) -1) {
b6dff3ec 782 if (egid != cred->egid) {
6c5d5238 783 set_dumpable(current->mm, suid_dumpable);
d59dd462 784 smp_wmb();
1da177e4 785 }
b6dff3ec 786 cred->egid = egid;
1da177e4 787 }
b6dff3ec 788 cred->fsgid = cred->egid;
1da177e4 789 if (rgid != (gid_t) -1)
b6dff3ec 790 cred->gid = rgid;
1da177e4 791 if (sgid != (gid_t) -1)
b6dff3ec 792 cred->sgid = sgid;
1da177e4
LT
793
794 key_fsgid_changed(current);
9f46080c 795 proc_id_connector(current, PROC_EVENT_GID);
1da177e4
LT
796 return 0;
797}
798
799asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
800{
86a264ab 801 const struct cred *cred = current_cred();
1da177e4
LT
802 int retval;
803
86a264ab
DH
804 if (!(retval = put_user(cred->gid, rgid)) &&
805 !(retval = put_user(cred->egid, egid)))
b6dff3ec 806 retval = put_user(cred->sgid, sgid);
1da177e4
LT
807
808 return retval;
809}
810
811
812/*
813 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
814 * is used for "access()" and for the NFS daemon (letting nfsd stay at
815 * whatever uid it wants to). It normally shadows "euid", except when
816 * explicitly set by setfsuid() or for access..
817 */
818asmlinkage long sys_setfsuid(uid_t uid)
819{
b6dff3ec 820 struct cred *cred = current->cred;
1da177e4
LT
821 int old_fsuid;
822
b6dff3ec 823 old_fsuid = cred->fsuid;
1da177e4
LT
824 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
825 return old_fsuid;
826
b6dff3ec
DH
827 if (uid == cred->uid || uid == cred->euid ||
828 uid == cred->suid || uid == cred->fsuid ||
756184b7
CP
829 capable(CAP_SETUID)) {
830 if (uid != old_fsuid) {
6c5d5238 831 set_dumpable(current->mm, suid_dumpable);
d59dd462 832 smp_wmb();
1da177e4 833 }
b6dff3ec 834 cred->fsuid = uid;
1da177e4
LT
835 }
836
837 key_fsuid_changed(current);
9f46080c 838 proc_id_connector(current, PROC_EVENT_UID);
1da177e4
LT
839
840 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
841
842 return old_fsuid;
843}
844
845/*
f42df9e6 846 * Samma på svenska..
1da177e4
LT
847 */
848asmlinkage long sys_setfsgid(gid_t gid)
849{
b6dff3ec 850 struct cred *cred = current->cred;
1da177e4
LT
851 int old_fsgid;
852
b6dff3ec 853 old_fsgid = cred->fsgid;
1da177e4
LT
854 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
855 return old_fsgid;
856
b6dff3ec
DH
857 if (gid == cred->gid || gid == cred->egid ||
858 gid == cred->sgid || gid == cred->fsgid ||
756184b7
CP
859 capable(CAP_SETGID)) {
860 if (gid != old_fsgid) {
6c5d5238 861 set_dumpable(current->mm, suid_dumpable);
d59dd462 862 smp_wmb();
1da177e4 863 }
b6dff3ec 864 cred->fsgid = gid;
1da177e4 865 key_fsgid_changed(current);
9f46080c 866 proc_id_connector(current, PROC_EVENT_GID);
1da177e4
LT
867 }
868 return old_fsgid;
869}
870
f06febc9
FM
871void do_sys_times(struct tms *tms)
872{
873 struct task_cputime cputime;
874 cputime_t cutime, cstime;
875
876 spin_lock_irq(&current->sighand->siglock);
877 thread_group_cputime(current, &cputime);
878 cutime = current->signal->cutime;
879 cstime = current->signal->cstime;
880 spin_unlock_irq(&current->sighand->siglock);
881 tms->tms_utime = cputime_to_clock_t(cputime.utime);
882 tms->tms_stime = cputime_to_clock_t(cputime.stime);
883 tms->tms_cutime = cputime_to_clock_t(cutime);
884 tms->tms_cstime = cputime_to_clock_t(cstime);
885}
886
1da177e4
LT
887asmlinkage long sys_times(struct tms __user * tbuf)
888{
1da177e4
LT
889 if (tbuf) {
890 struct tms tmp;
f06febc9
FM
891
892 do_sys_times(&tmp);
1da177e4
LT
893 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
894 return -EFAULT;
895 }
896 return (long) jiffies_64_to_clock_t(get_jiffies_64());
897}
898
899/*
900 * This needs some heavy checking ...
901 * I just haven't the stomach for it. I also don't fully
902 * understand sessions/pgrp etc. Let somebody who does explain it.
903 *
904 * OK, I think I have the protection semantics right.... this is really
905 * only important on a multi-user system anyway, to make sure one user
906 * can't send a signal to a process owned by another. -TYT, 12/12/91
907 *
908 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
909 * LBT 04.03.94
910 */
1da177e4
LT
911asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
912{
913 struct task_struct *p;
ee0acf90 914 struct task_struct *group_leader = current->group_leader;
4e021306
ON
915 struct pid *pgrp;
916 int err;
1da177e4
LT
917
918 if (!pid)
b488893a 919 pid = task_pid_vnr(group_leader);
1da177e4
LT
920 if (!pgid)
921 pgid = pid;
922 if (pgid < 0)
923 return -EINVAL;
924
925 /* From this point forward we keep holding onto the tasklist lock
926 * so that our parent does not change from under us. -DaveM
927 */
928 write_lock_irq(&tasklist_lock);
929
930 err = -ESRCH;
4e021306 931 p = find_task_by_vpid(pid);
1da177e4
LT
932 if (!p)
933 goto out;
934
935 err = -EINVAL;
936 if (!thread_group_leader(p))
937 goto out;
938
4e021306 939 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 940 err = -EPERM;
41487c65 941 if (task_session(p) != task_session(group_leader))
1da177e4
LT
942 goto out;
943 err = -EACCES;
944 if (p->did_exec)
945 goto out;
946 } else {
947 err = -ESRCH;
ee0acf90 948 if (p != group_leader)
1da177e4
LT
949 goto out;
950 }
951
952 err = -EPERM;
953 if (p->signal->leader)
954 goto out;
955
4e021306 956 pgrp = task_pid(p);
1da177e4 957 if (pgid != pid) {
b488893a 958 struct task_struct *g;
1da177e4 959
4e021306
ON
960 pgrp = find_vpid(pgid);
961 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 962 if (!g || task_session(g) != task_session(group_leader))
f020bc46 963 goto out;
1da177e4
LT
964 }
965
1da177e4
LT
966 err = security_task_setpgid(p, pgid);
967 if (err)
968 goto out;
969
4e021306 970 if (task_pgrp(p) != pgrp) {
83beaf3c 971 change_pid(p, PIDTYPE_PGID, pgrp);
4e021306 972 set_task_pgrp(p, pid_nr(pgrp));
1da177e4
LT
973 }
974
975 err = 0;
976out:
977 /* All paths lead to here, thus we are safe. -DaveM */
978 write_unlock_irq(&tasklist_lock);
979 return err;
980}
981
982asmlinkage long sys_getpgid(pid_t pid)
983{
12a3de0a
ON
984 struct task_struct *p;
985 struct pid *grp;
986 int retval;
987
988 rcu_read_lock();
756184b7 989 if (!pid)
12a3de0a 990 grp = task_pgrp(current);
756184b7 991 else {
1da177e4 992 retval = -ESRCH;
12a3de0a
ON
993 p = find_task_by_vpid(pid);
994 if (!p)
995 goto out;
996 grp = task_pgrp(p);
997 if (!grp)
998 goto out;
999
1000 retval = security_task_getpgid(p);
1001 if (retval)
1002 goto out;
1da177e4 1003 }
12a3de0a
ON
1004 retval = pid_vnr(grp);
1005out:
1006 rcu_read_unlock();
1007 return retval;
1da177e4
LT
1008}
1009
1010#ifdef __ARCH_WANT_SYS_GETPGRP
1011
1012asmlinkage long sys_getpgrp(void)
1013{
12a3de0a 1014 return sys_getpgid(0);
1da177e4
LT
1015}
1016
1017#endif
1018
1019asmlinkage long sys_getsid(pid_t pid)
1020{
1dd768c0
ON
1021 struct task_struct *p;
1022 struct pid *sid;
1023 int retval;
1024
1025 rcu_read_lock();
756184b7 1026 if (!pid)
1dd768c0 1027 sid = task_session(current);
756184b7 1028 else {
1da177e4 1029 retval = -ESRCH;
1dd768c0
ON
1030 p = find_task_by_vpid(pid);
1031 if (!p)
1032 goto out;
1033 sid = task_session(p);
1034 if (!sid)
1035 goto out;
1036
1037 retval = security_task_getsid(p);
1038 if (retval)
1039 goto out;
1da177e4 1040 }
1dd768c0
ON
1041 retval = pid_vnr(sid);
1042out:
1043 rcu_read_unlock();
1044 return retval;
1da177e4
LT
1045}
1046
1047asmlinkage long sys_setsid(void)
1048{
e19f247a 1049 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1050 struct pid *sid = task_pid(group_leader);
1051 pid_t session = pid_vnr(sid);
1da177e4
LT
1052 int err = -EPERM;
1053
1da177e4 1054 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1055 /* Fail if I am already a session leader */
1056 if (group_leader->signal->leader)
1057 goto out;
1058
430c6231
ON
1059 /* Fail if a process group id already exists that equals the
1060 * proposed session id.
390e2ff0 1061 */
6806aac6 1062 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1063 goto out;
1064
e19f247a 1065 group_leader->signal->leader = 1;
8520d7c7 1066 __set_special_pids(sid);
24ec839c 1067
9c9f4ded 1068 proc_clear_tty(group_leader);
24ec839c 1069
e4cc0a9c 1070 err = session;
1da177e4
LT
1071out:
1072 write_unlock_irq(&tasklist_lock);
1da177e4
LT
1073 return err;
1074}
1075
1076/*
1077 * Supplementary group IDs
1078 */
1079
1080/* init to 2 - one for init_task, one to ensure it is never freed */
1081struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1082
1083struct group_info *groups_alloc(int gidsetsize)
1084{
1085 struct group_info *group_info;
1086 int nblocks;
1087 int i;
1088
1089 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1090 /* Make sure we always allocate at least one indirect block pointer */
1091 nblocks = nblocks ? : 1;
1092 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1093 if (!group_info)
1094 return NULL;
1095 group_info->ngroups = gidsetsize;
1096 group_info->nblocks = nblocks;
1097 atomic_set(&group_info->usage, 1);
1098
756184b7 1099 if (gidsetsize <= NGROUPS_SMALL)
1da177e4 1100 group_info->blocks[0] = group_info->small_block;
756184b7 1101 else {
1da177e4
LT
1102 for (i = 0; i < nblocks; i++) {
1103 gid_t *b;
1104 b = (void *)__get_free_page(GFP_USER);
1105 if (!b)
1106 goto out_undo_partial_alloc;
1107 group_info->blocks[i] = b;
1108 }
1109 }
1110 return group_info;
1111
1112out_undo_partial_alloc:
1113 while (--i >= 0) {
1114 free_page((unsigned long)group_info->blocks[i]);
1115 }
1116 kfree(group_info);
1117 return NULL;
1118}
1119
1120EXPORT_SYMBOL(groups_alloc);
1121
1122void groups_free(struct group_info *group_info)
1123{
1124 if (group_info->blocks[0] != group_info->small_block) {
1125 int i;
1126 for (i = 0; i < group_info->nblocks; i++)
1127 free_page((unsigned long)group_info->blocks[i]);
1128 }
1129 kfree(group_info);
1130}
1131
1132EXPORT_SYMBOL(groups_free);
1133
1134/* export the group_info to a user-space array */
1135static int groups_to_user(gid_t __user *grouplist,
1136 struct group_info *group_info)
1137{
1138 int i;
1bf47346 1139 unsigned int count = group_info->ngroups;
1da177e4
LT
1140
1141 for (i = 0; i < group_info->nblocks; i++) {
1bf47346
ED
1142 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1143 unsigned int len = cp_count * sizeof(*grouplist);
1da177e4 1144
1bf47346 1145 if (copy_to_user(grouplist, group_info->blocks[i], len))
1da177e4
LT
1146 return -EFAULT;
1147
1bf47346 1148 grouplist += NGROUPS_PER_BLOCK;
1da177e4
LT
1149 count -= cp_count;
1150 }
1151 return 0;
1152}
1153
1154/* fill a group_info from a user-space array - it must be allocated already */
1155static int groups_from_user(struct group_info *group_info,
1156 gid_t __user *grouplist)
756184b7 1157{
1da177e4 1158 int i;
1bf47346 1159 unsigned int count = group_info->ngroups;
1da177e4
LT
1160
1161 for (i = 0; i < group_info->nblocks; i++) {
1bf47346
ED
1162 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1163 unsigned int len = cp_count * sizeof(*grouplist);
1da177e4 1164
1bf47346 1165 if (copy_from_user(group_info->blocks[i], grouplist, len))
1da177e4
LT
1166 return -EFAULT;
1167
1bf47346 1168 grouplist += NGROUPS_PER_BLOCK;
1da177e4
LT
1169 count -= cp_count;
1170 }
1171 return 0;
1172}
1173
ebe8b541 1174/* a simple Shell sort */
1da177e4
LT
1175static void groups_sort(struct group_info *group_info)
1176{
1177 int base, max, stride;
1178 int gidsetsize = group_info->ngroups;
1179
1180 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1181 ; /* nothing */
1182 stride /= 3;
1183
1184 while (stride) {
1185 max = gidsetsize - stride;
1186 for (base = 0; base < max; base++) {
1187 int left = base;
1188 int right = left + stride;
1189 gid_t tmp = GROUP_AT(group_info, right);
1190
1191 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1192 GROUP_AT(group_info, right) =
1193 GROUP_AT(group_info, left);
1194 right = left;
1195 left -= stride;
1196 }
1197 GROUP_AT(group_info, right) = tmp;
1198 }
1199 stride /= 3;
1200 }
1201}
1202
1203/* a simple bsearch */
86a264ab 1204int groups_search(const struct group_info *group_info, gid_t grp)
1da177e4 1205{
d74beb9f 1206 unsigned int left, right;
1da177e4
LT
1207
1208 if (!group_info)
1209 return 0;
1210
1211 left = 0;
1212 right = group_info->ngroups;
1213 while (left < right) {
d74beb9f 1214 unsigned int mid = (left+right)/2;
1da177e4
LT
1215 int cmp = grp - GROUP_AT(group_info, mid);
1216 if (cmp > 0)
1217 left = mid + 1;
1218 else if (cmp < 0)
1219 right = mid;
1220 else
1221 return 1;
1222 }
1223 return 0;
1224}
1225
b6dff3ec
DH
1226/**
1227 * set_groups - Change a group subscription in a security record
1228 * @sec: The security record to alter
1229 * @group_info: The group list to impose
1230 *
1231 * Validate a group subscription and, if valid, impose it upon a task security
1232 * record.
1233 */
1234int set_groups(struct cred *cred, struct group_info *group_info)
1da177e4
LT
1235{
1236 int retval;
1237 struct group_info *old_info;
1238
1239 retval = security_task_setgroups(group_info);
1240 if (retval)
1241 return retval;
1242
1243 groups_sort(group_info);
1244 get_group_info(group_info);
1245
b6dff3ec
DH
1246 spin_lock(&cred->lock);
1247 old_info = cred->group_info;
1248 cred->group_info = group_info;
1249 spin_unlock(&cred->lock);
1da177e4
LT
1250
1251 put_group_info(old_info);
1da177e4
LT
1252 return 0;
1253}
1254
b6dff3ec
DH
1255EXPORT_SYMBOL(set_groups);
1256
1257/**
1258 * set_current_groups - Change current's group subscription
1259 * @group_info: The group list to impose
1260 *
1261 * Validate a group subscription and, if valid, impose it upon current's task
1262 * security record.
1263 */
1264int set_current_groups(struct group_info *group_info)
1265{
1266 return set_groups(current->cred, group_info);
1267}
1268
1da177e4
LT
1269EXPORT_SYMBOL(set_current_groups);
1270
1271asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1272{
86a264ab
DH
1273 const struct cred *cred = current_cred();
1274 int i;
1da177e4
LT
1275
1276 if (gidsetsize < 0)
1277 return -EINVAL;
1278
1279 /* no need to grab task_lock here; it cannot change */
b6dff3ec 1280 i = cred->group_info->ngroups;
1da177e4
LT
1281 if (gidsetsize) {
1282 if (i > gidsetsize) {
1283 i = -EINVAL;
1284 goto out;
1285 }
b6dff3ec 1286 if (groups_to_user(grouplist, cred->group_info)) {
1da177e4
LT
1287 i = -EFAULT;
1288 goto out;
1289 }
1290 }
1291out:
1da177e4
LT
1292 return i;
1293}
1294
1295/*
1296 * SMP: Our groups are copy-on-write. We can set them safely
1297 * without another task interfering.
1298 */
1299
1300asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1301{
1302 struct group_info *group_info;
1303 int retval;
1304
1305 if (!capable(CAP_SETGID))
1306 return -EPERM;
1307 if ((unsigned)gidsetsize > NGROUPS_MAX)
1308 return -EINVAL;
1309
1310 group_info = groups_alloc(gidsetsize);
1311 if (!group_info)
1312 return -ENOMEM;
1313 retval = groups_from_user(group_info, grouplist);
1314 if (retval) {
1315 put_group_info(group_info);
1316 return retval;
1317 }
1318
1319 retval = set_current_groups(group_info);
1320 put_group_info(group_info);
1321
1322 return retval;
1323}
1324
1325/*
1326 * Check whether we're fsgid/egid or in the supplemental group..
1327 */
1328int in_group_p(gid_t grp)
1329{
86a264ab 1330 const struct cred *cred = current_cred();
1da177e4 1331 int retval = 1;
86a264ab 1332
b6dff3ec
DH
1333 if (grp != cred->fsgid)
1334 retval = groups_search(cred->group_info, grp);
1da177e4
LT
1335 return retval;
1336}
1337
1338EXPORT_SYMBOL(in_group_p);
1339
1340int in_egroup_p(gid_t grp)
1341{
86a264ab 1342 const struct cred *cred = current_cred();
1da177e4 1343 int retval = 1;
86a264ab 1344
b6dff3ec
DH
1345 if (grp != cred->egid)
1346 retval = groups_search(cred->group_info, grp);
1da177e4
LT
1347 return retval;
1348}
1349
1350EXPORT_SYMBOL(in_egroup_p);
1351
1352DECLARE_RWSEM(uts_sem);
1353
1da177e4
LT
1354asmlinkage long sys_newuname(struct new_utsname __user * name)
1355{
1356 int errno = 0;
1357
1358 down_read(&uts_sem);
e9ff3990 1359 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1360 errno = -EFAULT;
1361 up_read(&uts_sem);
1362 return errno;
1363}
1364
1365asmlinkage long sys_sethostname(char __user *name, int len)
1366{
1367 int errno;
1368 char tmp[__NEW_UTS_LEN];
1369
1370 if (!capable(CAP_SYS_ADMIN))
1371 return -EPERM;
1372 if (len < 0 || len > __NEW_UTS_LEN)
1373 return -EINVAL;
1374 down_write(&uts_sem);
1375 errno = -EFAULT;
1376 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1377 struct new_utsname *u = utsname();
1378
1379 memcpy(u->nodename, tmp, len);
1380 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4
LT
1381 errno = 0;
1382 }
1383 up_write(&uts_sem);
1384 return errno;
1385}
1386
1387#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1388
1389asmlinkage long sys_gethostname(char __user *name, int len)
1390{
1391 int i, errno;
9679e4dd 1392 struct new_utsname *u;
1da177e4
LT
1393
1394 if (len < 0)
1395 return -EINVAL;
1396 down_read(&uts_sem);
9679e4dd
AM
1397 u = utsname();
1398 i = 1 + strlen(u->nodename);
1da177e4
LT
1399 if (i > len)
1400 i = len;
1401 errno = 0;
9679e4dd 1402 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1403 errno = -EFAULT;
1404 up_read(&uts_sem);
1405 return errno;
1406}
1407
1408#endif
1409
1410/*
1411 * Only setdomainname; getdomainname can be implemented by calling
1412 * uname()
1413 */
1414asmlinkage long sys_setdomainname(char __user *name, int len)
1415{
1416 int errno;
1417 char tmp[__NEW_UTS_LEN];
1418
1419 if (!capable(CAP_SYS_ADMIN))
1420 return -EPERM;
1421 if (len < 0 || len > __NEW_UTS_LEN)
1422 return -EINVAL;
1423
1424 down_write(&uts_sem);
1425 errno = -EFAULT;
1426 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1427 struct new_utsname *u = utsname();
1428
1429 memcpy(u->domainname, tmp, len);
1430 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4
LT
1431 errno = 0;
1432 }
1433 up_write(&uts_sem);
1434 return errno;
1435}
1436
1437asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1438{
1439 if (resource >= RLIM_NLIMITS)
1440 return -EINVAL;
1441 else {
1442 struct rlimit value;
1443 task_lock(current->group_leader);
1444 value = current->signal->rlim[resource];
1445 task_unlock(current->group_leader);
1446 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1447 }
1448}
1449
1450#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1451
1452/*
1453 * Back compatibility for getrlimit. Needed for some apps.
1454 */
1455
1456asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1457{
1458 struct rlimit x;
1459 if (resource >= RLIM_NLIMITS)
1460 return -EINVAL;
1461
1462 task_lock(current->group_leader);
1463 x = current->signal->rlim[resource];
1464 task_unlock(current->group_leader);
756184b7 1465 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1466 x.rlim_cur = 0x7FFFFFFF;
756184b7 1467 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1468 x.rlim_max = 0x7FFFFFFF;
1469 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1470}
1471
1472#endif
1473
1474asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1475{
1476 struct rlimit new_rlim, *old_rlim;
1477 int retval;
1478
1479 if (resource >= RLIM_NLIMITS)
1480 return -EINVAL;
ec9e16ba 1481 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1da177e4 1482 return -EFAULT;
1da177e4
LT
1483 old_rlim = current->signal->rlim + resource;
1484 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1485 !capable(CAP_SYS_RESOURCE))
1486 return -EPERM;
0c2d64fb
AT
1487
1488 if (resource == RLIMIT_NOFILE) {
1489 if (new_rlim.rlim_max == RLIM_INFINITY)
1490 new_rlim.rlim_max = sysctl_nr_open;
1491 if (new_rlim.rlim_cur == RLIM_INFINITY)
1492 new_rlim.rlim_cur = sysctl_nr_open;
1493 if (new_rlim.rlim_max > sysctl_nr_open)
1494 return -EPERM;
1495 }
1496
1497 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1498 return -EINVAL;
1da177e4
LT
1499
1500 retval = security_task_setrlimit(resource, &new_rlim);
1501 if (retval)
1502 return retval;
1503
9926e4c7
TA
1504 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1505 /*
1506 * The caller is asking for an immediate RLIMIT_CPU
1507 * expiry. But we use the zero value to mean "it was
1508 * never set". So let's cheat and make it one second
1509 * instead
1510 */
1511 new_rlim.rlim_cur = 1;
1512 }
1513
1da177e4
LT
1514 task_lock(current->group_leader);
1515 *old_rlim = new_rlim;
1516 task_unlock(current->group_leader);
1517
ec9e16ba
AM
1518 if (resource != RLIMIT_CPU)
1519 goto out;
d3561f78
AM
1520
1521 /*
1522 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1523 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1524 * very long-standing error, and fixing it now risks breakage of
1525 * applications, so we live with it
1526 */
ec9e16ba
AM
1527 if (new_rlim.rlim_cur == RLIM_INFINITY)
1528 goto out;
1529
f06febc9 1530 update_rlimit_cpu(new_rlim.rlim_cur);
ec9e16ba 1531out:
1da177e4
LT
1532 return 0;
1533}
1534
1535/*
1536 * It would make sense to put struct rusage in the task_struct,
1537 * except that would make the task_struct be *really big*. After
1538 * task_struct gets moved into malloc'ed memory, it would
1539 * make sense to do this. It will make moving the rest of the information
1540 * a lot simpler! (Which we're not doing right now because we're not
1541 * measuring them yet).
1542 *
1da177e4
LT
1543 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1544 * races with threads incrementing their own counters. But since word
1545 * reads are atomic, we either get new values or old values and we don't
1546 * care which for the sums. We always take the siglock to protect reading
1547 * the c* fields from p->signal from races with exit.c updating those
1548 * fields when reaping, so a sample either gets all the additions of a
1549 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1550 *
de047c1b
RT
1551 * Locking:
1552 * We need to take the siglock for CHILDEREN, SELF and BOTH
1553 * for the cases current multithreaded, non-current single threaded
1554 * non-current multithreaded. Thread traversal is now safe with
1555 * the siglock held.
1556 * Strictly speaking, we donot need to take the siglock if we are current and
1557 * single threaded, as no one else can take our signal_struct away, no one
1558 * else can reap the children to update signal->c* counters, and no one else
1559 * can race with the signal-> fields. If we do not take any lock, the
1560 * signal-> fields could be read out of order while another thread was just
1561 * exiting. So we should place a read memory barrier when we avoid the lock.
1562 * On the writer side, write memory barrier is implied in __exit_signal
1563 * as __exit_signal releases the siglock spinlock after updating the signal->
1564 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1565 *
1da177e4
LT
1566 */
1567
f06febc9 1568static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1569{
679c9cd4
SK
1570 r->ru_nvcsw += t->nvcsw;
1571 r->ru_nivcsw += t->nivcsw;
1572 r->ru_minflt += t->min_flt;
1573 r->ru_majflt += t->maj_flt;
1574 r->ru_inblock += task_io_get_inblock(t);
1575 r->ru_oublock += task_io_get_oublock(t);
1576}
1577
1da177e4
LT
1578static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1579{
1580 struct task_struct *t;
1581 unsigned long flags;
1582 cputime_t utime, stime;
f06febc9 1583 struct task_cputime cputime;
1da177e4
LT
1584
1585 memset((char *) r, 0, sizeof *r);
2dd0ebcd 1586 utime = stime = cputime_zero;
1da177e4 1587
679c9cd4 1588 if (who == RUSAGE_THREAD) {
f06febc9 1589 accumulate_thread_rusage(p, r);
679c9cd4
SK
1590 goto out;
1591 }
1592
d6cf723a 1593 if (!lock_task_sighand(p, &flags))
de047c1b 1594 return;
0f59cc4a 1595
1da177e4 1596 switch (who) {
0f59cc4a 1597 case RUSAGE_BOTH:
1da177e4 1598 case RUSAGE_CHILDREN:
1da177e4
LT
1599 utime = p->signal->cutime;
1600 stime = p->signal->cstime;
1601 r->ru_nvcsw = p->signal->cnvcsw;
1602 r->ru_nivcsw = p->signal->cnivcsw;
1603 r->ru_minflt = p->signal->cmin_flt;
1604 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1605 r->ru_inblock = p->signal->cinblock;
1606 r->ru_oublock = p->signal->coublock;
0f59cc4a
ON
1607
1608 if (who == RUSAGE_CHILDREN)
1609 break;
1610
1da177e4 1611 case RUSAGE_SELF:
f06febc9
FM
1612 thread_group_cputime(p, &cputime);
1613 utime = cputime_add(utime, cputime.utime);
1614 stime = cputime_add(stime, cputime.stime);
1da177e4
LT
1615 r->ru_nvcsw += p->signal->nvcsw;
1616 r->ru_nivcsw += p->signal->nivcsw;
1617 r->ru_minflt += p->signal->min_flt;
1618 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1619 r->ru_inblock += p->signal->inblock;
1620 r->ru_oublock += p->signal->oublock;
1da177e4
LT
1621 t = p;
1622 do {
f06febc9 1623 accumulate_thread_rusage(t, r);
1da177e4
LT
1624 t = next_thread(t);
1625 } while (t != p);
1da177e4 1626 break;
0f59cc4a 1627
1da177e4
LT
1628 default:
1629 BUG();
1630 }
de047c1b 1631 unlock_task_sighand(p, &flags);
de047c1b 1632
679c9cd4 1633out:
0f59cc4a
ON
1634 cputime_to_timeval(utime, &r->ru_utime);
1635 cputime_to_timeval(stime, &r->ru_stime);
1da177e4
LT
1636}
1637
1638int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1639{
1640 struct rusage r;
1da177e4 1641 k_getrusage(p, who, &r);
1da177e4
LT
1642 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1643}
1644
1645asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1646{
679c9cd4
SK
1647 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1648 who != RUSAGE_THREAD)
1da177e4
LT
1649 return -EINVAL;
1650 return getrusage(current, who, ru);
1651}
1652
1653asmlinkage long sys_umask(int mask)
1654{
1655 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1656 return mask;
1657}
3b7391de 1658
1da177e4
LT
1659asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1660 unsigned long arg4, unsigned long arg5)
1661{
b6dff3ec
DH
1662 struct task_struct *me = current;
1663 unsigned char comm[sizeof(me->comm)];
1664 long error;
1da177e4 1665
3898b1b4 1666 if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error))
1da177e4
LT
1667 return error;
1668
1669 switch (option) {
1670 case PR_SET_PDEATHSIG:
0730ded5 1671 if (!valid_signal(arg2)) {
1da177e4
LT
1672 error = -EINVAL;
1673 break;
1674 }
b6dff3ec
DH
1675 me->pdeath_signal = arg2;
1676 error = 0;
1da177e4
LT
1677 break;
1678 case PR_GET_PDEATHSIG:
b6dff3ec 1679 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
1680 break;
1681 case PR_GET_DUMPABLE:
b6dff3ec 1682 error = get_dumpable(me->mm);
1da177e4
LT
1683 break;
1684 case PR_SET_DUMPABLE:
abf75a50 1685 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1686 error = -EINVAL;
1687 break;
1688 }
b6dff3ec
DH
1689 set_dumpable(me->mm, arg2);
1690 error = 0;
1da177e4
LT
1691 break;
1692
1693 case PR_SET_UNALIGN:
b6dff3ec 1694 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1695 break;
1696 case PR_GET_UNALIGN:
b6dff3ec 1697 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1698 break;
1699 case PR_SET_FPEMU:
b6dff3ec 1700 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
1701 break;
1702 case PR_GET_FPEMU:
b6dff3ec 1703 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
1704 break;
1705 case PR_SET_FPEXC:
b6dff3ec 1706 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
1707 break;
1708 case PR_GET_FPEXC:
b6dff3ec 1709 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
1710 break;
1711 case PR_GET_TIMING:
1712 error = PR_TIMING_STATISTICAL;
1713 break;
1714 case PR_SET_TIMING:
7b26655f 1715 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4 1716 error = -EINVAL;
b6dff3ec
DH
1717 else
1718 error = 0;
1da177e4
LT
1719 break;
1720
b6dff3ec
DH
1721 case PR_SET_NAME:
1722 comm[sizeof(me->comm)-1] = 0;
1723 if (strncpy_from_user(comm, (char __user *)arg2,
1724 sizeof(me->comm) - 1) < 0)
1da177e4 1725 return -EFAULT;
b6dff3ec 1726 set_task_comm(me, comm);
1da177e4 1727 return 0;
b6dff3ec
DH
1728 case PR_GET_NAME:
1729 get_task_comm(comm, me);
1730 if (copy_to_user((char __user *)arg2, comm,
1731 sizeof(comm)))
1da177e4
LT
1732 return -EFAULT;
1733 return 0;
651d765d 1734 case PR_GET_ENDIAN:
b6dff3ec 1735 error = GET_ENDIAN(me, arg2);
651d765d
AB
1736 break;
1737 case PR_SET_ENDIAN:
b6dff3ec 1738 error = SET_ENDIAN(me, arg2);
651d765d
AB
1739 break;
1740
1d9d02fe
AA
1741 case PR_GET_SECCOMP:
1742 error = prctl_get_seccomp();
1743 break;
1744 case PR_SET_SECCOMP:
1745 error = prctl_set_seccomp(arg2);
1746 break;
8fb402bc
EB
1747 case PR_GET_TSC:
1748 error = GET_TSC_CTL(arg2);
1749 break;
1750 case PR_SET_TSC:
1751 error = SET_TSC_CTL(arg2);
1752 break;
6976675d
AV
1753 case PR_GET_TIMERSLACK:
1754 error = current->timer_slack_ns;
1755 break;
1756 case PR_SET_TIMERSLACK:
1757 if (arg2 <= 0)
1758 current->timer_slack_ns =
1759 current->default_timer_slack_ns;
1760 else
1761 current->timer_slack_ns = arg2;
b6dff3ec 1762 error = 0;
6976675d 1763 break;
1da177e4
LT
1764 default:
1765 error = -EINVAL;
1766 break;
1767 }
1768 return error;
1769}
3cfc348b
AK
1770
1771asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
4307d1e5 1772 struct getcpu_cache __user *unused)
3cfc348b
AK
1773{
1774 int err = 0;
1775 int cpu = raw_smp_processor_id();
1776 if (cpup)
1777 err |= put_user(cpu, cpup);
1778 if (nodep)
1779 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
1780 return err ? -EFAULT : 0;
1781}
10a0a8d4
JF
1782
1783char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1784
1785static void argv_cleanup(char **argv, char **envp)
1786{
1787 argv_free(argv);
1788}
1789
1790/**
1791 * orderly_poweroff - Trigger an orderly system poweroff
1792 * @force: force poweroff if command execution fails
1793 *
1794 * This may be called from any context to trigger a system shutdown.
1795 * If the orderly shutdown fails, it will force an immediate shutdown.
1796 */
1797int orderly_poweroff(bool force)
1798{
1799 int argc;
1800 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1801 static char *envp[] = {
1802 "HOME=/",
1803 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1804 NULL
1805 };
1806 int ret = -ENOMEM;
1807 struct subprocess_info *info;
1808
1809 if (argv == NULL) {
1810 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1811 __func__, poweroff_cmd);
1812 goto out;
1813 }
1814
ac331d15 1815 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
10a0a8d4
JF
1816 if (info == NULL) {
1817 argv_free(argv);
1818 goto out;
1819 }
1820
1821 call_usermodehelper_setcleanup(info, argv_cleanup);
1822
86313c48 1823 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
10a0a8d4
JF
1824
1825 out:
1826 if (ret && force) {
1827 printk(KERN_WARNING "Failed to start orderly shutdown: "
1828 "forcing the issue\n");
1829
1830 /* I guess this should try to kick off some daemon to
1831 sync and poweroff asap. Or not even bother syncing
1832 if we're doing an emergency shutdown? */
1833 emergency_sync();
1834 kernel_power_off();
1835 }
1836
1837 return ret;
1838}
1839EXPORT_SYMBOL_GPL(orderly_poweroff);