selftests, arm64: fix uninitialized symbol in tags_test.c
[linux-2.6-block.git] / kernel / sys.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
9984de1a 8#include <linux/export.h>
1da177e4
LT
9#include <linux/mm.h>
10#include <linux/utsname.h>
11#include <linux/mman.h>
1da177e4
LT
12#include <linux/reboot.h>
13#include <linux/prctl.h>
1da177e4
LT
14#include <linux/highuid.h>
15#include <linux/fs.h>
74da1ff7 16#include <linux/kmod.h>
cdd6c482 17#include <linux/perf_event.h>
3e88c553 18#include <linux/resource.h>
dc009d92 19#include <linux/kernel.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
b32dfe37
CG
39#include <linux/file.h>
40#include <linux/mount.h>
5a0e3ad6 41#include <linux/gfp.h>
40dc166c 42#include <linux/syscore_ops.h>
be27425d
AK
43#include <linux/version.h>
44#include <linux/ctype.h>
1da177e4
LT
45
46#include <linux/compat.h>
47#include <linux/syscalls.h>
00d7c05a 48#include <linux/kprobes.h>
acce292c 49#include <linux/user_namespace.h>
7fe5e042 50#include <linux/binfmts.h>
1da177e4 51
4a22f166 52#include <linux/sched.h>
4eb5aaa3 53#include <linux/sched/autogroup.h>
4f17722c 54#include <linux/sched/loadavg.h>
03441a34 55#include <linux/sched/stat.h>
6e84f315 56#include <linux/sched/mm.h>
f7ccbae4 57#include <linux/sched/coredump.h>
29930025 58#include <linux/sched/task.h>
32ef5517 59#include <linux/sched/cputime.h>
4a22f166
SR
60#include <linux/rcupdate.h>
61#include <linux/uidgid.h>
62#include <linux/cred.h>
63
b617cfc8
TG
64#include <linux/nospec.h>
65
04c6862c 66#include <linux/kmsg_dump.h>
be27425d
AK
67/* Move somewhere else to avoid recompiling? */
68#include <generated/utsrelease.h>
04c6862c 69
7c0f6ba6 70#include <linux/uaccess.h>
1da177e4
LT
71#include <asm/io.h>
72#include <asm/unistd.h>
73
e530dca5
DB
74#include "uid16.h"
75
1da177e4 76#ifndef SET_UNALIGN_CTL
ec94fc3d 77# define SET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
78#endif
79#ifndef GET_UNALIGN_CTL
ec94fc3d 80# define GET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
81#endif
82#ifndef SET_FPEMU_CTL
ec94fc3d 83# define SET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
84#endif
85#ifndef GET_FPEMU_CTL
ec94fc3d 86# define GET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
87#endif
88#ifndef SET_FPEXC_CTL
ec94fc3d 89# define SET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4
LT
90#endif
91#ifndef GET_FPEXC_CTL
ec94fc3d 92# define GET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4 93#endif
651d765d 94#ifndef GET_ENDIAN
ec94fc3d 95# define GET_ENDIAN(a, b) (-EINVAL)
651d765d
AB
96#endif
97#ifndef SET_ENDIAN
ec94fc3d 98# define SET_ENDIAN(a, b) (-EINVAL)
651d765d 99#endif
8fb402bc
EB
100#ifndef GET_TSC_CTL
101# define GET_TSC_CTL(a) (-EINVAL)
102#endif
103#ifndef SET_TSC_CTL
104# define SET_TSC_CTL(a) (-EINVAL)
105#endif
fe3d197f 106#ifndef MPX_ENABLE_MANAGEMENT
46a6e0cf 107# define MPX_ENABLE_MANAGEMENT() (-EINVAL)
fe3d197f
DH
108#endif
109#ifndef MPX_DISABLE_MANAGEMENT
46a6e0cf 110# define MPX_DISABLE_MANAGEMENT() (-EINVAL)
fe3d197f 111#endif
9791554b
PB
112#ifndef GET_FP_MODE
113# define GET_FP_MODE(a) (-EINVAL)
114#endif
115#ifndef SET_FP_MODE
116# define SET_FP_MODE(a,b) (-EINVAL)
117#endif
2d2123bc
DM
118#ifndef SVE_SET_VL
119# define SVE_SET_VL(a) (-EINVAL)
120#endif
121#ifndef SVE_GET_VL
122# define SVE_GET_VL() (-EINVAL)
123#endif
ba830885
KM
124#ifndef PAC_RESET_KEYS
125# define PAC_RESET_KEYS(a, b) (-EINVAL)
126#endif
63f0c603
CM
127#ifndef SET_TAGGED_ADDR_CTRL
128# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
129#endif
130#ifndef GET_TAGGED_ADDR_CTRL
131# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
132#endif
1da177e4
LT
133
134/*
135 * this is where the system-wide overflow UID and GID are defined, for
136 * architectures that now have 32-bit UID/GID but didn't in the past
137 */
138
139int overflowuid = DEFAULT_OVERFLOWUID;
140int overflowgid = DEFAULT_OVERFLOWGID;
141
1da177e4
LT
142EXPORT_SYMBOL(overflowuid);
143EXPORT_SYMBOL(overflowgid);
1da177e4
LT
144
145/*
146 * the same as above, but for filesystems which can only store a 16-bit
147 * UID and GID. as such, this is needed on all architectures
148 */
149
150int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
8b2770a4 151int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
1da177e4
LT
152
153EXPORT_SYMBOL(fs_overflowuid);
154EXPORT_SYMBOL(fs_overflowgid);
155
fc832ad3
SH
156/*
157 * Returns true if current's euid is same as p's uid or euid,
158 * or has CAP_SYS_NICE to p's user_ns.
159 *
160 * Called with rcu_read_lock, creds are safe
161 */
162static bool set_one_prio_perm(struct task_struct *p)
163{
164 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
165
5af66203
EB
166 if (uid_eq(pcred->uid, cred->euid) ||
167 uid_eq(pcred->euid, cred->euid))
fc832ad3 168 return true;
c4a4d603 169 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
170 return true;
171 return false;
172}
173
c69e8d9c
DH
174/*
175 * set the priority of a task
176 * - the caller must hold the RCU read lock
177 */
1da177e4
LT
178static int set_one_prio(struct task_struct *p, int niceval, int error)
179{
180 int no_nice;
181
fc832ad3 182 if (!set_one_prio_perm(p)) {
1da177e4
LT
183 error = -EPERM;
184 goto out;
185 }
e43379f1 186 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
187 error = -EACCES;
188 goto out;
189 }
190 no_nice = security_task_setnice(p, niceval);
191 if (no_nice) {
192 error = no_nice;
193 goto out;
194 }
195 if (error == -ESRCH)
196 error = 0;
197 set_user_nice(p, niceval);
198out:
199 return error;
200}
201
754fe8d2 202SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
203{
204 struct task_struct *g, *p;
205 struct user_struct *user;
86a264ab 206 const struct cred *cred = current_cred();
1da177e4 207 int error = -EINVAL;
41487c65 208 struct pid *pgrp;
7b44ab97 209 kuid_t uid;
1da177e4 210
3e88c553 211 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
212 goto out;
213
214 /* normalize: avoid signed division (rounding problems) */
215 error = -ESRCH;
c4a4d2f4
DY
216 if (niceval < MIN_NICE)
217 niceval = MIN_NICE;
218 if (niceval > MAX_NICE)
219 niceval = MAX_NICE;
1da177e4 220
d4581a23 221 rcu_read_lock();
1da177e4
LT
222 read_lock(&tasklist_lock);
223 switch (which) {
ec94fc3d 224 case PRIO_PROCESS:
225 if (who)
226 p = find_task_by_vpid(who);
227 else
228 p = current;
229 if (p)
230 error = set_one_prio(p, niceval, error);
231 break;
232 case PRIO_PGRP:
233 if (who)
234 pgrp = find_vpid(who);
235 else
236 pgrp = task_pgrp(current);
237 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
238 error = set_one_prio(p, niceval, error);
239 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
240 break;
241 case PRIO_USER:
242 uid = make_kuid(cred->user_ns, who);
243 user = cred->user;
244 if (!who)
245 uid = cred->uid;
246 else if (!uid_eq(uid, cred->uid)) {
247 user = find_user(uid);
248 if (!user)
86a264ab 249 goto out_unlock; /* No processes for this user */
ec94fc3d 250 }
251 do_each_thread(g, p) {
8639b461 252 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
ec94fc3d 253 error = set_one_prio(p, niceval, error);
254 } while_each_thread(g, p);
255 if (!uid_eq(uid, cred->uid))
256 free_uid(user); /* For find_user() */
257 break;
1da177e4
LT
258 }
259out_unlock:
260 read_unlock(&tasklist_lock);
d4581a23 261 rcu_read_unlock();
1da177e4
LT
262out:
263 return error;
264}
265
266/*
267 * Ugh. To avoid negative return values, "getpriority()" will
268 * not return the normal nice-value, but a negated value that
269 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
270 * to stay compatible.
271 */
754fe8d2 272SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
273{
274 struct task_struct *g, *p;
275 struct user_struct *user;
86a264ab 276 const struct cred *cred = current_cred();
1da177e4 277 long niceval, retval = -ESRCH;
41487c65 278 struct pid *pgrp;
7b44ab97 279 kuid_t uid;
1da177e4 280
3e88c553 281 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
282 return -EINVAL;
283
70118837 284 rcu_read_lock();
1da177e4
LT
285 read_lock(&tasklist_lock);
286 switch (which) {
ec94fc3d 287 case PRIO_PROCESS:
288 if (who)
289 p = find_task_by_vpid(who);
290 else
291 p = current;
292 if (p) {
293 niceval = nice_to_rlimit(task_nice(p));
294 if (niceval > retval)
295 retval = niceval;
296 }
297 break;
298 case PRIO_PGRP:
299 if (who)
300 pgrp = find_vpid(who);
301 else
302 pgrp = task_pgrp(current);
303 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
304 niceval = nice_to_rlimit(task_nice(p));
305 if (niceval > retval)
306 retval = niceval;
307 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
308 break;
309 case PRIO_USER:
310 uid = make_kuid(cred->user_ns, who);
311 user = cred->user;
312 if (!who)
313 uid = cred->uid;
314 else if (!uid_eq(uid, cred->uid)) {
315 user = find_user(uid);
316 if (!user)
317 goto out_unlock; /* No processes for this user */
318 }
319 do_each_thread(g, p) {
8639b461 320 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
7aa2c016 321 niceval = nice_to_rlimit(task_nice(p));
1da177e4
LT
322 if (niceval > retval)
323 retval = niceval;
324 }
ec94fc3d 325 } while_each_thread(g, p);
326 if (!uid_eq(uid, cred->uid))
327 free_uid(user); /* for find_user() */
328 break;
1da177e4
LT
329 }
330out_unlock:
331 read_unlock(&tasklist_lock);
70118837 332 rcu_read_unlock();
1da177e4
LT
333
334 return retval;
335}
336
1da177e4
LT
337/*
338 * Unprivileged users may change the real gid to the effective gid
339 * or vice versa. (BSD-style)
340 *
341 * If you set the real gid at all, or set the effective gid to a value not
342 * equal to the real gid, then the saved gid is set to the new effective gid.
343 *
344 * This makes it possible for a setgid program to completely drop its
345 * privileges, which is often a useful assertion to make when you are doing
346 * a security audit over a program.
347 *
348 * The general idea is that a program which uses just setregid() will be
349 * 100% compatible with BSD. A program which uses just setgid() will be
ec94fc3d 350 * 100% compatible with POSIX with saved IDs.
1da177e4
LT
351 *
352 * SMP: There are not races, the GIDs are checked only by filesystem
353 * operations (as far as semantic preservation is concerned).
354 */
2813893f 355#ifdef CONFIG_MULTIUSER
e530dca5 356long __sys_setregid(gid_t rgid, gid_t egid)
1da177e4 357{
a29c33f4 358 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
359 const struct cred *old;
360 struct cred *new;
1da177e4 361 int retval;
a29c33f4
EB
362 kgid_t krgid, kegid;
363
364 krgid = make_kgid(ns, rgid);
365 kegid = make_kgid(ns, egid);
366
367 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
368 return -EINVAL;
369 if ((egid != (gid_t) -1) && !gid_valid(kegid))
370 return -EINVAL;
1da177e4 371
d84f4f99
DH
372 new = prepare_creds();
373 if (!new)
374 return -ENOMEM;
375 old = current_cred();
376
d84f4f99 377 retval = -EPERM;
1da177e4 378 if (rgid != (gid_t) -1) {
a29c33f4
EB
379 if (gid_eq(old->gid, krgid) ||
380 gid_eq(old->egid, krgid) ||
c7b96acf 381 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 382 new->gid = krgid;
1da177e4 383 else
d84f4f99 384 goto error;
1da177e4
LT
385 }
386 if (egid != (gid_t) -1) {
a29c33f4
EB
387 if (gid_eq(old->gid, kegid) ||
388 gid_eq(old->egid, kegid) ||
389 gid_eq(old->sgid, kegid) ||
c7b96acf 390 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 391 new->egid = kegid;
756184b7 392 else
d84f4f99 393 goto error;
1da177e4 394 }
d84f4f99 395
1da177e4 396 if (rgid != (gid_t) -1 ||
a29c33f4 397 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
398 new->sgid = new->egid;
399 new->fsgid = new->egid;
400
401 return commit_creds(new);
402
403error:
404 abort_creds(new);
405 return retval;
1da177e4
LT
406}
407
e530dca5
DB
408SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
409{
410 return __sys_setregid(rgid, egid);
411}
412
1da177e4 413/*
ec94fc3d 414 * setgid() is implemented like SysV w/ SAVED_IDS
1da177e4
LT
415 *
416 * SMP: Same implicit races as above.
417 */
e530dca5 418long __sys_setgid(gid_t gid)
1da177e4 419{
a29c33f4 420 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
421 const struct cred *old;
422 struct cred *new;
1da177e4 423 int retval;
a29c33f4
EB
424 kgid_t kgid;
425
426 kgid = make_kgid(ns, gid);
427 if (!gid_valid(kgid))
428 return -EINVAL;
1da177e4 429
d84f4f99
DH
430 new = prepare_creds();
431 if (!new)
432 return -ENOMEM;
433 old = current_cred();
434
d84f4f99 435 retval = -EPERM;
c7b96acf 436 if (ns_capable(old->user_ns, CAP_SETGID))
a29c33f4
EB
437 new->gid = new->egid = new->sgid = new->fsgid = kgid;
438 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
439 new->egid = new->fsgid = kgid;
1da177e4 440 else
d84f4f99 441 goto error;
1da177e4 442
d84f4f99
DH
443 return commit_creds(new);
444
445error:
446 abort_creds(new);
447 return retval;
1da177e4 448}
54e99124 449
e530dca5
DB
450SYSCALL_DEFINE1(setgid, gid_t, gid)
451{
452 return __sys_setgid(gid);
453}
454
d84f4f99
DH
455/*
456 * change the user struct in a credentials set to match the new UID
457 */
458static int set_user(struct cred *new)
1da177e4
LT
459{
460 struct user_struct *new_user;
461
078de5f7 462 new_user = alloc_uid(new->uid);
1da177e4
LT
463 if (!new_user)
464 return -EAGAIN;
465
72fa5997
VK
466 /*
467 * We don't fail in case of NPROC limit excess here because too many
468 * poorly written programs don't check set*uid() return code, assuming
469 * it never fails if called by root. We may still enforce NPROC limit
470 * for programs doing set*uid()+execve() by harmlessly deferring the
471 * failure to the execve() stage.
472 */
78d7d407 473 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
474 new_user != INIT_USER)
475 current->flags |= PF_NPROC_EXCEEDED;
476 else
477 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 478
d84f4f99
DH
479 free_uid(new->user);
480 new->user = new_user;
1da177e4
LT
481 return 0;
482}
483
484/*
485 * Unprivileged users may change the real uid to the effective uid
486 * or vice versa. (BSD-style)
487 *
488 * If you set the real uid at all, or set the effective uid to a value not
489 * equal to the real uid, then the saved uid is set to the new effective uid.
490 *
491 * This makes it possible for a setuid program to completely drop its
492 * privileges, which is often a useful assertion to make when you are doing
493 * a security audit over a program.
494 *
495 * The general idea is that a program which uses just setreuid() will be
496 * 100% compatible with BSD. A program which uses just setuid() will be
ec94fc3d 497 * 100% compatible with POSIX with saved IDs.
1da177e4 498 */
e530dca5 499long __sys_setreuid(uid_t ruid, uid_t euid)
1da177e4 500{
a29c33f4 501 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
502 const struct cred *old;
503 struct cred *new;
1da177e4 504 int retval;
a29c33f4
EB
505 kuid_t kruid, keuid;
506
507 kruid = make_kuid(ns, ruid);
508 keuid = make_kuid(ns, euid);
509
510 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
511 return -EINVAL;
512 if ((euid != (uid_t) -1) && !uid_valid(keuid))
513 return -EINVAL;
1da177e4 514
d84f4f99
DH
515 new = prepare_creds();
516 if (!new)
517 return -ENOMEM;
518 old = current_cred();
519
d84f4f99 520 retval = -EPERM;
1da177e4 521 if (ruid != (uid_t) -1) {
a29c33f4
EB
522 new->uid = kruid;
523 if (!uid_eq(old->uid, kruid) &&
524 !uid_eq(old->euid, kruid) &&
40852275 525 !ns_capable_setid(old->user_ns, CAP_SETUID))
d84f4f99 526 goto error;
1da177e4
LT
527 }
528
529 if (euid != (uid_t) -1) {
a29c33f4
EB
530 new->euid = keuid;
531 if (!uid_eq(old->uid, keuid) &&
532 !uid_eq(old->euid, keuid) &&
533 !uid_eq(old->suid, keuid) &&
40852275 534 !ns_capable_setid(old->user_ns, CAP_SETUID))
d84f4f99 535 goto error;
1da177e4
LT
536 }
537
a29c33f4 538 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
539 retval = set_user(new);
540 if (retval < 0)
541 goto error;
542 }
1da177e4 543 if (ruid != (uid_t) -1 ||
a29c33f4 544 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
545 new->suid = new->euid;
546 new->fsuid = new->euid;
1da177e4 547
d84f4f99
DH
548 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
549 if (retval < 0)
550 goto error;
1da177e4 551
d84f4f99 552 return commit_creds(new);
1da177e4 553
d84f4f99
DH
554error:
555 abort_creds(new);
556 return retval;
557}
ec94fc3d 558
e530dca5
DB
559SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
560{
561 return __sys_setreuid(ruid, euid);
562}
563
1da177e4 564/*
ec94fc3d 565 * setuid() is implemented like SysV with SAVED_IDS
566 *
1da177e4 567 * Note that SAVED_ID's is deficient in that a setuid root program
ec94fc3d 568 * like sendmail, for example, cannot set its uid to be a normal
1da177e4
LT
569 * user and then switch back, because if you're root, setuid() sets
570 * the saved uid too. If you don't like this, blame the bright people
571 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
572 * will allow a root program to temporarily drop privileges and be able to
ec94fc3d 573 * regain them by swapping the real and effective uid.
1da177e4 574 */
e530dca5 575long __sys_setuid(uid_t uid)
1da177e4 576{
a29c33f4 577 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
578 const struct cred *old;
579 struct cred *new;
1da177e4 580 int retval;
a29c33f4
EB
581 kuid_t kuid;
582
583 kuid = make_kuid(ns, uid);
584 if (!uid_valid(kuid))
585 return -EINVAL;
1da177e4 586
d84f4f99
DH
587 new = prepare_creds();
588 if (!new)
589 return -ENOMEM;
590 old = current_cred();
591
d84f4f99 592 retval = -EPERM;
40852275 593 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
594 new->suid = new->uid = kuid;
595 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
596 retval = set_user(new);
597 if (retval < 0)
598 goto error;
d84f4f99 599 }
a29c33f4 600 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 601 goto error;
1da177e4 602 }
1da177e4 603
a29c33f4 604 new->fsuid = new->euid = kuid;
d84f4f99
DH
605
606 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
607 if (retval < 0)
608 goto error;
1da177e4 609
d84f4f99 610 return commit_creds(new);
1da177e4 611
d84f4f99
DH
612error:
613 abort_creds(new);
614 return retval;
1da177e4
LT
615}
616
e530dca5
DB
617SYSCALL_DEFINE1(setuid, uid_t, uid)
618{
619 return __sys_setuid(uid);
620}
621
1da177e4
LT
622
623/*
624 * This function implements a generic ability to update ruid, euid,
625 * and suid. This allows you to implement the 4.4 compatible seteuid().
626 */
e530dca5 627long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1da177e4 628{
a29c33f4 629 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
630 const struct cred *old;
631 struct cred *new;
1da177e4 632 int retval;
a29c33f4
EB
633 kuid_t kruid, keuid, ksuid;
634
635 kruid = make_kuid(ns, ruid);
636 keuid = make_kuid(ns, euid);
637 ksuid = make_kuid(ns, suid);
638
639 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
640 return -EINVAL;
641
642 if ((euid != (uid_t) -1) && !uid_valid(keuid))
643 return -EINVAL;
644
645 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
646 return -EINVAL;
1da177e4 647
d84f4f99
DH
648 new = prepare_creds();
649 if (!new)
650 return -ENOMEM;
651
d84f4f99 652 old = current_cred();
1da177e4 653
d84f4f99 654 retval = -EPERM;
40852275 655 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
656 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
657 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 658 goto error;
a29c33f4
EB
659 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
660 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 661 goto error;
a29c33f4
EB
662 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
663 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 664 goto error;
1da177e4 665 }
d84f4f99 666
1da177e4 667 if (ruid != (uid_t) -1) {
a29c33f4
EB
668 new->uid = kruid;
669 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
670 retval = set_user(new);
671 if (retval < 0)
672 goto error;
673 }
1da177e4 674 }
d84f4f99 675 if (euid != (uid_t) -1)
a29c33f4 676 new->euid = keuid;
1da177e4 677 if (suid != (uid_t) -1)
a29c33f4 678 new->suid = ksuid;
d84f4f99 679 new->fsuid = new->euid;
1da177e4 680
d84f4f99
DH
681 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
682 if (retval < 0)
683 goto error;
1da177e4 684
d84f4f99 685 return commit_creds(new);
1da177e4 686
d84f4f99
DH
687error:
688 abort_creds(new);
689 return retval;
1da177e4
LT
690}
691
e530dca5
DB
692SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
693{
694 return __sys_setresuid(ruid, euid, suid);
695}
696
a29c33f4 697SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 698{
86a264ab 699 const struct cred *cred = current_cred();
1da177e4 700 int retval;
a29c33f4
EB
701 uid_t ruid, euid, suid;
702
703 ruid = from_kuid_munged(cred->user_ns, cred->uid);
704 euid = from_kuid_munged(cred->user_ns, cred->euid);
705 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 706
ec94fc3d 707 retval = put_user(ruid, ruidp);
708 if (!retval) {
709 retval = put_user(euid, euidp);
710 if (!retval)
711 return put_user(suid, suidp);
712 }
1da177e4
LT
713 return retval;
714}
715
716/*
717 * Same as above, but for rgid, egid, sgid.
718 */
e530dca5 719long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1da177e4 720{
a29c33f4 721 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
722 const struct cred *old;
723 struct cred *new;
1da177e4 724 int retval;
a29c33f4
EB
725 kgid_t krgid, kegid, ksgid;
726
727 krgid = make_kgid(ns, rgid);
728 kegid = make_kgid(ns, egid);
729 ksgid = make_kgid(ns, sgid);
730
731 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
732 return -EINVAL;
733 if ((egid != (gid_t) -1) && !gid_valid(kegid))
734 return -EINVAL;
735 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
736 return -EINVAL;
1da177e4 737
d84f4f99
DH
738 new = prepare_creds();
739 if (!new)
740 return -ENOMEM;
741 old = current_cred();
742
d84f4f99 743 retval = -EPERM;
c7b96acf 744 if (!ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
745 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
746 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 747 goto error;
a29c33f4
EB
748 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
749 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 750 goto error;
a29c33f4
EB
751 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
752 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 753 goto error;
1da177e4 754 }
d84f4f99 755
1da177e4 756 if (rgid != (gid_t) -1)
a29c33f4 757 new->gid = krgid;
d84f4f99 758 if (egid != (gid_t) -1)
a29c33f4 759 new->egid = kegid;
1da177e4 760 if (sgid != (gid_t) -1)
a29c33f4 761 new->sgid = ksgid;
d84f4f99 762 new->fsgid = new->egid;
1da177e4 763
d84f4f99
DH
764 return commit_creds(new);
765
766error:
767 abort_creds(new);
768 return retval;
1da177e4
LT
769}
770
e530dca5
DB
771SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
772{
773 return __sys_setresgid(rgid, egid, sgid);
774}
775
a29c33f4 776SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 777{
86a264ab 778 const struct cred *cred = current_cred();
1da177e4 779 int retval;
a29c33f4
EB
780 gid_t rgid, egid, sgid;
781
782 rgid = from_kgid_munged(cred->user_ns, cred->gid);
783 egid = from_kgid_munged(cred->user_ns, cred->egid);
784 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 785
ec94fc3d 786 retval = put_user(rgid, rgidp);
787 if (!retval) {
788 retval = put_user(egid, egidp);
789 if (!retval)
790 retval = put_user(sgid, sgidp);
791 }
1da177e4
LT
792
793 return retval;
794}
795
796
797/*
798 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
799 * is used for "access()" and for the NFS daemon (letting nfsd stay at
800 * whatever uid it wants to). It normally shadows "euid", except when
801 * explicitly set by setfsuid() or for access..
802 */
e530dca5 803long __sys_setfsuid(uid_t uid)
1da177e4 804{
d84f4f99
DH
805 const struct cred *old;
806 struct cred *new;
807 uid_t old_fsuid;
a29c33f4
EB
808 kuid_t kuid;
809
810 old = current_cred();
811 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
812
813 kuid = make_kuid(old->user_ns, uid);
814 if (!uid_valid(kuid))
815 return old_fsuid;
1da177e4 816
d84f4f99
DH
817 new = prepare_creds();
818 if (!new)
a29c33f4 819 return old_fsuid;
1da177e4 820
a29c33f4
EB
821 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
822 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
40852275 823 ns_capable_setid(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
824 if (!uid_eq(kuid, old->fsuid)) {
825 new->fsuid = kuid;
d84f4f99
DH
826 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
827 goto change_okay;
1da177e4 828 }
1da177e4
LT
829 }
830
d84f4f99
DH
831 abort_creds(new);
832 return old_fsuid;
1da177e4 833
d84f4f99
DH
834change_okay:
835 commit_creds(new);
1da177e4
LT
836 return old_fsuid;
837}
838
e530dca5
DB
839SYSCALL_DEFINE1(setfsuid, uid_t, uid)
840{
841 return __sys_setfsuid(uid);
842}
843
1da177e4 844/*
f42df9e6 845 * Samma på svenska..
1da177e4 846 */
e530dca5 847long __sys_setfsgid(gid_t gid)
1da177e4 848{
d84f4f99
DH
849 const struct cred *old;
850 struct cred *new;
851 gid_t old_fsgid;
a29c33f4
EB
852 kgid_t kgid;
853
854 old = current_cred();
855 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
856
857 kgid = make_kgid(old->user_ns, gid);
858 if (!gid_valid(kgid))
859 return old_fsgid;
d84f4f99
DH
860
861 new = prepare_creds();
862 if (!new)
a29c33f4 863 return old_fsgid;
1da177e4 864
a29c33f4
EB
865 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
866 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
c7b96acf 867 ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
868 if (!gid_eq(kgid, old->fsgid)) {
869 new->fsgid = kgid;
d84f4f99 870 goto change_okay;
1da177e4 871 }
1da177e4 872 }
d84f4f99 873
d84f4f99
DH
874 abort_creds(new);
875 return old_fsgid;
876
877change_okay:
878 commit_creds(new);
1da177e4
LT
879 return old_fsgid;
880}
e530dca5
DB
881
882SYSCALL_DEFINE1(setfsgid, gid_t, gid)
883{
884 return __sys_setfsgid(gid);
885}
2813893f 886#endif /* CONFIG_MULTIUSER */
1da177e4 887
4a22f166
SR
888/**
889 * sys_getpid - return the thread group id of the current process
890 *
891 * Note, despite the name, this returns the tgid not the pid. The tgid and
892 * the pid are identical unless CLONE_THREAD was specified on clone() in
893 * which case the tgid is the same in all threads of the same group.
894 *
895 * This is SMP safe as current->tgid does not change.
896 */
897SYSCALL_DEFINE0(getpid)
898{
899 return task_tgid_vnr(current);
900}
901
902/* Thread ID - the internal kernel "pid" */
903SYSCALL_DEFINE0(gettid)
904{
905 return task_pid_vnr(current);
906}
907
908/*
909 * Accessing ->real_parent is not SMP-safe, it could
910 * change from under us. However, we can use a stale
911 * value of ->real_parent under rcu_read_lock(), see
912 * release_task()->call_rcu(delayed_put_task_struct).
913 */
914SYSCALL_DEFINE0(getppid)
915{
916 int pid;
917
918 rcu_read_lock();
919 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
920 rcu_read_unlock();
921
922 return pid;
923}
924
925SYSCALL_DEFINE0(getuid)
926{
927 /* Only we change this so SMP safe */
928 return from_kuid_munged(current_user_ns(), current_uid());
929}
930
931SYSCALL_DEFINE0(geteuid)
932{
933 /* Only we change this so SMP safe */
934 return from_kuid_munged(current_user_ns(), current_euid());
935}
936
937SYSCALL_DEFINE0(getgid)
938{
939 /* Only we change this so SMP safe */
940 return from_kgid_munged(current_user_ns(), current_gid());
941}
942
943SYSCALL_DEFINE0(getegid)
944{
945 /* Only we change this so SMP safe */
946 return from_kgid_munged(current_user_ns(), current_egid());
947}
948
ca2406ed 949static void do_sys_times(struct tms *tms)
f06febc9 950{
5613fda9 951 u64 tgutime, tgstime, cutime, cstime;
f06febc9 952
e80d0a1a 953 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
954 cutime = current->signal->cutime;
955 cstime = current->signal->cstime;
5613fda9
FW
956 tms->tms_utime = nsec_to_clock_t(tgutime);
957 tms->tms_stime = nsec_to_clock_t(tgstime);
958 tms->tms_cutime = nsec_to_clock_t(cutime);
959 tms->tms_cstime = nsec_to_clock_t(cstime);
f06febc9
FM
960}
961
58fd3aa2 962SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 963{
1da177e4
LT
964 if (tbuf) {
965 struct tms tmp;
f06febc9
FM
966
967 do_sys_times(&tmp);
1da177e4
LT
968 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
969 return -EFAULT;
970 }
e3d5a27d 971 force_successful_syscall_return();
1da177e4
LT
972 return (long) jiffies_64_to_clock_t(get_jiffies_64());
973}
974
ca2406ed
AV
975#ifdef CONFIG_COMPAT
976static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
977{
978 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
979}
980
981COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
982{
983 if (tbuf) {
984 struct tms tms;
985 struct compat_tms tmp;
986
987 do_sys_times(&tms);
988 /* Convert our struct tms to the compat version. */
989 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
990 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
991 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
992 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
993 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
994 return -EFAULT;
995 }
996 force_successful_syscall_return();
997 return compat_jiffies_to_clock_t(jiffies);
998}
999#endif
1000
1da177e4
LT
1001/*
1002 * This needs some heavy checking ...
1003 * I just haven't the stomach for it. I also don't fully
1004 * understand sessions/pgrp etc. Let somebody who does explain it.
1005 *
1006 * OK, I think I have the protection semantics right.... this is really
1007 * only important on a multi-user system anyway, to make sure one user
1008 * can't send a signal to a process owned by another. -TYT, 12/12/91
1009 *
98611e4e 1010 * !PF_FORKNOEXEC check to conform completely to POSIX.
1da177e4 1011 */
b290ebe2 1012SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
1013{
1014 struct task_struct *p;
ee0acf90 1015 struct task_struct *group_leader = current->group_leader;
4e021306
ON
1016 struct pid *pgrp;
1017 int err;
1da177e4
LT
1018
1019 if (!pid)
b488893a 1020 pid = task_pid_vnr(group_leader);
1da177e4
LT
1021 if (!pgid)
1022 pgid = pid;
1023 if (pgid < 0)
1024 return -EINVAL;
950eaaca 1025 rcu_read_lock();
1da177e4
LT
1026
1027 /* From this point forward we keep holding onto the tasklist lock
1028 * so that our parent does not change from under us. -DaveM
1029 */
1030 write_lock_irq(&tasklist_lock);
1031
1032 err = -ESRCH;
4e021306 1033 p = find_task_by_vpid(pid);
1da177e4
LT
1034 if (!p)
1035 goto out;
1036
1037 err = -EINVAL;
1038 if (!thread_group_leader(p))
1039 goto out;
1040
4e021306 1041 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1042 err = -EPERM;
41487c65 1043 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1044 goto out;
1045 err = -EACCES;
98611e4e 1046 if (!(p->flags & PF_FORKNOEXEC))
1da177e4
LT
1047 goto out;
1048 } else {
1049 err = -ESRCH;
ee0acf90 1050 if (p != group_leader)
1da177e4
LT
1051 goto out;
1052 }
1053
1054 err = -EPERM;
1055 if (p->signal->leader)
1056 goto out;
1057
4e021306 1058 pgrp = task_pid(p);
1da177e4 1059 if (pgid != pid) {
b488893a 1060 struct task_struct *g;
1da177e4 1061
4e021306
ON
1062 pgrp = find_vpid(pgid);
1063 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1064 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1065 goto out;
1da177e4
LT
1066 }
1067
1da177e4
LT
1068 err = security_task_setpgid(p, pgid);
1069 if (err)
1070 goto out;
1071
1b0f7ffd 1072 if (task_pgrp(p) != pgrp)
83beaf3c 1073 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1074
1075 err = 0;
1076out:
1077 /* All paths lead to here, thus we are safe. -DaveM */
1078 write_unlock_irq(&tasklist_lock);
950eaaca 1079 rcu_read_unlock();
1da177e4
LT
1080 return err;
1081}
1082
192c5807 1083static int do_getpgid(pid_t pid)
1da177e4 1084{
12a3de0a
ON
1085 struct task_struct *p;
1086 struct pid *grp;
1087 int retval;
1088
1089 rcu_read_lock();
756184b7 1090 if (!pid)
12a3de0a 1091 grp = task_pgrp(current);
756184b7 1092 else {
1da177e4 1093 retval = -ESRCH;
12a3de0a
ON
1094 p = find_task_by_vpid(pid);
1095 if (!p)
1096 goto out;
1097 grp = task_pgrp(p);
1098 if (!grp)
1099 goto out;
1100
1101 retval = security_task_getpgid(p);
1102 if (retval)
1103 goto out;
1da177e4 1104 }
12a3de0a
ON
1105 retval = pid_vnr(grp);
1106out:
1107 rcu_read_unlock();
1108 return retval;
1da177e4
LT
1109}
1110
192c5807
DB
1111SYSCALL_DEFINE1(getpgid, pid_t, pid)
1112{
1113 return do_getpgid(pid);
1114}
1115
1da177e4
LT
1116#ifdef __ARCH_WANT_SYS_GETPGRP
1117
dbf040d9 1118SYSCALL_DEFINE0(getpgrp)
1da177e4 1119{
192c5807 1120 return do_getpgid(0);
1da177e4
LT
1121}
1122
1123#endif
1124
dbf040d9 1125SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1126{
1dd768c0
ON
1127 struct task_struct *p;
1128 struct pid *sid;
1129 int retval;
1130
1131 rcu_read_lock();
756184b7 1132 if (!pid)
1dd768c0 1133 sid = task_session(current);
756184b7 1134 else {
1da177e4 1135 retval = -ESRCH;
1dd768c0
ON
1136 p = find_task_by_vpid(pid);
1137 if (!p)
1138 goto out;
1139 sid = task_session(p);
1140 if (!sid)
1141 goto out;
1142
1143 retval = security_task_getsid(p);
1144 if (retval)
1145 goto out;
1da177e4 1146 }
1dd768c0
ON
1147 retval = pid_vnr(sid);
1148out:
1149 rcu_read_unlock();
1150 return retval;
1da177e4
LT
1151}
1152
81dabb46
ON
1153static void set_special_pids(struct pid *pid)
1154{
1155 struct task_struct *curr = current->group_leader;
1156
1157 if (task_session(curr) != pid)
1158 change_pid(curr, PIDTYPE_SID, pid);
1159
1160 if (task_pgrp(curr) != pid)
1161 change_pid(curr, PIDTYPE_PGID, pid);
1162}
1163
e2aaa9f4 1164int ksys_setsid(void)
1da177e4 1165{
e19f247a 1166 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1167 struct pid *sid = task_pid(group_leader);
1168 pid_t session = pid_vnr(sid);
1da177e4
LT
1169 int err = -EPERM;
1170
1da177e4 1171 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1172 /* Fail if I am already a session leader */
1173 if (group_leader->signal->leader)
1174 goto out;
1175
430c6231
ON
1176 /* Fail if a process group id already exists that equals the
1177 * proposed session id.
390e2ff0 1178 */
6806aac6 1179 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1180 goto out;
1181
e19f247a 1182 group_leader->signal->leader = 1;
81dabb46 1183 set_special_pids(sid);
24ec839c 1184
9c9f4ded 1185 proc_clear_tty(group_leader);
24ec839c 1186
e4cc0a9c 1187 err = session;
1da177e4
LT
1188out:
1189 write_unlock_irq(&tasklist_lock);
5091faa4 1190 if (err > 0) {
0d0df599 1191 proc_sid_connector(group_leader);
5091faa4
MG
1192 sched_autogroup_create_attach(group_leader);
1193 }
1da177e4
LT
1194 return err;
1195}
1196
e2aaa9f4
DB
1197SYSCALL_DEFINE0(setsid)
1198{
1199 return ksys_setsid();
1200}
1201
1da177e4
LT
1202DECLARE_RWSEM(uts_sem);
1203
e28cbf22
CH
1204#ifdef COMPAT_UTS_MACHINE
1205#define override_architecture(name) \
46da2766 1206 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1207 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1208 sizeof(COMPAT_UTS_MACHINE)))
1209#else
1210#define override_architecture(name) 0
1211#endif
1212
be27425d
AK
1213/*
1214 * Work around broken programs that cannot handle "Linux 3.0".
1215 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
b7285b42
JN
1216 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1217 * 2.6.60.
be27425d 1218 */
2702b152 1219static int override_release(char __user *release, size_t len)
be27425d
AK
1220{
1221 int ret = 0;
be27425d
AK
1222
1223 if (current->personality & UNAME26) {
2702b152
KC
1224 const char *rest = UTS_RELEASE;
1225 char buf[65] = { 0 };
be27425d
AK
1226 int ndots = 0;
1227 unsigned v;
2702b152 1228 size_t copy;
be27425d
AK
1229
1230 while (*rest) {
1231 if (*rest == '.' && ++ndots >= 3)
1232 break;
1233 if (!isdigit(*rest) && *rest != '.')
1234 break;
1235 rest++;
1236 }
39afb5ee 1237 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
31fd84b9 1238 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1239 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1240 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1241 }
1242 return ret;
1243}
1244
e48fbb69 1245SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4 1246{
42a0cc34 1247 struct new_utsname tmp;
1da177e4
LT
1248
1249 down_read(&uts_sem);
42a0cc34 1250 memcpy(&tmp, utsname(), sizeof(tmp));
1da177e4 1251 up_read(&uts_sem);
42a0cc34
JH
1252 if (copy_to_user(name, &tmp, sizeof(tmp)))
1253 return -EFAULT;
e28cbf22 1254
42a0cc34
JH
1255 if (override_release(name->release, sizeof(name->release)))
1256 return -EFAULT;
1257 if (override_architecture(name))
1258 return -EFAULT;
1259 return 0;
1da177e4
LT
1260}
1261
5cacdb4a
CH
1262#ifdef __ARCH_WANT_SYS_OLD_UNAME
1263/*
1264 * Old cruft
1265 */
1266SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1267{
42a0cc34 1268 struct old_utsname tmp;
5cacdb4a
CH
1269
1270 if (!name)
1271 return -EFAULT;
1272
1273 down_read(&uts_sem);
42a0cc34 1274 memcpy(&tmp, utsname(), sizeof(tmp));
5cacdb4a 1275 up_read(&uts_sem);
42a0cc34
JH
1276 if (copy_to_user(name, &tmp, sizeof(tmp)))
1277 return -EFAULT;
5cacdb4a 1278
42a0cc34
JH
1279 if (override_release(name->release, sizeof(name->release)))
1280 return -EFAULT;
1281 if (override_architecture(name))
1282 return -EFAULT;
1283 return 0;
5cacdb4a
CH
1284}
1285
1286SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1287{
42a0cc34 1288 struct oldold_utsname tmp = {};
5cacdb4a
CH
1289
1290 if (!name)
1291 return -EFAULT;
5cacdb4a
CH
1292
1293 down_read(&uts_sem);
42a0cc34
JH
1294 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1295 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1296 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1297 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1298 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
5cacdb4a 1299 up_read(&uts_sem);
42a0cc34
JH
1300 if (copy_to_user(name, &tmp, sizeof(tmp)))
1301 return -EFAULT;
5cacdb4a 1302
42a0cc34
JH
1303 if (override_architecture(name))
1304 return -EFAULT;
1305 if (override_release(name->release, sizeof(name->release)))
1306 return -EFAULT;
1307 return 0;
5cacdb4a
CH
1308}
1309#endif
1310
5a8a82b1 1311SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1312{
1313 int errno;
1314 char tmp[__NEW_UTS_LEN];
1315
bb96a6f5 1316 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1317 return -EPERM;
fc832ad3 1318
1da177e4
LT
1319 if (len < 0 || len > __NEW_UTS_LEN)
1320 return -EINVAL;
1da177e4
LT
1321 errno = -EFAULT;
1322 if (!copy_from_user(tmp, name, len)) {
42a0cc34 1323 struct new_utsname *u;
9679e4dd 1324
42a0cc34
JH
1325 down_write(&uts_sem);
1326 u = utsname();
9679e4dd
AM
1327 memcpy(u->nodename, tmp, len);
1328 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1329 errno = 0;
499eea6b 1330 uts_proc_notify(UTS_PROC_HOSTNAME);
42a0cc34 1331 up_write(&uts_sem);
1da177e4 1332 }
1da177e4
LT
1333 return errno;
1334}
1335
1336#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1337
5a8a82b1 1338SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4 1339{
42a0cc34 1340 int i;
9679e4dd 1341 struct new_utsname *u;
42a0cc34 1342 char tmp[__NEW_UTS_LEN + 1];
1da177e4
LT
1343
1344 if (len < 0)
1345 return -EINVAL;
1346 down_read(&uts_sem);
9679e4dd
AM
1347 u = utsname();
1348 i = 1 + strlen(u->nodename);
1da177e4
LT
1349 if (i > len)
1350 i = len;
42a0cc34 1351 memcpy(tmp, u->nodename, i);
1da177e4 1352 up_read(&uts_sem);
42a0cc34
JH
1353 if (copy_to_user(name, tmp, i))
1354 return -EFAULT;
1355 return 0;
1da177e4
LT
1356}
1357
1358#endif
1359
1360/*
1361 * Only setdomainname; getdomainname can be implemented by calling
1362 * uname()
1363 */
5a8a82b1 1364SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1365{
1366 int errno;
1367 char tmp[__NEW_UTS_LEN];
1368
fc832ad3 1369 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1370 return -EPERM;
1371 if (len < 0 || len > __NEW_UTS_LEN)
1372 return -EINVAL;
1373
1da177e4
LT
1374 errno = -EFAULT;
1375 if (!copy_from_user(tmp, name, len)) {
42a0cc34 1376 struct new_utsname *u;
9679e4dd 1377
42a0cc34
JH
1378 down_write(&uts_sem);
1379 u = utsname();
9679e4dd
AM
1380 memcpy(u->domainname, tmp, len);
1381 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1382 errno = 0;
499eea6b 1383 uts_proc_notify(UTS_PROC_DOMAINNAME);
42a0cc34 1384 up_write(&uts_sem);
1da177e4 1385 }
1da177e4
LT
1386 return errno;
1387}
1388
e48fbb69 1389SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1390{
b9518345
JS
1391 struct rlimit value;
1392 int ret;
1393
1394 ret = do_prlimit(current, resource, NULL, &value);
1395 if (!ret)
1396 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1397
1398 return ret;
1da177e4
LT
1399}
1400
d9e968cb
AV
1401#ifdef CONFIG_COMPAT
1402
1403COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1404 struct compat_rlimit __user *, rlim)
1405{
1406 struct rlimit r;
1407 struct compat_rlimit r32;
1408
1409 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1410 return -EFAULT;
1411
1412 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1413 r.rlim_cur = RLIM_INFINITY;
1414 else
1415 r.rlim_cur = r32.rlim_cur;
1416 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1417 r.rlim_max = RLIM_INFINITY;
1418 else
1419 r.rlim_max = r32.rlim_max;
1420 return do_prlimit(current, resource, &r, NULL);
1421}
1422
1423COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1424 struct compat_rlimit __user *, rlim)
1425{
1426 struct rlimit r;
1427 int ret;
1428
1429 ret = do_prlimit(current, resource, NULL, &r);
1430 if (!ret) {
58c7ffc0 1431 struct compat_rlimit r32;
d9e968cb
AV
1432 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1433 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1434 else
1435 r32.rlim_cur = r.rlim_cur;
1436 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1437 r32.rlim_max = COMPAT_RLIM_INFINITY;
1438 else
1439 r32.rlim_max = r.rlim_max;
1440
1441 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1442 return -EFAULT;
1443 }
1444 return ret;
1445}
1446
1447#endif
1448
1da177e4
LT
1449#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1450
1451/*
1452 * Back compatibility for getrlimit. Needed for some apps.
1453 */
e48fbb69
HC
1454SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1455 struct rlimit __user *, rlim)
1da177e4
LT
1456{
1457 struct rlimit x;
1458 if (resource >= RLIM_NLIMITS)
1459 return -EINVAL;
1460
23d6aef7 1461 resource = array_index_nospec(resource, RLIM_NLIMITS);
1da177e4
LT
1462 task_lock(current->group_leader);
1463 x = current->signal->rlim[resource];
1464 task_unlock(current->group_leader);
756184b7 1465 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1466 x.rlim_cur = 0x7FFFFFFF;
756184b7 1467 if (x.rlim_max > 0x7FFFFFFF)
1da177e4 1468 x.rlim_max = 0x7FFFFFFF;
ec94fc3d 1469 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1da177e4
LT
1470}
1471
613763a1
AV
1472#ifdef CONFIG_COMPAT
1473COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1474 struct compat_rlimit __user *, rlim)
1475{
1476 struct rlimit r;
1477
1478 if (resource >= RLIM_NLIMITS)
1479 return -EINVAL;
1480
23d6aef7 1481 resource = array_index_nospec(resource, RLIM_NLIMITS);
613763a1
AV
1482 task_lock(current->group_leader);
1483 r = current->signal->rlim[resource];
1484 task_unlock(current->group_leader);
1485 if (r.rlim_cur > 0x7FFFFFFF)
1486 r.rlim_cur = 0x7FFFFFFF;
1487 if (r.rlim_max > 0x7FFFFFFF)
1488 r.rlim_max = 0x7FFFFFFF;
1489
1490 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1491 put_user(r.rlim_max, &rlim->rlim_max))
1492 return -EFAULT;
1493 return 0;
1494}
1495#endif
1496
1da177e4
LT
1497#endif
1498
c022a0ac
JS
1499static inline bool rlim64_is_infinity(__u64 rlim64)
1500{
1501#if BITS_PER_LONG < 64
1502 return rlim64 >= ULONG_MAX;
1503#else
1504 return rlim64 == RLIM64_INFINITY;
1505#endif
1506}
1507
1508static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1509{
1510 if (rlim->rlim_cur == RLIM_INFINITY)
1511 rlim64->rlim_cur = RLIM64_INFINITY;
1512 else
1513 rlim64->rlim_cur = rlim->rlim_cur;
1514 if (rlim->rlim_max == RLIM_INFINITY)
1515 rlim64->rlim_max = RLIM64_INFINITY;
1516 else
1517 rlim64->rlim_max = rlim->rlim_max;
1518}
1519
1520static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1521{
1522 if (rlim64_is_infinity(rlim64->rlim_cur))
1523 rlim->rlim_cur = RLIM_INFINITY;
1524 else
1525 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1526 if (rlim64_is_infinity(rlim64->rlim_max))
1527 rlim->rlim_max = RLIM_INFINITY;
1528 else
1529 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1530}
1531
1c1e618d 1532/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1533int do_prlimit(struct task_struct *tsk, unsigned int resource,
1534 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1535{
5b41535a 1536 struct rlimit *rlim;
86f162f4 1537 int retval = 0;
1da177e4
LT
1538
1539 if (resource >= RLIM_NLIMITS)
1540 return -EINVAL;
5b41535a
JS
1541 if (new_rlim) {
1542 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1543 return -EINVAL;
1544 if (resource == RLIMIT_NOFILE &&
1545 new_rlim->rlim_max > sysctl_nr_open)
1546 return -EPERM;
1547 }
1da177e4 1548
1c1e618d
JS
1549 /* protect tsk->signal and tsk->sighand from disappearing */
1550 read_lock(&tasklist_lock);
1551 if (!tsk->sighand) {
1552 retval = -ESRCH;
1553 goto out;
1554 }
1555
5b41535a 1556 rlim = tsk->signal->rlim + resource;
86f162f4 1557 task_lock(tsk->group_leader);
5b41535a 1558 if (new_rlim) {
fc832ad3
SH
1559 /* Keep the capable check against init_user_ns until
1560 cgroups can contain all limits */
5b41535a
JS
1561 if (new_rlim->rlim_max > rlim->rlim_max &&
1562 !capable(CAP_SYS_RESOURCE))
1563 retval = -EPERM;
1564 if (!retval)
cad4ea54 1565 retval = security_task_setrlimit(tsk, resource, new_rlim);
5b41535a
JS
1566 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1567 /*
1568 * The caller is asking for an immediate RLIMIT_CPU
1569 * expiry. But we use the zero value to mean "it was
1570 * never set". So let's cheat and make it one second
1571 * instead
1572 */
1573 new_rlim->rlim_cur = 1;
1574 }
1575 }
1576 if (!retval) {
1577 if (old_rlim)
1578 *old_rlim = *rlim;
1579 if (new_rlim)
1580 *rlim = *new_rlim;
9926e4c7 1581 }
7855c35d 1582 task_unlock(tsk->group_leader);
1da177e4 1583
d3561f78
AM
1584 /*
1585 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1586 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1587 * very long-standing error, and fixing it now risks breakage of
1588 * applications, so we live with it
1589 */
5b41535a 1590 if (!retval && new_rlim && resource == RLIMIT_CPU &&
baa73d9e
NP
1591 new_rlim->rlim_cur != RLIM_INFINITY &&
1592 IS_ENABLED(CONFIG_POSIX_TIMERS))
5b41535a 1593 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1594out:
1c1e618d 1595 read_unlock(&tasklist_lock);
2fb9d268 1596 return retval;
1da177e4
LT
1597}
1598
c022a0ac 1599/* rcu lock must be held */
791ec491
SS
1600static int check_prlimit_permission(struct task_struct *task,
1601 unsigned int flags)
c022a0ac
JS
1602{
1603 const struct cred *cred = current_cred(), *tcred;
791ec491 1604 bool id_match;
c022a0ac 1605
fc832ad3
SH
1606 if (current == task)
1607 return 0;
c022a0ac 1608
fc832ad3 1609 tcred = __task_cred(task);
791ec491
SS
1610 id_match = (uid_eq(cred->uid, tcred->euid) &&
1611 uid_eq(cred->uid, tcred->suid) &&
1612 uid_eq(cred->uid, tcred->uid) &&
1613 gid_eq(cred->gid, tcred->egid) &&
1614 gid_eq(cred->gid, tcred->sgid) &&
1615 gid_eq(cred->gid, tcred->gid));
1616 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1617 return -EPERM;
fc832ad3 1618
791ec491 1619 return security_task_prlimit(cred, tcred, flags);
c022a0ac
JS
1620}
1621
1622SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1623 const struct rlimit64 __user *, new_rlim,
1624 struct rlimit64 __user *, old_rlim)
1625{
1626 struct rlimit64 old64, new64;
1627 struct rlimit old, new;
1628 struct task_struct *tsk;
791ec491 1629 unsigned int checkflags = 0;
c022a0ac
JS
1630 int ret;
1631
791ec491
SS
1632 if (old_rlim)
1633 checkflags |= LSM_PRLIMIT_READ;
1634
c022a0ac
JS
1635 if (new_rlim) {
1636 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1637 return -EFAULT;
1638 rlim64_to_rlim(&new64, &new);
791ec491 1639 checkflags |= LSM_PRLIMIT_WRITE;
c022a0ac
JS
1640 }
1641
1642 rcu_read_lock();
1643 tsk = pid ? find_task_by_vpid(pid) : current;
1644 if (!tsk) {
1645 rcu_read_unlock();
1646 return -ESRCH;
1647 }
791ec491 1648 ret = check_prlimit_permission(tsk, checkflags);
c022a0ac
JS
1649 if (ret) {
1650 rcu_read_unlock();
1651 return ret;
1652 }
1653 get_task_struct(tsk);
1654 rcu_read_unlock();
1655
1656 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1657 old_rlim ? &old : NULL);
1658
1659 if (!ret && old_rlim) {
1660 rlim_to_rlim64(&old, &old64);
1661 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1662 ret = -EFAULT;
1663 }
1664
1665 put_task_struct(tsk);
1666 return ret;
1667}
1668
7855c35d
JS
1669SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1670{
1671 struct rlimit new_rlim;
1672
1673 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1674 return -EFAULT;
5b41535a 1675 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1676}
1677
1da177e4
LT
1678/*
1679 * It would make sense to put struct rusage in the task_struct,
1680 * except that would make the task_struct be *really big*. After
1681 * task_struct gets moved into malloc'ed memory, it would
1682 * make sense to do this. It will make moving the rest of the information
1683 * a lot simpler! (Which we're not doing right now because we're not
1684 * measuring them yet).
1685 *
1da177e4
LT
1686 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1687 * races with threads incrementing their own counters. But since word
1688 * reads are atomic, we either get new values or old values and we don't
1689 * care which for the sums. We always take the siglock to protect reading
1690 * the c* fields from p->signal from races with exit.c updating those
1691 * fields when reaping, so a sample either gets all the additions of a
1692 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1693 *
de047c1b
RT
1694 * Locking:
1695 * We need to take the siglock for CHILDEREN, SELF and BOTH
1696 * for the cases current multithreaded, non-current single threaded
1697 * non-current multithreaded. Thread traversal is now safe with
1698 * the siglock held.
1699 * Strictly speaking, we donot need to take the siglock if we are current and
1700 * single threaded, as no one else can take our signal_struct away, no one
1701 * else can reap the children to update signal->c* counters, and no one else
1702 * can race with the signal-> fields. If we do not take any lock, the
1703 * signal-> fields could be read out of order while another thread was just
1704 * exiting. So we should place a read memory barrier when we avoid the lock.
1705 * On the writer side, write memory barrier is implied in __exit_signal
1706 * as __exit_signal releases the siglock spinlock after updating the signal->
1707 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1708 *
1da177e4
LT
1709 */
1710
f06febc9 1711static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1712{
679c9cd4
SK
1713 r->ru_nvcsw += t->nvcsw;
1714 r->ru_nivcsw += t->nivcsw;
1715 r->ru_minflt += t->min_flt;
1716 r->ru_majflt += t->maj_flt;
1717 r->ru_inblock += task_io_get_inblock(t);
1718 r->ru_oublock += task_io_get_oublock(t);
1719}
1720
ce72a16f 1721void getrusage(struct task_struct *p, int who, struct rusage *r)
1da177e4
LT
1722{
1723 struct task_struct *t;
1724 unsigned long flags;
5613fda9 1725 u64 tgutime, tgstime, utime, stime;
1f10206c 1726 unsigned long maxrss = 0;
1da177e4 1727
ec94fc3d 1728 memset((char *)r, 0, sizeof (*r));
64861634 1729 utime = stime = 0;
1da177e4 1730
679c9cd4 1731 if (who == RUSAGE_THREAD) {
e80d0a1a 1732 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1733 accumulate_thread_rusage(p, r);
1f10206c 1734 maxrss = p->signal->maxrss;
679c9cd4
SK
1735 goto out;
1736 }
1737
d6cf723a 1738 if (!lock_task_sighand(p, &flags))
de047c1b 1739 return;
0f59cc4a 1740
1da177e4 1741 switch (who) {
ec94fc3d 1742 case RUSAGE_BOTH:
1743 case RUSAGE_CHILDREN:
1744 utime = p->signal->cutime;
1745 stime = p->signal->cstime;
1746 r->ru_nvcsw = p->signal->cnvcsw;
1747 r->ru_nivcsw = p->signal->cnivcsw;
1748 r->ru_minflt = p->signal->cmin_flt;
1749 r->ru_majflt = p->signal->cmaj_flt;
1750 r->ru_inblock = p->signal->cinblock;
1751 r->ru_oublock = p->signal->coublock;
1752 maxrss = p->signal->cmaxrss;
1753
1754 if (who == RUSAGE_CHILDREN)
1da177e4 1755 break;
21f63a5d 1756 /* fall through */
0f59cc4a 1757
ec94fc3d 1758 case RUSAGE_SELF:
1759 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1760 utime += tgutime;
1761 stime += tgstime;
1762 r->ru_nvcsw += p->signal->nvcsw;
1763 r->ru_nivcsw += p->signal->nivcsw;
1764 r->ru_minflt += p->signal->min_flt;
1765 r->ru_majflt += p->signal->maj_flt;
1766 r->ru_inblock += p->signal->inblock;
1767 r->ru_oublock += p->signal->oublock;
1768 if (maxrss < p->signal->maxrss)
1769 maxrss = p->signal->maxrss;
1770 t = p;
1771 do {
1772 accumulate_thread_rusage(t, r);
1773 } while_each_thread(p, t);
1774 break;
1775
1776 default:
1777 BUG();
1da177e4 1778 }
de047c1b 1779 unlock_task_sighand(p, &flags);
de047c1b 1780
679c9cd4 1781out:
5613fda9
FW
1782 r->ru_utime = ns_to_timeval(utime);
1783 r->ru_stime = ns_to_timeval(stime);
1f10206c
JP
1784
1785 if (who != RUSAGE_CHILDREN) {
1786 struct mm_struct *mm = get_task_mm(p);
ec94fc3d 1787
1f10206c
JP
1788 if (mm) {
1789 setmax_mm_hiwater_rss(&maxrss, mm);
1790 mmput(mm);
1791 }
1792 }
1793 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1794}
1795
ce72a16f 1796SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4
LT
1797{
1798 struct rusage r;
ec94fc3d 1799
679c9cd4
SK
1800 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1801 who != RUSAGE_THREAD)
1da177e4 1802 return -EINVAL;
ce72a16f
AV
1803
1804 getrusage(current, who, &r);
1805 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1da177e4
LT
1806}
1807
8d2d5c4a
AV
1808#ifdef CONFIG_COMPAT
1809COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1810{
1811 struct rusage r;
1812
1813 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1814 who != RUSAGE_THREAD)
1815 return -EINVAL;
1816
ce72a16f 1817 getrusage(current, who, &r);
8d2d5c4a
AV
1818 return put_compat_rusage(&r, ru);
1819}
1820#endif
1821
e48fbb69 1822SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1823{
1824 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1825 return mask;
1826}
3b7391de 1827
6e399cd1 1828static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
b32dfe37 1829{
2903ff01 1830 struct fd exe;
6e399cd1 1831 struct file *old_exe, *exe_file;
496ad9aa 1832 struct inode *inode;
2903ff01 1833 int err;
b32dfe37 1834
2903ff01
AV
1835 exe = fdget(fd);
1836 if (!exe.file)
b32dfe37
CG
1837 return -EBADF;
1838
496ad9aa 1839 inode = file_inode(exe.file);
b32dfe37
CG
1840
1841 /*
1842 * Because the original mm->exe_file points to executable file, make
1843 * sure that this one is executable as well, to avoid breaking an
1844 * overall picture.
1845 */
1846 err = -EACCES;
90f8572b 1847 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
b32dfe37
CG
1848 goto exit;
1849
496ad9aa 1850 err = inode_permission(inode, MAY_EXEC);
b32dfe37
CG
1851 if (err)
1852 goto exit;
1853
bafb282d 1854 /*
4229fb1d 1855 * Forbid mm->exe_file change if old file still mapped.
bafb282d 1856 */
6e399cd1 1857 exe_file = get_mm_exe_file(mm);
bafb282d 1858 err = -EBUSY;
6e399cd1 1859 if (exe_file) {
4229fb1d
KK
1860 struct vm_area_struct *vma;
1861
6e399cd1
DB
1862 down_read(&mm->mmap_sem);
1863 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1864 if (!vma->vm_file)
1865 continue;
1866 if (path_equal(&vma->vm_file->f_path,
1867 &exe_file->f_path))
1868 goto exit_err;
1869 }
1870
1871 up_read(&mm->mmap_sem);
1872 fput(exe_file);
bafb282d
KK
1873 }
1874
4229fb1d 1875 err = 0;
6e399cd1
DB
1876 /* set the new file, lockless */
1877 get_file(exe.file);
1878 old_exe = xchg(&mm->exe_file, exe.file);
1879 if (old_exe)
1880 fput(old_exe);
b32dfe37 1881exit:
2903ff01 1882 fdput(exe);
b32dfe37 1883 return err;
6e399cd1
DB
1884exit_err:
1885 up_read(&mm->mmap_sem);
1886 fput(exe_file);
1887 goto exit;
b32dfe37
CG
1888}
1889
f606b77f 1890/*
11bbd8b4
MK
1891 * Check arithmetic relations of passed addresses.
1892 *
f606b77f
CG
1893 * WARNING: we don't require any capability here so be very careful
1894 * in what is allowed for modification from userspace.
1895 */
11bbd8b4 1896static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
f606b77f
CG
1897{
1898 unsigned long mmap_max_addr = TASK_SIZE;
f606b77f
CG
1899 int error = -EINVAL, i;
1900
1901 static const unsigned char offsets[] = {
1902 offsetof(struct prctl_mm_map, start_code),
1903 offsetof(struct prctl_mm_map, end_code),
1904 offsetof(struct prctl_mm_map, start_data),
1905 offsetof(struct prctl_mm_map, end_data),
1906 offsetof(struct prctl_mm_map, start_brk),
1907 offsetof(struct prctl_mm_map, brk),
1908 offsetof(struct prctl_mm_map, start_stack),
1909 offsetof(struct prctl_mm_map, arg_start),
1910 offsetof(struct prctl_mm_map, arg_end),
1911 offsetof(struct prctl_mm_map, env_start),
1912 offsetof(struct prctl_mm_map, env_end),
1913 };
1914
1915 /*
1916 * Make sure the members are not somewhere outside
1917 * of allowed address space.
1918 */
1919 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1920 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1921
1922 if ((unsigned long)val >= mmap_max_addr ||
1923 (unsigned long)val < mmap_min_addr)
1924 goto out;
1925 }
1926
1927 /*
1928 * Make sure the pairs are ordered.
1929 */
1930#define __prctl_check_order(__m1, __op, __m2) \
1931 ((unsigned long)prctl_map->__m1 __op \
1932 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1933 error = __prctl_check_order(start_code, <, end_code);
a9e73998 1934 error |= __prctl_check_order(start_data,<=, end_data);
f606b77f
CG
1935 error |= __prctl_check_order(start_brk, <=, brk);
1936 error |= __prctl_check_order(arg_start, <=, arg_end);
1937 error |= __prctl_check_order(env_start, <=, env_end);
1938 if (error)
1939 goto out;
1940#undef __prctl_check_order
1941
1942 error = -EINVAL;
1943
1944 /*
1945 * @brk should be after @end_data in traditional maps.
1946 */
1947 if (prctl_map->start_brk <= prctl_map->end_data ||
1948 prctl_map->brk <= prctl_map->end_data)
1949 goto out;
1950
1951 /*
1952 * Neither we should allow to override limits if they set.
1953 */
1954 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1955 prctl_map->start_brk, prctl_map->end_data,
1956 prctl_map->start_data))
1957 goto out;
1958
f606b77f
CG
1959 error = 0;
1960out:
1961 return error;
1962}
1963
4a00e9df 1964#ifdef CONFIG_CHECKPOINT_RESTORE
f606b77f
CG
1965static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1966{
1967 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1968 unsigned long user_auxv[AT_VECTOR_SIZE];
1969 struct mm_struct *mm = current->mm;
1970 int error;
1971
1972 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1973 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1974
1975 if (opt == PR_SET_MM_MAP_SIZE)
1976 return put_user((unsigned int)sizeof(prctl_map),
1977 (unsigned int __user *)addr);
1978
1979 if (data_size != sizeof(prctl_map))
1980 return -EINVAL;
1981
1982 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1983 return -EFAULT;
1984
11bbd8b4 1985 error = validate_prctl_map_addr(&prctl_map);
f606b77f
CG
1986 if (error)
1987 return error;
1988
1989 if (prctl_map.auxv_size) {
11bbd8b4
MK
1990 /*
1991 * Someone is trying to cheat the auxv vector.
1992 */
1993 if (!prctl_map.auxv ||
1994 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1995 return -EINVAL;
1996
f606b77f
CG
1997 memset(user_auxv, 0, sizeof(user_auxv));
1998 if (copy_from_user(user_auxv,
1999 (const void __user *)prctl_map.auxv,
2000 prctl_map.auxv_size))
2001 return -EFAULT;
2002
2003 /* Last entry must be AT_NULL as specification requires */
2004 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2005 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2006 }
2007
ddf1d398 2008 if (prctl_map.exe_fd != (u32)-1) {
11bbd8b4
MK
2009 /*
2010 * Make sure the caller has the rights to
2011 * change /proc/pid/exe link: only local sys admin should
2012 * be allowed to.
2013 */
2014 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2015 return -EINVAL;
2016
6e399cd1 2017 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
ddf1d398
MG
2018 if (error)
2019 return error;
2020 }
2021
88aa7cc6
YS
2022 /*
2023 * arg_lock protects concurent updates but we still need mmap_sem for
2024 * read to exclude races with sys_brk.
2025 */
2026 down_read(&mm->mmap_sem);
f606b77f
CG
2027
2028 /*
2029 * We don't validate if these members are pointing to
2030 * real present VMAs because application may have correspond
2031 * VMAs already unmapped and kernel uses these members for statistics
2032 * output in procfs mostly, except
2033 *
2034 * - @start_brk/@brk which are used in do_brk but kernel lookups
2035 * for VMAs when updating these memvers so anything wrong written
2036 * here cause kernel to swear at userspace program but won't lead
2037 * to any problem in kernel itself
2038 */
2039
88aa7cc6 2040 spin_lock(&mm->arg_lock);
f606b77f
CG
2041 mm->start_code = prctl_map.start_code;
2042 mm->end_code = prctl_map.end_code;
2043 mm->start_data = prctl_map.start_data;
2044 mm->end_data = prctl_map.end_data;
2045 mm->start_brk = prctl_map.start_brk;
2046 mm->brk = prctl_map.brk;
2047 mm->start_stack = prctl_map.start_stack;
2048 mm->arg_start = prctl_map.arg_start;
2049 mm->arg_end = prctl_map.arg_end;
2050 mm->env_start = prctl_map.env_start;
2051 mm->env_end = prctl_map.env_end;
88aa7cc6 2052 spin_unlock(&mm->arg_lock);
f606b77f
CG
2053
2054 /*
2055 * Note this update of @saved_auxv is lockless thus
2056 * if someone reads this member in procfs while we're
2057 * updating -- it may get partly updated results. It's
2058 * known and acceptable trade off: we leave it as is to
2059 * not introduce additional locks here making the kernel
2060 * more complex.
2061 */
2062 if (prctl_map.auxv_size)
2063 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2064
88aa7cc6 2065 up_read(&mm->mmap_sem);
ddf1d398 2066 return 0;
f606b77f
CG
2067}
2068#endif /* CONFIG_CHECKPOINT_RESTORE */
2069
4a00e9df
AD
2070static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2071 unsigned long len)
2072{
2073 /*
2074 * This doesn't move the auxiliary vector itself since it's pinned to
2075 * mm_struct, but it permits filling the vector with new values. It's
2076 * up to the caller to provide sane values here, otherwise userspace
2077 * tools which use this vector might be unhappy.
2078 */
2079 unsigned long user_auxv[AT_VECTOR_SIZE];
2080
2081 if (len > sizeof(user_auxv))
2082 return -EINVAL;
2083
2084 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2085 return -EFAULT;
2086
2087 /* Make sure the last entry is always AT_NULL */
2088 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2089 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2090
2091 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2092
2093 task_lock(current);
2094 memcpy(mm->saved_auxv, user_auxv, len);
2095 task_unlock(current);
2096
2097 return 0;
2098}
2099
028ee4be
CG
2100static int prctl_set_mm(int opt, unsigned long addr,
2101 unsigned long arg4, unsigned long arg5)
2102{
028ee4be 2103 struct mm_struct *mm = current->mm;
11bbd8b4
MK
2104 struct prctl_mm_map prctl_map = {
2105 .auxv = NULL,
2106 .auxv_size = 0,
2107 .exe_fd = -1,
2108 };
fe8c7f5c
CG
2109 struct vm_area_struct *vma;
2110 int error;
028ee4be 2111
f606b77f
CG
2112 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2113 opt != PR_SET_MM_MAP &&
2114 opt != PR_SET_MM_MAP_SIZE)))
028ee4be
CG
2115 return -EINVAL;
2116
f606b77f
CG
2117#ifdef CONFIG_CHECKPOINT_RESTORE
2118 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2119 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2120#endif
2121
79f0713d 2122 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
2123 return -EPERM;
2124
6e399cd1
DB
2125 if (opt == PR_SET_MM_EXE_FILE)
2126 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
b32dfe37 2127
4a00e9df
AD
2128 if (opt == PR_SET_MM_AUXV)
2129 return prctl_set_auxv(mm, addr, arg4);
2130
1ad75b9e 2131 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
2132 return -EINVAL;
2133
fe8c7f5c
CG
2134 error = -EINVAL;
2135
bc81426f
MK
2136 /*
2137 * arg_lock protects concurent updates of arg boundaries, we need
2138 * mmap_sem for a) concurrent sys_brk, b) finding VMA for addr
2139 * validation.
2140 */
2141 down_read(&mm->mmap_sem);
028ee4be
CG
2142 vma = find_vma(mm, addr);
2143
bc81426f 2144 spin_lock(&mm->arg_lock);
4a00e9df
AD
2145 prctl_map.start_code = mm->start_code;
2146 prctl_map.end_code = mm->end_code;
2147 prctl_map.start_data = mm->start_data;
2148 prctl_map.end_data = mm->end_data;
2149 prctl_map.start_brk = mm->start_brk;
2150 prctl_map.brk = mm->brk;
2151 prctl_map.start_stack = mm->start_stack;
2152 prctl_map.arg_start = mm->arg_start;
2153 prctl_map.arg_end = mm->arg_end;
2154 prctl_map.env_start = mm->env_start;
2155 prctl_map.env_end = mm->env_end;
4a00e9df 2156
028ee4be
CG
2157 switch (opt) {
2158 case PR_SET_MM_START_CODE:
4a00e9df 2159 prctl_map.start_code = addr;
fe8c7f5c 2160 break;
028ee4be 2161 case PR_SET_MM_END_CODE:
4a00e9df 2162 prctl_map.end_code = addr;
028ee4be 2163 break;
028ee4be 2164 case PR_SET_MM_START_DATA:
4a00e9df 2165 prctl_map.start_data = addr;
028ee4be 2166 break;
fe8c7f5c 2167 case PR_SET_MM_END_DATA:
4a00e9df
AD
2168 prctl_map.end_data = addr;
2169 break;
2170 case PR_SET_MM_START_STACK:
2171 prctl_map.start_stack = addr;
028ee4be 2172 break;
028ee4be 2173 case PR_SET_MM_START_BRK:
4a00e9df 2174 prctl_map.start_brk = addr;
028ee4be 2175 break;
028ee4be 2176 case PR_SET_MM_BRK:
4a00e9df 2177 prctl_map.brk = addr;
028ee4be 2178 break;
4a00e9df
AD
2179 case PR_SET_MM_ARG_START:
2180 prctl_map.arg_start = addr;
2181 break;
2182 case PR_SET_MM_ARG_END:
2183 prctl_map.arg_end = addr;
2184 break;
2185 case PR_SET_MM_ENV_START:
2186 prctl_map.env_start = addr;
2187 break;
2188 case PR_SET_MM_ENV_END:
2189 prctl_map.env_end = addr;
2190 break;
2191 default:
2192 goto out;
2193 }
2194
11bbd8b4 2195 error = validate_prctl_map_addr(&prctl_map);
4a00e9df
AD
2196 if (error)
2197 goto out;
028ee4be 2198
4a00e9df 2199 switch (opt) {
fe8c7f5c
CG
2200 /*
2201 * If command line arguments and environment
2202 * are placed somewhere else on stack, we can
2203 * set them up here, ARG_START/END to setup
2204 * command line argumets and ENV_START/END
2205 * for environment.
2206 */
2207 case PR_SET_MM_START_STACK:
2208 case PR_SET_MM_ARG_START:
2209 case PR_SET_MM_ARG_END:
2210 case PR_SET_MM_ENV_START:
2211 case PR_SET_MM_ENV_END:
2212 if (!vma) {
2213 error = -EFAULT;
2214 goto out;
2215 }
028ee4be
CG
2216 }
2217
4a00e9df
AD
2218 mm->start_code = prctl_map.start_code;
2219 mm->end_code = prctl_map.end_code;
2220 mm->start_data = prctl_map.start_data;
2221 mm->end_data = prctl_map.end_data;
2222 mm->start_brk = prctl_map.start_brk;
2223 mm->brk = prctl_map.brk;
2224 mm->start_stack = prctl_map.start_stack;
2225 mm->arg_start = prctl_map.arg_start;
2226 mm->arg_end = prctl_map.arg_end;
2227 mm->env_start = prctl_map.env_start;
2228 mm->env_end = prctl_map.env_end;
2229
028ee4be 2230 error = 0;
028ee4be 2231out:
bc81426f
MK
2232 spin_unlock(&mm->arg_lock);
2233 up_read(&mm->mmap_sem);
028ee4be
CG
2234 return error;
2235}
300f786b 2236
52b36941 2237#ifdef CONFIG_CHECKPOINT_RESTORE
300f786b
CG
2238static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2239{
2240 return put_user(me->clear_child_tid, tid_addr);
2241}
52b36941 2242#else
300f786b
CG
2243static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2244{
2245 return -EINVAL;
2246}
028ee4be
CG
2247#endif
2248
749860ce
PT
2249static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2250{
2251 /*
2252 * If task has has_child_subreaper - all its decendants
2253 * already have these flag too and new decendants will
2254 * inherit it on fork, skip them.
2255 *
2256 * If we've found child_reaper - skip descendants in
2257 * it's subtree as they will never get out pidns.
2258 */
2259 if (p->signal->has_child_subreaper ||
2260 is_child_reaper(task_pid(p)))
2261 return 0;
2262
2263 p->signal->has_child_subreaper = 1;
2264 return 1;
2265}
2266
7bbf1373 2267int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
b617cfc8
TG
2268{
2269 return -EINVAL;
2270}
2271
7bbf1373
KC
2272int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2273 unsigned long ctrl)
b617cfc8
TG
2274{
2275 return -EINVAL;
2276}
2277
c4ea37c2
HC
2278SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2279 unsigned long, arg4, unsigned long, arg5)
1da177e4 2280{
b6dff3ec
DH
2281 struct task_struct *me = current;
2282 unsigned char comm[sizeof(me->comm)];
2283 long error;
1da177e4 2284
d84f4f99
DH
2285 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2286 if (error != -ENOSYS)
1da177e4
LT
2287 return error;
2288
d84f4f99 2289 error = 0;
1da177e4 2290 switch (option) {
f3cbd435
AM
2291 case PR_SET_PDEATHSIG:
2292 if (!valid_signal(arg2)) {
2293 error = -EINVAL;
1da177e4 2294 break;
f3cbd435
AM
2295 }
2296 me->pdeath_signal = arg2;
2297 break;
2298 case PR_GET_PDEATHSIG:
2299 error = put_user(me->pdeath_signal, (int __user *)arg2);
2300 break;
2301 case PR_GET_DUMPABLE:
2302 error = get_dumpable(me->mm);
2303 break;
2304 case PR_SET_DUMPABLE:
2305 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2306 error = -EINVAL;
1da177e4 2307 break;
f3cbd435
AM
2308 }
2309 set_dumpable(me->mm, arg2);
2310 break;
1da177e4 2311
f3cbd435
AM
2312 case PR_SET_UNALIGN:
2313 error = SET_UNALIGN_CTL(me, arg2);
2314 break;
2315 case PR_GET_UNALIGN:
2316 error = GET_UNALIGN_CTL(me, arg2);
2317 break;
2318 case PR_SET_FPEMU:
2319 error = SET_FPEMU_CTL(me, arg2);
2320 break;
2321 case PR_GET_FPEMU:
2322 error = GET_FPEMU_CTL(me, arg2);
2323 break;
2324 case PR_SET_FPEXC:
2325 error = SET_FPEXC_CTL(me, arg2);
2326 break;
2327 case PR_GET_FPEXC:
2328 error = GET_FPEXC_CTL(me, arg2);
2329 break;
2330 case PR_GET_TIMING:
2331 error = PR_TIMING_STATISTICAL;
2332 break;
2333 case PR_SET_TIMING:
2334 if (arg2 != PR_TIMING_STATISTICAL)
2335 error = -EINVAL;
2336 break;
2337 case PR_SET_NAME:
2338 comm[sizeof(me->comm) - 1] = 0;
2339 if (strncpy_from_user(comm, (char __user *)arg2,
2340 sizeof(me->comm) - 1) < 0)
2341 return -EFAULT;
2342 set_task_comm(me, comm);
2343 proc_comm_connector(me);
2344 break;
2345 case PR_GET_NAME:
2346 get_task_comm(comm, me);
2347 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2348 return -EFAULT;
2349 break;
2350 case PR_GET_ENDIAN:
2351 error = GET_ENDIAN(me, arg2);
2352 break;
2353 case PR_SET_ENDIAN:
2354 error = SET_ENDIAN(me, arg2);
2355 break;
2356 case PR_GET_SECCOMP:
2357 error = prctl_get_seccomp();
2358 break;
2359 case PR_SET_SECCOMP:
2360 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2361 break;
2362 case PR_GET_TSC:
2363 error = GET_TSC_CTL(arg2);
2364 break;
2365 case PR_SET_TSC:
2366 error = SET_TSC_CTL(arg2);
2367 break;
2368 case PR_TASK_PERF_EVENTS_DISABLE:
2369 error = perf_event_task_disable();
2370 break;
2371 case PR_TASK_PERF_EVENTS_ENABLE:
2372 error = perf_event_task_enable();
2373 break;
2374 case PR_GET_TIMERSLACK:
da8b44d5
JS
2375 if (current->timer_slack_ns > ULONG_MAX)
2376 error = ULONG_MAX;
2377 else
2378 error = current->timer_slack_ns;
f3cbd435
AM
2379 break;
2380 case PR_SET_TIMERSLACK:
2381 if (arg2 <= 0)
2382 current->timer_slack_ns =
6976675d 2383 current->default_timer_slack_ns;
f3cbd435
AM
2384 else
2385 current->timer_slack_ns = arg2;
2386 break;
2387 case PR_MCE_KILL:
2388 if (arg4 | arg5)
2389 return -EINVAL;
2390 switch (arg2) {
2391 case PR_MCE_KILL_CLEAR:
2392 if (arg3 != 0)
4db96cf0 2393 return -EINVAL;
f3cbd435 2394 current->flags &= ~PF_MCE_PROCESS;
4db96cf0 2395 break;
f3cbd435
AM
2396 case PR_MCE_KILL_SET:
2397 current->flags |= PF_MCE_PROCESS;
2398 if (arg3 == PR_MCE_KILL_EARLY)
2399 current->flags |= PF_MCE_EARLY;
2400 else if (arg3 == PR_MCE_KILL_LATE)
2401 current->flags &= ~PF_MCE_EARLY;
2402 else if (arg3 == PR_MCE_KILL_DEFAULT)
2403 current->flags &=
2404 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1087e9b4 2405 else
259e5e6c 2406 return -EINVAL;
259e5e6c 2407 break;
1da177e4 2408 default:
f3cbd435
AM
2409 return -EINVAL;
2410 }
2411 break;
2412 case PR_MCE_KILL_GET:
2413 if (arg2 | arg3 | arg4 | arg5)
2414 return -EINVAL;
2415 if (current->flags & PF_MCE_PROCESS)
2416 error = (current->flags & PF_MCE_EARLY) ?
2417 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2418 else
2419 error = PR_MCE_KILL_DEFAULT;
2420 break;
2421 case PR_SET_MM:
2422 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2423 break;
2424 case PR_GET_TID_ADDRESS:
2425 error = prctl_get_tid_address(me, (int __user **)arg2);
2426 break;
2427 case PR_SET_CHILD_SUBREAPER:
2428 me->signal->is_child_subreaper = !!arg2;
749860ce
PT
2429 if (!arg2)
2430 break;
2431
2432 walk_process_tree(me, propagate_has_child_subreaper, NULL);
f3cbd435
AM
2433 break;
2434 case PR_GET_CHILD_SUBREAPER:
2435 error = put_user(me->signal->is_child_subreaper,
2436 (int __user *)arg2);
2437 break;
2438 case PR_SET_NO_NEW_PRIVS:
2439 if (arg2 != 1 || arg3 || arg4 || arg5)
2440 return -EINVAL;
2441
1d4457f9 2442 task_set_no_new_privs(current);
f3cbd435
AM
2443 break;
2444 case PR_GET_NO_NEW_PRIVS:
2445 if (arg2 || arg3 || arg4 || arg5)
2446 return -EINVAL;
1d4457f9 2447 return task_no_new_privs(current) ? 1 : 0;
a0715cc2
AT
2448 case PR_GET_THP_DISABLE:
2449 if (arg2 || arg3 || arg4 || arg5)
2450 return -EINVAL;
18600332 2451 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2
AT
2452 break;
2453 case PR_SET_THP_DISABLE:
2454 if (arg3 || arg4 || arg5)
2455 return -EINVAL;
17b0573d
MH
2456 if (down_write_killable(&me->mm->mmap_sem))
2457 return -EINTR;
a0715cc2 2458 if (arg2)
18600332 2459 set_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2 2460 else
18600332 2461 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2
AT
2462 up_write(&me->mm->mmap_sem);
2463 break;
fe3d197f 2464 case PR_MPX_ENABLE_MANAGEMENT:
e9d1b4f3
DH
2465 if (arg2 || arg3 || arg4 || arg5)
2466 return -EINVAL;
46a6e0cf 2467 error = MPX_ENABLE_MANAGEMENT();
fe3d197f
DH
2468 break;
2469 case PR_MPX_DISABLE_MANAGEMENT:
e9d1b4f3
DH
2470 if (arg2 || arg3 || arg4 || arg5)
2471 return -EINVAL;
46a6e0cf 2472 error = MPX_DISABLE_MANAGEMENT();
fe3d197f 2473 break;
9791554b
PB
2474 case PR_SET_FP_MODE:
2475 error = SET_FP_MODE(me, arg2);
2476 break;
2477 case PR_GET_FP_MODE:
2478 error = GET_FP_MODE(me);
2479 break;
2d2123bc
DM
2480 case PR_SVE_SET_VL:
2481 error = SVE_SET_VL(arg2);
2482 break;
2483 case PR_SVE_GET_VL:
2484 error = SVE_GET_VL();
2485 break;
b617cfc8
TG
2486 case PR_GET_SPECULATION_CTRL:
2487 if (arg3 || arg4 || arg5)
2488 return -EINVAL;
7bbf1373 2489 error = arch_prctl_spec_ctrl_get(me, arg2);
b617cfc8
TG
2490 break;
2491 case PR_SET_SPECULATION_CTRL:
2492 if (arg4 || arg5)
2493 return -EINVAL;
7bbf1373 2494 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
b617cfc8 2495 break;
ba830885
KM
2496 case PR_PAC_RESET_KEYS:
2497 if (arg3 || arg4 || arg5)
2498 return -EINVAL;
2499 error = PAC_RESET_KEYS(me, arg2);
2500 break;
63f0c603
CM
2501 case PR_SET_TAGGED_ADDR_CTRL:
2502 error = SET_TAGGED_ADDR_CTRL(arg2);
2503 break;
2504 case PR_GET_TAGGED_ADDR_CTRL:
2505 error = GET_TAGGED_ADDR_CTRL();
2506 break;
f3cbd435
AM
2507 default:
2508 error = -EINVAL;
2509 break;
1da177e4
LT
2510 }
2511 return error;
2512}
3cfc348b 2513
836f92ad
HC
2514SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2515 struct getcpu_cache __user *, unused)
3cfc348b
AK
2516{
2517 int err = 0;
2518 int cpu = raw_smp_processor_id();
ec94fc3d 2519
3cfc348b
AK
2520 if (cpup)
2521 err |= put_user(cpu, cpup);
2522 if (nodep)
2523 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2524 return err ? -EFAULT : 0;
2525}
10a0a8d4 2526
4a22f166
SR
2527/**
2528 * do_sysinfo - fill in sysinfo struct
2529 * @info: pointer to buffer to fill
2530 */
2531static int do_sysinfo(struct sysinfo *info)
2532{
2533 unsigned long mem_total, sav_total;
2534 unsigned int mem_unit, bitcount;
dc1b7b6c 2535 struct timespec64 tp;
4a22f166
SR
2536
2537 memset(info, 0, sizeof(struct sysinfo));
2538
dc1b7b6c 2539 ktime_get_boottime_ts64(&tp);
4a22f166
SR
2540 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2541
2542 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2543
2544 info->procs = nr_threads;
2545
2546 si_meminfo(info);
2547 si_swapinfo(info);
2548
2549 /*
2550 * If the sum of all the available memory (i.e. ram + swap)
2551 * is less than can be stored in a 32 bit unsigned long then
2552 * we can be binary compatible with 2.2.x kernels. If not,
2553 * well, in that case 2.2.x was broken anyways...
2554 *
2555 * -Erik Andersen <andersee@debian.org>
2556 */
2557
2558 mem_total = info->totalram + info->totalswap;
2559 if (mem_total < info->totalram || mem_total < info->totalswap)
2560 goto out;
2561 bitcount = 0;
2562 mem_unit = info->mem_unit;
2563 while (mem_unit > 1) {
2564 bitcount++;
2565 mem_unit >>= 1;
2566 sav_total = mem_total;
2567 mem_total <<= 1;
2568 if (mem_total < sav_total)
2569 goto out;
2570 }
2571
2572 /*
2573 * If mem_total did not overflow, multiply all memory values by
2574 * info->mem_unit and set it to 1. This leaves things compatible
2575 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2576 * kernels...
2577 */
2578
2579 info->mem_unit = 1;
2580 info->totalram <<= bitcount;
2581 info->freeram <<= bitcount;
2582 info->sharedram <<= bitcount;
2583 info->bufferram <<= bitcount;
2584 info->totalswap <<= bitcount;
2585 info->freeswap <<= bitcount;
2586 info->totalhigh <<= bitcount;
2587 info->freehigh <<= bitcount;
2588
2589out:
2590 return 0;
2591}
2592
2593SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2594{
2595 struct sysinfo val;
2596
2597 do_sysinfo(&val);
2598
2599 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2600 return -EFAULT;
2601
2602 return 0;
2603}
2604
2605#ifdef CONFIG_COMPAT
2606struct compat_sysinfo {
2607 s32 uptime;
2608 u32 loads[3];
2609 u32 totalram;
2610 u32 freeram;
2611 u32 sharedram;
2612 u32 bufferram;
2613 u32 totalswap;
2614 u32 freeswap;
2615 u16 procs;
2616 u16 pad;
2617 u32 totalhigh;
2618 u32 freehigh;
2619 u32 mem_unit;
2620 char _f[20-2*sizeof(u32)-sizeof(int)];
2621};
2622
2623COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2624{
2625 struct sysinfo s;
2626
2627 do_sysinfo(&s);
2628
2629 /* Check to see if any memory value is too large for 32-bit and scale
2630 * down if needed
2631 */
0baae41e 2632 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
4a22f166
SR
2633 int bitcount = 0;
2634
2635 while (s.mem_unit < PAGE_SIZE) {
2636 s.mem_unit <<= 1;
2637 bitcount++;
2638 }
2639
2640 s.totalram >>= bitcount;
2641 s.freeram >>= bitcount;
2642 s.sharedram >>= bitcount;
2643 s.bufferram >>= bitcount;
2644 s.totalswap >>= bitcount;
2645 s.freeswap >>= bitcount;
2646 s.totalhigh >>= bitcount;
2647 s.freehigh >>= bitcount;
2648 }
2649
96d4f267 2650 if (!access_ok(info, sizeof(struct compat_sysinfo)) ||
4a22f166
SR
2651 __put_user(s.uptime, &info->uptime) ||
2652 __put_user(s.loads[0], &info->loads[0]) ||
2653 __put_user(s.loads[1], &info->loads[1]) ||
2654 __put_user(s.loads[2], &info->loads[2]) ||
2655 __put_user(s.totalram, &info->totalram) ||
2656 __put_user(s.freeram, &info->freeram) ||
2657 __put_user(s.sharedram, &info->sharedram) ||
2658 __put_user(s.bufferram, &info->bufferram) ||
2659 __put_user(s.totalswap, &info->totalswap) ||
2660 __put_user(s.freeswap, &info->freeswap) ||
2661 __put_user(s.procs, &info->procs) ||
2662 __put_user(s.totalhigh, &info->totalhigh) ||
2663 __put_user(s.freehigh, &info->freehigh) ||
2664 __put_user(s.mem_unit, &info->mem_unit))
2665 return -EFAULT;
2666
2667 return 0;
2668}
2669#endif /* CONFIG_COMPAT */