remove dma64_addr_t
[linux-2.6-block.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/notifier.h>
12#include <linux/reboot.h>
13#include <linux/prctl.h>
1da177e4
LT
14#include <linux/highuid.h>
15#include <linux/fs.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
5a0e3ad6 39#include <linux/gfp.h>
40dc166c 40#include <linux/syscore_ops.h>
1da177e4
LT
41
42#include <linux/compat.h>
43#include <linux/syscalls.h>
00d7c05a 44#include <linux/kprobes.h>
acce292c 45#include <linux/user_namespace.h>
1da177e4 46
04c6862c
SA
47#include <linux/kmsg_dump.h>
48
1da177e4
LT
49#include <asm/uaccess.h>
50#include <asm/io.h>
51#include <asm/unistd.h>
52
53#ifndef SET_UNALIGN_CTL
54# define SET_UNALIGN_CTL(a,b) (-EINVAL)
55#endif
56#ifndef GET_UNALIGN_CTL
57# define GET_UNALIGN_CTL(a,b) (-EINVAL)
58#endif
59#ifndef SET_FPEMU_CTL
60# define SET_FPEMU_CTL(a,b) (-EINVAL)
61#endif
62#ifndef GET_FPEMU_CTL
63# define GET_FPEMU_CTL(a,b) (-EINVAL)
64#endif
65#ifndef SET_FPEXC_CTL
66# define SET_FPEXC_CTL(a,b) (-EINVAL)
67#endif
68#ifndef GET_FPEXC_CTL
69# define GET_FPEXC_CTL(a,b) (-EINVAL)
70#endif
651d765d
AB
71#ifndef GET_ENDIAN
72# define GET_ENDIAN(a,b) (-EINVAL)
73#endif
74#ifndef SET_ENDIAN
75# define SET_ENDIAN(a,b) (-EINVAL)
76#endif
8fb402bc
EB
77#ifndef GET_TSC_CTL
78# define GET_TSC_CTL(a) (-EINVAL)
79#endif
80#ifndef SET_TSC_CTL
81# define SET_TSC_CTL(a) (-EINVAL)
82#endif
1da177e4
LT
83
84/*
85 * this is where the system-wide overflow UID and GID are defined, for
86 * architectures that now have 32-bit UID/GID but didn't in the past
87 */
88
89int overflowuid = DEFAULT_OVERFLOWUID;
90int overflowgid = DEFAULT_OVERFLOWGID;
91
92#ifdef CONFIG_UID16
93EXPORT_SYMBOL(overflowuid);
94EXPORT_SYMBOL(overflowgid);
95#endif
96
97/*
98 * the same as above, but for filesystems which can only store a 16-bit
99 * UID and GID. as such, this is needed on all architectures
100 */
101
102int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
103int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
104
105EXPORT_SYMBOL(fs_overflowuid);
106EXPORT_SYMBOL(fs_overflowgid);
107
108/*
109 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
110 */
111
112int C_A_D = 1;
9ec52099
CLG
113struct pid *cad_pid;
114EXPORT_SYMBOL(cad_pid);
1da177e4 115
bd804eba
RW
116/*
117 * If set, this is used for preparing the system to power off.
118 */
119
120void (*pm_power_off_prepare)(void);
bd804eba 121
fc832ad3
SH
122/*
123 * Returns true if current's euid is same as p's uid or euid,
124 * or has CAP_SYS_NICE to p's user_ns.
125 *
126 * Called with rcu_read_lock, creds are safe
127 */
128static bool set_one_prio_perm(struct task_struct *p)
129{
130 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
131
132 if (pcred->user->user_ns == cred->user->user_ns &&
133 (pcred->uid == cred->euid ||
134 pcred->euid == cred->euid))
135 return true;
136 if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
137 return true;
138 return false;
139}
140
c69e8d9c
DH
141/*
142 * set the priority of a task
143 * - the caller must hold the RCU read lock
144 */
1da177e4
LT
145static int set_one_prio(struct task_struct *p, int niceval, int error)
146{
147 int no_nice;
148
fc832ad3 149 if (!set_one_prio_perm(p)) {
1da177e4
LT
150 error = -EPERM;
151 goto out;
152 }
e43379f1 153 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
154 error = -EACCES;
155 goto out;
156 }
157 no_nice = security_task_setnice(p, niceval);
158 if (no_nice) {
159 error = no_nice;
160 goto out;
161 }
162 if (error == -ESRCH)
163 error = 0;
164 set_user_nice(p, niceval);
165out:
166 return error;
167}
168
754fe8d2 169SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
170{
171 struct task_struct *g, *p;
172 struct user_struct *user;
86a264ab 173 const struct cred *cred = current_cred();
1da177e4 174 int error = -EINVAL;
41487c65 175 struct pid *pgrp;
1da177e4 176
3e88c553 177 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
178 goto out;
179
180 /* normalize: avoid signed division (rounding problems) */
181 error = -ESRCH;
182 if (niceval < -20)
183 niceval = -20;
184 if (niceval > 19)
185 niceval = 19;
186
d4581a23 187 rcu_read_lock();
1da177e4
LT
188 read_lock(&tasklist_lock);
189 switch (which) {
190 case PRIO_PROCESS:
41487c65 191 if (who)
228ebcbe 192 p = find_task_by_vpid(who);
41487c65
EB
193 else
194 p = current;
1da177e4
LT
195 if (p)
196 error = set_one_prio(p, niceval, error);
197 break;
198 case PRIO_PGRP:
41487c65 199 if (who)
b488893a 200 pgrp = find_vpid(who);
41487c65
EB
201 else
202 pgrp = task_pgrp(current);
2d70b68d 203 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 204 error = set_one_prio(p, niceval, error);
2d70b68d 205 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
206 break;
207 case PRIO_USER:
d84f4f99 208 user = (struct user_struct *) cred->user;
1da177e4 209 if (!who)
86a264ab
DH
210 who = cred->uid;
211 else if ((who != cred->uid) &&
212 !(user = find_user(who)))
213 goto out_unlock; /* No processes for this user */
1da177e4 214
dfc6a736 215 do_each_thread(g, p) {
86a264ab 216 if (__task_cred(p)->uid == who)
1da177e4 217 error = set_one_prio(p, niceval, error);
dfc6a736 218 } while_each_thread(g, p);
86a264ab 219 if (who != cred->uid)
1da177e4
LT
220 free_uid(user); /* For find_user() */
221 break;
222 }
223out_unlock:
224 read_unlock(&tasklist_lock);
d4581a23 225 rcu_read_unlock();
1da177e4
LT
226out:
227 return error;
228}
229
230/*
231 * Ugh. To avoid negative return values, "getpriority()" will
232 * not return the normal nice-value, but a negated value that
233 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
234 * to stay compatible.
235 */
754fe8d2 236SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
237{
238 struct task_struct *g, *p;
239 struct user_struct *user;
86a264ab 240 const struct cred *cred = current_cred();
1da177e4 241 long niceval, retval = -ESRCH;
41487c65 242 struct pid *pgrp;
1da177e4 243
3e88c553 244 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
245 return -EINVAL;
246
70118837 247 rcu_read_lock();
1da177e4
LT
248 read_lock(&tasklist_lock);
249 switch (which) {
250 case PRIO_PROCESS:
41487c65 251 if (who)
228ebcbe 252 p = find_task_by_vpid(who);
41487c65
EB
253 else
254 p = current;
1da177e4
LT
255 if (p) {
256 niceval = 20 - task_nice(p);
257 if (niceval > retval)
258 retval = niceval;
259 }
260 break;
261 case PRIO_PGRP:
41487c65 262 if (who)
b488893a 263 pgrp = find_vpid(who);
41487c65
EB
264 else
265 pgrp = task_pgrp(current);
2d70b68d 266 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
267 niceval = 20 - task_nice(p);
268 if (niceval > retval)
269 retval = niceval;
2d70b68d 270 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
271 break;
272 case PRIO_USER:
86a264ab 273 user = (struct user_struct *) cred->user;
1da177e4 274 if (!who)
86a264ab
DH
275 who = cred->uid;
276 else if ((who != cred->uid) &&
277 !(user = find_user(who)))
278 goto out_unlock; /* No processes for this user */
1da177e4 279
dfc6a736 280 do_each_thread(g, p) {
86a264ab 281 if (__task_cred(p)->uid == who) {
1da177e4
LT
282 niceval = 20 - task_nice(p);
283 if (niceval > retval)
284 retval = niceval;
285 }
dfc6a736 286 } while_each_thread(g, p);
86a264ab 287 if (who != cred->uid)
1da177e4
LT
288 free_uid(user); /* for find_user() */
289 break;
290 }
291out_unlock:
292 read_unlock(&tasklist_lock);
70118837 293 rcu_read_unlock();
1da177e4
LT
294
295 return retval;
296}
297
e4c94330
EB
298/**
299 * emergency_restart - reboot the system
300 *
301 * Without shutting down any hardware or taking any locks
302 * reboot the system. This is called when we know we are in
303 * trouble so this is our best effort to reboot. This is
304 * safe to call in interrupt context.
305 */
7c903473
EB
306void emergency_restart(void)
307{
04c6862c 308 kmsg_dump(KMSG_DUMP_EMERG);
7c903473
EB
309 machine_emergency_restart();
310}
311EXPORT_SYMBOL_GPL(emergency_restart);
312
ca195b7f 313void kernel_restart_prepare(char *cmd)
4a00ea1e 314{
e041c683 315 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 316 system_state = SYSTEM_RESTART;
4a00ea1e 317 device_shutdown();
58b3b71d 318 sysdev_shutdown();
40dc166c 319 syscore_shutdown();
e4c94330 320}
1e5d5331
RD
321
322/**
323 * kernel_restart - reboot the system
324 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 325 * or %NULL
1e5d5331
RD
326 *
327 * Shutdown everything and perform a clean reboot.
328 * This is not safe to call in interrupt context.
329 */
e4c94330
EB
330void kernel_restart(char *cmd)
331{
332 kernel_restart_prepare(cmd);
756184b7 333 if (!cmd)
4a00ea1e 334 printk(KERN_EMERG "Restarting system.\n");
756184b7 335 else
4a00ea1e 336 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
04c6862c 337 kmsg_dump(KMSG_DUMP_RESTART);
4a00ea1e
EB
338 machine_restart(cmd);
339}
340EXPORT_SYMBOL_GPL(kernel_restart);
341
4ef7229f 342static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 343{
e041c683 344 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
345 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
346 system_state = state;
347 device_shutdown();
348}
e4c94330
EB
349/**
350 * kernel_halt - halt the system
351 *
352 * Shutdown everything and perform a clean system halt.
353 */
e4c94330
EB
354void kernel_halt(void)
355{
729b4d4c 356 kernel_shutdown_prepare(SYSTEM_HALT);
58b3b71d 357 sysdev_shutdown();
40dc166c 358 syscore_shutdown();
4a00ea1e 359 printk(KERN_EMERG "System halted.\n");
04c6862c 360 kmsg_dump(KMSG_DUMP_HALT);
4a00ea1e
EB
361 machine_halt();
362}
729b4d4c 363
4a00ea1e
EB
364EXPORT_SYMBOL_GPL(kernel_halt);
365
e4c94330
EB
366/**
367 * kernel_power_off - power_off the system
368 *
369 * Shutdown everything and perform a clean system power_off.
370 */
e4c94330
EB
371void kernel_power_off(void)
372{
729b4d4c 373 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
374 if (pm_power_off_prepare)
375 pm_power_off_prepare();
4047727e 376 disable_nonboot_cpus();
58b3b71d 377 sysdev_shutdown();
40dc166c 378 syscore_shutdown();
4a00ea1e 379 printk(KERN_EMERG "Power down.\n");
04c6862c 380 kmsg_dump(KMSG_DUMP_POWEROFF);
4a00ea1e
EB
381 machine_power_off();
382}
383EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
384
385static DEFINE_MUTEX(reboot_mutex);
386
1da177e4
LT
387/*
388 * Reboot system call: for obvious reasons only root may call it,
389 * and even root needs to set up some magic numbers in the registers
390 * so that some mistake won't make this reboot the whole machine.
391 * You can also set the meaning of the ctrl-alt-del-key here.
392 *
393 * reboot doesn't sync: do that yourself before calling this.
394 */
754fe8d2
HC
395SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
396 void __user *, arg)
1da177e4
LT
397{
398 char buffer[256];
3d26dcf7 399 int ret = 0;
1da177e4
LT
400
401 /* We only trust the superuser with rebooting the system. */
402 if (!capable(CAP_SYS_BOOT))
403 return -EPERM;
404
405 /* For safety, we require "magic" arguments. */
406 if (magic1 != LINUX_REBOOT_MAGIC1 ||
407 (magic2 != LINUX_REBOOT_MAGIC2 &&
408 magic2 != LINUX_REBOOT_MAGIC2A &&
409 magic2 != LINUX_REBOOT_MAGIC2B &&
410 magic2 != LINUX_REBOOT_MAGIC2C))
411 return -EINVAL;
412
5e38291d
EB
413 /* Instead of trying to make the power_off code look like
414 * halt when pm_power_off is not set do it the easy way.
415 */
416 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
417 cmd = LINUX_REBOOT_CMD_HALT;
418
6f15fa50 419 mutex_lock(&reboot_mutex);
1da177e4
LT
420 switch (cmd) {
421 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 422 kernel_restart(NULL);
1da177e4
LT
423 break;
424
425 case LINUX_REBOOT_CMD_CAD_ON:
426 C_A_D = 1;
427 break;
428
429 case LINUX_REBOOT_CMD_CAD_OFF:
430 C_A_D = 0;
431 break;
432
433 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 434 kernel_halt();
1da177e4 435 do_exit(0);
3d26dcf7 436 panic("cannot halt");
1da177e4
LT
437
438 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 439 kernel_power_off();
1da177e4
LT
440 do_exit(0);
441 break;
442
443 case LINUX_REBOOT_CMD_RESTART2:
444 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
445 ret = -EFAULT;
446 break;
1da177e4
LT
447 }
448 buffer[sizeof(buffer) - 1] = '\0';
449
4a00ea1e 450 kernel_restart(buffer);
1da177e4
LT
451 break;
452
3ab83521 453#ifdef CONFIG_KEXEC
dc009d92 454 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
455 ret = kernel_kexec();
456 break;
3ab83521 457#endif
4a00ea1e 458
b0cb1a19 459#ifdef CONFIG_HIBERNATION
1da177e4 460 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
461 ret = hibernate();
462 break;
1da177e4
LT
463#endif
464
465 default:
3d26dcf7
AK
466 ret = -EINVAL;
467 break;
1da177e4 468 }
6f15fa50 469 mutex_unlock(&reboot_mutex);
3d26dcf7 470 return ret;
1da177e4
LT
471}
472
65f27f38 473static void deferred_cad(struct work_struct *dummy)
1da177e4 474{
abcd9e51 475 kernel_restart(NULL);
1da177e4
LT
476}
477
478/*
479 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
480 * As it's called within an interrupt, it may NOT sync: the only choice
481 * is whether to reboot at once, or just ignore the ctrl-alt-del.
482 */
483void ctrl_alt_del(void)
484{
65f27f38 485 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
486
487 if (C_A_D)
488 schedule_work(&cad_work);
489 else
9ec52099 490 kill_cad_pid(SIGINT, 1);
1da177e4
LT
491}
492
1da177e4
LT
493/*
494 * Unprivileged users may change the real gid to the effective gid
495 * or vice versa. (BSD-style)
496 *
497 * If you set the real gid at all, or set the effective gid to a value not
498 * equal to the real gid, then the saved gid is set to the new effective gid.
499 *
500 * This makes it possible for a setgid program to completely drop its
501 * privileges, which is often a useful assertion to make when you are doing
502 * a security audit over a program.
503 *
504 * The general idea is that a program which uses just setregid() will be
505 * 100% compatible with BSD. A program which uses just setgid() will be
506 * 100% compatible with POSIX with saved IDs.
507 *
508 * SMP: There are not races, the GIDs are checked only by filesystem
509 * operations (as far as semantic preservation is concerned).
510 */
ae1251ab 511SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 512{
d84f4f99
DH
513 const struct cred *old;
514 struct cred *new;
1da177e4
LT
515 int retval;
516
d84f4f99
DH
517 new = prepare_creds();
518 if (!new)
519 return -ENOMEM;
520 old = current_cred();
521
d84f4f99 522 retval = -EPERM;
1da177e4 523 if (rgid != (gid_t) -1) {
d84f4f99
DH
524 if (old->gid == rgid ||
525 old->egid == rgid ||
fc832ad3 526 nsown_capable(CAP_SETGID))
d84f4f99 527 new->gid = rgid;
1da177e4 528 else
d84f4f99 529 goto error;
1da177e4
LT
530 }
531 if (egid != (gid_t) -1) {
d84f4f99
DH
532 if (old->gid == egid ||
533 old->egid == egid ||
534 old->sgid == egid ||
fc832ad3 535 nsown_capable(CAP_SETGID))
d84f4f99 536 new->egid = egid;
756184b7 537 else
d84f4f99 538 goto error;
1da177e4 539 }
d84f4f99 540
1da177e4 541 if (rgid != (gid_t) -1 ||
d84f4f99
DH
542 (egid != (gid_t) -1 && egid != old->gid))
543 new->sgid = new->egid;
544 new->fsgid = new->egid;
545
546 return commit_creds(new);
547
548error:
549 abort_creds(new);
550 return retval;
1da177e4
LT
551}
552
553/*
554 * setgid() is implemented like SysV w/ SAVED_IDS
555 *
556 * SMP: Same implicit races as above.
557 */
ae1251ab 558SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 559{
d84f4f99
DH
560 const struct cred *old;
561 struct cred *new;
1da177e4
LT
562 int retval;
563
d84f4f99
DH
564 new = prepare_creds();
565 if (!new)
566 return -ENOMEM;
567 old = current_cred();
568
d84f4f99 569 retval = -EPERM;
fc832ad3 570 if (nsown_capable(CAP_SETGID))
d84f4f99
DH
571 new->gid = new->egid = new->sgid = new->fsgid = gid;
572 else if (gid == old->gid || gid == old->sgid)
573 new->egid = new->fsgid = gid;
1da177e4 574 else
d84f4f99 575 goto error;
1da177e4 576
d84f4f99
DH
577 return commit_creds(new);
578
579error:
580 abort_creds(new);
581 return retval;
1da177e4 582}
54e99124 583
d84f4f99
DH
584/*
585 * change the user struct in a credentials set to match the new UID
586 */
587static int set_user(struct cred *new)
1da177e4
LT
588{
589 struct user_struct *new_user;
590
18b6e041 591 new_user = alloc_uid(current_user_ns(), new->uid);
1da177e4
LT
592 if (!new_user)
593 return -EAGAIN;
594
78d7d407 595 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
18b6e041 596 new_user != INIT_USER) {
1da177e4
LT
597 free_uid(new_user);
598 return -EAGAIN;
599 }
600
d84f4f99
DH
601 free_uid(new->user);
602 new->user = new_user;
1da177e4
LT
603 return 0;
604}
605
606/*
607 * Unprivileged users may change the real uid to the effective uid
608 * or vice versa. (BSD-style)
609 *
610 * If you set the real uid at all, or set the effective uid to a value not
611 * equal to the real uid, then the saved uid is set to the new effective uid.
612 *
613 * This makes it possible for a setuid program to completely drop its
614 * privileges, which is often a useful assertion to make when you are doing
615 * a security audit over a program.
616 *
617 * The general idea is that a program which uses just setreuid() will be
618 * 100% compatible with BSD. A program which uses just setuid() will be
619 * 100% compatible with POSIX with saved IDs.
620 */
ae1251ab 621SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 622{
d84f4f99
DH
623 const struct cred *old;
624 struct cred *new;
1da177e4
LT
625 int retval;
626
d84f4f99
DH
627 new = prepare_creds();
628 if (!new)
629 return -ENOMEM;
630 old = current_cred();
631
d84f4f99 632 retval = -EPERM;
1da177e4 633 if (ruid != (uid_t) -1) {
d84f4f99
DH
634 new->uid = ruid;
635 if (old->uid != ruid &&
636 old->euid != ruid &&
fc832ad3 637 !nsown_capable(CAP_SETUID))
d84f4f99 638 goto error;
1da177e4
LT
639 }
640
641 if (euid != (uid_t) -1) {
d84f4f99
DH
642 new->euid = euid;
643 if (old->uid != euid &&
644 old->euid != euid &&
645 old->suid != euid &&
fc832ad3 646 !nsown_capable(CAP_SETUID))
d84f4f99 647 goto error;
1da177e4
LT
648 }
649
54e99124
DG
650 if (new->uid != old->uid) {
651 retval = set_user(new);
652 if (retval < 0)
653 goto error;
654 }
1da177e4 655 if (ruid != (uid_t) -1 ||
d84f4f99
DH
656 (euid != (uid_t) -1 && euid != old->uid))
657 new->suid = new->euid;
658 new->fsuid = new->euid;
1da177e4 659
d84f4f99
DH
660 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
661 if (retval < 0)
662 goto error;
1da177e4 663
d84f4f99 664 return commit_creds(new);
1da177e4 665
d84f4f99
DH
666error:
667 abort_creds(new);
668 return retval;
669}
1da177e4
LT
670
671/*
672 * setuid() is implemented like SysV with SAVED_IDS
673 *
674 * Note that SAVED_ID's is deficient in that a setuid root program
675 * like sendmail, for example, cannot set its uid to be a normal
676 * user and then switch back, because if you're root, setuid() sets
677 * the saved uid too. If you don't like this, blame the bright people
678 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
679 * will allow a root program to temporarily drop privileges and be able to
680 * regain them by swapping the real and effective uid.
681 */
ae1251ab 682SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 683{
d84f4f99
DH
684 const struct cred *old;
685 struct cred *new;
1da177e4
LT
686 int retval;
687
d84f4f99
DH
688 new = prepare_creds();
689 if (!new)
690 return -ENOMEM;
691 old = current_cred();
692
d84f4f99 693 retval = -EPERM;
fc832ad3 694 if (nsown_capable(CAP_SETUID)) {
d84f4f99 695 new->suid = new->uid = uid;
54e99124
DG
696 if (uid != old->uid) {
697 retval = set_user(new);
698 if (retval < 0)
699 goto error;
d84f4f99
DH
700 }
701 } else if (uid != old->uid && uid != new->suid) {
702 goto error;
1da177e4 703 }
1da177e4 704
d84f4f99
DH
705 new->fsuid = new->euid = uid;
706
707 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
708 if (retval < 0)
709 goto error;
1da177e4 710
d84f4f99 711 return commit_creds(new);
1da177e4 712
d84f4f99
DH
713error:
714 abort_creds(new);
715 return retval;
1da177e4
LT
716}
717
718
719/*
720 * This function implements a generic ability to update ruid, euid,
721 * and suid. This allows you to implement the 4.4 compatible seteuid().
722 */
ae1251ab 723SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 724{
d84f4f99
DH
725 const struct cred *old;
726 struct cred *new;
1da177e4
LT
727 int retval;
728
d84f4f99
DH
729 new = prepare_creds();
730 if (!new)
731 return -ENOMEM;
732
d84f4f99 733 old = current_cred();
1da177e4 734
d84f4f99 735 retval = -EPERM;
fc832ad3 736 if (!nsown_capable(CAP_SETUID)) {
d84f4f99
DH
737 if (ruid != (uid_t) -1 && ruid != old->uid &&
738 ruid != old->euid && ruid != old->suid)
739 goto error;
740 if (euid != (uid_t) -1 && euid != old->uid &&
741 euid != old->euid && euid != old->suid)
742 goto error;
743 if (suid != (uid_t) -1 && suid != old->uid &&
744 suid != old->euid && suid != old->suid)
745 goto error;
1da177e4 746 }
d84f4f99 747
1da177e4 748 if (ruid != (uid_t) -1) {
d84f4f99 749 new->uid = ruid;
54e99124
DG
750 if (ruid != old->uid) {
751 retval = set_user(new);
752 if (retval < 0)
753 goto error;
754 }
1da177e4 755 }
d84f4f99
DH
756 if (euid != (uid_t) -1)
757 new->euid = euid;
1da177e4 758 if (suid != (uid_t) -1)
d84f4f99
DH
759 new->suid = suid;
760 new->fsuid = new->euid;
1da177e4 761
d84f4f99
DH
762 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
763 if (retval < 0)
764 goto error;
1da177e4 765
d84f4f99 766 return commit_creds(new);
1da177e4 767
d84f4f99
DH
768error:
769 abort_creds(new);
770 return retval;
1da177e4
LT
771}
772
dbf040d9 773SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
1da177e4 774{
86a264ab 775 const struct cred *cred = current_cred();
1da177e4
LT
776 int retval;
777
86a264ab
DH
778 if (!(retval = put_user(cred->uid, ruid)) &&
779 !(retval = put_user(cred->euid, euid)))
b6dff3ec 780 retval = put_user(cred->suid, suid);
1da177e4
LT
781
782 return retval;
783}
784
785/*
786 * Same as above, but for rgid, egid, sgid.
787 */
ae1251ab 788SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 789{
d84f4f99
DH
790 const struct cred *old;
791 struct cred *new;
1da177e4
LT
792 int retval;
793
d84f4f99
DH
794 new = prepare_creds();
795 if (!new)
796 return -ENOMEM;
797 old = current_cred();
798
d84f4f99 799 retval = -EPERM;
fc832ad3 800 if (!nsown_capable(CAP_SETGID)) {
d84f4f99
DH
801 if (rgid != (gid_t) -1 && rgid != old->gid &&
802 rgid != old->egid && rgid != old->sgid)
803 goto error;
804 if (egid != (gid_t) -1 && egid != old->gid &&
805 egid != old->egid && egid != old->sgid)
806 goto error;
807 if (sgid != (gid_t) -1 && sgid != old->gid &&
808 sgid != old->egid && sgid != old->sgid)
809 goto error;
1da177e4 810 }
d84f4f99 811
1da177e4 812 if (rgid != (gid_t) -1)
d84f4f99
DH
813 new->gid = rgid;
814 if (egid != (gid_t) -1)
815 new->egid = egid;
1da177e4 816 if (sgid != (gid_t) -1)
d84f4f99
DH
817 new->sgid = sgid;
818 new->fsgid = new->egid;
1da177e4 819
d84f4f99
DH
820 return commit_creds(new);
821
822error:
823 abort_creds(new);
824 return retval;
1da177e4
LT
825}
826
dbf040d9 827SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
1da177e4 828{
86a264ab 829 const struct cred *cred = current_cred();
1da177e4
LT
830 int retval;
831
86a264ab
DH
832 if (!(retval = put_user(cred->gid, rgid)) &&
833 !(retval = put_user(cred->egid, egid)))
b6dff3ec 834 retval = put_user(cred->sgid, sgid);
1da177e4
LT
835
836 return retval;
837}
838
839
840/*
841 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
842 * is used for "access()" and for the NFS daemon (letting nfsd stay at
843 * whatever uid it wants to). It normally shadows "euid", except when
844 * explicitly set by setfsuid() or for access..
845 */
ae1251ab 846SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 847{
d84f4f99
DH
848 const struct cred *old;
849 struct cred *new;
850 uid_t old_fsuid;
1da177e4 851
d84f4f99
DH
852 new = prepare_creds();
853 if (!new)
854 return current_fsuid();
855 old = current_cred();
856 old_fsuid = old->fsuid;
1da177e4 857
d84f4f99
DH
858 if (uid == old->uid || uid == old->euid ||
859 uid == old->suid || uid == old->fsuid ||
fc832ad3 860 nsown_capable(CAP_SETUID)) {
756184b7 861 if (uid != old_fsuid) {
d84f4f99
DH
862 new->fsuid = uid;
863 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
864 goto change_okay;
1da177e4 865 }
1da177e4
LT
866 }
867
d84f4f99
DH
868 abort_creds(new);
869 return old_fsuid;
1da177e4 870
d84f4f99
DH
871change_okay:
872 commit_creds(new);
1da177e4
LT
873 return old_fsuid;
874}
875
876/*
f42df9e6 877 * Samma på svenska..
1da177e4 878 */
ae1251ab 879SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 880{
d84f4f99
DH
881 const struct cred *old;
882 struct cred *new;
883 gid_t old_fsgid;
884
885 new = prepare_creds();
886 if (!new)
887 return current_fsgid();
888 old = current_cred();
889 old_fsgid = old->fsgid;
1da177e4 890
d84f4f99
DH
891 if (gid == old->gid || gid == old->egid ||
892 gid == old->sgid || gid == old->fsgid ||
fc832ad3 893 nsown_capable(CAP_SETGID)) {
756184b7 894 if (gid != old_fsgid) {
d84f4f99
DH
895 new->fsgid = gid;
896 goto change_okay;
1da177e4 897 }
1da177e4 898 }
d84f4f99 899
d84f4f99
DH
900 abort_creds(new);
901 return old_fsgid;
902
903change_okay:
904 commit_creds(new);
1da177e4
LT
905 return old_fsgid;
906}
907
f06febc9
FM
908void do_sys_times(struct tms *tms)
909{
0cf55e1e 910 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 911
2b5fe6de 912 spin_lock_irq(&current->sighand->siglock);
0cf55e1e 913 thread_group_times(current, &tgutime, &tgstime);
f06febc9
FM
914 cutime = current->signal->cutime;
915 cstime = current->signal->cstime;
916 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
917 tms->tms_utime = cputime_to_clock_t(tgutime);
918 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
919 tms->tms_cutime = cputime_to_clock_t(cutime);
920 tms->tms_cstime = cputime_to_clock_t(cstime);
921}
922
58fd3aa2 923SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 924{
1da177e4
LT
925 if (tbuf) {
926 struct tms tmp;
f06febc9
FM
927
928 do_sys_times(&tmp);
1da177e4
LT
929 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
930 return -EFAULT;
931 }
e3d5a27d 932 force_successful_syscall_return();
1da177e4
LT
933 return (long) jiffies_64_to_clock_t(get_jiffies_64());
934}
935
936/*
937 * This needs some heavy checking ...
938 * I just haven't the stomach for it. I also don't fully
939 * understand sessions/pgrp etc. Let somebody who does explain it.
940 *
941 * OK, I think I have the protection semantics right.... this is really
942 * only important on a multi-user system anyway, to make sure one user
943 * can't send a signal to a process owned by another. -TYT, 12/12/91
944 *
945 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
946 * LBT 04.03.94
947 */
b290ebe2 948SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
949{
950 struct task_struct *p;
ee0acf90 951 struct task_struct *group_leader = current->group_leader;
4e021306
ON
952 struct pid *pgrp;
953 int err;
1da177e4
LT
954
955 if (!pid)
b488893a 956 pid = task_pid_vnr(group_leader);
1da177e4
LT
957 if (!pgid)
958 pgid = pid;
959 if (pgid < 0)
960 return -EINVAL;
950eaaca 961 rcu_read_lock();
1da177e4
LT
962
963 /* From this point forward we keep holding onto the tasklist lock
964 * so that our parent does not change from under us. -DaveM
965 */
966 write_lock_irq(&tasklist_lock);
967
968 err = -ESRCH;
4e021306 969 p = find_task_by_vpid(pid);
1da177e4
LT
970 if (!p)
971 goto out;
972
973 err = -EINVAL;
974 if (!thread_group_leader(p))
975 goto out;
976
4e021306 977 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 978 err = -EPERM;
41487c65 979 if (task_session(p) != task_session(group_leader))
1da177e4
LT
980 goto out;
981 err = -EACCES;
982 if (p->did_exec)
983 goto out;
984 } else {
985 err = -ESRCH;
ee0acf90 986 if (p != group_leader)
1da177e4
LT
987 goto out;
988 }
989
990 err = -EPERM;
991 if (p->signal->leader)
992 goto out;
993
4e021306 994 pgrp = task_pid(p);
1da177e4 995 if (pgid != pid) {
b488893a 996 struct task_struct *g;
1da177e4 997
4e021306
ON
998 pgrp = find_vpid(pgid);
999 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1000 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1001 goto out;
1da177e4
LT
1002 }
1003
1da177e4
LT
1004 err = security_task_setpgid(p, pgid);
1005 if (err)
1006 goto out;
1007
1b0f7ffd 1008 if (task_pgrp(p) != pgrp)
83beaf3c 1009 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1010
1011 err = 0;
1012out:
1013 /* All paths lead to here, thus we are safe. -DaveM */
1014 write_unlock_irq(&tasklist_lock);
950eaaca 1015 rcu_read_unlock();
1da177e4
LT
1016 return err;
1017}
1018
dbf040d9 1019SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1020{
12a3de0a
ON
1021 struct task_struct *p;
1022 struct pid *grp;
1023 int retval;
1024
1025 rcu_read_lock();
756184b7 1026 if (!pid)
12a3de0a 1027 grp = task_pgrp(current);
756184b7 1028 else {
1da177e4 1029 retval = -ESRCH;
12a3de0a
ON
1030 p = find_task_by_vpid(pid);
1031 if (!p)
1032 goto out;
1033 grp = task_pgrp(p);
1034 if (!grp)
1035 goto out;
1036
1037 retval = security_task_getpgid(p);
1038 if (retval)
1039 goto out;
1da177e4 1040 }
12a3de0a
ON
1041 retval = pid_vnr(grp);
1042out:
1043 rcu_read_unlock();
1044 return retval;
1da177e4
LT
1045}
1046
1047#ifdef __ARCH_WANT_SYS_GETPGRP
1048
dbf040d9 1049SYSCALL_DEFINE0(getpgrp)
1da177e4 1050{
12a3de0a 1051 return sys_getpgid(0);
1da177e4
LT
1052}
1053
1054#endif
1055
dbf040d9 1056SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1057{
1dd768c0
ON
1058 struct task_struct *p;
1059 struct pid *sid;
1060 int retval;
1061
1062 rcu_read_lock();
756184b7 1063 if (!pid)
1dd768c0 1064 sid = task_session(current);
756184b7 1065 else {
1da177e4 1066 retval = -ESRCH;
1dd768c0
ON
1067 p = find_task_by_vpid(pid);
1068 if (!p)
1069 goto out;
1070 sid = task_session(p);
1071 if (!sid)
1072 goto out;
1073
1074 retval = security_task_getsid(p);
1075 if (retval)
1076 goto out;
1da177e4 1077 }
1dd768c0
ON
1078 retval = pid_vnr(sid);
1079out:
1080 rcu_read_unlock();
1081 return retval;
1da177e4
LT
1082}
1083
b290ebe2 1084SYSCALL_DEFINE0(setsid)
1da177e4 1085{
e19f247a 1086 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1087 struct pid *sid = task_pid(group_leader);
1088 pid_t session = pid_vnr(sid);
1da177e4
LT
1089 int err = -EPERM;
1090
1da177e4 1091 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1092 /* Fail if I am already a session leader */
1093 if (group_leader->signal->leader)
1094 goto out;
1095
430c6231
ON
1096 /* Fail if a process group id already exists that equals the
1097 * proposed session id.
390e2ff0 1098 */
6806aac6 1099 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1100 goto out;
1101
e19f247a 1102 group_leader->signal->leader = 1;
8520d7c7 1103 __set_special_pids(sid);
24ec839c 1104
9c9f4ded 1105 proc_clear_tty(group_leader);
24ec839c 1106
e4cc0a9c 1107 err = session;
1da177e4
LT
1108out:
1109 write_unlock_irq(&tasklist_lock);
5091faa4 1110 if (err > 0) {
0d0df599 1111 proc_sid_connector(group_leader);
5091faa4
MG
1112 sched_autogroup_create_attach(group_leader);
1113 }
1da177e4
LT
1114 return err;
1115}
1116
1da177e4
LT
1117DECLARE_RWSEM(uts_sem);
1118
e28cbf22
CH
1119#ifdef COMPAT_UTS_MACHINE
1120#define override_architecture(name) \
46da2766 1121 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1122 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1123 sizeof(COMPAT_UTS_MACHINE)))
1124#else
1125#define override_architecture(name) 0
1126#endif
1127
e48fbb69 1128SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1129{
1130 int errno = 0;
1131
1132 down_read(&uts_sem);
e9ff3990 1133 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1134 errno = -EFAULT;
1135 up_read(&uts_sem);
e28cbf22
CH
1136
1137 if (!errno && override_architecture(name))
1138 errno = -EFAULT;
1da177e4
LT
1139 return errno;
1140}
1141
5cacdb4a
CH
1142#ifdef __ARCH_WANT_SYS_OLD_UNAME
1143/*
1144 * Old cruft
1145 */
1146SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1147{
1148 int error = 0;
1149
1150 if (!name)
1151 return -EFAULT;
1152
1153 down_read(&uts_sem);
1154 if (copy_to_user(name, utsname(), sizeof(*name)))
1155 error = -EFAULT;
1156 up_read(&uts_sem);
1157
1158 if (!error && override_architecture(name))
1159 error = -EFAULT;
1160 return error;
1161}
1162
1163SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1164{
1165 int error;
1166
1167 if (!name)
1168 return -EFAULT;
1169 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1170 return -EFAULT;
1171
1172 down_read(&uts_sem);
1173 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1174 __OLD_UTS_LEN);
1175 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1176 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1177 __OLD_UTS_LEN);
1178 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1179 error |= __copy_to_user(&name->release, &utsname()->release,
1180 __OLD_UTS_LEN);
1181 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1182 error |= __copy_to_user(&name->version, &utsname()->version,
1183 __OLD_UTS_LEN);
1184 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1185 error |= __copy_to_user(&name->machine, &utsname()->machine,
1186 __OLD_UTS_LEN);
1187 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1188 up_read(&uts_sem);
1189
1190 if (!error && override_architecture(name))
1191 error = -EFAULT;
1192 return error ? -EFAULT : 0;
1193}
1194#endif
1195
5a8a82b1 1196SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1197{
1198 int errno;
1199 char tmp[__NEW_UTS_LEN];
1200
bb96a6f5 1201 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1202 return -EPERM;
fc832ad3 1203
1da177e4
LT
1204 if (len < 0 || len > __NEW_UTS_LEN)
1205 return -EINVAL;
1206 down_write(&uts_sem);
1207 errno = -EFAULT;
1208 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1209 struct new_utsname *u = utsname();
1210
1211 memcpy(u->nodename, tmp, len);
1212 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4
LT
1213 errno = 0;
1214 }
1215 up_write(&uts_sem);
1216 return errno;
1217}
1218
1219#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1220
5a8a82b1 1221SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1222{
1223 int i, errno;
9679e4dd 1224 struct new_utsname *u;
1da177e4
LT
1225
1226 if (len < 0)
1227 return -EINVAL;
1228 down_read(&uts_sem);
9679e4dd
AM
1229 u = utsname();
1230 i = 1 + strlen(u->nodename);
1da177e4
LT
1231 if (i > len)
1232 i = len;
1233 errno = 0;
9679e4dd 1234 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1235 errno = -EFAULT;
1236 up_read(&uts_sem);
1237 return errno;
1238}
1239
1240#endif
1241
1242/*
1243 * Only setdomainname; getdomainname can be implemented by calling
1244 * uname()
1245 */
5a8a82b1 1246SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1247{
1248 int errno;
1249 char tmp[__NEW_UTS_LEN];
1250
fc832ad3 1251 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1252 return -EPERM;
1253 if (len < 0 || len > __NEW_UTS_LEN)
1254 return -EINVAL;
1255
1256 down_write(&uts_sem);
1257 errno = -EFAULT;
1258 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1259 struct new_utsname *u = utsname();
1260
1261 memcpy(u->domainname, tmp, len);
1262 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4
LT
1263 errno = 0;
1264 }
1265 up_write(&uts_sem);
1266 return errno;
1267}
1268
e48fbb69 1269SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1270{
b9518345
JS
1271 struct rlimit value;
1272 int ret;
1273
1274 ret = do_prlimit(current, resource, NULL, &value);
1275 if (!ret)
1276 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1277
1278 return ret;
1da177e4
LT
1279}
1280
1281#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1282
1283/*
1284 * Back compatibility for getrlimit. Needed for some apps.
1285 */
1286
e48fbb69
HC
1287SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1288 struct rlimit __user *, rlim)
1da177e4
LT
1289{
1290 struct rlimit x;
1291 if (resource >= RLIM_NLIMITS)
1292 return -EINVAL;
1293
1294 task_lock(current->group_leader);
1295 x = current->signal->rlim[resource];
1296 task_unlock(current->group_leader);
756184b7 1297 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1298 x.rlim_cur = 0x7FFFFFFF;
756184b7 1299 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1300 x.rlim_max = 0x7FFFFFFF;
1301 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1302}
1303
1304#endif
1305
c022a0ac
JS
1306static inline bool rlim64_is_infinity(__u64 rlim64)
1307{
1308#if BITS_PER_LONG < 64
1309 return rlim64 >= ULONG_MAX;
1310#else
1311 return rlim64 == RLIM64_INFINITY;
1312#endif
1313}
1314
1315static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1316{
1317 if (rlim->rlim_cur == RLIM_INFINITY)
1318 rlim64->rlim_cur = RLIM64_INFINITY;
1319 else
1320 rlim64->rlim_cur = rlim->rlim_cur;
1321 if (rlim->rlim_max == RLIM_INFINITY)
1322 rlim64->rlim_max = RLIM64_INFINITY;
1323 else
1324 rlim64->rlim_max = rlim->rlim_max;
1325}
1326
1327static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1328{
1329 if (rlim64_is_infinity(rlim64->rlim_cur))
1330 rlim->rlim_cur = RLIM_INFINITY;
1331 else
1332 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1333 if (rlim64_is_infinity(rlim64->rlim_max))
1334 rlim->rlim_max = RLIM_INFINITY;
1335 else
1336 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1337}
1338
1c1e618d 1339/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1340int do_prlimit(struct task_struct *tsk, unsigned int resource,
1341 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1342{
5b41535a 1343 struct rlimit *rlim;
86f162f4 1344 int retval = 0;
1da177e4
LT
1345
1346 if (resource >= RLIM_NLIMITS)
1347 return -EINVAL;
5b41535a
JS
1348 if (new_rlim) {
1349 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1350 return -EINVAL;
1351 if (resource == RLIMIT_NOFILE &&
1352 new_rlim->rlim_max > sysctl_nr_open)
1353 return -EPERM;
1354 }
1da177e4 1355
1c1e618d
JS
1356 /* protect tsk->signal and tsk->sighand from disappearing */
1357 read_lock(&tasklist_lock);
1358 if (!tsk->sighand) {
1359 retval = -ESRCH;
1360 goto out;
1361 }
1362
5b41535a 1363 rlim = tsk->signal->rlim + resource;
86f162f4 1364 task_lock(tsk->group_leader);
5b41535a 1365 if (new_rlim) {
fc832ad3
SH
1366 /* Keep the capable check against init_user_ns until
1367 cgroups can contain all limits */
5b41535a
JS
1368 if (new_rlim->rlim_max > rlim->rlim_max &&
1369 !capable(CAP_SYS_RESOURCE))
1370 retval = -EPERM;
1371 if (!retval)
1372 retval = security_task_setrlimit(tsk->group_leader,
1373 resource, new_rlim);
1374 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1375 /*
1376 * The caller is asking for an immediate RLIMIT_CPU
1377 * expiry. But we use the zero value to mean "it was
1378 * never set". So let's cheat and make it one second
1379 * instead
1380 */
1381 new_rlim->rlim_cur = 1;
1382 }
1383 }
1384 if (!retval) {
1385 if (old_rlim)
1386 *old_rlim = *rlim;
1387 if (new_rlim)
1388 *rlim = *new_rlim;
9926e4c7 1389 }
7855c35d 1390 task_unlock(tsk->group_leader);
1da177e4 1391
d3561f78
AM
1392 /*
1393 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1394 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1395 * very long-standing error, and fixing it now risks breakage of
1396 * applications, so we live with it
1397 */
5b41535a
JS
1398 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1399 new_rlim->rlim_cur != RLIM_INFINITY)
1400 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1401out:
1c1e618d 1402 read_unlock(&tasklist_lock);
2fb9d268 1403 return retval;
1da177e4
LT
1404}
1405
c022a0ac
JS
1406/* rcu lock must be held */
1407static int check_prlimit_permission(struct task_struct *task)
1408{
1409 const struct cred *cred = current_cred(), *tcred;
1410
fc832ad3
SH
1411 if (current == task)
1412 return 0;
c022a0ac 1413
fc832ad3
SH
1414 tcred = __task_cred(task);
1415 if (cred->user->user_ns == tcred->user->user_ns &&
1416 (cred->uid == tcred->euid &&
1417 cred->uid == tcred->suid &&
1418 cred->uid == tcred->uid &&
1419 cred->gid == tcred->egid &&
1420 cred->gid == tcred->sgid &&
1421 cred->gid == tcred->gid))
1422 return 0;
1423 if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1424 return 0;
1425
1426 return -EPERM;
c022a0ac
JS
1427}
1428
1429SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1430 const struct rlimit64 __user *, new_rlim,
1431 struct rlimit64 __user *, old_rlim)
1432{
1433 struct rlimit64 old64, new64;
1434 struct rlimit old, new;
1435 struct task_struct *tsk;
1436 int ret;
1437
1438 if (new_rlim) {
1439 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1440 return -EFAULT;
1441 rlim64_to_rlim(&new64, &new);
1442 }
1443
1444 rcu_read_lock();
1445 tsk = pid ? find_task_by_vpid(pid) : current;
1446 if (!tsk) {
1447 rcu_read_unlock();
1448 return -ESRCH;
1449 }
1450 ret = check_prlimit_permission(tsk);
1451 if (ret) {
1452 rcu_read_unlock();
1453 return ret;
1454 }
1455 get_task_struct(tsk);
1456 rcu_read_unlock();
1457
1458 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1459 old_rlim ? &old : NULL);
1460
1461 if (!ret && old_rlim) {
1462 rlim_to_rlim64(&old, &old64);
1463 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1464 ret = -EFAULT;
1465 }
1466
1467 put_task_struct(tsk);
1468 return ret;
1469}
1470
7855c35d
JS
1471SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1472{
1473 struct rlimit new_rlim;
1474
1475 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1476 return -EFAULT;
5b41535a 1477 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1478}
1479
1da177e4
LT
1480/*
1481 * It would make sense to put struct rusage in the task_struct,
1482 * except that would make the task_struct be *really big*. After
1483 * task_struct gets moved into malloc'ed memory, it would
1484 * make sense to do this. It will make moving the rest of the information
1485 * a lot simpler! (Which we're not doing right now because we're not
1486 * measuring them yet).
1487 *
1da177e4
LT
1488 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1489 * races with threads incrementing their own counters. But since word
1490 * reads are atomic, we either get new values or old values and we don't
1491 * care which for the sums. We always take the siglock to protect reading
1492 * the c* fields from p->signal from races with exit.c updating those
1493 * fields when reaping, so a sample either gets all the additions of a
1494 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1495 *
de047c1b
RT
1496 * Locking:
1497 * We need to take the siglock for CHILDEREN, SELF and BOTH
1498 * for the cases current multithreaded, non-current single threaded
1499 * non-current multithreaded. Thread traversal is now safe with
1500 * the siglock held.
1501 * Strictly speaking, we donot need to take the siglock if we are current and
1502 * single threaded, as no one else can take our signal_struct away, no one
1503 * else can reap the children to update signal->c* counters, and no one else
1504 * can race with the signal-> fields. If we do not take any lock, the
1505 * signal-> fields could be read out of order while another thread was just
1506 * exiting. So we should place a read memory barrier when we avoid the lock.
1507 * On the writer side, write memory barrier is implied in __exit_signal
1508 * as __exit_signal releases the siglock spinlock after updating the signal->
1509 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1510 *
1da177e4
LT
1511 */
1512
f06febc9 1513static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1514{
679c9cd4
SK
1515 r->ru_nvcsw += t->nvcsw;
1516 r->ru_nivcsw += t->nivcsw;
1517 r->ru_minflt += t->min_flt;
1518 r->ru_majflt += t->maj_flt;
1519 r->ru_inblock += task_io_get_inblock(t);
1520 r->ru_oublock += task_io_get_oublock(t);
1521}
1522
1da177e4
LT
1523static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1524{
1525 struct task_struct *t;
1526 unsigned long flags;
0cf55e1e 1527 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1528 unsigned long maxrss = 0;
1da177e4
LT
1529
1530 memset((char *) r, 0, sizeof *r);
2dd0ebcd 1531 utime = stime = cputime_zero;
1da177e4 1532
679c9cd4 1533 if (who == RUSAGE_THREAD) {
d180c5bc 1534 task_times(current, &utime, &stime);
f06febc9 1535 accumulate_thread_rusage(p, r);
1f10206c 1536 maxrss = p->signal->maxrss;
679c9cd4
SK
1537 goto out;
1538 }
1539
d6cf723a 1540 if (!lock_task_sighand(p, &flags))
de047c1b 1541 return;
0f59cc4a 1542
1da177e4 1543 switch (who) {
0f59cc4a 1544 case RUSAGE_BOTH:
1da177e4 1545 case RUSAGE_CHILDREN:
1da177e4
LT
1546 utime = p->signal->cutime;
1547 stime = p->signal->cstime;
1548 r->ru_nvcsw = p->signal->cnvcsw;
1549 r->ru_nivcsw = p->signal->cnivcsw;
1550 r->ru_minflt = p->signal->cmin_flt;
1551 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1552 r->ru_inblock = p->signal->cinblock;
1553 r->ru_oublock = p->signal->coublock;
1f10206c 1554 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1555
1556 if (who == RUSAGE_CHILDREN)
1557 break;
1558
1da177e4 1559 case RUSAGE_SELF:
0cf55e1e
HS
1560 thread_group_times(p, &tgutime, &tgstime);
1561 utime = cputime_add(utime, tgutime);
1562 stime = cputime_add(stime, tgstime);
1da177e4
LT
1563 r->ru_nvcsw += p->signal->nvcsw;
1564 r->ru_nivcsw += p->signal->nivcsw;
1565 r->ru_minflt += p->signal->min_flt;
1566 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1567 r->ru_inblock += p->signal->inblock;
1568 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1569 if (maxrss < p->signal->maxrss)
1570 maxrss = p->signal->maxrss;
1da177e4
LT
1571 t = p;
1572 do {
f06febc9 1573 accumulate_thread_rusage(t, r);
1da177e4
LT
1574 t = next_thread(t);
1575 } while (t != p);
1da177e4 1576 break;
0f59cc4a 1577
1da177e4
LT
1578 default:
1579 BUG();
1580 }
de047c1b 1581 unlock_task_sighand(p, &flags);
de047c1b 1582
679c9cd4 1583out:
0f59cc4a
ON
1584 cputime_to_timeval(utime, &r->ru_utime);
1585 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1586
1587 if (who != RUSAGE_CHILDREN) {
1588 struct mm_struct *mm = get_task_mm(p);
1589 if (mm) {
1590 setmax_mm_hiwater_rss(&maxrss, mm);
1591 mmput(mm);
1592 }
1593 }
1594 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1595}
1596
1597int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1598{
1599 struct rusage r;
1da177e4 1600 k_getrusage(p, who, &r);
1da177e4
LT
1601 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1602}
1603
e48fbb69 1604SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1605{
679c9cd4
SK
1606 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1607 who != RUSAGE_THREAD)
1da177e4
LT
1608 return -EINVAL;
1609 return getrusage(current, who, ru);
1610}
1611
e48fbb69 1612SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1613{
1614 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1615 return mask;
1616}
3b7391de 1617
c4ea37c2
HC
1618SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1619 unsigned long, arg4, unsigned long, arg5)
1da177e4 1620{
b6dff3ec
DH
1621 struct task_struct *me = current;
1622 unsigned char comm[sizeof(me->comm)];
1623 long error;
1da177e4 1624
d84f4f99
DH
1625 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1626 if (error != -ENOSYS)
1da177e4
LT
1627 return error;
1628
d84f4f99 1629 error = 0;
1da177e4
LT
1630 switch (option) {
1631 case PR_SET_PDEATHSIG:
0730ded5 1632 if (!valid_signal(arg2)) {
1da177e4
LT
1633 error = -EINVAL;
1634 break;
1635 }
b6dff3ec
DH
1636 me->pdeath_signal = arg2;
1637 error = 0;
1da177e4
LT
1638 break;
1639 case PR_GET_PDEATHSIG:
b6dff3ec 1640 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
1641 break;
1642 case PR_GET_DUMPABLE:
b6dff3ec 1643 error = get_dumpable(me->mm);
1da177e4
LT
1644 break;
1645 case PR_SET_DUMPABLE:
abf75a50 1646 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1647 error = -EINVAL;
1648 break;
1649 }
b6dff3ec
DH
1650 set_dumpable(me->mm, arg2);
1651 error = 0;
1da177e4
LT
1652 break;
1653
1654 case PR_SET_UNALIGN:
b6dff3ec 1655 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1656 break;
1657 case PR_GET_UNALIGN:
b6dff3ec 1658 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1659 break;
1660 case PR_SET_FPEMU:
b6dff3ec 1661 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
1662 break;
1663 case PR_GET_FPEMU:
b6dff3ec 1664 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
1665 break;
1666 case PR_SET_FPEXC:
b6dff3ec 1667 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
1668 break;
1669 case PR_GET_FPEXC:
b6dff3ec 1670 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
1671 break;
1672 case PR_GET_TIMING:
1673 error = PR_TIMING_STATISTICAL;
1674 break;
1675 case PR_SET_TIMING:
7b26655f 1676 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4 1677 error = -EINVAL;
b6dff3ec
DH
1678 else
1679 error = 0;
1da177e4
LT
1680 break;
1681
b6dff3ec
DH
1682 case PR_SET_NAME:
1683 comm[sizeof(me->comm)-1] = 0;
1684 if (strncpy_from_user(comm, (char __user *)arg2,
1685 sizeof(me->comm) - 1) < 0)
1da177e4 1686 return -EFAULT;
b6dff3ec 1687 set_task_comm(me, comm);
1da177e4 1688 return 0;
b6dff3ec
DH
1689 case PR_GET_NAME:
1690 get_task_comm(comm, me);
1691 if (copy_to_user((char __user *)arg2, comm,
1692 sizeof(comm)))
1da177e4
LT
1693 return -EFAULT;
1694 return 0;
651d765d 1695 case PR_GET_ENDIAN:
b6dff3ec 1696 error = GET_ENDIAN(me, arg2);
651d765d
AB
1697 break;
1698 case PR_SET_ENDIAN:
b6dff3ec 1699 error = SET_ENDIAN(me, arg2);
651d765d
AB
1700 break;
1701
1d9d02fe
AA
1702 case PR_GET_SECCOMP:
1703 error = prctl_get_seccomp();
1704 break;
1705 case PR_SET_SECCOMP:
1706 error = prctl_set_seccomp(arg2);
1707 break;
8fb402bc
EB
1708 case PR_GET_TSC:
1709 error = GET_TSC_CTL(arg2);
1710 break;
1711 case PR_SET_TSC:
1712 error = SET_TSC_CTL(arg2);
1713 break;
cdd6c482
IM
1714 case PR_TASK_PERF_EVENTS_DISABLE:
1715 error = perf_event_task_disable();
1d1c7ddb 1716 break;
cdd6c482
IM
1717 case PR_TASK_PERF_EVENTS_ENABLE:
1718 error = perf_event_task_enable();
1d1c7ddb 1719 break;
6976675d
AV
1720 case PR_GET_TIMERSLACK:
1721 error = current->timer_slack_ns;
1722 break;
1723 case PR_SET_TIMERSLACK:
1724 if (arg2 <= 0)
1725 current->timer_slack_ns =
1726 current->default_timer_slack_ns;
1727 else
1728 current->timer_slack_ns = arg2;
b6dff3ec 1729 error = 0;
6976675d 1730 break;
4db96cf0
AK
1731 case PR_MCE_KILL:
1732 if (arg4 | arg5)
1733 return -EINVAL;
1734 switch (arg2) {
1087e9b4 1735 case PR_MCE_KILL_CLEAR:
4db96cf0
AK
1736 if (arg3 != 0)
1737 return -EINVAL;
1738 current->flags &= ~PF_MCE_PROCESS;
1739 break;
1087e9b4 1740 case PR_MCE_KILL_SET:
4db96cf0 1741 current->flags |= PF_MCE_PROCESS;
1087e9b4 1742 if (arg3 == PR_MCE_KILL_EARLY)
4db96cf0 1743 current->flags |= PF_MCE_EARLY;
1087e9b4 1744 else if (arg3 == PR_MCE_KILL_LATE)
4db96cf0 1745 current->flags &= ~PF_MCE_EARLY;
1087e9b4
AK
1746 else if (arg3 == PR_MCE_KILL_DEFAULT)
1747 current->flags &=
1748 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1749 else
1750 return -EINVAL;
4db96cf0
AK
1751 break;
1752 default:
1753 return -EINVAL;
1754 }
1755 error = 0;
1756 break;
1087e9b4
AK
1757 case PR_MCE_KILL_GET:
1758 if (arg2 | arg3 | arg4 | arg5)
1759 return -EINVAL;
1760 if (current->flags & PF_MCE_PROCESS)
1761 error = (current->flags & PF_MCE_EARLY) ?
1762 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1763 else
1764 error = PR_MCE_KILL_DEFAULT;
1765 break;
1da177e4
LT
1766 default:
1767 error = -EINVAL;
1768 break;
1769 }
1770 return error;
1771}
3cfc348b 1772
836f92ad
HC
1773SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1774 struct getcpu_cache __user *, unused)
3cfc348b
AK
1775{
1776 int err = 0;
1777 int cpu = raw_smp_processor_id();
1778 if (cpup)
1779 err |= put_user(cpu, cpup);
1780 if (nodep)
1781 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
1782 return err ? -EFAULT : 0;
1783}
10a0a8d4
JF
1784
1785char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1786
a06a4dc3 1787static void argv_cleanup(struct subprocess_info *info)
10a0a8d4 1788{
a06a4dc3 1789 argv_free(info->argv);
10a0a8d4
JF
1790}
1791
1792/**
1793 * orderly_poweroff - Trigger an orderly system poweroff
1794 * @force: force poweroff if command execution fails
1795 *
1796 * This may be called from any context to trigger a system shutdown.
1797 * If the orderly shutdown fails, it will force an immediate shutdown.
1798 */
1799int orderly_poweroff(bool force)
1800{
1801 int argc;
1802 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1803 static char *envp[] = {
1804 "HOME=/",
1805 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1806 NULL
1807 };
1808 int ret = -ENOMEM;
1809 struct subprocess_info *info;
1810
1811 if (argv == NULL) {
1812 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1813 __func__, poweroff_cmd);
1814 goto out;
1815 }
1816
ac331d15 1817 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
10a0a8d4
JF
1818 if (info == NULL) {
1819 argv_free(argv);
1820 goto out;
1821 }
1822
a06a4dc3 1823 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
10a0a8d4 1824
86313c48 1825 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
10a0a8d4
JF
1826
1827 out:
1828 if (ret && force) {
1829 printk(KERN_WARNING "Failed to start orderly shutdown: "
1830 "forcing the issue\n");
1831
1832 /* I guess this should try to kick off some daemon to
1833 sync and poweroff asap. Or not even bother syncing
1834 if we're doing an emergency shutdown? */
1835 emergency_sync();
1836 kernel_power_off();
1837 }
1838
1839 return ret;
1840}
1841EXPORT_SYMBOL_GPL(orderly_poweroff);