sched: Balance RT tasks when forked as well
[linux-2.6-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
8f48894f
PZ
6#ifdef CONFIG_RT_GROUP_SCHED
7
8#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
398a153b
GH
10static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11{
8f48894f
PZ
12#ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14#endif
398a153b
GH
15 return container_of(rt_se, struct task_struct, rt);
16}
17
398a153b
GH
18static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19{
20 return rt_rq->rq;
21}
22
23static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24{
25 return rt_se->rt_rq;
26}
27
28#else /* CONFIG_RT_GROUP_SCHED */
29
a1ba4d8b
PZ
30#define rt_entity_is_task(rt_se) (1)
31
8f48894f
PZ
32static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33{
34 return container_of(rt_se, struct task_struct, rt);
35}
36
398a153b
GH
37static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38{
39 return container_of(rt_rq, struct rq, rt);
40}
41
42static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43{
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48}
49
50#endif /* CONFIG_RT_GROUP_SCHED */
51
4fd29176 52#ifdef CONFIG_SMP
84de4274 53
637f5085 54static inline int rt_overloaded(struct rq *rq)
4fd29176 55{
637f5085 56 return atomic_read(&rq->rd->rto_count);
4fd29176 57}
84de4274 58
4fd29176
SR
59static inline void rt_set_overload(struct rq *rq)
60{
1f11eb6a
GH
61 if (!rq->online)
62 return;
63
c6c4927b 64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
637f5085 73 atomic_inc(&rq->rd->rto_count);
4fd29176 74}
84de4274 75
4fd29176
SR
76static inline void rt_clear_overload(struct rq *rq)
77{
1f11eb6a
GH
78 if (!rq->online)
79 return;
80
4fd29176 81 /* the order here really doesn't matter */
637f5085 82 atomic_dec(&rq->rd->rto_count);
c6c4927b 83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 84}
73fe6aae 85
398a153b 86static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 87{
a1ba4d8b 88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
cdc8eb98 92 }
398a153b
GH
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
637f5085 96 }
73fe6aae 97}
4fd29176 98
398a153b
GH
99static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100{
a1ba4d8b
PZ
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
398a153b
GH
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111}
112
113static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114{
a1ba4d8b
PZ
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
398a153b
GH
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125}
126
917b627d
GH
127static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128{
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132}
133
134static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135{
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137}
138
bcf08df3
IM
139static inline int has_pushable_tasks(struct rq *rq)
140{
141 return !plist_head_empty(&rq->rt.pushable_tasks);
142}
143
917b627d
GH
144#else
145
ceacc2c1 146static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 147{
6f505b16
PZ
148}
149
ceacc2c1
PZ
150static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151{
152}
153
b07430ac 154static inline
ceacc2c1
PZ
155void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156{
157}
158
398a153b 159static inline
ceacc2c1
PZ
160void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161{
162}
917b627d 163
4fd29176
SR
164#endif /* CONFIG_SMP */
165
6f505b16
PZ
166static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167{
168 return !list_empty(&rt_se->run_list);
169}
170
052f1dc7 171#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 172
9f0c1e56 173static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
174{
175 if (!rt_rq->tg)
9f0c1e56 176 return RUNTIME_INF;
6f505b16 177
ac086bc2
PZ
178 return rt_rq->rt_runtime;
179}
180
181static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182{
183 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
184}
185
ec514c48
CX
186typedef struct task_group *rt_rq_iter_t;
187
1c09ab0d
YZ
188static inline struct task_group *next_task_group(struct task_group *tg)
189{
190 do {
191 tg = list_entry_rcu(tg->list.next,
192 typeof(struct task_group), list);
193 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
194
195 if (&tg->list == &task_groups)
196 tg = NULL;
197
198 return tg;
199}
200
201#define for_each_rt_rq(rt_rq, iter, rq) \
202 for (iter = container_of(&task_groups, typeof(*iter), list); \
203 (iter = next_task_group(iter)) && \
204 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 205
3d4b47b4
PZ
206static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
207{
208 list_add_rcu(&rt_rq->leaf_rt_rq_list,
209 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
210}
211
212static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
213{
214 list_del_rcu(&rt_rq->leaf_rt_rq_list);
215}
216
6f505b16 217#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 218 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16 219
6f505b16
PZ
220#define for_each_sched_rt_entity(rt_se) \
221 for (; rt_se; rt_se = rt_se->parent)
222
223static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
224{
225 return rt_se->my_q;
226}
227
37dad3fc 228static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
229static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
230
9f0c1e56 231static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 232{
f6121f4f 233 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
234 struct sched_rt_entity *rt_se;
235
0c3b9168
BS
236 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
237
238 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 239
f6121f4f
DF
240 if (rt_rq->rt_nr_running) {
241 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 242 enqueue_rt_entity(rt_se, false);
e864c499 243 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 244 resched_task(curr);
6f505b16
PZ
245 }
246}
247
9f0c1e56 248static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 249{
74b7eb58 250 struct sched_rt_entity *rt_se;
0c3b9168 251 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 252
0c3b9168 253 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
254
255 if (rt_se && on_rt_rq(rt_se))
256 dequeue_rt_entity(rt_se);
257}
258
23b0fdfc
PZ
259static inline int rt_rq_throttled(struct rt_rq *rt_rq)
260{
261 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
262}
263
264static int rt_se_boosted(struct sched_rt_entity *rt_se)
265{
266 struct rt_rq *rt_rq = group_rt_rq(rt_se);
267 struct task_struct *p;
268
269 if (rt_rq)
270 return !!rt_rq->rt_nr_boosted;
271
272 p = rt_task_of(rt_se);
273 return p->prio != p->normal_prio;
274}
275
d0b27fa7 276#ifdef CONFIG_SMP
c6c4927b 277static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
278{
279 return cpu_rq(smp_processor_id())->rd->span;
280}
6f505b16 281#else
c6c4927b 282static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 283{
c6c4927b 284 return cpu_online_mask;
d0b27fa7
PZ
285}
286#endif
6f505b16 287
d0b27fa7
PZ
288static inline
289struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 290{
d0b27fa7
PZ
291 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
292}
9f0c1e56 293
ac086bc2
PZ
294static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
295{
296 return &rt_rq->tg->rt_bandwidth;
297}
298
55e12e5e 299#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
300
301static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
302{
ac086bc2
PZ
303 return rt_rq->rt_runtime;
304}
305
306static inline u64 sched_rt_period(struct rt_rq *rt_rq)
307{
308 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
309}
310
ec514c48
CX
311typedef struct rt_rq *rt_rq_iter_t;
312
313#define for_each_rt_rq(rt_rq, iter, rq) \
314 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
315
3d4b47b4
PZ
316static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
317{
318}
319
320static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
321{
322}
323
6f505b16
PZ
324#define for_each_leaf_rt_rq(rt_rq, rq) \
325 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
326
6f505b16
PZ
327#define for_each_sched_rt_entity(rt_se) \
328 for (; rt_se; rt_se = NULL)
329
330static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
331{
332 return NULL;
333}
334
9f0c1e56 335static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 336{
f3ade837
JB
337 if (rt_rq->rt_nr_running)
338 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
339}
340
9f0c1e56 341static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
342{
343}
344
23b0fdfc
PZ
345static inline int rt_rq_throttled(struct rt_rq *rt_rq)
346{
347 return rt_rq->rt_throttled;
348}
d0b27fa7 349
c6c4927b 350static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 351{
c6c4927b 352 return cpu_online_mask;
d0b27fa7
PZ
353}
354
355static inline
356struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
357{
358 return &cpu_rq(cpu)->rt;
359}
360
ac086bc2
PZ
361static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
362{
363 return &def_rt_bandwidth;
364}
365
55e12e5e 366#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 367
ac086bc2 368#ifdef CONFIG_SMP
78333cdd
PZ
369/*
370 * We ran out of runtime, see if we can borrow some from our neighbours.
371 */
b79f3833 372static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
373{
374 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
375 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
376 int i, weight, more = 0;
377 u64 rt_period;
378
c6c4927b 379 weight = cpumask_weight(rd->span);
ac086bc2 380
0986b11b 381 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 382 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 383 for_each_cpu(i, rd->span) {
ac086bc2
PZ
384 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
385 s64 diff;
386
387 if (iter == rt_rq)
388 continue;
389
0986b11b 390 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
391 /*
392 * Either all rqs have inf runtime and there's nothing to steal
393 * or __disable_runtime() below sets a specific rq to inf to
394 * indicate its been disabled and disalow stealing.
395 */
7def2be1
PZ
396 if (iter->rt_runtime == RUNTIME_INF)
397 goto next;
398
78333cdd
PZ
399 /*
400 * From runqueues with spare time, take 1/n part of their
401 * spare time, but no more than our period.
402 */
ac086bc2
PZ
403 diff = iter->rt_runtime - iter->rt_time;
404 if (diff > 0) {
58838cf3 405 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
406 if (rt_rq->rt_runtime + diff > rt_period)
407 diff = rt_period - rt_rq->rt_runtime;
408 iter->rt_runtime -= diff;
409 rt_rq->rt_runtime += diff;
410 more = 1;
411 if (rt_rq->rt_runtime == rt_period) {
0986b11b 412 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
413 break;
414 }
415 }
7def2be1 416next:
0986b11b 417 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 418 }
0986b11b 419 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
420
421 return more;
422}
7def2be1 423
78333cdd
PZ
424/*
425 * Ensure this RQ takes back all the runtime it lend to its neighbours.
426 */
7def2be1
PZ
427static void __disable_runtime(struct rq *rq)
428{
429 struct root_domain *rd = rq->rd;
ec514c48 430 rt_rq_iter_t iter;
7def2be1
PZ
431 struct rt_rq *rt_rq;
432
433 if (unlikely(!scheduler_running))
434 return;
435
ec514c48 436 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
437 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
438 s64 want;
439 int i;
440
0986b11b
TG
441 raw_spin_lock(&rt_b->rt_runtime_lock);
442 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
443 /*
444 * Either we're all inf and nobody needs to borrow, or we're
445 * already disabled and thus have nothing to do, or we have
446 * exactly the right amount of runtime to take out.
447 */
7def2be1
PZ
448 if (rt_rq->rt_runtime == RUNTIME_INF ||
449 rt_rq->rt_runtime == rt_b->rt_runtime)
450 goto balanced;
0986b11b 451 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 452
78333cdd
PZ
453 /*
454 * Calculate the difference between what we started out with
455 * and what we current have, that's the amount of runtime
456 * we lend and now have to reclaim.
457 */
7def2be1
PZ
458 want = rt_b->rt_runtime - rt_rq->rt_runtime;
459
78333cdd
PZ
460 /*
461 * Greedy reclaim, take back as much as we can.
462 */
c6c4927b 463 for_each_cpu(i, rd->span) {
7def2be1
PZ
464 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
465 s64 diff;
466
78333cdd
PZ
467 /*
468 * Can't reclaim from ourselves or disabled runqueues.
469 */
f1679d08 470 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
471 continue;
472
0986b11b 473 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
474 if (want > 0) {
475 diff = min_t(s64, iter->rt_runtime, want);
476 iter->rt_runtime -= diff;
477 want -= diff;
478 } else {
479 iter->rt_runtime -= want;
480 want -= want;
481 }
0986b11b 482 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
483
484 if (!want)
485 break;
486 }
487
0986b11b 488 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
489 /*
490 * We cannot be left wanting - that would mean some runtime
491 * leaked out of the system.
492 */
7def2be1
PZ
493 BUG_ON(want);
494balanced:
78333cdd
PZ
495 /*
496 * Disable all the borrow logic by pretending we have inf
497 * runtime - in which case borrowing doesn't make sense.
498 */
7def2be1 499 rt_rq->rt_runtime = RUNTIME_INF;
0986b11b
TG
500 raw_spin_unlock(&rt_rq->rt_runtime_lock);
501 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
502 }
503}
504
505static void disable_runtime(struct rq *rq)
506{
507 unsigned long flags;
508
05fa785c 509 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 510 __disable_runtime(rq);
05fa785c 511 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
512}
513
514static void __enable_runtime(struct rq *rq)
515{
ec514c48 516 rt_rq_iter_t iter;
7def2be1
PZ
517 struct rt_rq *rt_rq;
518
519 if (unlikely(!scheduler_running))
520 return;
521
78333cdd
PZ
522 /*
523 * Reset each runqueue's bandwidth settings
524 */
ec514c48 525 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
526 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
527
0986b11b
TG
528 raw_spin_lock(&rt_b->rt_runtime_lock);
529 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
530 rt_rq->rt_runtime = rt_b->rt_runtime;
531 rt_rq->rt_time = 0;
baf25731 532 rt_rq->rt_throttled = 0;
0986b11b
TG
533 raw_spin_unlock(&rt_rq->rt_runtime_lock);
534 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
535 }
536}
537
538static void enable_runtime(struct rq *rq)
539{
540 unsigned long flags;
541
05fa785c 542 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 543 __enable_runtime(rq);
05fa785c 544 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
545}
546
eff6549b
PZ
547static int balance_runtime(struct rt_rq *rt_rq)
548{
549 int more = 0;
550
551 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 552 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 553 more = do_balance_runtime(rt_rq);
0986b11b 554 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
555 }
556
557 return more;
558}
55e12e5e 559#else /* !CONFIG_SMP */
eff6549b
PZ
560static inline int balance_runtime(struct rt_rq *rt_rq)
561{
562 return 0;
563}
55e12e5e 564#endif /* CONFIG_SMP */
ac086bc2 565
eff6549b
PZ
566static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
567{
568 int i, idle = 1;
c6c4927b 569 const struct cpumask *span;
eff6549b 570
0b148fa0 571 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
572 return 1;
573
574 span = sched_rt_period_mask();
c6c4927b 575 for_each_cpu(i, span) {
eff6549b
PZ
576 int enqueue = 0;
577 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
578 struct rq *rq = rq_of_rt_rq(rt_rq);
579
05fa785c 580 raw_spin_lock(&rq->lock);
eff6549b
PZ
581 if (rt_rq->rt_time) {
582 u64 runtime;
583
0986b11b 584 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
585 if (rt_rq->rt_throttled)
586 balance_runtime(rt_rq);
587 runtime = rt_rq->rt_runtime;
588 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
589 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
590 rt_rq->rt_throttled = 0;
591 enqueue = 1;
61eadef6
MG
592
593 /*
594 * Force a clock update if the CPU was idle,
595 * lest wakeup -> unthrottle time accumulate.
596 */
597 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
598 rq->skip_clock_update = -1;
eff6549b
PZ
599 }
600 if (rt_rq->rt_time || rt_rq->rt_nr_running)
601 idle = 0;
0986b11b 602 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 603 } else if (rt_rq->rt_nr_running) {
6c3df255 604 idle = 0;
0c3b9168
BS
605 if (!rt_rq_throttled(rt_rq))
606 enqueue = 1;
607 }
eff6549b
PZ
608
609 if (enqueue)
610 sched_rt_rq_enqueue(rt_rq);
05fa785c 611 raw_spin_unlock(&rq->lock);
eff6549b
PZ
612 }
613
614 return idle;
615}
ac086bc2 616
6f505b16
PZ
617static inline int rt_se_prio(struct sched_rt_entity *rt_se)
618{
052f1dc7 619#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
620 struct rt_rq *rt_rq = group_rt_rq(rt_se);
621
622 if (rt_rq)
e864c499 623 return rt_rq->highest_prio.curr;
6f505b16
PZ
624#endif
625
626 return rt_task_of(rt_se)->prio;
627}
628
9f0c1e56 629static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 630{
9f0c1e56 631 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 632
fa85ae24 633 if (rt_rq->rt_throttled)
23b0fdfc 634 return rt_rq_throttled(rt_rq);
fa85ae24 635
ac086bc2
PZ
636 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
637 return 0;
638
b79f3833
PZ
639 balance_runtime(rt_rq);
640 runtime = sched_rt_runtime(rt_rq);
641 if (runtime == RUNTIME_INF)
642 return 0;
ac086bc2 643
9f0c1e56 644 if (rt_rq->rt_time > runtime) {
6f505b16 645 rt_rq->rt_throttled = 1;
23b0fdfc 646 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 647 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
648 return 1;
649 }
fa85ae24
PZ
650 }
651
652 return 0;
653}
654
bb44e5d1
IM
655/*
656 * Update the current task's runtime statistics. Skip current tasks that
657 * are not in our scheduling class.
658 */
a9957449 659static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
660{
661 struct task_struct *curr = rq->curr;
6f505b16
PZ
662 struct sched_rt_entity *rt_se = &curr->rt;
663 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
664 u64 delta_exec;
665
06c3bc65 666 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
667 return;
668
305e6835 669 delta_exec = rq->clock_task - curr->se.exec_start;
bb44e5d1
IM
670 if (unlikely((s64)delta_exec < 0))
671 delta_exec = 0;
6cfb0d5d 672
41acab88 673 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
674
675 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
676 account_group_exec_runtime(curr, delta_exec);
677
305e6835 678 curr->se.exec_start = rq->clock_task;
d842de87 679 cpuacct_charge(curr, delta_exec);
fa85ae24 680
e9e9250b
PZ
681 sched_rt_avg_update(rq, delta_exec);
682
0b148fa0
PZ
683 if (!rt_bandwidth_enabled())
684 return;
685
354d60c2
DG
686 for_each_sched_rt_entity(rt_se) {
687 rt_rq = rt_rq_of_se(rt_se);
688
cc2991cf 689 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 690 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
691 rt_rq->rt_time += delta_exec;
692 if (sched_rt_runtime_exceeded(rt_rq))
693 resched_task(curr);
0986b11b 694 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 695 }
354d60c2 696 }
bb44e5d1
IM
697}
698
398a153b 699#if defined CONFIG_SMP
e864c499
GH
700
701static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
702
703static inline int next_prio(struct rq *rq)
63489e45 704{
e864c499
GH
705 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
706
67d95538 707 if (next)
e864c499
GH
708 return next->prio;
709 else
710 return MAX_RT_PRIO;
711}
e864c499 712
398a153b
GH
713static void
714inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 715{
4d984277 716 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 717
398a153b 718 if (prio < prev_prio) {
4d984277 719
e864c499
GH
720 /*
721 * If the new task is higher in priority than anything on the
398a153b
GH
722 * run-queue, we know that the previous high becomes our
723 * next-highest.
e864c499 724 */
398a153b 725 rt_rq->highest_prio.next = prev_prio;
1f11eb6a
GH
726
727 if (rq->online)
4d984277 728 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1100ac91 729
e864c499
GH
730 } else if (prio == rt_rq->highest_prio.curr)
731 /*
732 * If the next task is equal in priority to the highest on
733 * the run-queue, then we implicitly know that the next highest
734 * task cannot be any lower than current
735 */
736 rt_rq->highest_prio.next = prio;
737 else if (prio < rt_rq->highest_prio.next)
738 /*
739 * Otherwise, we need to recompute next-highest
740 */
741 rt_rq->highest_prio.next = next_prio(rq);
398a153b 742}
73fe6aae 743
398a153b
GH
744static void
745dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
746{
747 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 748
398a153b
GH
749 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
750 rt_rq->highest_prio.next = next_prio(rq);
751
752 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
753 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
754}
755
398a153b
GH
756#else /* CONFIG_SMP */
757
6f505b16 758static inline
398a153b
GH
759void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
760static inline
761void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
762
763#endif /* CONFIG_SMP */
6e0534f2 764
052f1dc7 765#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
766static void
767inc_rt_prio(struct rt_rq *rt_rq, int prio)
768{
769 int prev_prio = rt_rq->highest_prio.curr;
770
771 if (prio < prev_prio)
772 rt_rq->highest_prio.curr = prio;
773
774 inc_rt_prio_smp(rt_rq, prio, prev_prio);
775}
776
777static void
778dec_rt_prio(struct rt_rq *rt_rq, int prio)
779{
780 int prev_prio = rt_rq->highest_prio.curr;
781
6f505b16 782 if (rt_rq->rt_nr_running) {
764a9d6f 783
398a153b 784 WARN_ON(prio < prev_prio);
764a9d6f 785
e864c499 786 /*
398a153b
GH
787 * This may have been our highest task, and therefore
788 * we may have some recomputation to do
e864c499 789 */
398a153b 790 if (prio == prev_prio) {
e864c499
GH
791 struct rt_prio_array *array = &rt_rq->active;
792
793 rt_rq->highest_prio.curr =
764a9d6f 794 sched_find_first_bit(array->bitmap);
e864c499
GH
795 }
796
764a9d6f 797 } else
e864c499 798 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 799
398a153b
GH
800 dec_rt_prio_smp(rt_rq, prio, prev_prio);
801}
1f11eb6a 802
398a153b
GH
803#else
804
805static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
806static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
807
808#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 809
052f1dc7 810#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
811
812static void
813inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
814{
815 if (rt_se_boosted(rt_se))
816 rt_rq->rt_nr_boosted++;
817
818 if (rt_rq->tg)
819 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
820}
821
822static void
823dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
824{
23b0fdfc
PZ
825 if (rt_se_boosted(rt_se))
826 rt_rq->rt_nr_boosted--;
827
828 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
829}
830
831#else /* CONFIG_RT_GROUP_SCHED */
832
833static void
834inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
835{
836 start_rt_bandwidth(&def_rt_bandwidth);
837}
838
839static inline
840void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
841
842#endif /* CONFIG_RT_GROUP_SCHED */
843
844static inline
845void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
846{
847 int prio = rt_se_prio(rt_se);
848
849 WARN_ON(!rt_prio(prio));
850 rt_rq->rt_nr_running++;
851
852 inc_rt_prio(rt_rq, prio);
853 inc_rt_migration(rt_se, rt_rq);
854 inc_rt_group(rt_se, rt_rq);
855}
856
857static inline
858void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
859{
860 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
861 WARN_ON(!rt_rq->rt_nr_running);
862 rt_rq->rt_nr_running--;
863
864 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
865 dec_rt_migration(rt_se, rt_rq);
866 dec_rt_group(rt_se, rt_rq);
63489e45
SR
867}
868
37dad3fc 869static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 870{
6f505b16
PZ
871 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
872 struct rt_prio_array *array = &rt_rq->active;
873 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 874 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 875
ad2a3f13
PZ
876 /*
877 * Don't enqueue the group if its throttled, or when empty.
878 * The latter is a consequence of the former when a child group
879 * get throttled and the current group doesn't have any other
880 * active members.
881 */
882 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 883 return;
63489e45 884
3d4b47b4
PZ
885 if (!rt_rq->rt_nr_running)
886 list_add_leaf_rt_rq(rt_rq);
887
37dad3fc
TG
888 if (head)
889 list_add(&rt_se->run_list, queue);
890 else
891 list_add_tail(&rt_se->run_list, queue);
6f505b16 892 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 893
6f505b16
PZ
894 inc_rt_tasks(rt_se, rt_rq);
895}
896
ad2a3f13 897static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
898{
899 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
900 struct rt_prio_array *array = &rt_rq->active;
901
902 list_del_init(&rt_se->run_list);
903 if (list_empty(array->queue + rt_se_prio(rt_se)))
904 __clear_bit(rt_se_prio(rt_se), array->bitmap);
905
906 dec_rt_tasks(rt_se, rt_rq);
3d4b47b4
PZ
907 if (!rt_rq->rt_nr_running)
908 list_del_leaf_rt_rq(rt_rq);
6f505b16
PZ
909}
910
911/*
912 * Because the prio of an upper entry depends on the lower
913 * entries, we must remove entries top - down.
6f505b16 914 */
ad2a3f13 915static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 916{
ad2a3f13 917 struct sched_rt_entity *back = NULL;
6f505b16 918
58d6c2d7
PZ
919 for_each_sched_rt_entity(rt_se) {
920 rt_se->back = back;
921 back = rt_se;
922 }
923
924 for (rt_se = back; rt_se; rt_se = rt_se->back) {
925 if (on_rt_rq(rt_se))
ad2a3f13
PZ
926 __dequeue_rt_entity(rt_se);
927 }
928}
929
37dad3fc 930static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
931{
932 dequeue_rt_stack(rt_se);
933 for_each_sched_rt_entity(rt_se)
37dad3fc 934 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
935}
936
937static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
938{
939 dequeue_rt_stack(rt_se);
940
941 for_each_sched_rt_entity(rt_se) {
942 struct rt_rq *rt_rq = group_rt_rq(rt_se);
943
944 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 945 __enqueue_rt_entity(rt_se, false);
58d6c2d7 946 }
bb44e5d1
IM
947}
948
949/*
950 * Adding/removing a task to/from a priority array:
951 */
ea87bb78 952static void
371fd7e7 953enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
954{
955 struct sched_rt_entity *rt_se = &p->rt;
956
371fd7e7 957 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
958 rt_se->timeout = 0;
959
371fd7e7 960 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 961
917b627d
GH
962 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
963 enqueue_pushable_task(rq, p);
6f505b16
PZ
964}
965
371fd7e7 966static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 967{
6f505b16 968 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 969
f1e14ef6 970 update_curr_rt(rq);
ad2a3f13 971 dequeue_rt_entity(rt_se);
c09595f6 972
917b627d 973 dequeue_pushable_task(rq, p);
bb44e5d1
IM
974}
975
976/*
977 * Put task to the end of the run list without the overhead of dequeue
978 * followed by enqueue.
979 */
7ebefa8c
DA
980static void
981requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 982{
1cdad715 983 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
984 struct rt_prio_array *array = &rt_rq->active;
985 struct list_head *queue = array->queue + rt_se_prio(rt_se);
986
987 if (head)
988 list_move(&rt_se->run_list, queue);
989 else
990 list_move_tail(&rt_se->run_list, queue);
1cdad715 991 }
6f505b16
PZ
992}
993
7ebefa8c 994static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 995{
6f505b16
PZ
996 struct sched_rt_entity *rt_se = &p->rt;
997 struct rt_rq *rt_rq;
bb44e5d1 998
6f505b16
PZ
999 for_each_sched_rt_entity(rt_se) {
1000 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1001 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1002 }
bb44e5d1
IM
1003}
1004
6f505b16 1005static void yield_task_rt(struct rq *rq)
bb44e5d1 1006{
7ebefa8c 1007 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1008}
1009
e7693a36 1010#ifdef CONFIG_SMP
318e0893
GH
1011static int find_lowest_rq(struct task_struct *task);
1012
0017d735 1013static int
7608dec2 1014select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
e7693a36 1015{
7608dec2
PZ
1016 struct task_struct *curr;
1017 struct rq *rq;
1018 int cpu;
1019
7608dec2 1020 cpu = task_cpu(p);
c37495fd
SR
1021
1022 /* For anything but wake ups, just return the task_cpu */
1023 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1024 goto out;
1025
7608dec2
PZ
1026 rq = cpu_rq(cpu);
1027
1028 rcu_read_lock();
1029 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1030
318e0893 1031 /*
7608dec2 1032 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1033 * try to see if we can wake this RT task up on another
1034 * runqueue. Otherwise simply start this RT task
1035 * on its current runqueue.
1036 *
43fa5460
SR
1037 * We want to avoid overloading runqueues. If the woken
1038 * task is a higher priority, then it will stay on this CPU
1039 * and the lower prio task should be moved to another CPU.
1040 * Even though this will probably make the lower prio task
1041 * lose its cache, we do not want to bounce a higher task
1042 * around just because it gave up its CPU, perhaps for a
1043 * lock?
1044 *
1045 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1046 *
1047 * Otherwise, just let it ride on the affined RQ and the
1048 * post-schedule router will push the preempted task away
1049 *
1050 * This test is optimistic, if we get it wrong the load-balancer
1051 * will have to sort it out.
318e0893 1052 */
7608dec2
PZ
1053 if (curr && unlikely(rt_task(curr)) &&
1054 (curr->rt.nr_cpus_allowed < 2 ||
1055 curr->prio < p->prio) &&
6f505b16 1056 (p->rt.nr_cpus_allowed > 1)) {
7608dec2 1057 int target = find_lowest_rq(p);
318e0893 1058
7608dec2
PZ
1059 if (target != -1)
1060 cpu = target;
318e0893 1061 }
7608dec2 1062 rcu_read_unlock();
318e0893 1063
c37495fd 1064out:
7608dec2 1065 return cpu;
e7693a36 1066}
7ebefa8c
DA
1067
1068static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1069{
7ebefa8c
DA
1070 if (rq->curr->rt.nr_cpus_allowed == 1)
1071 return;
1072
24600ce8 1073 if (p->rt.nr_cpus_allowed != 1
13b8bd0a
RR
1074 && cpupri_find(&rq->rd->cpupri, p, NULL))
1075 return;
24600ce8 1076
13b8bd0a
RR
1077 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1078 return;
7ebefa8c
DA
1079
1080 /*
1081 * There appears to be other cpus that can accept
1082 * current and none to run 'p', so lets reschedule
1083 * to try and push current away:
1084 */
1085 requeue_task_rt(rq, p, 1);
1086 resched_task(rq->curr);
1087}
1088
e7693a36
GH
1089#endif /* CONFIG_SMP */
1090
bb44e5d1
IM
1091/*
1092 * Preempt the current task with a newly woken task if needed:
1093 */
7d478721 1094static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1095{
45c01e82 1096 if (p->prio < rq->curr->prio) {
bb44e5d1 1097 resched_task(rq->curr);
45c01e82
GH
1098 return;
1099 }
1100
1101#ifdef CONFIG_SMP
1102 /*
1103 * If:
1104 *
1105 * - the newly woken task is of equal priority to the current task
1106 * - the newly woken task is non-migratable while current is migratable
1107 * - current will be preempted on the next reschedule
1108 *
1109 * we should check to see if current can readily move to a different
1110 * cpu. If so, we will reschedule to allow the push logic to try
1111 * to move current somewhere else, making room for our non-migratable
1112 * task.
1113 */
8dd0de8b 1114 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1115 check_preempt_equal_prio(rq, p);
45c01e82 1116#endif
bb44e5d1
IM
1117}
1118
6f505b16
PZ
1119static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1120 struct rt_rq *rt_rq)
bb44e5d1 1121{
6f505b16
PZ
1122 struct rt_prio_array *array = &rt_rq->active;
1123 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1124 struct list_head *queue;
1125 int idx;
1126
1127 idx = sched_find_first_bit(array->bitmap);
6f505b16 1128 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1129
1130 queue = array->queue + idx;
6f505b16 1131 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1132
6f505b16
PZ
1133 return next;
1134}
bb44e5d1 1135
917b627d 1136static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1137{
1138 struct sched_rt_entity *rt_se;
1139 struct task_struct *p;
1140 struct rt_rq *rt_rq;
bb44e5d1 1141
6f505b16
PZ
1142 rt_rq = &rq->rt;
1143
8e54a2c0 1144 if (!rt_rq->rt_nr_running)
6f505b16
PZ
1145 return NULL;
1146
23b0fdfc 1147 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1148 return NULL;
1149
1150 do {
1151 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1152 BUG_ON(!rt_se);
6f505b16
PZ
1153 rt_rq = group_rt_rq(rt_se);
1154 } while (rt_rq);
1155
1156 p = rt_task_of(rt_se);
305e6835 1157 p->se.exec_start = rq->clock_task;
917b627d
GH
1158
1159 return p;
1160}
1161
1162static struct task_struct *pick_next_task_rt(struct rq *rq)
1163{
1164 struct task_struct *p = _pick_next_task_rt(rq);
1165
1166 /* The running task is never eligible for pushing */
1167 if (p)
1168 dequeue_pushable_task(rq, p);
1169
bcf08df3 1170#ifdef CONFIG_SMP
3f029d3c
GH
1171 /*
1172 * We detect this state here so that we can avoid taking the RQ
1173 * lock again later if there is no need to push
1174 */
1175 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1176#endif
3f029d3c 1177
6f505b16 1178 return p;
bb44e5d1
IM
1179}
1180
31ee529c 1181static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1182{
f1e14ef6 1183 update_curr_rt(rq);
917b627d
GH
1184
1185 /*
1186 * The previous task needs to be made eligible for pushing
1187 * if it is still active
1188 */
fd2f4419 1189 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
917b627d 1190 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1191}
1192
681f3e68 1193#ifdef CONFIG_SMP
6f505b16 1194
e8fa1362
SR
1195/* Only try algorithms three times */
1196#define RT_MAX_TRIES 3
1197
e8fa1362
SR
1198static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1199
f65eda4f
SR
1200static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1201{
1202 if (!task_running(rq, p) &&
96f874e2 1203 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
6f505b16 1204 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
1205 return 1;
1206 return 0;
1207}
1208
e8fa1362 1209/* Return the second highest RT task, NULL otherwise */
79064fbf 1210static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1211{
6f505b16
PZ
1212 struct task_struct *next = NULL;
1213 struct sched_rt_entity *rt_se;
1214 struct rt_prio_array *array;
1215 struct rt_rq *rt_rq;
e8fa1362
SR
1216 int idx;
1217
6f505b16
PZ
1218 for_each_leaf_rt_rq(rt_rq, rq) {
1219 array = &rt_rq->active;
1220 idx = sched_find_first_bit(array->bitmap);
49246274 1221next_idx:
6f505b16
PZ
1222 if (idx >= MAX_RT_PRIO)
1223 continue;
1224 if (next && next->prio < idx)
1225 continue;
1226 list_for_each_entry(rt_se, array->queue + idx, run_list) {
3d07467b
PZ
1227 struct task_struct *p;
1228
1229 if (!rt_entity_is_task(rt_se))
1230 continue;
1231
1232 p = rt_task_of(rt_se);
6f505b16
PZ
1233 if (pick_rt_task(rq, p, cpu)) {
1234 next = p;
1235 break;
1236 }
1237 }
1238 if (!next) {
1239 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1240 goto next_idx;
1241 }
f65eda4f
SR
1242 }
1243
e8fa1362
SR
1244 return next;
1245}
1246
0e3900e6 1247static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1248
6e1254d2
GH
1249static int find_lowest_rq(struct task_struct *task)
1250{
1251 struct sched_domain *sd;
96f874e2 1252 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1253 int this_cpu = smp_processor_id();
1254 int cpu = task_cpu(task);
06f90dbd 1255
0da938c4
SR
1256 /* Make sure the mask is initialized first */
1257 if (unlikely(!lowest_mask))
1258 return -1;
1259
6e0534f2
GH
1260 if (task->rt.nr_cpus_allowed == 1)
1261 return -1; /* No other targets possible */
6e1254d2 1262
6e0534f2
GH
1263 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1264 return -1; /* No targets found */
6e1254d2
GH
1265
1266 /*
1267 * At this point we have built a mask of cpus representing the
1268 * lowest priority tasks in the system. Now we want to elect
1269 * the best one based on our affinity and topology.
1270 *
1271 * We prioritize the last cpu that the task executed on since
1272 * it is most likely cache-hot in that location.
1273 */
96f874e2 1274 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1275 return cpu;
1276
1277 /*
1278 * Otherwise, we consult the sched_domains span maps to figure
1279 * out which cpu is logically closest to our hot cache data.
1280 */
e2c88063
RR
1281 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1282 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1283
cd4ae6ad 1284 rcu_read_lock();
e2c88063
RR
1285 for_each_domain(cpu, sd) {
1286 if (sd->flags & SD_WAKE_AFFINE) {
1287 int best_cpu;
6e1254d2 1288
e2c88063
RR
1289 /*
1290 * "this_cpu" is cheaper to preempt than a
1291 * remote processor.
1292 */
1293 if (this_cpu != -1 &&
cd4ae6ad
XF
1294 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1295 rcu_read_unlock();
e2c88063 1296 return this_cpu;
cd4ae6ad 1297 }
e2c88063
RR
1298
1299 best_cpu = cpumask_first_and(lowest_mask,
1300 sched_domain_span(sd));
cd4ae6ad
XF
1301 if (best_cpu < nr_cpu_ids) {
1302 rcu_read_unlock();
e2c88063 1303 return best_cpu;
cd4ae6ad 1304 }
6e1254d2
GH
1305 }
1306 }
cd4ae6ad 1307 rcu_read_unlock();
6e1254d2
GH
1308
1309 /*
1310 * And finally, if there were no matches within the domains
1311 * just give the caller *something* to work with from the compatible
1312 * locations.
1313 */
e2c88063
RR
1314 if (this_cpu != -1)
1315 return this_cpu;
1316
1317 cpu = cpumask_any(lowest_mask);
1318 if (cpu < nr_cpu_ids)
1319 return cpu;
1320 return -1;
07b4032c
GH
1321}
1322
1323/* Will lock the rq it finds */
4df64c0b 1324static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1325{
1326 struct rq *lowest_rq = NULL;
07b4032c 1327 int tries;
4df64c0b 1328 int cpu;
e8fa1362 1329
07b4032c
GH
1330 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1331 cpu = find_lowest_rq(task);
1332
2de0b463 1333 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1334 break;
1335
07b4032c
GH
1336 lowest_rq = cpu_rq(cpu);
1337
e8fa1362 1338 /* if the prio of this runqueue changed, try again */
07b4032c 1339 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1340 /*
1341 * We had to unlock the run queue. In
1342 * the mean time, task could have
1343 * migrated already or had its affinity changed.
1344 * Also make sure that it wasn't scheduled on its rq.
1345 */
07b4032c 1346 if (unlikely(task_rq(task) != rq ||
96f874e2
RR
1347 !cpumask_test_cpu(lowest_rq->cpu,
1348 &task->cpus_allowed) ||
07b4032c 1349 task_running(rq, task) ||
fd2f4419 1350 !task->on_rq)) {
4df64c0b 1351
05fa785c 1352 raw_spin_unlock(&lowest_rq->lock);
e8fa1362
SR
1353 lowest_rq = NULL;
1354 break;
1355 }
1356 }
1357
1358 /* If this rq is still suitable use it. */
e864c499 1359 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1360 break;
1361
1362 /* try again */
1b12bbc7 1363 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1364 lowest_rq = NULL;
1365 }
1366
1367 return lowest_rq;
1368}
1369
917b627d
GH
1370static struct task_struct *pick_next_pushable_task(struct rq *rq)
1371{
1372 struct task_struct *p;
1373
1374 if (!has_pushable_tasks(rq))
1375 return NULL;
1376
1377 p = plist_first_entry(&rq->rt.pushable_tasks,
1378 struct task_struct, pushable_tasks);
1379
1380 BUG_ON(rq->cpu != task_cpu(p));
1381 BUG_ON(task_current(rq, p));
1382 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1383
fd2f4419 1384 BUG_ON(!p->on_rq);
917b627d
GH
1385 BUG_ON(!rt_task(p));
1386
1387 return p;
1388}
1389
e8fa1362
SR
1390/*
1391 * If the current CPU has more than one RT task, see if the non
1392 * running task can migrate over to a CPU that is running a task
1393 * of lesser priority.
1394 */
697f0a48 1395static int push_rt_task(struct rq *rq)
e8fa1362
SR
1396{
1397 struct task_struct *next_task;
1398 struct rq *lowest_rq;
311e800e 1399 int ret = 0;
e8fa1362 1400
a22d7fc1
GH
1401 if (!rq->rt.overloaded)
1402 return 0;
1403
917b627d 1404 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1405 if (!next_task)
1406 return 0;
1407
49246274 1408retry:
697f0a48 1409 if (unlikely(next_task == rq->curr)) {
f65eda4f 1410 WARN_ON(1);
e8fa1362 1411 return 0;
f65eda4f 1412 }
e8fa1362
SR
1413
1414 /*
1415 * It's possible that the next_task slipped in of
1416 * higher priority than current. If that's the case
1417 * just reschedule current.
1418 */
697f0a48
GH
1419 if (unlikely(next_task->prio < rq->curr->prio)) {
1420 resched_task(rq->curr);
e8fa1362
SR
1421 return 0;
1422 }
1423
697f0a48 1424 /* We might release rq lock */
e8fa1362
SR
1425 get_task_struct(next_task);
1426
1427 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1428 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1429 if (!lowest_rq) {
1430 struct task_struct *task;
1431 /*
311e800e 1432 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1433 * so it is possible that next_task has migrated.
1434 *
1435 * We need to make sure that the task is still on the same
1436 * run-queue and is also still the next task eligible for
1437 * pushing.
e8fa1362 1438 */
917b627d 1439 task = pick_next_pushable_task(rq);
1563513d
GH
1440 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1441 /*
311e800e
HD
1442 * The task hasn't migrated, and is still the next
1443 * eligible task, but we failed to find a run-queue
1444 * to push it to. Do not retry in this case, since
1445 * other cpus will pull from us when ready.
1563513d 1446 */
1563513d 1447 goto out;
e8fa1362 1448 }
917b627d 1449
1563513d
GH
1450 if (!task)
1451 /* No more tasks, just exit */
1452 goto out;
1453
917b627d 1454 /*
1563513d 1455 * Something has shifted, try again.
917b627d 1456 */
1563513d
GH
1457 put_task_struct(next_task);
1458 next_task = task;
1459 goto retry;
e8fa1362
SR
1460 }
1461
697f0a48 1462 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1463 set_task_cpu(next_task, lowest_rq->cpu);
1464 activate_task(lowest_rq, next_task, 0);
311e800e 1465 ret = 1;
e8fa1362
SR
1466
1467 resched_task(lowest_rq->curr);
1468
1b12bbc7 1469 double_unlock_balance(rq, lowest_rq);
e8fa1362 1470
e8fa1362
SR
1471out:
1472 put_task_struct(next_task);
1473
311e800e 1474 return ret;
e8fa1362
SR
1475}
1476
e8fa1362
SR
1477static void push_rt_tasks(struct rq *rq)
1478{
1479 /* push_rt_task will return true if it moved an RT */
1480 while (push_rt_task(rq))
1481 ;
1482}
1483
f65eda4f
SR
1484static int pull_rt_task(struct rq *this_rq)
1485{
80bf3171 1486 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1487 struct task_struct *p;
f65eda4f 1488 struct rq *src_rq;
f65eda4f 1489
637f5085 1490 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1491 return 0;
1492
c6c4927b 1493 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1494 if (this_cpu == cpu)
1495 continue;
1496
1497 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1498
1499 /*
1500 * Don't bother taking the src_rq->lock if the next highest
1501 * task is known to be lower-priority than our current task.
1502 * This may look racy, but if this value is about to go
1503 * logically higher, the src_rq will push this task away.
1504 * And if its going logically lower, we do not care
1505 */
1506 if (src_rq->rt.highest_prio.next >=
1507 this_rq->rt.highest_prio.curr)
1508 continue;
1509
f65eda4f
SR
1510 /*
1511 * We can potentially drop this_rq's lock in
1512 * double_lock_balance, and another CPU could
a8728944 1513 * alter this_rq
f65eda4f 1514 */
a8728944 1515 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1516
1517 /*
1518 * Are there still pullable RT tasks?
1519 */
614ee1f6
MG
1520 if (src_rq->rt.rt_nr_running <= 1)
1521 goto skip;
f65eda4f 1522
f65eda4f
SR
1523 p = pick_next_highest_task_rt(src_rq, this_cpu);
1524
1525 /*
1526 * Do we have an RT task that preempts
1527 * the to-be-scheduled task?
1528 */
a8728944 1529 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1530 WARN_ON(p == src_rq->curr);
fd2f4419 1531 WARN_ON(!p->on_rq);
f65eda4f
SR
1532
1533 /*
1534 * There's a chance that p is higher in priority
1535 * than what's currently running on its cpu.
1536 * This is just that p is wakeing up and hasn't
1537 * had a chance to schedule. We only pull
1538 * p if it is lower in priority than the
a8728944 1539 * current task on the run queue
f65eda4f 1540 */
a8728944 1541 if (p->prio < src_rq->curr->prio)
614ee1f6 1542 goto skip;
f65eda4f
SR
1543
1544 ret = 1;
1545
1546 deactivate_task(src_rq, p, 0);
1547 set_task_cpu(p, this_cpu);
1548 activate_task(this_rq, p, 0);
1549 /*
1550 * We continue with the search, just in
1551 * case there's an even higher prio task
25985edc 1552 * in another runqueue. (low likelihood
f65eda4f 1553 * but possible)
f65eda4f 1554 */
f65eda4f 1555 }
49246274 1556skip:
1b12bbc7 1557 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1558 }
1559
1560 return ret;
1561}
1562
9a897c5a 1563static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1564{
1565 /* Try to pull RT tasks here if we lower this rq's prio */
33c3d6c6 1566 if (rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1567 pull_rt_task(rq);
1568}
1569
9a897c5a 1570static void post_schedule_rt(struct rq *rq)
e8fa1362 1571{
967fc046 1572 push_rt_tasks(rq);
e8fa1362
SR
1573}
1574
8ae121ac
GH
1575/*
1576 * If we are not running and we are not going to reschedule soon, we should
1577 * try to push tasks away now
1578 */
efbbd05a 1579static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1580{
9a897c5a 1581 if (!task_running(rq, p) &&
8ae121ac 1582 !test_tsk_need_resched(rq->curr) &&
917b627d 1583 has_pushable_tasks(rq) &&
b3bc211c 1584 p->rt.nr_cpus_allowed > 1 &&
43fa5460 1585 rt_task(rq->curr) &&
b3bc211c
SR
1586 (rq->curr->rt.nr_cpus_allowed < 2 ||
1587 rq->curr->prio < p->prio))
4642dafd
SR
1588 push_rt_tasks(rq);
1589}
1590
cd8ba7cd 1591static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1592 const struct cpumask *new_mask)
73fe6aae 1593{
96f874e2 1594 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1595
1596 BUG_ON(!rt_task(p));
1597
1598 /*
1599 * Update the migration status of the RQ if we have an RT task
1600 * which is running AND changing its weight value.
1601 */
fd2f4419 1602 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1603 struct rq *rq = task_rq(p);
1604
917b627d
GH
1605 if (!task_current(rq, p)) {
1606 /*
1607 * Make sure we dequeue this task from the pushable list
1608 * before going further. It will either remain off of
1609 * the list because we are no longer pushable, or it
1610 * will be requeued.
1611 */
1612 if (p->rt.nr_cpus_allowed > 1)
1613 dequeue_pushable_task(rq, p);
1614
1615 /*
1616 * Requeue if our weight is changing and still > 1
1617 */
1618 if (weight > 1)
1619 enqueue_pushable_task(rq, p);
1620
1621 }
1622
6f505b16 1623 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1624 rq->rt.rt_nr_migratory++;
6f505b16 1625 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1626 BUG_ON(!rq->rt.rt_nr_migratory);
1627 rq->rt.rt_nr_migratory--;
1628 }
1629
398a153b 1630 update_rt_migration(&rq->rt);
73fe6aae
GH
1631 }
1632
96f874e2 1633 cpumask_copy(&p->cpus_allowed, new_mask);
6f505b16 1634 p->rt.nr_cpus_allowed = weight;
73fe6aae 1635}
deeeccd4 1636
bdd7c81b 1637/* Assumes rq->lock is held */
1f11eb6a 1638static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1639{
1640 if (rq->rt.overloaded)
1641 rt_set_overload(rq);
6e0534f2 1642
7def2be1
PZ
1643 __enable_runtime(rq);
1644
e864c499 1645 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1646}
1647
1648/* Assumes rq->lock is held */
1f11eb6a 1649static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1650{
1651 if (rq->rt.overloaded)
1652 rt_clear_overload(rq);
6e0534f2 1653
7def2be1
PZ
1654 __disable_runtime(rq);
1655
6e0534f2 1656 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1657}
cb469845
SR
1658
1659/*
1660 * When switch from the rt queue, we bring ourselves to a position
1661 * that we might want to pull RT tasks from other runqueues.
1662 */
da7a735e 1663static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1664{
1665 /*
1666 * If there are other RT tasks then we will reschedule
1667 * and the scheduling of the other RT tasks will handle
1668 * the balancing. But if we are the last RT task
1669 * we may need to handle the pulling of RT tasks
1670 * now.
1671 */
fd2f4419 1672 if (p->on_rq && !rq->rt.rt_nr_running)
cb469845
SR
1673 pull_rt_task(rq);
1674}
3d8cbdf8
RR
1675
1676static inline void init_sched_rt_class(void)
1677{
1678 unsigned int i;
1679
1680 for_each_possible_cpu(i)
eaa95840 1681 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1682 GFP_KERNEL, cpu_to_node(i));
3d8cbdf8 1683}
cb469845
SR
1684#endif /* CONFIG_SMP */
1685
1686/*
1687 * When switching a task to RT, we may overload the runqueue
1688 * with RT tasks. In this case we try to push them off to
1689 * other runqueues.
1690 */
da7a735e 1691static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1692{
1693 int check_resched = 1;
1694
1695 /*
1696 * If we are already running, then there's nothing
1697 * that needs to be done. But if we are not running
1698 * we may need to preempt the current running task.
1699 * If that current running task is also an RT task
1700 * then see if we can move to another run queue.
1701 */
fd2f4419 1702 if (p->on_rq && rq->curr != p) {
cb469845
SR
1703#ifdef CONFIG_SMP
1704 if (rq->rt.overloaded && push_rt_task(rq) &&
1705 /* Don't resched if we changed runqueues */
1706 rq != task_rq(p))
1707 check_resched = 0;
1708#endif /* CONFIG_SMP */
1709 if (check_resched && p->prio < rq->curr->prio)
1710 resched_task(rq->curr);
1711 }
1712}
1713
1714/*
1715 * Priority of the task has changed. This may cause
1716 * us to initiate a push or pull.
1717 */
da7a735e
PZ
1718static void
1719prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1720{
fd2f4419 1721 if (!p->on_rq)
da7a735e
PZ
1722 return;
1723
1724 if (rq->curr == p) {
cb469845
SR
1725#ifdef CONFIG_SMP
1726 /*
1727 * If our priority decreases while running, we
1728 * may need to pull tasks to this runqueue.
1729 */
1730 if (oldprio < p->prio)
1731 pull_rt_task(rq);
1732 /*
1733 * If there's a higher priority task waiting to run
6fa46fa5
SR
1734 * then reschedule. Note, the above pull_rt_task
1735 * can release the rq lock and p could migrate.
1736 * Only reschedule if p is still on the same runqueue.
cb469845 1737 */
e864c499 1738 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1739 resched_task(p);
1740#else
1741 /* For UP simply resched on drop of prio */
1742 if (oldprio < p->prio)
1743 resched_task(p);
e8fa1362 1744#endif /* CONFIG_SMP */
cb469845
SR
1745 } else {
1746 /*
1747 * This task is not running, but if it is
1748 * greater than the current running task
1749 * then reschedule.
1750 */
1751 if (p->prio < rq->curr->prio)
1752 resched_task(rq->curr);
1753 }
1754}
1755
78f2c7db
PZ
1756static void watchdog(struct rq *rq, struct task_struct *p)
1757{
1758 unsigned long soft, hard;
1759
78d7d407
JS
1760 /* max may change after cur was read, this will be fixed next tick */
1761 soft = task_rlimit(p, RLIMIT_RTTIME);
1762 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1763
1764 if (soft != RLIM_INFINITY) {
1765 unsigned long next;
1766
1767 p->rt.timeout++;
1768 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1769 if (p->rt.timeout > next)
f06febc9 1770 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1771 }
1772}
bb44e5d1 1773
8f4d37ec 1774static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1775{
67e2be02
PZ
1776 update_curr_rt(rq);
1777
78f2c7db
PZ
1778 watchdog(rq, p);
1779
bb44e5d1
IM
1780 /*
1781 * RR tasks need a special form of timeslice management.
1782 * FIFO tasks have no timeslices.
1783 */
1784 if (p->policy != SCHED_RR)
1785 return;
1786
fa717060 1787 if (--p->rt.time_slice)
bb44e5d1
IM
1788 return;
1789
fa717060 1790 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1791
98fbc798
DA
1792 /*
1793 * Requeue to the end of queue if we are not the only element
1794 * on the queue:
1795 */
fa717060 1796 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1797 requeue_task_rt(rq, p, 0);
98fbc798
DA
1798 set_tsk_need_resched(p);
1799 }
bb44e5d1
IM
1800}
1801
83b699ed
SV
1802static void set_curr_task_rt(struct rq *rq)
1803{
1804 struct task_struct *p = rq->curr;
1805
305e6835 1806 p->se.exec_start = rq->clock_task;
917b627d
GH
1807
1808 /* The running task is never eligible for pushing */
1809 dequeue_pushable_task(rq, p);
83b699ed
SV
1810}
1811
6d686f45 1812static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
1813{
1814 /*
1815 * Time slice is 0 for SCHED_FIFO tasks
1816 */
1817 if (task->policy == SCHED_RR)
1818 return DEF_TIMESLICE;
1819 else
1820 return 0;
1821}
1822
2abdad0a 1823static const struct sched_class rt_sched_class = {
5522d5d5 1824 .next = &fair_sched_class,
bb44e5d1
IM
1825 .enqueue_task = enqueue_task_rt,
1826 .dequeue_task = dequeue_task_rt,
1827 .yield_task = yield_task_rt,
1828
1829 .check_preempt_curr = check_preempt_curr_rt,
1830
1831 .pick_next_task = pick_next_task_rt,
1832 .put_prev_task = put_prev_task_rt,
1833
681f3e68 1834#ifdef CONFIG_SMP
4ce72a2c
LZ
1835 .select_task_rq = select_task_rq_rt,
1836
73fe6aae 1837 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1838 .rq_online = rq_online_rt,
1839 .rq_offline = rq_offline_rt,
9a897c5a
SR
1840 .pre_schedule = pre_schedule_rt,
1841 .post_schedule = post_schedule_rt,
efbbd05a 1842 .task_woken = task_woken_rt,
cb469845 1843 .switched_from = switched_from_rt,
681f3e68 1844#endif
bb44e5d1 1845
83b699ed 1846 .set_curr_task = set_curr_task_rt,
bb44e5d1 1847 .task_tick = task_tick_rt,
cb469845 1848
0d721cea
PW
1849 .get_rr_interval = get_rr_interval_rt,
1850
cb469845
SR
1851 .prio_changed = prio_changed_rt,
1852 .switched_to = switched_to_rt,
bb44e5d1 1853};
ada18de2
PZ
1854
1855#ifdef CONFIG_SCHED_DEBUG
1856extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1857
1858static void print_rt_stats(struct seq_file *m, int cpu)
1859{
ec514c48 1860 rt_rq_iter_t iter;
ada18de2
PZ
1861 struct rt_rq *rt_rq;
1862
1863 rcu_read_lock();
ec514c48 1864 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
1865 print_rt_rq(m, cpu, rt_rq);
1866 rcu_read_unlock();
1867}
55e12e5e 1868#endif /* CONFIG_SCHED_DEBUG */
0e3900e6 1869