sched: Don't call task_group() too many times in set_task_rq()
[linux-2.6-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
8f48894f
PZ
6#ifdef CONFIG_RT_GROUP_SCHED
7
8#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
398a153b
GH
10static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11{
8f48894f
PZ
12#ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14#endif
398a153b
GH
15 return container_of(rt_se, struct task_struct, rt);
16}
17
398a153b
GH
18static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19{
20 return rt_rq->rq;
21}
22
23static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24{
25 return rt_se->rt_rq;
26}
27
28#else /* CONFIG_RT_GROUP_SCHED */
29
a1ba4d8b
PZ
30#define rt_entity_is_task(rt_se) (1)
31
8f48894f
PZ
32static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33{
34 return container_of(rt_se, struct task_struct, rt);
35}
36
398a153b
GH
37static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38{
39 return container_of(rt_rq, struct rq, rt);
40}
41
42static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43{
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48}
49
50#endif /* CONFIG_RT_GROUP_SCHED */
51
4fd29176 52#ifdef CONFIG_SMP
84de4274 53
637f5085 54static inline int rt_overloaded(struct rq *rq)
4fd29176 55{
637f5085 56 return atomic_read(&rq->rd->rto_count);
4fd29176 57}
84de4274 58
4fd29176
SR
59static inline void rt_set_overload(struct rq *rq)
60{
1f11eb6a
GH
61 if (!rq->online)
62 return;
63
c6c4927b 64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
637f5085 73 atomic_inc(&rq->rd->rto_count);
4fd29176 74}
84de4274 75
4fd29176
SR
76static inline void rt_clear_overload(struct rq *rq)
77{
1f11eb6a
GH
78 if (!rq->online)
79 return;
80
4fd29176 81 /* the order here really doesn't matter */
637f5085 82 atomic_dec(&rq->rd->rto_count);
c6c4927b 83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 84}
73fe6aae 85
398a153b 86static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 87{
a1ba4d8b 88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
cdc8eb98 92 }
398a153b
GH
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
637f5085 96 }
73fe6aae 97}
4fd29176 98
398a153b
GH
99static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100{
a1ba4d8b
PZ
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
398a153b
GH
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111}
112
113static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114{
a1ba4d8b
PZ
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
398a153b
GH
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125}
126
5181f4a4
SR
127static inline int has_pushable_tasks(struct rq *rq)
128{
129 return !plist_head_empty(&rq->rt.pushable_tasks);
130}
131
917b627d
GH
132static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
133{
134 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
135 plist_node_init(&p->pushable_tasks, p->prio);
136 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
137
138 /* Update the highest prio pushable task */
139 if (p->prio < rq->rt.highest_prio.next)
140 rq->rt.highest_prio.next = p->prio;
917b627d
GH
141}
142
143static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
144{
145 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 146
5181f4a4
SR
147 /* Update the new highest prio pushable task */
148 if (has_pushable_tasks(rq)) {
149 p = plist_first_entry(&rq->rt.pushable_tasks,
150 struct task_struct, pushable_tasks);
151 rq->rt.highest_prio.next = p->prio;
152 } else
153 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
154}
155
917b627d
GH
156#else
157
ceacc2c1 158static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 159{
6f505b16
PZ
160}
161
ceacc2c1
PZ
162static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
163{
164}
165
b07430ac 166static inline
ceacc2c1
PZ
167void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
168{
169}
170
398a153b 171static inline
ceacc2c1
PZ
172void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
173{
174}
917b627d 175
4fd29176
SR
176#endif /* CONFIG_SMP */
177
6f505b16
PZ
178static inline int on_rt_rq(struct sched_rt_entity *rt_se)
179{
180 return !list_empty(&rt_se->run_list);
181}
182
052f1dc7 183#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 184
9f0c1e56 185static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
186{
187 if (!rt_rq->tg)
9f0c1e56 188 return RUNTIME_INF;
6f505b16 189
ac086bc2
PZ
190 return rt_rq->rt_runtime;
191}
192
193static inline u64 sched_rt_period(struct rt_rq *rt_rq)
194{
195 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
196}
197
ec514c48
CX
198typedef struct task_group *rt_rq_iter_t;
199
1c09ab0d
YZ
200static inline struct task_group *next_task_group(struct task_group *tg)
201{
202 do {
203 tg = list_entry_rcu(tg->list.next,
204 typeof(struct task_group), list);
205 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
206
207 if (&tg->list == &task_groups)
208 tg = NULL;
209
210 return tg;
211}
212
213#define for_each_rt_rq(rt_rq, iter, rq) \
214 for (iter = container_of(&task_groups, typeof(*iter), list); \
215 (iter = next_task_group(iter)) && \
216 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 217
3d4b47b4
PZ
218static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
219{
220 list_add_rcu(&rt_rq->leaf_rt_rq_list,
221 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
222}
223
224static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
225{
226 list_del_rcu(&rt_rq->leaf_rt_rq_list);
227}
228
6f505b16 229#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 230 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16 231
6f505b16
PZ
232#define for_each_sched_rt_entity(rt_se) \
233 for (; rt_se; rt_se = rt_se->parent)
234
235static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
236{
237 return rt_se->my_q;
238}
239
37dad3fc 240static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
241static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
242
9f0c1e56 243static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 244{
f6121f4f 245 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
246 struct sched_rt_entity *rt_se;
247
0c3b9168
BS
248 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
249
250 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 251
f6121f4f
DF
252 if (rt_rq->rt_nr_running) {
253 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 254 enqueue_rt_entity(rt_se, false);
e864c499 255 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 256 resched_task(curr);
6f505b16
PZ
257 }
258}
259
9f0c1e56 260static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 261{
74b7eb58 262 struct sched_rt_entity *rt_se;
0c3b9168 263 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 264
0c3b9168 265 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
266
267 if (rt_se && on_rt_rq(rt_se))
268 dequeue_rt_entity(rt_se);
269}
270
23b0fdfc
PZ
271static inline int rt_rq_throttled(struct rt_rq *rt_rq)
272{
273 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
274}
275
276static int rt_se_boosted(struct sched_rt_entity *rt_se)
277{
278 struct rt_rq *rt_rq = group_rt_rq(rt_se);
279 struct task_struct *p;
280
281 if (rt_rq)
282 return !!rt_rq->rt_nr_boosted;
283
284 p = rt_task_of(rt_se);
285 return p->prio != p->normal_prio;
286}
287
d0b27fa7 288#ifdef CONFIG_SMP
c6c4927b 289static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
290{
291 return cpu_rq(smp_processor_id())->rd->span;
292}
6f505b16 293#else
c6c4927b 294static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 295{
c6c4927b 296 return cpu_online_mask;
d0b27fa7
PZ
297}
298#endif
6f505b16 299
d0b27fa7
PZ
300static inline
301struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 302{
d0b27fa7
PZ
303 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
304}
9f0c1e56 305
ac086bc2
PZ
306static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
307{
308 return &rt_rq->tg->rt_bandwidth;
309}
310
55e12e5e 311#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
312
313static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
314{
ac086bc2
PZ
315 return rt_rq->rt_runtime;
316}
317
318static inline u64 sched_rt_period(struct rt_rq *rt_rq)
319{
320 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
321}
322
ec514c48
CX
323typedef struct rt_rq *rt_rq_iter_t;
324
325#define for_each_rt_rq(rt_rq, iter, rq) \
326 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
327
3d4b47b4
PZ
328static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
329{
330}
331
332static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
333{
334}
335
6f505b16
PZ
336#define for_each_leaf_rt_rq(rt_rq, rq) \
337 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
338
6f505b16
PZ
339#define for_each_sched_rt_entity(rt_se) \
340 for (; rt_se; rt_se = NULL)
341
342static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
343{
344 return NULL;
345}
346
9f0c1e56 347static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 348{
f3ade837
JB
349 if (rt_rq->rt_nr_running)
350 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
351}
352
9f0c1e56 353static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
354{
355}
356
23b0fdfc
PZ
357static inline int rt_rq_throttled(struct rt_rq *rt_rq)
358{
359 return rt_rq->rt_throttled;
360}
d0b27fa7 361
c6c4927b 362static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 363{
c6c4927b 364 return cpu_online_mask;
d0b27fa7
PZ
365}
366
367static inline
368struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
369{
370 return &cpu_rq(cpu)->rt;
371}
372
ac086bc2
PZ
373static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
374{
375 return &def_rt_bandwidth;
376}
377
55e12e5e 378#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 379
ac086bc2 380#ifdef CONFIG_SMP
78333cdd
PZ
381/*
382 * We ran out of runtime, see if we can borrow some from our neighbours.
383 */
b79f3833 384static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
385{
386 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
387 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
388 int i, weight, more = 0;
389 u64 rt_period;
390
c6c4927b 391 weight = cpumask_weight(rd->span);
ac086bc2 392
0986b11b 393 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 394 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 395 for_each_cpu(i, rd->span) {
ac086bc2
PZ
396 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
397 s64 diff;
398
399 if (iter == rt_rq)
400 continue;
401
0986b11b 402 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
403 /*
404 * Either all rqs have inf runtime and there's nothing to steal
405 * or __disable_runtime() below sets a specific rq to inf to
406 * indicate its been disabled and disalow stealing.
407 */
7def2be1
PZ
408 if (iter->rt_runtime == RUNTIME_INF)
409 goto next;
410
78333cdd
PZ
411 /*
412 * From runqueues with spare time, take 1/n part of their
413 * spare time, but no more than our period.
414 */
ac086bc2
PZ
415 diff = iter->rt_runtime - iter->rt_time;
416 if (diff > 0) {
58838cf3 417 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
418 if (rt_rq->rt_runtime + diff > rt_period)
419 diff = rt_period - rt_rq->rt_runtime;
420 iter->rt_runtime -= diff;
421 rt_rq->rt_runtime += diff;
422 more = 1;
423 if (rt_rq->rt_runtime == rt_period) {
0986b11b 424 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
425 break;
426 }
427 }
7def2be1 428next:
0986b11b 429 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 430 }
0986b11b 431 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
432
433 return more;
434}
7def2be1 435
78333cdd
PZ
436/*
437 * Ensure this RQ takes back all the runtime it lend to its neighbours.
438 */
7def2be1
PZ
439static void __disable_runtime(struct rq *rq)
440{
441 struct root_domain *rd = rq->rd;
ec514c48 442 rt_rq_iter_t iter;
7def2be1
PZ
443 struct rt_rq *rt_rq;
444
445 if (unlikely(!scheduler_running))
446 return;
447
ec514c48 448 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
449 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
450 s64 want;
451 int i;
452
0986b11b
TG
453 raw_spin_lock(&rt_b->rt_runtime_lock);
454 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
455 /*
456 * Either we're all inf and nobody needs to borrow, or we're
457 * already disabled and thus have nothing to do, or we have
458 * exactly the right amount of runtime to take out.
459 */
7def2be1
PZ
460 if (rt_rq->rt_runtime == RUNTIME_INF ||
461 rt_rq->rt_runtime == rt_b->rt_runtime)
462 goto balanced;
0986b11b 463 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 464
78333cdd
PZ
465 /*
466 * Calculate the difference between what we started out with
467 * and what we current have, that's the amount of runtime
468 * we lend and now have to reclaim.
469 */
7def2be1
PZ
470 want = rt_b->rt_runtime - rt_rq->rt_runtime;
471
78333cdd
PZ
472 /*
473 * Greedy reclaim, take back as much as we can.
474 */
c6c4927b 475 for_each_cpu(i, rd->span) {
7def2be1
PZ
476 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
477 s64 diff;
478
78333cdd
PZ
479 /*
480 * Can't reclaim from ourselves or disabled runqueues.
481 */
f1679d08 482 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
483 continue;
484
0986b11b 485 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
486 if (want > 0) {
487 diff = min_t(s64, iter->rt_runtime, want);
488 iter->rt_runtime -= diff;
489 want -= diff;
490 } else {
491 iter->rt_runtime -= want;
492 want -= want;
493 }
0986b11b 494 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
495
496 if (!want)
497 break;
498 }
499
0986b11b 500 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
501 /*
502 * We cannot be left wanting - that would mean some runtime
503 * leaked out of the system.
504 */
7def2be1
PZ
505 BUG_ON(want);
506balanced:
78333cdd
PZ
507 /*
508 * Disable all the borrow logic by pretending we have inf
509 * runtime - in which case borrowing doesn't make sense.
510 */
7def2be1 511 rt_rq->rt_runtime = RUNTIME_INF;
0986b11b
TG
512 raw_spin_unlock(&rt_rq->rt_runtime_lock);
513 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
514 }
515}
516
517static void disable_runtime(struct rq *rq)
518{
519 unsigned long flags;
520
05fa785c 521 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 522 __disable_runtime(rq);
05fa785c 523 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
524}
525
526static void __enable_runtime(struct rq *rq)
527{
ec514c48 528 rt_rq_iter_t iter;
7def2be1
PZ
529 struct rt_rq *rt_rq;
530
531 if (unlikely(!scheduler_running))
532 return;
533
78333cdd
PZ
534 /*
535 * Reset each runqueue's bandwidth settings
536 */
ec514c48 537 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
538 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
539
0986b11b
TG
540 raw_spin_lock(&rt_b->rt_runtime_lock);
541 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
542 rt_rq->rt_runtime = rt_b->rt_runtime;
543 rt_rq->rt_time = 0;
baf25731 544 rt_rq->rt_throttled = 0;
0986b11b
TG
545 raw_spin_unlock(&rt_rq->rt_runtime_lock);
546 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
547 }
548}
549
550static void enable_runtime(struct rq *rq)
551{
552 unsigned long flags;
553
05fa785c 554 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 555 __enable_runtime(rq);
05fa785c 556 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
557}
558
eff6549b
PZ
559static int balance_runtime(struct rt_rq *rt_rq)
560{
561 int more = 0;
562
4a6184ce
PZ
563 if (!sched_feat(RT_RUNTIME_SHARE))
564 return more;
565
eff6549b 566 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 567 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 568 more = do_balance_runtime(rt_rq);
0986b11b 569 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
570 }
571
572 return more;
573}
55e12e5e 574#else /* !CONFIG_SMP */
eff6549b
PZ
575static inline int balance_runtime(struct rt_rq *rt_rq)
576{
577 return 0;
578}
55e12e5e 579#endif /* CONFIG_SMP */
ac086bc2 580
eff6549b
PZ
581static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
582{
583 int i, idle = 1;
c6c4927b 584 const struct cpumask *span;
eff6549b 585
0b148fa0 586 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
587 return 1;
588
589 span = sched_rt_period_mask();
c6c4927b 590 for_each_cpu(i, span) {
eff6549b
PZ
591 int enqueue = 0;
592 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
593 struct rq *rq = rq_of_rt_rq(rt_rq);
594
05fa785c 595 raw_spin_lock(&rq->lock);
eff6549b
PZ
596 if (rt_rq->rt_time) {
597 u64 runtime;
598
0986b11b 599 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
600 if (rt_rq->rt_throttled)
601 balance_runtime(rt_rq);
602 runtime = rt_rq->rt_runtime;
603 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
604 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
605 rt_rq->rt_throttled = 0;
606 enqueue = 1;
61eadef6
MG
607
608 /*
609 * Force a clock update if the CPU was idle,
610 * lest wakeup -> unthrottle time accumulate.
611 */
612 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
613 rq->skip_clock_update = -1;
eff6549b
PZ
614 }
615 if (rt_rq->rt_time || rt_rq->rt_nr_running)
616 idle = 0;
0986b11b 617 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 618 } else if (rt_rq->rt_nr_running) {
6c3df255 619 idle = 0;
0c3b9168
BS
620 if (!rt_rq_throttled(rt_rq))
621 enqueue = 1;
622 }
eff6549b
PZ
623
624 if (enqueue)
625 sched_rt_rq_enqueue(rt_rq);
05fa785c 626 raw_spin_unlock(&rq->lock);
eff6549b
PZ
627 }
628
629 return idle;
630}
ac086bc2 631
6f505b16
PZ
632static inline int rt_se_prio(struct sched_rt_entity *rt_se)
633{
052f1dc7 634#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
635 struct rt_rq *rt_rq = group_rt_rq(rt_se);
636
637 if (rt_rq)
e864c499 638 return rt_rq->highest_prio.curr;
6f505b16
PZ
639#endif
640
641 return rt_task_of(rt_se)->prio;
642}
643
9f0c1e56 644static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 645{
9f0c1e56 646 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 647
fa85ae24 648 if (rt_rq->rt_throttled)
23b0fdfc 649 return rt_rq_throttled(rt_rq);
fa85ae24 650
ac086bc2
PZ
651 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
652 return 0;
653
b79f3833
PZ
654 balance_runtime(rt_rq);
655 runtime = sched_rt_runtime(rt_rq);
656 if (runtime == RUNTIME_INF)
657 return 0;
ac086bc2 658
9f0c1e56 659 if (rt_rq->rt_time > runtime) {
6f505b16 660 rt_rq->rt_throttled = 1;
1c83437e 661 printk_once(KERN_WARNING "sched: RT throttling activated\n");
23b0fdfc 662 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 663 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
664 return 1;
665 }
fa85ae24
PZ
666 }
667
668 return 0;
669}
670
bb44e5d1
IM
671/*
672 * Update the current task's runtime statistics. Skip current tasks that
673 * are not in our scheduling class.
674 */
a9957449 675static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
676{
677 struct task_struct *curr = rq->curr;
6f505b16
PZ
678 struct sched_rt_entity *rt_se = &curr->rt;
679 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
680 u64 delta_exec;
681
06c3bc65 682 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
683 return;
684
305e6835 685 delta_exec = rq->clock_task - curr->se.exec_start;
bb44e5d1
IM
686 if (unlikely((s64)delta_exec < 0))
687 delta_exec = 0;
6cfb0d5d 688
41acab88 689 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
690
691 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
692 account_group_exec_runtime(curr, delta_exec);
693
305e6835 694 curr->se.exec_start = rq->clock_task;
d842de87 695 cpuacct_charge(curr, delta_exec);
fa85ae24 696
e9e9250b
PZ
697 sched_rt_avg_update(rq, delta_exec);
698
0b148fa0
PZ
699 if (!rt_bandwidth_enabled())
700 return;
701
354d60c2
DG
702 for_each_sched_rt_entity(rt_se) {
703 rt_rq = rt_rq_of_se(rt_se);
704
cc2991cf 705 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 706 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
707 rt_rq->rt_time += delta_exec;
708 if (sched_rt_runtime_exceeded(rt_rq))
709 resched_task(curr);
0986b11b 710 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 711 }
354d60c2 712 }
bb44e5d1
IM
713}
714
398a153b 715#if defined CONFIG_SMP
e864c499 716
398a153b
GH
717static void
718inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 719{
4d984277 720 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 721
5181f4a4
SR
722 if (rq->online && prio < prev_prio)
723 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 724}
73fe6aae 725
398a153b
GH
726static void
727dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
728{
729 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 730
398a153b
GH
731 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
732 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
733}
734
398a153b
GH
735#else /* CONFIG_SMP */
736
6f505b16 737static inline
398a153b
GH
738void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
739static inline
740void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
741
742#endif /* CONFIG_SMP */
6e0534f2 743
052f1dc7 744#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
745static void
746inc_rt_prio(struct rt_rq *rt_rq, int prio)
747{
748 int prev_prio = rt_rq->highest_prio.curr;
749
750 if (prio < prev_prio)
751 rt_rq->highest_prio.curr = prio;
752
753 inc_rt_prio_smp(rt_rq, prio, prev_prio);
754}
755
756static void
757dec_rt_prio(struct rt_rq *rt_rq, int prio)
758{
759 int prev_prio = rt_rq->highest_prio.curr;
760
6f505b16 761 if (rt_rq->rt_nr_running) {
764a9d6f 762
398a153b 763 WARN_ON(prio < prev_prio);
764a9d6f 764
e864c499 765 /*
398a153b
GH
766 * This may have been our highest task, and therefore
767 * we may have some recomputation to do
e864c499 768 */
398a153b 769 if (prio == prev_prio) {
e864c499
GH
770 struct rt_prio_array *array = &rt_rq->active;
771
772 rt_rq->highest_prio.curr =
764a9d6f 773 sched_find_first_bit(array->bitmap);
e864c499
GH
774 }
775
764a9d6f 776 } else
e864c499 777 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 778
398a153b
GH
779 dec_rt_prio_smp(rt_rq, prio, prev_prio);
780}
1f11eb6a 781
398a153b
GH
782#else
783
784static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
785static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
786
787#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 788
052f1dc7 789#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
790
791static void
792inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
793{
794 if (rt_se_boosted(rt_se))
795 rt_rq->rt_nr_boosted++;
796
797 if (rt_rq->tg)
798 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
799}
800
801static void
802dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
803{
23b0fdfc
PZ
804 if (rt_se_boosted(rt_se))
805 rt_rq->rt_nr_boosted--;
806
807 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
808}
809
810#else /* CONFIG_RT_GROUP_SCHED */
811
812static void
813inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
814{
815 start_rt_bandwidth(&def_rt_bandwidth);
816}
817
818static inline
819void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
820
821#endif /* CONFIG_RT_GROUP_SCHED */
822
823static inline
824void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
825{
826 int prio = rt_se_prio(rt_se);
827
828 WARN_ON(!rt_prio(prio));
829 rt_rq->rt_nr_running++;
830
831 inc_rt_prio(rt_rq, prio);
832 inc_rt_migration(rt_se, rt_rq);
833 inc_rt_group(rt_se, rt_rq);
834}
835
836static inline
837void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
838{
839 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
840 WARN_ON(!rt_rq->rt_nr_running);
841 rt_rq->rt_nr_running--;
842
843 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
844 dec_rt_migration(rt_se, rt_rq);
845 dec_rt_group(rt_se, rt_rq);
63489e45
SR
846}
847
37dad3fc 848static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 849{
6f505b16
PZ
850 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
851 struct rt_prio_array *array = &rt_rq->active;
852 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 853 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 854
ad2a3f13
PZ
855 /*
856 * Don't enqueue the group if its throttled, or when empty.
857 * The latter is a consequence of the former when a child group
858 * get throttled and the current group doesn't have any other
859 * active members.
860 */
861 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 862 return;
63489e45 863
3d4b47b4
PZ
864 if (!rt_rq->rt_nr_running)
865 list_add_leaf_rt_rq(rt_rq);
866
37dad3fc
TG
867 if (head)
868 list_add(&rt_se->run_list, queue);
869 else
870 list_add_tail(&rt_se->run_list, queue);
6f505b16 871 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 872
6f505b16
PZ
873 inc_rt_tasks(rt_se, rt_rq);
874}
875
ad2a3f13 876static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
877{
878 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
879 struct rt_prio_array *array = &rt_rq->active;
880
881 list_del_init(&rt_se->run_list);
882 if (list_empty(array->queue + rt_se_prio(rt_se)))
883 __clear_bit(rt_se_prio(rt_se), array->bitmap);
884
885 dec_rt_tasks(rt_se, rt_rq);
3d4b47b4
PZ
886 if (!rt_rq->rt_nr_running)
887 list_del_leaf_rt_rq(rt_rq);
6f505b16
PZ
888}
889
890/*
891 * Because the prio of an upper entry depends on the lower
892 * entries, we must remove entries top - down.
6f505b16 893 */
ad2a3f13 894static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 895{
ad2a3f13 896 struct sched_rt_entity *back = NULL;
6f505b16 897
58d6c2d7
PZ
898 for_each_sched_rt_entity(rt_se) {
899 rt_se->back = back;
900 back = rt_se;
901 }
902
903 for (rt_se = back; rt_se; rt_se = rt_se->back) {
904 if (on_rt_rq(rt_se))
ad2a3f13
PZ
905 __dequeue_rt_entity(rt_se);
906 }
907}
908
37dad3fc 909static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
910{
911 dequeue_rt_stack(rt_se);
912 for_each_sched_rt_entity(rt_se)
37dad3fc 913 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
914}
915
916static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
917{
918 dequeue_rt_stack(rt_se);
919
920 for_each_sched_rt_entity(rt_se) {
921 struct rt_rq *rt_rq = group_rt_rq(rt_se);
922
923 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 924 __enqueue_rt_entity(rt_se, false);
58d6c2d7 925 }
bb44e5d1
IM
926}
927
928/*
929 * Adding/removing a task to/from a priority array:
930 */
ea87bb78 931static void
371fd7e7 932enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
933{
934 struct sched_rt_entity *rt_se = &p->rt;
935
371fd7e7 936 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
937 rt_se->timeout = 0;
938
371fd7e7 939 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 940
917b627d
GH
941 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
942 enqueue_pushable_task(rq, p);
953bfcd1
PT
943
944 inc_nr_running(rq);
6f505b16
PZ
945}
946
371fd7e7 947static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 948{
6f505b16 949 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 950
f1e14ef6 951 update_curr_rt(rq);
ad2a3f13 952 dequeue_rt_entity(rt_se);
c09595f6 953
917b627d 954 dequeue_pushable_task(rq, p);
953bfcd1
PT
955
956 dec_nr_running(rq);
bb44e5d1
IM
957}
958
959/*
960 * Put task to the end of the run list without the overhead of dequeue
961 * followed by enqueue.
962 */
7ebefa8c
DA
963static void
964requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 965{
1cdad715 966 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
967 struct rt_prio_array *array = &rt_rq->active;
968 struct list_head *queue = array->queue + rt_se_prio(rt_se);
969
970 if (head)
971 list_move(&rt_se->run_list, queue);
972 else
973 list_move_tail(&rt_se->run_list, queue);
1cdad715 974 }
6f505b16
PZ
975}
976
7ebefa8c 977static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 978{
6f505b16
PZ
979 struct sched_rt_entity *rt_se = &p->rt;
980 struct rt_rq *rt_rq;
bb44e5d1 981
6f505b16
PZ
982 for_each_sched_rt_entity(rt_se) {
983 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 984 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 985 }
bb44e5d1
IM
986}
987
6f505b16 988static void yield_task_rt(struct rq *rq)
bb44e5d1 989{
7ebefa8c 990 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
991}
992
e7693a36 993#ifdef CONFIG_SMP
318e0893
GH
994static int find_lowest_rq(struct task_struct *task);
995
0017d735 996static int
7608dec2 997select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
e7693a36 998{
7608dec2
PZ
999 struct task_struct *curr;
1000 struct rq *rq;
1001 int cpu;
1002
7608dec2 1003 cpu = task_cpu(p);
c37495fd
SR
1004
1005 /* For anything but wake ups, just return the task_cpu */
1006 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1007 goto out;
1008
7608dec2
PZ
1009 rq = cpu_rq(cpu);
1010
1011 rcu_read_lock();
1012 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1013
318e0893 1014 /*
7608dec2 1015 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1016 * try to see if we can wake this RT task up on another
1017 * runqueue. Otherwise simply start this RT task
1018 * on its current runqueue.
1019 *
43fa5460
SR
1020 * We want to avoid overloading runqueues. If the woken
1021 * task is a higher priority, then it will stay on this CPU
1022 * and the lower prio task should be moved to another CPU.
1023 * Even though this will probably make the lower prio task
1024 * lose its cache, we do not want to bounce a higher task
1025 * around just because it gave up its CPU, perhaps for a
1026 * lock?
1027 *
1028 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1029 *
1030 * Otherwise, just let it ride on the affined RQ and the
1031 * post-schedule router will push the preempted task away
1032 *
1033 * This test is optimistic, if we get it wrong the load-balancer
1034 * will have to sort it out.
318e0893 1035 */
7608dec2
PZ
1036 if (curr && unlikely(rt_task(curr)) &&
1037 (curr->rt.nr_cpus_allowed < 2 ||
3be209a8 1038 curr->prio <= p->prio) &&
6f505b16 1039 (p->rt.nr_cpus_allowed > 1)) {
7608dec2 1040 int target = find_lowest_rq(p);
318e0893 1041
7608dec2
PZ
1042 if (target != -1)
1043 cpu = target;
318e0893 1044 }
7608dec2 1045 rcu_read_unlock();
318e0893 1046
c37495fd 1047out:
7608dec2 1048 return cpu;
e7693a36 1049}
7ebefa8c
DA
1050
1051static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1052{
7ebefa8c
DA
1053 if (rq->curr->rt.nr_cpus_allowed == 1)
1054 return;
1055
24600ce8 1056 if (p->rt.nr_cpus_allowed != 1
13b8bd0a
RR
1057 && cpupri_find(&rq->rd->cpupri, p, NULL))
1058 return;
24600ce8 1059
13b8bd0a
RR
1060 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1061 return;
7ebefa8c
DA
1062
1063 /*
1064 * There appears to be other cpus that can accept
1065 * current and none to run 'p', so lets reschedule
1066 * to try and push current away:
1067 */
1068 requeue_task_rt(rq, p, 1);
1069 resched_task(rq->curr);
1070}
1071
e7693a36
GH
1072#endif /* CONFIG_SMP */
1073
bb44e5d1
IM
1074/*
1075 * Preempt the current task with a newly woken task if needed:
1076 */
7d478721 1077static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1078{
45c01e82 1079 if (p->prio < rq->curr->prio) {
bb44e5d1 1080 resched_task(rq->curr);
45c01e82
GH
1081 return;
1082 }
1083
1084#ifdef CONFIG_SMP
1085 /*
1086 * If:
1087 *
1088 * - the newly woken task is of equal priority to the current task
1089 * - the newly woken task is non-migratable while current is migratable
1090 * - current will be preempted on the next reschedule
1091 *
1092 * we should check to see if current can readily move to a different
1093 * cpu. If so, we will reschedule to allow the push logic to try
1094 * to move current somewhere else, making room for our non-migratable
1095 * task.
1096 */
8dd0de8b 1097 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1098 check_preempt_equal_prio(rq, p);
45c01e82 1099#endif
bb44e5d1
IM
1100}
1101
6f505b16
PZ
1102static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1103 struct rt_rq *rt_rq)
bb44e5d1 1104{
6f505b16
PZ
1105 struct rt_prio_array *array = &rt_rq->active;
1106 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1107 struct list_head *queue;
1108 int idx;
1109
1110 idx = sched_find_first_bit(array->bitmap);
6f505b16 1111 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1112
1113 queue = array->queue + idx;
6f505b16 1114 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1115
6f505b16
PZ
1116 return next;
1117}
bb44e5d1 1118
917b627d 1119static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1120{
1121 struct sched_rt_entity *rt_se;
1122 struct task_struct *p;
1123 struct rt_rq *rt_rq;
bb44e5d1 1124
6f505b16
PZ
1125 rt_rq = &rq->rt;
1126
8e54a2c0 1127 if (!rt_rq->rt_nr_running)
6f505b16
PZ
1128 return NULL;
1129
23b0fdfc 1130 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1131 return NULL;
1132
1133 do {
1134 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1135 BUG_ON(!rt_se);
6f505b16
PZ
1136 rt_rq = group_rt_rq(rt_se);
1137 } while (rt_rq);
1138
1139 p = rt_task_of(rt_se);
305e6835 1140 p->se.exec_start = rq->clock_task;
917b627d
GH
1141
1142 return p;
1143}
1144
1145static struct task_struct *pick_next_task_rt(struct rq *rq)
1146{
1147 struct task_struct *p = _pick_next_task_rt(rq);
1148
1149 /* The running task is never eligible for pushing */
1150 if (p)
1151 dequeue_pushable_task(rq, p);
1152
bcf08df3 1153#ifdef CONFIG_SMP
3f029d3c
GH
1154 /*
1155 * We detect this state here so that we can avoid taking the RQ
1156 * lock again later if there is no need to push
1157 */
1158 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1159#endif
3f029d3c 1160
6f505b16 1161 return p;
bb44e5d1
IM
1162}
1163
31ee529c 1164static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1165{
f1e14ef6 1166 update_curr_rt(rq);
917b627d
GH
1167
1168 /*
1169 * The previous task needs to be made eligible for pushing
1170 * if it is still active
1171 */
fd2f4419 1172 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
917b627d 1173 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1174}
1175
681f3e68 1176#ifdef CONFIG_SMP
6f505b16 1177
e8fa1362
SR
1178/* Only try algorithms three times */
1179#define RT_MAX_TRIES 3
1180
e8fa1362
SR
1181static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1182
f65eda4f
SR
1183static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1184{
1185 if (!task_running(rq, p) &&
fa17b507 1186 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
6f505b16 1187 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
1188 return 1;
1189 return 0;
1190}
1191
e8fa1362 1192/* Return the second highest RT task, NULL otherwise */
79064fbf 1193static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1194{
6f505b16
PZ
1195 struct task_struct *next = NULL;
1196 struct sched_rt_entity *rt_se;
1197 struct rt_prio_array *array;
1198 struct rt_rq *rt_rq;
e8fa1362
SR
1199 int idx;
1200
6f505b16
PZ
1201 for_each_leaf_rt_rq(rt_rq, rq) {
1202 array = &rt_rq->active;
1203 idx = sched_find_first_bit(array->bitmap);
49246274 1204next_idx:
6f505b16
PZ
1205 if (idx >= MAX_RT_PRIO)
1206 continue;
1207 if (next && next->prio < idx)
1208 continue;
1209 list_for_each_entry(rt_se, array->queue + idx, run_list) {
3d07467b
PZ
1210 struct task_struct *p;
1211
1212 if (!rt_entity_is_task(rt_se))
1213 continue;
1214
1215 p = rt_task_of(rt_se);
6f505b16
PZ
1216 if (pick_rt_task(rq, p, cpu)) {
1217 next = p;
1218 break;
1219 }
1220 }
1221 if (!next) {
1222 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1223 goto next_idx;
1224 }
f65eda4f
SR
1225 }
1226
e8fa1362
SR
1227 return next;
1228}
1229
0e3900e6 1230static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1231
6e1254d2
GH
1232static int find_lowest_rq(struct task_struct *task)
1233{
1234 struct sched_domain *sd;
96f874e2 1235 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1236 int this_cpu = smp_processor_id();
1237 int cpu = task_cpu(task);
06f90dbd 1238
0da938c4
SR
1239 /* Make sure the mask is initialized first */
1240 if (unlikely(!lowest_mask))
1241 return -1;
1242
6e0534f2
GH
1243 if (task->rt.nr_cpus_allowed == 1)
1244 return -1; /* No other targets possible */
6e1254d2 1245
6e0534f2
GH
1246 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1247 return -1; /* No targets found */
6e1254d2
GH
1248
1249 /*
1250 * At this point we have built a mask of cpus representing the
1251 * lowest priority tasks in the system. Now we want to elect
1252 * the best one based on our affinity and topology.
1253 *
1254 * We prioritize the last cpu that the task executed on since
1255 * it is most likely cache-hot in that location.
1256 */
96f874e2 1257 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1258 return cpu;
1259
1260 /*
1261 * Otherwise, we consult the sched_domains span maps to figure
1262 * out which cpu is logically closest to our hot cache data.
1263 */
e2c88063
RR
1264 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1265 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1266
cd4ae6ad 1267 rcu_read_lock();
e2c88063
RR
1268 for_each_domain(cpu, sd) {
1269 if (sd->flags & SD_WAKE_AFFINE) {
1270 int best_cpu;
6e1254d2 1271
e2c88063
RR
1272 /*
1273 * "this_cpu" is cheaper to preempt than a
1274 * remote processor.
1275 */
1276 if (this_cpu != -1 &&
cd4ae6ad
XF
1277 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1278 rcu_read_unlock();
e2c88063 1279 return this_cpu;
cd4ae6ad 1280 }
e2c88063
RR
1281
1282 best_cpu = cpumask_first_and(lowest_mask,
1283 sched_domain_span(sd));
cd4ae6ad
XF
1284 if (best_cpu < nr_cpu_ids) {
1285 rcu_read_unlock();
e2c88063 1286 return best_cpu;
cd4ae6ad 1287 }
6e1254d2
GH
1288 }
1289 }
cd4ae6ad 1290 rcu_read_unlock();
6e1254d2
GH
1291
1292 /*
1293 * And finally, if there were no matches within the domains
1294 * just give the caller *something* to work with from the compatible
1295 * locations.
1296 */
e2c88063
RR
1297 if (this_cpu != -1)
1298 return this_cpu;
1299
1300 cpu = cpumask_any(lowest_mask);
1301 if (cpu < nr_cpu_ids)
1302 return cpu;
1303 return -1;
07b4032c
GH
1304}
1305
1306/* Will lock the rq it finds */
4df64c0b 1307static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1308{
1309 struct rq *lowest_rq = NULL;
07b4032c 1310 int tries;
4df64c0b 1311 int cpu;
e8fa1362 1312
07b4032c
GH
1313 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1314 cpu = find_lowest_rq(task);
1315
2de0b463 1316 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1317 break;
1318
07b4032c
GH
1319 lowest_rq = cpu_rq(cpu);
1320
e8fa1362 1321 /* if the prio of this runqueue changed, try again */
07b4032c 1322 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1323 /*
1324 * We had to unlock the run queue. In
1325 * the mean time, task could have
1326 * migrated already or had its affinity changed.
1327 * Also make sure that it wasn't scheduled on its rq.
1328 */
07b4032c 1329 if (unlikely(task_rq(task) != rq ||
96f874e2 1330 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1331 tsk_cpus_allowed(task)) ||
07b4032c 1332 task_running(rq, task) ||
fd2f4419 1333 !task->on_rq)) {
4df64c0b 1334
05fa785c 1335 raw_spin_unlock(&lowest_rq->lock);
e8fa1362
SR
1336 lowest_rq = NULL;
1337 break;
1338 }
1339 }
1340
1341 /* If this rq is still suitable use it. */
e864c499 1342 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1343 break;
1344
1345 /* try again */
1b12bbc7 1346 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1347 lowest_rq = NULL;
1348 }
1349
1350 return lowest_rq;
1351}
1352
917b627d
GH
1353static struct task_struct *pick_next_pushable_task(struct rq *rq)
1354{
1355 struct task_struct *p;
1356
1357 if (!has_pushable_tasks(rq))
1358 return NULL;
1359
1360 p = plist_first_entry(&rq->rt.pushable_tasks,
1361 struct task_struct, pushable_tasks);
1362
1363 BUG_ON(rq->cpu != task_cpu(p));
1364 BUG_ON(task_current(rq, p));
1365 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1366
fd2f4419 1367 BUG_ON(!p->on_rq);
917b627d
GH
1368 BUG_ON(!rt_task(p));
1369
1370 return p;
1371}
1372
e8fa1362
SR
1373/*
1374 * If the current CPU has more than one RT task, see if the non
1375 * running task can migrate over to a CPU that is running a task
1376 * of lesser priority.
1377 */
697f0a48 1378static int push_rt_task(struct rq *rq)
e8fa1362
SR
1379{
1380 struct task_struct *next_task;
1381 struct rq *lowest_rq;
311e800e 1382 int ret = 0;
e8fa1362 1383
a22d7fc1
GH
1384 if (!rq->rt.overloaded)
1385 return 0;
1386
917b627d 1387 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1388 if (!next_task)
1389 return 0;
1390
49246274 1391retry:
697f0a48 1392 if (unlikely(next_task == rq->curr)) {
f65eda4f 1393 WARN_ON(1);
e8fa1362 1394 return 0;
f65eda4f 1395 }
e8fa1362
SR
1396
1397 /*
1398 * It's possible that the next_task slipped in of
1399 * higher priority than current. If that's the case
1400 * just reschedule current.
1401 */
697f0a48
GH
1402 if (unlikely(next_task->prio < rq->curr->prio)) {
1403 resched_task(rq->curr);
e8fa1362
SR
1404 return 0;
1405 }
1406
697f0a48 1407 /* We might release rq lock */
e8fa1362
SR
1408 get_task_struct(next_task);
1409
1410 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1411 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1412 if (!lowest_rq) {
1413 struct task_struct *task;
1414 /*
311e800e 1415 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1416 * so it is possible that next_task has migrated.
1417 *
1418 * We need to make sure that the task is still on the same
1419 * run-queue and is also still the next task eligible for
1420 * pushing.
e8fa1362 1421 */
917b627d 1422 task = pick_next_pushable_task(rq);
1563513d
GH
1423 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1424 /*
311e800e
HD
1425 * The task hasn't migrated, and is still the next
1426 * eligible task, but we failed to find a run-queue
1427 * to push it to. Do not retry in this case, since
1428 * other cpus will pull from us when ready.
1563513d 1429 */
1563513d 1430 goto out;
e8fa1362 1431 }
917b627d 1432
1563513d
GH
1433 if (!task)
1434 /* No more tasks, just exit */
1435 goto out;
1436
917b627d 1437 /*
1563513d 1438 * Something has shifted, try again.
917b627d 1439 */
1563513d
GH
1440 put_task_struct(next_task);
1441 next_task = task;
1442 goto retry;
e8fa1362
SR
1443 }
1444
697f0a48 1445 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1446 set_task_cpu(next_task, lowest_rq->cpu);
1447 activate_task(lowest_rq, next_task, 0);
311e800e 1448 ret = 1;
e8fa1362
SR
1449
1450 resched_task(lowest_rq->curr);
1451
1b12bbc7 1452 double_unlock_balance(rq, lowest_rq);
e8fa1362 1453
e8fa1362
SR
1454out:
1455 put_task_struct(next_task);
1456
311e800e 1457 return ret;
e8fa1362
SR
1458}
1459
e8fa1362
SR
1460static void push_rt_tasks(struct rq *rq)
1461{
1462 /* push_rt_task will return true if it moved an RT */
1463 while (push_rt_task(rq))
1464 ;
1465}
1466
f65eda4f
SR
1467static int pull_rt_task(struct rq *this_rq)
1468{
80bf3171 1469 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1470 struct task_struct *p;
f65eda4f 1471 struct rq *src_rq;
f65eda4f 1472
637f5085 1473 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1474 return 0;
1475
c6c4927b 1476 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1477 if (this_cpu == cpu)
1478 continue;
1479
1480 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1481
1482 /*
1483 * Don't bother taking the src_rq->lock if the next highest
1484 * task is known to be lower-priority than our current task.
1485 * This may look racy, but if this value is about to go
1486 * logically higher, the src_rq will push this task away.
1487 * And if its going logically lower, we do not care
1488 */
1489 if (src_rq->rt.highest_prio.next >=
1490 this_rq->rt.highest_prio.curr)
1491 continue;
1492
f65eda4f
SR
1493 /*
1494 * We can potentially drop this_rq's lock in
1495 * double_lock_balance, and another CPU could
a8728944 1496 * alter this_rq
f65eda4f 1497 */
a8728944 1498 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1499
1500 /*
1501 * Are there still pullable RT tasks?
1502 */
614ee1f6
MG
1503 if (src_rq->rt.rt_nr_running <= 1)
1504 goto skip;
f65eda4f 1505
f65eda4f
SR
1506 p = pick_next_highest_task_rt(src_rq, this_cpu);
1507
1508 /*
1509 * Do we have an RT task that preempts
1510 * the to-be-scheduled task?
1511 */
a8728944 1512 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1513 WARN_ON(p == src_rq->curr);
fd2f4419 1514 WARN_ON(!p->on_rq);
f65eda4f
SR
1515
1516 /*
1517 * There's a chance that p is higher in priority
1518 * than what's currently running on its cpu.
1519 * This is just that p is wakeing up and hasn't
1520 * had a chance to schedule. We only pull
1521 * p if it is lower in priority than the
a8728944 1522 * current task on the run queue
f65eda4f 1523 */
a8728944 1524 if (p->prio < src_rq->curr->prio)
614ee1f6 1525 goto skip;
f65eda4f
SR
1526
1527 ret = 1;
1528
1529 deactivate_task(src_rq, p, 0);
1530 set_task_cpu(p, this_cpu);
1531 activate_task(this_rq, p, 0);
1532 /*
1533 * We continue with the search, just in
1534 * case there's an even higher prio task
25985edc 1535 * in another runqueue. (low likelihood
f65eda4f 1536 * but possible)
f65eda4f 1537 */
f65eda4f 1538 }
49246274 1539skip:
1b12bbc7 1540 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1541 }
1542
1543 return ret;
1544}
1545
9a897c5a 1546static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1547{
1548 /* Try to pull RT tasks here if we lower this rq's prio */
33c3d6c6 1549 if (rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1550 pull_rt_task(rq);
1551}
1552
9a897c5a 1553static void post_schedule_rt(struct rq *rq)
e8fa1362 1554{
967fc046 1555 push_rt_tasks(rq);
e8fa1362
SR
1556}
1557
8ae121ac
GH
1558/*
1559 * If we are not running and we are not going to reschedule soon, we should
1560 * try to push tasks away now
1561 */
efbbd05a 1562static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1563{
9a897c5a 1564 if (!task_running(rq, p) &&
8ae121ac 1565 !test_tsk_need_resched(rq->curr) &&
917b627d 1566 has_pushable_tasks(rq) &&
b3bc211c 1567 p->rt.nr_cpus_allowed > 1 &&
43fa5460 1568 rt_task(rq->curr) &&
b3bc211c 1569 (rq->curr->rt.nr_cpus_allowed < 2 ||
3be209a8 1570 rq->curr->prio <= p->prio))
4642dafd
SR
1571 push_rt_tasks(rq);
1572}
1573
cd8ba7cd 1574static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1575 const struct cpumask *new_mask)
73fe6aae 1576{
96f874e2 1577 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1578
1579 BUG_ON(!rt_task(p));
1580
1581 /*
1582 * Update the migration status of the RQ if we have an RT task
1583 * which is running AND changing its weight value.
1584 */
fd2f4419 1585 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1586 struct rq *rq = task_rq(p);
1587
917b627d
GH
1588 if (!task_current(rq, p)) {
1589 /*
1590 * Make sure we dequeue this task from the pushable list
1591 * before going further. It will either remain off of
1592 * the list because we are no longer pushable, or it
1593 * will be requeued.
1594 */
1595 if (p->rt.nr_cpus_allowed > 1)
1596 dequeue_pushable_task(rq, p);
1597
1598 /*
1599 * Requeue if our weight is changing and still > 1
1600 */
1601 if (weight > 1)
1602 enqueue_pushable_task(rq, p);
1603
1604 }
1605
6f505b16 1606 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1607 rq->rt.rt_nr_migratory++;
6f505b16 1608 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1609 BUG_ON(!rq->rt.rt_nr_migratory);
1610 rq->rt.rt_nr_migratory--;
1611 }
1612
398a153b 1613 update_rt_migration(&rq->rt);
73fe6aae 1614 }
73fe6aae 1615}
deeeccd4 1616
bdd7c81b 1617/* Assumes rq->lock is held */
1f11eb6a 1618static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1619{
1620 if (rq->rt.overloaded)
1621 rt_set_overload(rq);
6e0534f2 1622
7def2be1
PZ
1623 __enable_runtime(rq);
1624
e864c499 1625 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1626}
1627
1628/* Assumes rq->lock is held */
1f11eb6a 1629static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1630{
1631 if (rq->rt.overloaded)
1632 rt_clear_overload(rq);
6e0534f2 1633
7def2be1
PZ
1634 __disable_runtime(rq);
1635
6e0534f2 1636 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1637}
cb469845
SR
1638
1639/*
1640 * When switch from the rt queue, we bring ourselves to a position
1641 * that we might want to pull RT tasks from other runqueues.
1642 */
da7a735e 1643static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1644{
1645 /*
1646 * If there are other RT tasks then we will reschedule
1647 * and the scheduling of the other RT tasks will handle
1648 * the balancing. But if we are the last RT task
1649 * we may need to handle the pulling of RT tasks
1650 * now.
1651 */
fd2f4419 1652 if (p->on_rq && !rq->rt.rt_nr_running)
cb469845
SR
1653 pull_rt_task(rq);
1654}
3d8cbdf8
RR
1655
1656static inline void init_sched_rt_class(void)
1657{
1658 unsigned int i;
1659
1660 for_each_possible_cpu(i)
eaa95840 1661 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1662 GFP_KERNEL, cpu_to_node(i));
3d8cbdf8 1663}
cb469845
SR
1664#endif /* CONFIG_SMP */
1665
1666/*
1667 * When switching a task to RT, we may overload the runqueue
1668 * with RT tasks. In this case we try to push them off to
1669 * other runqueues.
1670 */
da7a735e 1671static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1672{
1673 int check_resched = 1;
1674
1675 /*
1676 * If we are already running, then there's nothing
1677 * that needs to be done. But if we are not running
1678 * we may need to preempt the current running task.
1679 * If that current running task is also an RT task
1680 * then see if we can move to another run queue.
1681 */
fd2f4419 1682 if (p->on_rq && rq->curr != p) {
cb469845
SR
1683#ifdef CONFIG_SMP
1684 if (rq->rt.overloaded && push_rt_task(rq) &&
1685 /* Don't resched if we changed runqueues */
1686 rq != task_rq(p))
1687 check_resched = 0;
1688#endif /* CONFIG_SMP */
1689 if (check_resched && p->prio < rq->curr->prio)
1690 resched_task(rq->curr);
1691 }
1692}
1693
1694/*
1695 * Priority of the task has changed. This may cause
1696 * us to initiate a push or pull.
1697 */
da7a735e
PZ
1698static void
1699prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1700{
fd2f4419 1701 if (!p->on_rq)
da7a735e
PZ
1702 return;
1703
1704 if (rq->curr == p) {
cb469845
SR
1705#ifdef CONFIG_SMP
1706 /*
1707 * If our priority decreases while running, we
1708 * may need to pull tasks to this runqueue.
1709 */
1710 if (oldprio < p->prio)
1711 pull_rt_task(rq);
1712 /*
1713 * If there's a higher priority task waiting to run
6fa46fa5
SR
1714 * then reschedule. Note, the above pull_rt_task
1715 * can release the rq lock and p could migrate.
1716 * Only reschedule if p is still on the same runqueue.
cb469845 1717 */
e864c499 1718 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1719 resched_task(p);
1720#else
1721 /* For UP simply resched on drop of prio */
1722 if (oldprio < p->prio)
1723 resched_task(p);
e8fa1362 1724#endif /* CONFIG_SMP */
cb469845
SR
1725 } else {
1726 /*
1727 * This task is not running, but if it is
1728 * greater than the current running task
1729 * then reschedule.
1730 */
1731 if (p->prio < rq->curr->prio)
1732 resched_task(rq->curr);
1733 }
1734}
1735
78f2c7db
PZ
1736static void watchdog(struct rq *rq, struct task_struct *p)
1737{
1738 unsigned long soft, hard;
1739
78d7d407
JS
1740 /* max may change after cur was read, this will be fixed next tick */
1741 soft = task_rlimit(p, RLIMIT_RTTIME);
1742 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1743
1744 if (soft != RLIM_INFINITY) {
1745 unsigned long next;
1746
1747 p->rt.timeout++;
1748 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1749 if (p->rt.timeout > next)
f06febc9 1750 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1751 }
1752}
bb44e5d1 1753
8f4d37ec 1754static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1755{
67e2be02
PZ
1756 update_curr_rt(rq);
1757
78f2c7db
PZ
1758 watchdog(rq, p);
1759
bb44e5d1
IM
1760 /*
1761 * RR tasks need a special form of timeslice management.
1762 * FIFO tasks have no timeslices.
1763 */
1764 if (p->policy != SCHED_RR)
1765 return;
1766
fa717060 1767 if (--p->rt.time_slice)
bb44e5d1
IM
1768 return;
1769
fa717060 1770 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1771
98fbc798
DA
1772 /*
1773 * Requeue to the end of queue if we are not the only element
1774 * on the queue:
1775 */
fa717060 1776 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1777 requeue_task_rt(rq, p, 0);
98fbc798
DA
1778 set_tsk_need_resched(p);
1779 }
bb44e5d1
IM
1780}
1781
83b699ed
SV
1782static void set_curr_task_rt(struct rq *rq)
1783{
1784 struct task_struct *p = rq->curr;
1785
305e6835 1786 p->se.exec_start = rq->clock_task;
917b627d
GH
1787
1788 /* The running task is never eligible for pushing */
1789 dequeue_pushable_task(rq, p);
83b699ed
SV
1790}
1791
6d686f45 1792static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
1793{
1794 /*
1795 * Time slice is 0 for SCHED_FIFO tasks
1796 */
1797 if (task->policy == SCHED_RR)
1798 return DEF_TIMESLICE;
1799 else
1800 return 0;
1801}
1802
2abdad0a 1803static const struct sched_class rt_sched_class = {
5522d5d5 1804 .next = &fair_sched_class,
bb44e5d1
IM
1805 .enqueue_task = enqueue_task_rt,
1806 .dequeue_task = dequeue_task_rt,
1807 .yield_task = yield_task_rt,
1808
1809 .check_preempt_curr = check_preempt_curr_rt,
1810
1811 .pick_next_task = pick_next_task_rt,
1812 .put_prev_task = put_prev_task_rt,
1813
681f3e68 1814#ifdef CONFIG_SMP
4ce72a2c
LZ
1815 .select_task_rq = select_task_rq_rt,
1816
73fe6aae 1817 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1818 .rq_online = rq_online_rt,
1819 .rq_offline = rq_offline_rt,
9a897c5a
SR
1820 .pre_schedule = pre_schedule_rt,
1821 .post_schedule = post_schedule_rt,
efbbd05a 1822 .task_woken = task_woken_rt,
cb469845 1823 .switched_from = switched_from_rt,
681f3e68 1824#endif
bb44e5d1 1825
83b699ed 1826 .set_curr_task = set_curr_task_rt,
bb44e5d1 1827 .task_tick = task_tick_rt,
cb469845 1828
0d721cea
PW
1829 .get_rr_interval = get_rr_interval_rt,
1830
cb469845
SR
1831 .prio_changed = prio_changed_rt,
1832 .switched_to = switched_to_rt,
bb44e5d1 1833};
ada18de2
PZ
1834
1835#ifdef CONFIG_SCHED_DEBUG
1836extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1837
1838static void print_rt_stats(struct seq_file *m, int cpu)
1839{
ec514c48 1840 rt_rq_iter_t iter;
ada18de2
PZ
1841 struct rt_rq *rt_rq;
1842
1843 rcu_read_lock();
ec514c48 1844 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
1845 print_rt_rq(m, cpu, rt_rq);
1846 rcu_read_unlock();
1847}
55e12e5e 1848#endif /* CONFIG_SCHED_DEBUG */