sched: rt-group: interface
[linux-2.6-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
637f5085 15 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
16 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
637f5085 24 atomic_inc(&rq->rd->rto_count);
4fd29176 25}
84de4274 26
4fd29176
SR
27static inline void rt_clear_overload(struct rq *rq)
28{
29 /* the order here really doesn't matter */
637f5085
GH
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 32}
73fe6aae
GH
33
34static void update_rt_migration(struct rq *rq)
35{
637f5085 36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
40 }
41 } else if (rq->rt.overloaded) {
73fe6aae 42 rt_clear_overload(rq);
637f5085
GH
43 rq->rt.overloaded = 0;
44 }
73fe6aae 45}
4fd29176
SR
46#endif /* CONFIG_SMP */
47
6f505b16 48static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 49{
6f505b16
PZ
50 return container_of(rt_se, struct task_struct, rt);
51}
52
53static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54{
55 return !list_empty(&rt_se->run_list);
56}
57
58#ifdef CONFIG_FAIR_GROUP_SCHED
59
9f0c1e56 60static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
61{
62 if (!rt_rq->tg)
9f0c1e56 63 return RUNTIME_INF;
6f505b16 64
9f0c1e56 65 return rt_rq->tg->rt_runtime;
6f505b16
PZ
66}
67
68#define for_each_leaf_rt_rq(rt_rq, rq) \
69 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
70
71static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
72{
73 return rt_rq->rq;
74}
75
76static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
77{
78 return rt_se->rt_rq;
79}
80
81#define for_each_sched_rt_entity(rt_se) \
82 for (; rt_se; rt_se = rt_se->parent)
83
84static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
85{
86 return rt_se->my_q;
87}
88
89static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
90static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
91
9f0c1e56 92static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
93{
94 struct sched_rt_entity *rt_se = rt_rq->rt_se;
95
96 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
97 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
98
6f505b16 99 enqueue_rt_entity(rt_se);
1020387f
PZ
100 if (rt_rq->highest_prio < curr->prio)
101 resched_task(curr);
6f505b16
PZ
102 }
103}
104
9f0c1e56 105static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
106{
107 struct sched_rt_entity *rt_se = rt_rq->rt_se;
108
109 if (rt_se && on_rt_rq(rt_se))
110 dequeue_rt_entity(rt_se);
111}
112
23b0fdfc
PZ
113static inline int rt_rq_throttled(struct rt_rq *rt_rq)
114{
115 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
116}
117
118static int rt_se_boosted(struct sched_rt_entity *rt_se)
119{
120 struct rt_rq *rt_rq = group_rt_rq(rt_se);
121 struct task_struct *p;
122
123 if (rt_rq)
124 return !!rt_rq->rt_nr_boosted;
125
126 p = rt_task_of(rt_se);
127 return p->prio != p->normal_prio;
128}
129
6f505b16
PZ
130#else
131
9f0c1e56 132static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16 133{
9f0c1e56
PZ
134 if (sysctl_sched_rt_runtime == -1)
135 return RUNTIME_INF;
136
137 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
6f505b16
PZ
138}
139
140#define for_each_leaf_rt_rq(rt_rq, rq) \
141 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
142
143static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
144{
145 return container_of(rt_rq, struct rq, rt);
146}
147
148static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
149{
150 struct task_struct *p = rt_task_of(rt_se);
151 struct rq *rq = task_rq(p);
152
153 return &rq->rt;
154}
155
156#define for_each_sched_rt_entity(rt_se) \
157 for (; rt_se; rt_se = NULL)
158
159static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
160{
161 return NULL;
162}
163
9f0c1e56 164static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
165{
166}
167
9f0c1e56 168static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
169{
170}
171
23b0fdfc
PZ
172static inline int rt_rq_throttled(struct rt_rq *rt_rq)
173{
174 return rt_rq->rt_throttled;
175}
6f505b16
PZ
176#endif
177
178static inline int rt_se_prio(struct sched_rt_entity *rt_se)
179{
180#ifdef CONFIG_FAIR_GROUP_SCHED
181 struct rt_rq *rt_rq = group_rt_rq(rt_se);
182
183 if (rt_rq)
184 return rt_rq->highest_prio;
185#endif
186
187 return rt_task_of(rt_se)->prio;
188}
189
9f0c1e56 190static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 191{
9f0c1e56 192 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 193
9f0c1e56 194 if (runtime == RUNTIME_INF)
fa85ae24
PZ
195 return 0;
196
197 if (rt_rq->rt_throttled)
23b0fdfc 198 return rt_rq_throttled(rt_rq);
fa85ae24 199
9f0c1e56 200 if (rt_rq->rt_time > runtime) {
48d5e258
PZ
201 struct rq *rq = rq_of_rt_rq(rt_rq);
202
203 rq->rt_throttled = 1;
6f505b16 204 rt_rq->rt_throttled = 1;
48d5e258 205
23b0fdfc 206 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 207 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
208 return 1;
209 }
fa85ae24
PZ
210 }
211
212 return 0;
213}
214
215static void update_sched_rt_period(struct rq *rq)
216{
6f505b16
PZ
217 struct rt_rq *rt_rq;
218 u64 period;
fa85ae24 219
6f505b16 220 while (rq->clock > rq->rt_period_expire) {
9f0c1e56 221 period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
fa85ae24 222 rq->rt_period_expire += period;
fa85ae24 223
48d5e258 224 for_each_leaf_rt_rq(rt_rq, rq) {
9f0c1e56 225 u64 runtime = sched_rt_runtime(rt_rq);
48d5e258 226
9f0c1e56
PZ
227 rt_rq->rt_time -= min(rt_rq->rt_time, runtime);
228 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
48d5e258 229 rt_rq->rt_throttled = 0;
9f0c1e56 230 sched_rt_rq_enqueue(rt_rq);
48d5e258
PZ
231 }
232 }
233
234 rq->rt_throttled = 0;
fa85ae24
PZ
235 }
236}
237
bb44e5d1
IM
238/*
239 * Update the current task's runtime statistics. Skip current tasks that
240 * are not in our scheduling class.
241 */
a9957449 242static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
243{
244 struct task_struct *curr = rq->curr;
6f505b16
PZ
245 struct sched_rt_entity *rt_se = &curr->rt;
246 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
247 u64 delta_exec;
248
249 if (!task_has_rt_policy(curr))
250 return;
251
d281918d 252 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
253 if (unlikely((s64)delta_exec < 0))
254 delta_exec = 0;
6cfb0d5d
IM
255
256 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
257
258 curr->se.sum_exec_runtime += delta_exec;
d281918d 259 curr->se.exec_start = rq->clock;
d842de87 260 cpuacct_charge(curr, delta_exec);
fa85ae24 261
6f505b16 262 rt_rq->rt_time += delta_exec;
9f0c1e56 263 if (sched_rt_runtime_exceeded(rt_rq))
fa85ae24 264 resched_task(curr);
bb44e5d1
IM
265}
266
6f505b16
PZ
267static inline
268void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 269{
6f505b16
PZ
270 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
271 rt_rq->rt_nr_running++;
272#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
273 if (rt_se_prio(rt_se) < rt_rq->highest_prio)
274 rt_rq->highest_prio = rt_se_prio(rt_se);
275#endif
764a9d6f 276#ifdef CONFIG_SMP
6f505b16
PZ
277 if (rt_se->nr_cpus_allowed > 1) {
278 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 279 rq->rt.rt_nr_migratory++;
6f505b16 280 }
73fe6aae 281
6f505b16
PZ
282 update_rt_migration(rq_of_rt_rq(rt_rq));
283#endif
23b0fdfc
PZ
284#ifdef CONFIG_FAIR_GROUP_SCHED
285 if (rt_se_boosted(rt_se))
286 rt_rq->rt_nr_boosted++;
287#endif
63489e45
SR
288}
289
6f505b16
PZ
290static inline
291void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 292{
6f505b16
PZ
293 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
294 WARN_ON(!rt_rq->rt_nr_running);
295 rt_rq->rt_nr_running--;
296#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
297 if (rt_rq->rt_nr_running) {
764a9d6f
SR
298 struct rt_prio_array *array;
299
6f505b16
PZ
300 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
301 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 302 /* recalculate */
6f505b16
PZ
303 array = &rt_rq->active;
304 rt_rq->highest_prio =
764a9d6f
SR
305 sched_find_first_bit(array->bitmap);
306 } /* otherwise leave rq->highest prio alone */
307 } else
6f505b16
PZ
308 rt_rq->highest_prio = MAX_RT_PRIO;
309#endif
310#ifdef CONFIG_SMP
311 if (rt_se->nr_cpus_allowed > 1) {
312 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 313 rq->rt.rt_nr_migratory--;
6f505b16 314 }
73fe6aae 315
6f505b16 316 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 317#endif /* CONFIG_SMP */
23b0fdfc
PZ
318#ifdef CONFIG_FAIR_GROUP_SCHED
319 if (rt_se_boosted(rt_se))
320 rt_rq->rt_nr_boosted--;
321
322 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
323#endif
63489e45
SR
324}
325
6f505b16 326static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 327{
6f505b16
PZ
328 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
329 struct rt_prio_array *array = &rt_rq->active;
330 struct rt_rq *group_rq = group_rt_rq(rt_se);
bb44e5d1 331
23b0fdfc 332 if (group_rq && rt_rq_throttled(group_rq))
6f505b16 333 return;
63489e45 334
6f505b16
PZ
335 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
336 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 337
6f505b16
PZ
338 inc_rt_tasks(rt_se, rt_rq);
339}
340
341static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
342{
343 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
344 struct rt_prio_array *array = &rt_rq->active;
345
346 list_del_init(&rt_se->run_list);
347 if (list_empty(array->queue + rt_se_prio(rt_se)))
348 __clear_bit(rt_se_prio(rt_se), array->bitmap);
349
350 dec_rt_tasks(rt_se, rt_rq);
351}
352
353/*
354 * Because the prio of an upper entry depends on the lower
355 * entries, we must remove entries top - down.
356 *
357 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
358 * doesn't matter much for now, as h=2 for GROUP_SCHED.
359 */
360static void dequeue_rt_stack(struct task_struct *p)
361{
362 struct sched_rt_entity *rt_se, *top_se;
363
364 /*
365 * dequeue all, top - down.
366 */
367 do {
368 rt_se = &p->rt;
369 top_se = NULL;
370 for_each_sched_rt_entity(rt_se) {
371 if (on_rt_rq(rt_se))
372 top_se = rt_se;
373 }
374 if (top_se)
375 dequeue_rt_entity(top_se);
376 } while (top_se);
bb44e5d1
IM
377}
378
379/*
380 * Adding/removing a task to/from a priority array:
381 */
6f505b16
PZ
382static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
383{
384 struct sched_rt_entity *rt_se = &p->rt;
385
386 if (wakeup)
387 rt_se->timeout = 0;
388
389 dequeue_rt_stack(p);
390
391 /*
392 * enqueue everybody, bottom - up.
393 */
394 for_each_sched_rt_entity(rt_se)
395 enqueue_rt_entity(rt_se);
396
397 inc_cpu_load(rq, p->se.load.weight);
398}
399
f02231e5 400static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 401{
6f505b16
PZ
402 struct sched_rt_entity *rt_se = &p->rt;
403 struct rt_rq *rt_rq;
bb44e5d1 404
f1e14ef6 405 update_curr_rt(rq);
bb44e5d1 406
6f505b16
PZ
407 dequeue_rt_stack(p);
408
409 /*
410 * re-enqueue all non-empty rt_rq entities.
411 */
412 for_each_sched_rt_entity(rt_se) {
413 rt_rq = group_rt_rq(rt_se);
414 if (rt_rq && rt_rq->rt_nr_running)
415 enqueue_rt_entity(rt_se);
416 }
63489e45 417
6f505b16 418 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
419}
420
421/*
422 * Put task to the end of the run list without the overhead of dequeue
423 * followed by enqueue.
424 */
6f505b16
PZ
425static
426void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
427{
428 struct rt_prio_array *array = &rt_rq->active;
429
430 list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
431}
432
bb44e5d1
IM
433static void requeue_task_rt(struct rq *rq, struct task_struct *p)
434{
6f505b16
PZ
435 struct sched_rt_entity *rt_se = &p->rt;
436 struct rt_rq *rt_rq;
bb44e5d1 437
6f505b16
PZ
438 for_each_sched_rt_entity(rt_se) {
439 rt_rq = rt_rq_of_se(rt_se);
440 requeue_rt_entity(rt_rq, rt_se);
441 }
bb44e5d1
IM
442}
443
6f505b16 444static void yield_task_rt(struct rq *rq)
bb44e5d1 445{
4530d7ab 446 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
447}
448
e7693a36 449#ifdef CONFIG_SMP
318e0893
GH
450static int find_lowest_rq(struct task_struct *task);
451
e7693a36
GH
452static int select_task_rq_rt(struct task_struct *p, int sync)
453{
318e0893
GH
454 struct rq *rq = task_rq(p);
455
456 /*
e1f47d89
SR
457 * If the current task is an RT task, then
458 * try to see if we can wake this RT task up on another
459 * runqueue. Otherwise simply start this RT task
460 * on its current runqueue.
461 *
462 * We want to avoid overloading runqueues. Even if
463 * the RT task is of higher priority than the current RT task.
464 * RT tasks behave differently than other tasks. If
465 * one gets preempted, we try to push it off to another queue.
466 * So trying to keep a preempting RT task on the same
467 * cache hot CPU will force the running RT task to
468 * a cold CPU. So we waste all the cache for the lower
469 * RT task in hopes of saving some of a RT task
470 * that is just being woken and probably will have
471 * cold cache anyway.
318e0893 472 */
17b3279b 473 if (unlikely(rt_task(rq->curr)) &&
6f505b16 474 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
475 int cpu = find_lowest_rq(p);
476
477 return (cpu == -1) ? task_cpu(p) : cpu;
478 }
479
480 /*
481 * Otherwise, just let it ride on the affined RQ and the
482 * post-schedule router will push the preempted task away
483 */
e7693a36
GH
484 return task_cpu(p);
485}
486#endif /* CONFIG_SMP */
487
bb44e5d1
IM
488/*
489 * Preempt the current task with a newly woken task if needed:
490 */
491static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
492{
493 if (p->prio < rq->curr->prio)
494 resched_task(rq->curr);
495}
496
6f505b16
PZ
497static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
498 struct rt_rq *rt_rq)
bb44e5d1 499{
6f505b16
PZ
500 struct rt_prio_array *array = &rt_rq->active;
501 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
502 struct list_head *queue;
503 int idx;
504
505 idx = sched_find_first_bit(array->bitmap);
6f505b16 506 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
507
508 queue = array->queue + idx;
6f505b16 509 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 510
6f505b16
PZ
511 return next;
512}
bb44e5d1 513
6f505b16
PZ
514static struct task_struct *pick_next_task_rt(struct rq *rq)
515{
516 struct sched_rt_entity *rt_se;
517 struct task_struct *p;
518 struct rt_rq *rt_rq;
bb44e5d1 519
6f505b16
PZ
520 rt_rq = &rq->rt;
521
522 if (unlikely(!rt_rq->rt_nr_running))
523 return NULL;
524
23b0fdfc 525 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
526 return NULL;
527
528 do {
529 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 530 BUG_ON(!rt_se);
6f505b16
PZ
531 rt_rq = group_rt_rq(rt_se);
532 } while (rt_rq);
533
534 p = rt_task_of(rt_se);
535 p->se.exec_start = rq->clock;
536 return p;
bb44e5d1
IM
537}
538
31ee529c 539static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 540{
f1e14ef6 541 update_curr_rt(rq);
bb44e5d1
IM
542 p->se.exec_start = 0;
543}
544
681f3e68 545#ifdef CONFIG_SMP
6f505b16 546
e8fa1362
SR
547/* Only try algorithms three times */
548#define RT_MAX_TRIES 3
549
550static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
551static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
552
f65eda4f
SR
553static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
554{
555 if (!task_running(rq, p) &&
73fe6aae 556 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 557 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
558 return 1;
559 return 0;
560}
561
e8fa1362 562/* Return the second highest RT task, NULL otherwise */
79064fbf 563static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 564{
6f505b16
PZ
565 struct task_struct *next = NULL;
566 struct sched_rt_entity *rt_se;
567 struct rt_prio_array *array;
568 struct rt_rq *rt_rq;
e8fa1362
SR
569 int idx;
570
6f505b16
PZ
571 for_each_leaf_rt_rq(rt_rq, rq) {
572 array = &rt_rq->active;
573 idx = sched_find_first_bit(array->bitmap);
574 next_idx:
575 if (idx >= MAX_RT_PRIO)
576 continue;
577 if (next && next->prio < idx)
578 continue;
579 list_for_each_entry(rt_se, array->queue + idx, run_list) {
580 struct task_struct *p = rt_task_of(rt_se);
581 if (pick_rt_task(rq, p, cpu)) {
582 next = p;
583 break;
584 }
585 }
586 if (!next) {
587 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
588 goto next_idx;
589 }
f65eda4f
SR
590 }
591
e8fa1362
SR
592 return next;
593}
594
595static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
596
6e1254d2 597static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
e8fa1362 598{
6e1254d2 599 int lowest_prio = -1;
610bf056 600 int lowest_cpu = -1;
06f90dbd 601 int count = 0;
610bf056 602 int cpu;
e8fa1362 603
637f5085 604 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
e8fa1362 605
07b4032c
GH
606 /*
607 * Scan each rq for the lowest prio.
608 */
610bf056 609 for_each_cpu_mask(cpu, *lowest_mask) {
07b4032c 610 struct rq *rq = cpu_rq(cpu);
e8fa1362 611
07b4032c
GH
612 /* We look for lowest RT prio or non-rt CPU */
613 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
610bf056
SR
614 /*
615 * if we already found a low RT queue
616 * and now we found this non-rt queue
617 * clear the mask and set our bit.
618 * Otherwise just return the queue as is
619 * and the count==1 will cause the algorithm
620 * to use the first bit found.
621 */
622 if (lowest_cpu != -1) {
6e1254d2 623 cpus_clear(*lowest_mask);
610bf056
SR
624 cpu_set(rq->cpu, *lowest_mask);
625 }
6e1254d2 626 return 1;
07b4032c
GH
627 }
628
629 /* no locking for now */
6e1254d2
GH
630 if ((rq->rt.highest_prio > task->prio)
631 && (rq->rt.highest_prio >= lowest_prio)) {
632 if (rq->rt.highest_prio > lowest_prio) {
633 /* new low - clear old data */
634 lowest_prio = rq->rt.highest_prio;
610bf056
SR
635 lowest_cpu = cpu;
636 count = 0;
6e1254d2 637 }
06f90dbd 638 count++;
610bf056
SR
639 } else
640 cpu_clear(cpu, *lowest_mask);
641 }
642
643 /*
644 * Clear out all the set bits that represent
645 * runqueues that were of higher prio than
646 * the lowest_prio.
647 */
648 if (lowest_cpu > 0) {
649 /*
650 * Perhaps we could add another cpumask op to
651 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
652 * Then that could be optimized to use memset and such.
653 */
654 for_each_cpu_mask(cpu, *lowest_mask) {
655 if (cpu >= lowest_cpu)
656 break;
657 cpu_clear(cpu, *lowest_mask);
e8fa1362 658 }
07b4032c
GH
659 }
660
06f90dbd 661 return count;
6e1254d2
GH
662}
663
664static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
665{
666 int first;
667
668 /* "this_cpu" is cheaper to preempt than a remote processor */
669 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
670 return this_cpu;
671
672 first = first_cpu(*mask);
673 if (first != NR_CPUS)
674 return first;
675
676 return -1;
677}
678
679static int find_lowest_rq(struct task_struct *task)
680{
681 struct sched_domain *sd;
682 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
683 int this_cpu = smp_processor_id();
684 int cpu = task_cpu(task);
06f90dbd
GH
685 int count = find_lowest_cpus(task, lowest_mask);
686
687 if (!count)
688 return -1; /* No targets found */
6e1254d2 689
06f90dbd
GH
690 /*
691 * There is no sense in performing an optimal search if only one
692 * target is found.
693 */
694 if (count == 1)
695 return first_cpu(*lowest_mask);
6e1254d2
GH
696
697 /*
698 * At this point we have built a mask of cpus representing the
699 * lowest priority tasks in the system. Now we want to elect
700 * the best one based on our affinity and topology.
701 *
702 * We prioritize the last cpu that the task executed on since
703 * it is most likely cache-hot in that location.
704 */
705 if (cpu_isset(cpu, *lowest_mask))
706 return cpu;
707
708 /*
709 * Otherwise, we consult the sched_domains span maps to figure
710 * out which cpu is logically closest to our hot cache data.
711 */
712 if (this_cpu == cpu)
713 this_cpu = -1; /* Skip this_cpu opt if the same */
714
715 for_each_domain(cpu, sd) {
716 if (sd->flags & SD_WAKE_AFFINE) {
717 cpumask_t domain_mask;
718 int best_cpu;
719
720 cpus_and(domain_mask, sd->span, *lowest_mask);
721
722 best_cpu = pick_optimal_cpu(this_cpu,
723 &domain_mask);
724 if (best_cpu != -1)
725 return best_cpu;
726 }
727 }
728
729 /*
730 * And finally, if there were no matches within the domains
731 * just give the caller *something* to work with from the compatible
732 * locations.
733 */
734 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
735}
736
737/* Will lock the rq it finds */
4df64c0b 738static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
739{
740 struct rq *lowest_rq = NULL;
07b4032c 741 int tries;
4df64c0b 742 int cpu;
e8fa1362 743
07b4032c
GH
744 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
745 cpu = find_lowest_rq(task);
746
2de0b463 747 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
748 break;
749
07b4032c
GH
750 lowest_rq = cpu_rq(cpu);
751
e8fa1362 752 /* if the prio of this runqueue changed, try again */
07b4032c 753 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
754 /*
755 * We had to unlock the run queue. In
756 * the mean time, task could have
757 * migrated already or had its affinity changed.
758 * Also make sure that it wasn't scheduled on its rq.
759 */
07b4032c 760 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
761 !cpu_isset(lowest_rq->cpu,
762 task->cpus_allowed) ||
07b4032c 763 task_running(rq, task) ||
e8fa1362 764 !task->se.on_rq)) {
4df64c0b 765
e8fa1362
SR
766 spin_unlock(&lowest_rq->lock);
767 lowest_rq = NULL;
768 break;
769 }
770 }
771
772 /* If this rq is still suitable use it. */
773 if (lowest_rq->rt.highest_prio > task->prio)
774 break;
775
776 /* try again */
777 spin_unlock(&lowest_rq->lock);
778 lowest_rq = NULL;
779 }
780
781 return lowest_rq;
782}
783
784/*
785 * If the current CPU has more than one RT task, see if the non
786 * running task can migrate over to a CPU that is running a task
787 * of lesser priority.
788 */
697f0a48 789static int push_rt_task(struct rq *rq)
e8fa1362
SR
790{
791 struct task_struct *next_task;
792 struct rq *lowest_rq;
793 int ret = 0;
794 int paranoid = RT_MAX_TRIES;
795
a22d7fc1
GH
796 if (!rq->rt.overloaded)
797 return 0;
798
697f0a48 799 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
800 if (!next_task)
801 return 0;
802
803 retry:
697f0a48 804 if (unlikely(next_task == rq->curr)) {
f65eda4f 805 WARN_ON(1);
e8fa1362 806 return 0;
f65eda4f 807 }
e8fa1362
SR
808
809 /*
810 * It's possible that the next_task slipped in of
811 * higher priority than current. If that's the case
812 * just reschedule current.
813 */
697f0a48
GH
814 if (unlikely(next_task->prio < rq->curr->prio)) {
815 resched_task(rq->curr);
e8fa1362
SR
816 return 0;
817 }
818
697f0a48 819 /* We might release rq lock */
e8fa1362
SR
820 get_task_struct(next_task);
821
822 /* find_lock_lowest_rq locks the rq if found */
697f0a48 823 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
824 if (!lowest_rq) {
825 struct task_struct *task;
826 /*
697f0a48 827 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
828 * so it is possible that next_task has changed.
829 * If it has, then try again.
830 */
697f0a48 831 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
832 if (unlikely(task != next_task) && task && paranoid--) {
833 put_task_struct(next_task);
834 next_task = task;
835 goto retry;
836 }
837 goto out;
838 }
839
697f0a48 840 deactivate_task(rq, next_task, 0);
e8fa1362
SR
841 set_task_cpu(next_task, lowest_rq->cpu);
842 activate_task(lowest_rq, next_task, 0);
843
844 resched_task(lowest_rq->curr);
845
846 spin_unlock(&lowest_rq->lock);
847
848 ret = 1;
849out:
850 put_task_struct(next_task);
851
852 return ret;
853}
854
855/*
856 * TODO: Currently we just use the second highest prio task on
857 * the queue, and stop when it can't migrate (or there's
858 * no more RT tasks). There may be a case where a lower
859 * priority RT task has a different affinity than the
860 * higher RT task. In this case the lower RT task could
861 * possibly be able to migrate where as the higher priority
862 * RT task could not. We currently ignore this issue.
863 * Enhancements are welcome!
864 */
865static void push_rt_tasks(struct rq *rq)
866{
867 /* push_rt_task will return true if it moved an RT */
868 while (push_rt_task(rq))
869 ;
870}
871
f65eda4f
SR
872static int pull_rt_task(struct rq *this_rq)
873{
80bf3171
IM
874 int this_cpu = this_rq->cpu, ret = 0, cpu;
875 struct task_struct *p, *next;
f65eda4f 876 struct rq *src_rq;
f65eda4f 877
637f5085 878 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
879 return 0;
880
881 next = pick_next_task_rt(this_rq);
882
637f5085 883 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
884 if (this_cpu == cpu)
885 continue;
886
887 src_rq = cpu_rq(cpu);
f65eda4f
SR
888 /*
889 * We can potentially drop this_rq's lock in
890 * double_lock_balance, and another CPU could
891 * steal our next task - hence we must cause
892 * the caller to recalculate the next task
893 * in that case:
894 */
895 if (double_lock_balance(this_rq, src_rq)) {
896 struct task_struct *old_next = next;
80bf3171 897
f65eda4f
SR
898 next = pick_next_task_rt(this_rq);
899 if (next != old_next)
900 ret = 1;
901 }
902
903 /*
904 * Are there still pullable RT tasks?
905 */
614ee1f6
MG
906 if (src_rq->rt.rt_nr_running <= 1)
907 goto skip;
f65eda4f 908
f65eda4f
SR
909 p = pick_next_highest_task_rt(src_rq, this_cpu);
910
911 /*
912 * Do we have an RT task that preempts
913 * the to-be-scheduled task?
914 */
915 if (p && (!next || (p->prio < next->prio))) {
916 WARN_ON(p == src_rq->curr);
917 WARN_ON(!p->se.on_rq);
918
919 /*
920 * There's a chance that p is higher in priority
921 * than what's currently running on its cpu.
922 * This is just that p is wakeing up and hasn't
923 * had a chance to schedule. We only pull
924 * p if it is lower in priority than the
925 * current task on the run queue or
926 * this_rq next task is lower in prio than
927 * the current task on that rq.
928 */
929 if (p->prio < src_rq->curr->prio ||
930 (next && next->prio < src_rq->curr->prio))
614ee1f6 931 goto skip;
f65eda4f
SR
932
933 ret = 1;
934
935 deactivate_task(src_rq, p, 0);
936 set_task_cpu(p, this_cpu);
937 activate_task(this_rq, p, 0);
938 /*
939 * We continue with the search, just in
940 * case there's an even higher prio task
941 * in another runqueue. (low likelyhood
942 * but possible)
80bf3171 943 *
f65eda4f
SR
944 * Update next so that we won't pick a task
945 * on another cpu with a priority lower (or equal)
946 * than the one we just picked.
947 */
948 next = p;
949
950 }
614ee1f6 951 skip:
f65eda4f
SR
952 spin_unlock(&src_rq->lock);
953 }
954
955 return ret;
956}
957
9a897c5a 958static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
959{
960 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 961 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
962 pull_rt_task(rq);
963}
964
9a897c5a 965static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
966{
967 /*
968 * If we have more than one rt_task queued, then
969 * see if we can push the other rt_tasks off to other CPUS.
970 * Note we may release the rq lock, and since
971 * the lock was owned by prev, we need to release it
972 * first via finish_lock_switch and then reaquire it here.
973 */
a22d7fc1 974 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
975 spin_lock_irq(&rq->lock);
976 push_rt_tasks(rq);
977 spin_unlock_irq(&rq->lock);
978 }
979}
980
4642dafd 981
9a897c5a 982static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 983{
9a897c5a 984 if (!task_running(rq, p) &&
a22d7fc1
GH
985 (p->prio >= rq->rt.highest_prio) &&
986 rq->rt.overloaded)
4642dafd
SR
987 push_rt_tasks(rq);
988}
989
43010659 990static unsigned long
bb44e5d1 991load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
992 unsigned long max_load_move,
993 struct sched_domain *sd, enum cpu_idle_type idle,
994 int *all_pinned, int *this_best_prio)
bb44e5d1 995{
c7a1e46a
SR
996 /* don't touch RT tasks */
997 return 0;
e1d1484f
PW
998}
999
1000static int
1001move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1002 struct sched_domain *sd, enum cpu_idle_type idle)
1003{
c7a1e46a
SR
1004 /* don't touch RT tasks */
1005 return 0;
bb44e5d1 1006}
deeeccd4 1007
73fe6aae
GH
1008static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
1009{
1010 int weight = cpus_weight(*new_mask);
1011
1012 BUG_ON(!rt_task(p));
1013
1014 /*
1015 * Update the migration status of the RQ if we have an RT task
1016 * which is running AND changing its weight value.
1017 */
6f505b16 1018 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1019 struct rq *rq = task_rq(p);
1020
6f505b16 1021 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1022 rq->rt.rt_nr_migratory++;
6f505b16 1023 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1024 BUG_ON(!rq->rt.rt_nr_migratory);
1025 rq->rt.rt_nr_migratory--;
1026 }
1027
1028 update_rt_migration(rq);
1029 }
1030
1031 p->cpus_allowed = *new_mask;
6f505b16 1032 p->rt.nr_cpus_allowed = weight;
73fe6aae 1033}
deeeccd4 1034
bdd7c81b
IM
1035/* Assumes rq->lock is held */
1036static void join_domain_rt(struct rq *rq)
1037{
1038 if (rq->rt.overloaded)
1039 rt_set_overload(rq);
1040}
1041
1042/* Assumes rq->lock is held */
1043static void leave_domain_rt(struct rq *rq)
1044{
1045 if (rq->rt.overloaded)
1046 rt_clear_overload(rq);
1047}
cb469845
SR
1048
1049/*
1050 * When switch from the rt queue, we bring ourselves to a position
1051 * that we might want to pull RT tasks from other runqueues.
1052 */
1053static void switched_from_rt(struct rq *rq, struct task_struct *p,
1054 int running)
1055{
1056 /*
1057 * If there are other RT tasks then we will reschedule
1058 * and the scheduling of the other RT tasks will handle
1059 * the balancing. But if we are the last RT task
1060 * we may need to handle the pulling of RT tasks
1061 * now.
1062 */
1063 if (!rq->rt.rt_nr_running)
1064 pull_rt_task(rq);
1065}
1066#endif /* CONFIG_SMP */
1067
1068/*
1069 * When switching a task to RT, we may overload the runqueue
1070 * with RT tasks. In this case we try to push them off to
1071 * other runqueues.
1072 */
1073static void switched_to_rt(struct rq *rq, struct task_struct *p,
1074 int running)
1075{
1076 int check_resched = 1;
1077
1078 /*
1079 * If we are already running, then there's nothing
1080 * that needs to be done. But if we are not running
1081 * we may need to preempt the current running task.
1082 * If that current running task is also an RT task
1083 * then see if we can move to another run queue.
1084 */
1085 if (!running) {
1086#ifdef CONFIG_SMP
1087 if (rq->rt.overloaded && push_rt_task(rq) &&
1088 /* Don't resched if we changed runqueues */
1089 rq != task_rq(p))
1090 check_resched = 0;
1091#endif /* CONFIG_SMP */
1092 if (check_resched && p->prio < rq->curr->prio)
1093 resched_task(rq->curr);
1094 }
1095}
1096
1097/*
1098 * Priority of the task has changed. This may cause
1099 * us to initiate a push or pull.
1100 */
1101static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1102 int oldprio, int running)
1103{
1104 if (running) {
1105#ifdef CONFIG_SMP
1106 /*
1107 * If our priority decreases while running, we
1108 * may need to pull tasks to this runqueue.
1109 */
1110 if (oldprio < p->prio)
1111 pull_rt_task(rq);
1112 /*
1113 * If there's a higher priority task waiting to run
1114 * then reschedule.
1115 */
1116 if (p->prio > rq->rt.highest_prio)
1117 resched_task(p);
1118#else
1119 /* For UP simply resched on drop of prio */
1120 if (oldprio < p->prio)
1121 resched_task(p);
e8fa1362 1122#endif /* CONFIG_SMP */
cb469845
SR
1123 } else {
1124 /*
1125 * This task is not running, but if it is
1126 * greater than the current running task
1127 * then reschedule.
1128 */
1129 if (p->prio < rq->curr->prio)
1130 resched_task(rq->curr);
1131 }
1132}
1133
78f2c7db
PZ
1134static void watchdog(struct rq *rq, struct task_struct *p)
1135{
1136 unsigned long soft, hard;
1137
1138 if (!p->signal)
1139 return;
1140
1141 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1142 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1143
1144 if (soft != RLIM_INFINITY) {
1145 unsigned long next;
1146
1147 p->rt.timeout++;
1148 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1149 if (p->rt.timeout > next)
78f2c7db
PZ
1150 p->it_sched_expires = p->se.sum_exec_runtime;
1151 }
1152}
bb44e5d1 1153
8f4d37ec 1154static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1155{
67e2be02
PZ
1156 update_curr_rt(rq);
1157
78f2c7db
PZ
1158 watchdog(rq, p);
1159
bb44e5d1
IM
1160 /*
1161 * RR tasks need a special form of timeslice management.
1162 * FIFO tasks have no timeslices.
1163 */
1164 if (p->policy != SCHED_RR)
1165 return;
1166
fa717060 1167 if (--p->rt.time_slice)
bb44e5d1
IM
1168 return;
1169
fa717060 1170 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1171
98fbc798
DA
1172 /*
1173 * Requeue to the end of queue if we are not the only element
1174 * on the queue:
1175 */
fa717060 1176 if (p->rt.run_list.prev != p->rt.run_list.next) {
98fbc798
DA
1177 requeue_task_rt(rq, p);
1178 set_tsk_need_resched(p);
1179 }
bb44e5d1
IM
1180}
1181
83b699ed
SV
1182static void set_curr_task_rt(struct rq *rq)
1183{
1184 struct task_struct *p = rq->curr;
1185
1186 p->se.exec_start = rq->clock;
1187}
1188
5522d5d5
IM
1189const struct sched_class rt_sched_class = {
1190 .next = &fair_sched_class,
bb44e5d1
IM
1191 .enqueue_task = enqueue_task_rt,
1192 .dequeue_task = dequeue_task_rt,
1193 .yield_task = yield_task_rt,
e7693a36
GH
1194#ifdef CONFIG_SMP
1195 .select_task_rq = select_task_rq_rt,
1196#endif /* CONFIG_SMP */
bb44e5d1
IM
1197
1198 .check_preempt_curr = check_preempt_curr_rt,
1199
1200 .pick_next_task = pick_next_task_rt,
1201 .put_prev_task = put_prev_task_rt,
1202
681f3e68 1203#ifdef CONFIG_SMP
bb44e5d1 1204 .load_balance = load_balance_rt,
e1d1484f 1205 .move_one_task = move_one_task_rt,
73fe6aae 1206 .set_cpus_allowed = set_cpus_allowed_rt,
bdd7c81b
IM
1207 .join_domain = join_domain_rt,
1208 .leave_domain = leave_domain_rt,
9a897c5a
SR
1209 .pre_schedule = pre_schedule_rt,
1210 .post_schedule = post_schedule_rt,
1211 .task_wake_up = task_wake_up_rt,
cb469845 1212 .switched_from = switched_from_rt,
681f3e68 1213#endif
bb44e5d1 1214
83b699ed 1215 .set_curr_task = set_curr_task_rt,
bb44e5d1 1216 .task_tick = task_tick_rt,
cb469845
SR
1217
1218 .prio_changed = prio_changed_rt,
1219 .switched_to = switched_to_rt,
bb44e5d1 1220};