sched: rt-bandwidth accounting fix
[linux-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
637f5085 18 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085
GH
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
4fd29176
SR
52#endif /* CONFIG_SMP */
53
6f505b16 54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 55{
6f505b16
PZ
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
052f1dc7 64#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 65
9f0c1e56 66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
67{
68 if (!rt_rq->tg)
9f0c1e56 69 return RUNTIME_INF;
6f505b16 70
ac086bc2
PZ
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
9f0c1e56 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
104{
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
6f505b16 110 enqueue_rt_entity(rt_se);
1020387f
PZ
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
6f505b16
PZ
113 }
114}
115
9f0c1e56 116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
23b0fdfc
PZ
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
d0b27fa7
PZ
141#ifdef CONFIG_SMP
142static inline cpumask_t sched_rt_period_mask(void)
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
6f505b16 146#else
d0b27fa7
PZ
147static inline cpumask_t sched_rt_period_mask(void)
148{
149 return cpu_online_map;
150}
151#endif
6f505b16 152
d0b27fa7
PZ
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 155{
d0b27fa7
PZ
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
9f0c1e56 158
ac086bc2
PZ
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
55e12e5e 164#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
ac086bc2
PZ
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
9f0c1e56 200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
201{
202}
203
9f0c1e56 204static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
205{
206}
207
23b0fdfc
PZ
208static inline int rt_rq_throttled(struct rt_rq *rt_rq)
209{
210 return rt_rq->rt_throttled;
211}
d0b27fa7
PZ
212
213static inline cpumask_t sched_rt_period_mask(void)
214{
215 return cpu_online_map;
216}
217
218static inline
219struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
220{
221 return &cpu_rq(cpu)->rt;
222}
223
ac086bc2
PZ
224static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
225{
226 return &def_rt_bandwidth;
227}
228
55e12e5e 229#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 230
ac086bc2 231#ifdef CONFIG_SMP
b79f3833 232static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
233{
234 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
235 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
236 int i, weight, more = 0;
237 u64 rt_period;
238
239 weight = cpus_weight(rd->span);
240
241 spin_lock(&rt_b->rt_runtime_lock);
242 rt_period = ktime_to_ns(rt_b->rt_period);
363ab6f1 243 for_each_cpu_mask_nr(i, rd->span) {
ac086bc2
PZ
244 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
245 s64 diff;
246
247 if (iter == rt_rq)
248 continue;
249
250 spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
251 if (iter->rt_runtime == RUNTIME_INF)
252 goto next;
253
ac086bc2
PZ
254 diff = iter->rt_runtime - iter->rt_time;
255 if (diff > 0) {
58838cf3 256 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
257 if (rt_rq->rt_runtime + diff > rt_period)
258 diff = rt_period - rt_rq->rt_runtime;
259 iter->rt_runtime -= diff;
260 rt_rq->rt_runtime += diff;
261 more = 1;
262 if (rt_rq->rt_runtime == rt_period) {
263 spin_unlock(&iter->rt_runtime_lock);
264 break;
265 }
266 }
7def2be1 267next:
ac086bc2
PZ
268 spin_unlock(&iter->rt_runtime_lock);
269 }
270 spin_unlock(&rt_b->rt_runtime_lock);
271
272 return more;
273}
7def2be1
PZ
274
275static void __disable_runtime(struct rq *rq)
276{
277 struct root_domain *rd = rq->rd;
278 struct rt_rq *rt_rq;
279
280 if (unlikely(!scheduler_running))
281 return;
282
283 for_each_leaf_rt_rq(rt_rq, rq) {
284 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
285 s64 want;
286 int i;
287
288 spin_lock(&rt_b->rt_runtime_lock);
289 spin_lock(&rt_rq->rt_runtime_lock);
290 if (rt_rq->rt_runtime == RUNTIME_INF ||
291 rt_rq->rt_runtime == rt_b->rt_runtime)
292 goto balanced;
293 spin_unlock(&rt_rq->rt_runtime_lock);
294
295 want = rt_b->rt_runtime - rt_rq->rt_runtime;
296
297 for_each_cpu_mask(i, rd->span) {
298 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
299 s64 diff;
300
f1679d08 301 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
302 continue;
303
304 spin_lock(&iter->rt_runtime_lock);
305 if (want > 0) {
306 diff = min_t(s64, iter->rt_runtime, want);
307 iter->rt_runtime -= diff;
308 want -= diff;
309 } else {
310 iter->rt_runtime -= want;
311 want -= want;
312 }
313 spin_unlock(&iter->rt_runtime_lock);
314
315 if (!want)
316 break;
317 }
318
319 spin_lock(&rt_rq->rt_runtime_lock);
320 BUG_ON(want);
321balanced:
322 rt_rq->rt_runtime = RUNTIME_INF;
323 spin_unlock(&rt_rq->rt_runtime_lock);
324 spin_unlock(&rt_b->rt_runtime_lock);
325 }
326}
327
328static void disable_runtime(struct rq *rq)
329{
330 unsigned long flags;
331
332 spin_lock_irqsave(&rq->lock, flags);
333 __disable_runtime(rq);
334 spin_unlock_irqrestore(&rq->lock, flags);
335}
336
337static void __enable_runtime(struct rq *rq)
338{
7def2be1
PZ
339 struct rt_rq *rt_rq;
340
341 if (unlikely(!scheduler_running))
342 return;
343
344 for_each_leaf_rt_rq(rt_rq, rq) {
345 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
346
347 spin_lock(&rt_b->rt_runtime_lock);
348 spin_lock(&rt_rq->rt_runtime_lock);
349 rt_rq->rt_runtime = rt_b->rt_runtime;
350 rt_rq->rt_time = 0;
351 spin_unlock(&rt_rq->rt_runtime_lock);
352 spin_unlock(&rt_b->rt_runtime_lock);
353 }
354}
355
356static void enable_runtime(struct rq *rq)
357{
358 unsigned long flags;
359
360 spin_lock_irqsave(&rq->lock, flags);
361 __enable_runtime(rq);
362 spin_unlock_irqrestore(&rq->lock, flags);
363}
364
eff6549b
PZ
365static int balance_runtime(struct rt_rq *rt_rq)
366{
367 int more = 0;
368
369 if (rt_rq->rt_time > rt_rq->rt_runtime) {
370 spin_unlock(&rt_rq->rt_runtime_lock);
371 more = do_balance_runtime(rt_rq);
372 spin_lock(&rt_rq->rt_runtime_lock);
373 }
374
375 return more;
376}
55e12e5e 377#else /* !CONFIG_SMP */
eff6549b
PZ
378static inline int balance_runtime(struct rt_rq *rt_rq)
379{
380 return 0;
381}
55e12e5e 382#endif /* CONFIG_SMP */
ac086bc2 383
eff6549b
PZ
384static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
385{
386 int i, idle = 1;
387 cpumask_t span;
388
389 if (rt_b->rt_runtime == RUNTIME_INF)
390 return 1;
391
392 span = sched_rt_period_mask();
393 for_each_cpu_mask(i, span) {
394 int enqueue = 0;
395 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
396 struct rq *rq = rq_of_rt_rq(rt_rq);
397
398 spin_lock(&rq->lock);
399 if (rt_rq->rt_time) {
400 u64 runtime;
401
402 spin_lock(&rt_rq->rt_runtime_lock);
403 if (rt_rq->rt_throttled)
404 balance_runtime(rt_rq);
405 runtime = rt_rq->rt_runtime;
406 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
407 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
408 rt_rq->rt_throttled = 0;
409 enqueue = 1;
410 }
411 if (rt_rq->rt_time || rt_rq->rt_nr_running)
412 idle = 0;
413 spin_unlock(&rt_rq->rt_runtime_lock);
6c3df255
PZ
414 } else if (rt_rq->rt_nr_running)
415 idle = 0;
eff6549b
PZ
416
417 if (enqueue)
418 sched_rt_rq_enqueue(rt_rq);
419 spin_unlock(&rq->lock);
420 }
421
422 return idle;
423}
ac086bc2 424
6f505b16
PZ
425static inline int rt_se_prio(struct sched_rt_entity *rt_se)
426{
052f1dc7 427#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
428 struct rt_rq *rt_rq = group_rt_rq(rt_se);
429
430 if (rt_rq)
431 return rt_rq->highest_prio;
432#endif
433
434 return rt_task_of(rt_se)->prio;
435}
436
9f0c1e56 437static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 438{
9f0c1e56 439 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 440
fa85ae24 441 if (rt_rq->rt_throttled)
23b0fdfc 442 return rt_rq_throttled(rt_rq);
fa85ae24 443
ac086bc2
PZ
444 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
445 return 0;
446
b79f3833
PZ
447 balance_runtime(rt_rq);
448 runtime = sched_rt_runtime(rt_rq);
449 if (runtime == RUNTIME_INF)
450 return 0;
ac086bc2 451
9f0c1e56 452 if (rt_rq->rt_time > runtime) {
6f505b16 453 rt_rq->rt_throttled = 1;
23b0fdfc 454 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 455 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
456 return 1;
457 }
fa85ae24
PZ
458 }
459
460 return 0;
461}
462
bb44e5d1
IM
463/*
464 * Update the current task's runtime statistics. Skip current tasks that
465 * are not in our scheduling class.
466 */
a9957449 467static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
468{
469 struct task_struct *curr = rq->curr;
6f505b16
PZ
470 struct sched_rt_entity *rt_se = &curr->rt;
471 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
472 u64 delta_exec;
473
474 if (!task_has_rt_policy(curr))
475 return;
476
d281918d 477 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
478 if (unlikely((s64)delta_exec < 0))
479 delta_exec = 0;
6cfb0d5d
IM
480
481 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
482
483 curr->se.sum_exec_runtime += delta_exec;
d281918d 484 curr->se.exec_start = rq->clock;
d842de87 485 cpuacct_charge(curr, delta_exec);
fa85ae24 486
354d60c2
DG
487 for_each_sched_rt_entity(rt_se) {
488 rt_rq = rt_rq_of_se(rt_se);
489
490 spin_lock(&rt_rq->rt_runtime_lock);
6f0d5c39
PZ
491 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
492 rt_rq->rt_time += delta_exec;
493 if (sched_rt_runtime_exceeded(rt_rq))
494 resched_task(curr);
495 }
354d60c2
DG
496 spin_unlock(&rt_rq->rt_runtime_lock);
497 }
bb44e5d1
IM
498}
499
6f505b16
PZ
500static inline
501void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 502{
6f505b16
PZ
503 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
504 rt_rq->rt_nr_running++;
052f1dc7 505#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6e0534f2 506 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
577b4a58 507#ifdef CONFIG_SMP
6e0534f2 508 struct rq *rq = rq_of_rt_rq(rt_rq);
577b4a58 509#endif
1f11eb6a 510
6f505b16 511 rt_rq->highest_prio = rt_se_prio(rt_se);
1100ac91 512#ifdef CONFIG_SMP
1f11eb6a
GH
513 if (rq->online)
514 cpupri_set(&rq->rd->cpupri, rq->cpu,
515 rt_se_prio(rt_se));
1100ac91 516#endif
6e0534f2 517 }
6f505b16 518#endif
764a9d6f 519#ifdef CONFIG_SMP
6f505b16
PZ
520 if (rt_se->nr_cpus_allowed > 1) {
521 struct rq *rq = rq_of_rt_rq(rt_rq);
1100ac91 522
73fe6aae 523 rq->rt.rt_nr_migratory++;
6f505b16 524 }
73fe6aae 525
6f505b16
PZ
526 update_rt_migration(rq_of_rt_rq(rt_rq));
527#endif
052f1dc7 528#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
529 if (rt_se_boosted(rt_se))
530 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
531
532 if (rt_rq->tg)
533 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
534#else
535 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 536#endif
63489e45
SR
537}
538
6f505b16
PZ
539static inline
540void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 541{
6e0534f2
GH
542#ifdef CONFIG_SMP
543 int highest_prio = rt_rq->highest_prio;
544#endif
545
6f505b16
PZ
546 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
547 WARN_ON(!rt_rq->rt_nr_running);
548 rt_rq->rt_nr_running--;
052f1dc7 549#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 550 if (rt_rq->rt_nr_running) {
764a9d6f
SR
551 struct rt_prio_array *array;
552
6f505b16
PZ
553 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
554 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 555 /* recalculate */
6f505b16
PZ
556 array = &rt_rq->active;
557 rt_rq->highest_prio =
764a9d6f
SR
558 sched_find_first_bit(array->bitmap);
559 } /* otherwise leave rq->highest prio alone */
560 } else
6f505b16
PZ
561 rt_rq->highest_prio = MAX_RT_PRIO;
562#endif
563#ifdef CONFIG_SMP
564 if (rt_se->nr_cpus_allowed > 1) {
565 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 566 rq->rt.rt_nr_migratory--;
6f505b16 567 }
73fe6aae 568
6e0534f2
GH
569 if (rt_rq->highest_prio != highest_prio) {
570 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a
GH
571
572 if (rq->online)
573 cpupri_set(&rq->rd->cpupri, rq->cpu,
574 rt_rq->highest_prio);
6e0534f2
GH
575 }
576
6f505b16 577 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 578#endif /* CONFIG_SMP */
052f1dc7 579#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
580 if (rt_se_boosted(rt_se))
581 rt_rq->rt_nr_boosted--;
582
583 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
584#endif
63489e45
SR
585}
586
ad2a3f13 587static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 588{
6f505b16
PZ
589 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
590 struct rt_prio_array *array = &rt_rq->active;
591 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 592 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 593
ad2a3f13
PZ
594 /*
595 * Don't enqueue the group if its throttled, or when empty.
596 * The latter is a consequence of the former when a child group
597 * get throttled and the current group doesn't have any other
598 * active members.
599 */
600 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 601 return;
63489e45 602
7ebefa8c 603 list_add_tail(&rt_se->run_list, queue);
6f505b16 604 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 605
6f505b16
PZ
606 inc_rt_tasks(rt_se, rt_rq);
607}
608
ad2a3f13 609static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
610{
611 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
612 struct rt_prio_array *array = &rt_rq->active;
613
614 list_del_init(&rt_se->run_list);
615 if (list_empty(array->queue + rt_se_prio(rt_se)))
616 __clear_bit(rt_se_prio(rt_se), array->bitmap);
617
618 dec_rt_tasks(rt_se, rt_rq);
619}
620
621/*
622 * Because the prio of an upper entry depends on the lower
623 * entries, we must remove entries top - down.
6f505b16 624 */
ad2a3f13 625static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 626{
ad2a3f13 627 struct sched_rt_entity *back = NULL;
6f505b16 628
58d6c2d7
PZ
629 for_each_sched_rt_entity(rt_se) {
630 rt_se->back = back;
631 back = rt_se;
632 }
633
634 for (rt_se = back; rt_se; rt_se = rt_se->back) {
635 if (on_rt_rq(rt_se))
ad2a3f13
PZ
636 __dequeue_rt_entity(rt_se);
637 }
638}
639
640static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
641{
642 dequeue_rt_stack(rt_se);
643 for_each_sched_rt_entity(rt_se)
644 __enqueue_rt_entity(rt_se);
645}
646
647static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
648{
649 dequeue_rt_stack(rt_se);
650
651 for_each_sched_rt_entity(rt_se) {
652 struct rt_rq *rt_rq = group_rt_rq(rt_se);
653
654 if (rt_rq && rt_rq->rt_nr_running)
655 __enqueue_rt_entity(rt_se);
58d6c2d7 656 }
bb44e5d1
IM
657}
658
659/*
660 * Adding/removing a task to/from a priority array:
661 */
6f505b16
PZ
662static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
663{
664 struct sched_rt_entity *rt_se = &p->rt;
665
666 if (wakeup)
667 rt_se->timeout = 0;
668
ad2a3f13 669 enqueue_rt_entity(rt_se);
c09595f6
PZ
670
671 inc_cpu_load(rq, p->se.load.weight);
6f505b16
PZ
672}
673
f02231e5 674static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 675{
6f505b16 676 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 677
f1e14ef6 678 update_curr_rt(rq);
ad2a3f13 679 dequeue_rt_entity(rt_se);
c09595f6
PZ
680
681 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
682}
683
684/*
685 * Put task to the end of the run list without the overhead of dequeue
686 * followed by enqueue.
687 */
7ebefa8c
DA
688static void
689requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 690{
1cdad715 691 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
692 struct rt_prio_array *array = &rt_rq->active;
693 struct list_head *queue = array->queue + rt_se_prio(rt_se);
694
695 if (head)
696 list_move(&rt_se->run_list, queue);
697 else
698 list_move_tail(&rt_se->run_list, queue);
1cdad715 699 }
6f505b16
PZ
700}
701
7ebefa8c 702static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 703{
6f505b16
PZ
704 struct sched_rt_entity *rt_se = &p->rt;
705 struct rt_rq *rt_rq;
bb44e5d1 706
6f505b16
PZ
707 for_each_sched_rt_entity(rt_se) {
708 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 709 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 710 }
bb44e5d1
IM
711}
712
6f505b16 713static void yield_task_rt(struct rq *rq)
bb44e5d1 714{
7ebefa8c 715 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
716}
717
e7693a36 718#ifdef CONFIG_SMP
318e0893
GH
719static int find_lowest_rq(struct task_struct *task);
720
e7693a36
GH
721static int select_task_rq_rt(struct task_struct *p, int sync)
722{
318e0893
GH
723 struct rq *rq = task_rq(p);
724
725 /*
e1f47d89
SR
726 * If the current task is an RT task, then
727 * try to see if we can wake this RT task up on another
728 * runqueue. Otherwise simply start this RT task
729 * on its current runqueue.
730 *
731 * We want to avoid overloading runqueues. Even if
732 * the RT task is of higher priority than the current RT task.
733 * RT tasks behave differently than other tasks. If
734 * one gets preempted, we try to push it off to another queue.
735 * So trying to keep a preempting RT task on the same
736 * cache hot CPU will force the running RT task to
737 * a cold CPU. So we waste all the cache for the lower
738 * RT task in hopes of saving some of a RT task
739 * that is just being woken and probably will have
740 * cold cache anyway.
318e0893 741 */
17b3279b 742 if (unlikely(rt_task(rq->curr)) &&
6f505b16 743 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
744 int cpu = find_lowest_rq(p);
745
746 return (cpu == -1) ? task_cpu(p) : cpu;
747 }
748
749 /*
750 * Otherwise, just let it ride on the affined RQ and the
751 * post-schedule router will push the preempted task away
752 */
e7693a36
GH
753 return task_cpu(p);
754}
7ebefa8c
DA
755
756static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
757{
758 cpumask_t mask;
759
760 if (rq->curr->rt.nr_cpus_allowed == 1)
761 return;
762
763 if (p->rt.nr_cpus_allowed != 1
764 && cpupri_find(&rq->rd->cpupri, p, &mask))
765 return;
766
767 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
768 return;
769
770 /*
771 * There appears to be other cpus that can accept
772 * current and none to run 'p', so lets reschedule
773 * to try and push current away:
774 */
775 requeue_task_rt(rq, p, 1);
776 resched_task(rq->curr);
777}
778
e7693a36
GH
779#endif /* CONFIG_SMP */
780
bb44e5d1
IM
781/*
782 * Preempt the current task with a newly woken task if needed:
783 */
784static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
785{
45c01e82 786 if (p->prio < rq->curr->prio) {
bb44e5d1 787 resched_task(rq->curr);
45c01e82
GH
788 return;
789 }
790
791#ifdef CONFIG_SMP
792 /*
793 * If:
794 *
795 * - the newly woken task is of equal priority to the current task
796 * - the newly woken task is non-migratable while current is migratable
797 * - current will be preempted on the next reschedule
798 *
799 * we should check to see if current can readily move to a different
800 * cpu. If so, we will reschedule to allow the push logic to try
801 * to move current somewhere else, making room for our non-migratable
802 * task.
803 */
7ebefa8c
DA
804 if (p->prio == rq->curr->prio && !need_resched())
805 check_preempt_equal_prio(rq, p);
45c01e82 806#endif
bb44e5d1
IM
807}
808
6f505b16
PZ
809static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
810 struct rt_rq *rt_rq)
bb44e5d1 811{
6f505b16
PZ
812 struct rt_prio_array *array = &rt_rq->active;
813 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
814 struct list_head *queue;
815 int idx;
816
817 idx = sched_find_first_bit(array->bitmap);
6f505b16 818 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
819
820 queue = array->queue + idx;
6f505b16 821 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 822
6f505b16
PZ
823 return next;
824}
bb44e5d1 825
6f505b16
PZ
826static struct task_struct *pick_next_task_rt(struct rq *rq)
827{
828 struct sched_rt_entity *rt_se;
829 struct task_struct *p;
830 struct rt_rq *rt_rq;
bb44e5d1 831
6f505b16
PZ
832 rt_rq = &rq->rt;
833
834 if (unlikely(!rt_rq->rt_nr_running))
835 return NULL;
836
23b0fdfc 837 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
838 return NULL;
839
840 do {
841 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 842 BUG_ON(!rt_se);
6f505b16
PZ
843 rt_rq = group_rt_rq(rt_se);
844 } while (rt_rq);
845
846 p = rt_task_of(rt_se);
847 p->se.exec_start = rq->clock;
848 return p;
bb44e5d1
IM
849}
850
31ee529c 851static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 852{
f1e14ef6 853 update_curr_rt(rq);
bb44e5d1
IM
854 p->se.exec_start = 0;
855}
856
681f3e68 857#ifdef CONFIG_SMP
6f505b16 858
e8fa1362
SR
859/* Only try algorithms three times */
860#define RT_MAX_TRIES 3
861
862static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
1b12bbc7
PZ
863static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
864
e8fa1362
SR
865static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
866
f65eda4f
SR
867static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
868{
869 if (!task_running(rq, p) &&
73fe6aae 870 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 871 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
872 return 1;
873 return 0;
874}
875
e8fa1362 876/* Return the second highest RT task, NULL otherwise */
79064fbf 877static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 878{
6f505b16
PZ
879 struct task_struct *next = NULL;
880 struct sched_rt_entity *rt_se;
881 struct rt_prio_array *array;
882 struct rt_rq *rt_rq;
e8fa1362
SR
883 int idx;
884
6f505b16
PZ
885 for_each_leaf_rt_rq(rt_rq, rq) {
886 array = &rt_rq->active;
887 idx = sched_find_first_bit(array->bitmap);
888 next_idx:
889 if (idx >= MAX_RT_PRIO)
890 continue;
891 if (next && next->prio < idx)
892 continue;
893 list_for_each_entry(rt_se, array->queue + idx, run_list) {
894 struct task_struct *p = rt_task_of(rt_se);
895 if (pick_rt_task(rq, p, cpu)) {
896 next = p;
897 break;
898 }
899 }
900 if (!next) {
901 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
902 goto next_idx;
903 }
f65eda4f
SR
904 }
905
e8fa1362
SR
906 return next;
907}
908
909static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
910
6e1254d2
GH
911static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
912{
913 int first;
914
915 /* "this_cpu" is cheaper to preempt than a remote processor */
916 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
917 return this_cpu;
918
919 first = first_cpu(*mask);
920 if (first != NR_CPUS)
921 return first;
922
923 return -1;
924}
925
926static int find_lowest_rq(struct task_struct *task)
927{
928 struct sched_domain *sd;
929 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
930 int this_cpu = smp_processor_id();
931 int cpu = task_cpu(task);
06f90dbd 932
6e0534f2
GH
933 if (task->rt.nr_cpus_allowed == 1)
934 return -1; /* No other targets possible */
6e1254d2 935
6e0534f2
GH
936 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
937 return -1; /* No targets found */
6e1254d2 938
e761b772
MK
939 /*
940 * Only consider CPUs that are usable for migration.
941 * I guess we might want to change cpupri_find() to ignore those
942 * in the first place.
943 */
944 cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
945
6e1254d2
GH
946 /*
947 * At this point we have built a mask of cpus representing the
948 * lowest priority tasks in the system. Now we want to elect
949 * the best one based on our affinity and topology.
950 *
951 * We prioritize the last cpu that the task executed on since
952 * it is most likely cache-hot in that location.
953 */
954 if (cpu_isset(cpu, *lowest_mask))
955 return cpu;
956
957 /*
958 * Otherwise, we consult the sched_domains span maps to figure
959 * out which cpu is logically closest to our hot cache data.
960 */
961 if (this_cpu == cpu)
962 this_cpu = -1; /* Skip this_cpu opt if the same */
963
964 for_each_domain(cpu, sd) {
965 if (sd->flags & SD_WAKE_AFFINE) {
966 cpumask_t domain_mask;
967 int best_cpu;
968
969 cpus_and(domain_mask, sd->span, *lowest_mask);
970
971 best_cpu = pick_optimal_cpu(this_cpu,
972 &domain_mask);
973 if (best_cpu != -1)
974 return best_cpu;
975 }
976 }
977
978 /*
979 * And finally, if there were no matches within the domains
980 * just give the caller *something* to work with from the compatible
981 * locations.
982 */
983 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
984}
985
986/* Will lock the rq it finds */
4df64c0b 987static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
988{
989 struct rq *lowest_rq = NULL;
07b4032c 990 int tries;
4df64c0b 991 int cpu;
e8fa1362 992
07b4032c
GH
993 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
994 cpu = find_lowest_rq(task);
995
2de0b463 996 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
997 break;
998
07b4032c
GH
999 lowest_rq = cpu_rq(cpu);
1000
e8fa1362 1001 /* if the prio of this runqueue changed, try again */
07b4032c 1002 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1003 /*
1004 * We had to unlock the run queue. In
1005 * the mean time, task could have
1006 * migrated already or had its affinity changed.
1007 * Also make sure that it wasn't scheduled on its rq.
1008 */
07b4032c 1009 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
1010 !cpu_isset(lowest_rq->cpu,
1011 task->cpus_allowed) ||
07b4032c 1012 task_running(rq, task) ||
e8fa1362 1013 !task->se.on_rq)) {
4df64c0b 1014
e8fa1362
SR
1015 spin_unlock(&lowest_rq->lock);
1016 lowest_rq = NULL;
1017 break;
1018 }
1019 }
1020
1021 /* If this rq is still suitable use it. */
1022 if (lowest_rq->rt.highest_prio > task->prio)
1023 break;
1024
1025 /* try again */
1b12bbc7 1026 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1027 lowest_rq = NULL;
1028 }
1029
1030 return lowest_rq;
1031}
1032
1033/*
1034 * If the current CPU has more than one RT task, see if the non
1035 * running task can migrate over to a CPU that is running a task
1036 * of lesser priority.
1037 */
697f0a48 1038static int push_rt_task(struct rq *rq)
e8fa1362
SR
1039{
1040 struct task_struct *next_task;
1041 struct rq *lowest_rq;
1042 int ret = 0;
1043 int paranoid = RT_MAX_TRIES;
1044
a22d7fc1
GH
1045 if (!rq->rt.overloaded)
1046 return 0;
1047
697f0a48 1048 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1049 if (!next_task)
1050 return 0;
1051
1052 retry:
697f0a48 1053 if (unlikely(next_task == rq->curr)) {
f65eda4f 1054 WARN_ON(1);
e8fa1362 1055 return 0;
f65eda4f 1056 }
e8fa1362
SR
1057
1058 /*
1059 * It's possible that the next_task slipped in of
1060 * higher priority than current. If that's the case
1061 * just reschedule current.
1062 */
697f0a48
GH
1063 if (unlikely(next_task->prio < rq->curr->prio)) {
1064 resched_task(rq->curr);
e8fa1362
SR
1065 return 0;
1066 }
1067
697f0a48 1068 /* We might release rq lock */
e8fa1362
SR
1069 get_task_struct(next_task);
1070
1071 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1072 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1073 if (!lowest_rq) {
1074 struct task_struct *task;
1075 /*
697f0a48 1076 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
1077 * so it is possible that next_task has changed.
1078 * If it has, then try again.
1079 */
697f0a48 1080 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1081 if (unlikely(task != next_task) && task && paranoid--) {
1082 put_task_struct(next_task);
1083 next_task = task;
1084 goto retry;
1085 }
1086 goto out;
1087 }
1088
697f0a48 1089 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1090 set_task_cpu(next_task, lowest_rq->cpu);
1091 activate_task(lowest_rq, next_task, 0);
1092
1093 resched_task(lowest_rq->curr);
1094
1b12bbc7 1095 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1096
1097 ret = 1;
1098out:
1099 put_task_struct(next_task);
1100
1101 return ret;
1102}
1103
1104/*
1105 * TODO: Currently we just use the second highest prio task on
1106 * the queue, and stop when it can't migrate (or there's
1107 * no more RT tasks). There may be a case where a lower
1108 * priority RT task has a different affinity than the
1109 * higher RT task. In this case the lower RT task could
1110 * possibly be able to migrate where as the higher priority
1111 * RT task could not. We currently ignore this issue.
1112 * Enhancements are welcome!
1113 */
1114static void push_rt_tasks(struct rq *rq)
1115{
1116 /* push_rt_task will return true if it moved an RT */
1117 while (push_rt_task(rq))
1118 ;
1119}
1120
f65eda4f
SR
1121static int pull_rt_task(struct rq *this_rq)
1122{
80bf3171
IM
1123 int this_cpu = this_rq->cpu, ret = 0, cpu;
1124 struct task_struct *p, *next;
f65eda4f 1125 struct rq *src_rq;
f65eda4f 1126
637f5085 1127 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1128 return 0;
1129
1130 next = pick_next_task_rt(this_rq);
1131
363ab6f1 1132 for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1133 if (this_cpu == cpu)
1134 continue;
1135
1136 src_rq = cpu_rq(cpu);
f65eda4f
SR
1137 /*
1138 * We can potentially drop this_rq's lock in
1139 * double_lock_balance, and another CPU could
1140 * steal our next task - hence we must cause
1141 * the caller to recalculate the next task
1142 * in that case:
1143 */
1144 if (double_lock_balance(this_rq, src_rq)) {
1145 struct task_struct *old_next = next;
80bf3171 1146
f65eda4f
SR
1147 next = pick_next_task_rt(this_rq);
1148 if (next != old_next)
1149 ret = 1;
1150 }
1151
1152 /*
1153 * Are there still pullable RT tasks?
1154 */
614ee1f6
MG
1155 if (src_rq->rt.rt_nr_running <= 1)
1156 goto skip;
f65eda4f 1157
f65eda4f
SR
1158 p = pick_next_highest_task_rt(src_rq, this_cpu);
1159
1160 /*
1161 * Do we have an RT task that preempts
1162 * the to-be-scheduled task?
1163 */
1164 if (p && (!next || (p->prio < next->prio))) {
1165 WARN_ON(p == src_rq->curr);
1166 WARN_ON(!p->se.on_rq);
1167
1168 /*
1169 * There's a chance that p is higher in priority
1170 * than what's currently running on its cpu.
1171 * This is just that p is wakeing up and hasn't
1172 * had a chance to schedule. We only pull
1173 * p if it is lower in priority than the
1174 * current task on the run queue or
1175 * this_rq next task is lower in prio than
1176 * the current task on that rq.
1177 */
1178 if (p->prio < src_rq->curr->prio ||
1179 (next && next->prio < src_rq->curr->prio))
614ee1f6 1180 goto skip;
f65eda4f
SR
1181
1182 ret = 1;
1183
1184 deactivate_task(src_rq, p, 0);
1185 set_task_cpu(p, this_cpu);
1186 activate_task(this_rq, p, 0);
1187 /*
1188 * We continue with the search, just in
1189 * case there's an even higher prio task
1190 * in another runqueue. (low likelyhood
1191 * but possible)
80bf3171 1192 *
f65eda4f
SR
1193 * Update next so that we won't pick a task
1194 * on another cpu with a priority lower (or equal)
1195 * than the one we just picked.
1196 */
1197 next = p;
1198
1199 }
614ee1f6 1200 skip:
1b12bbc7 1201 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1202 }
1203
1204 return ret;
1205}
1206
9a897c5a 1207static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1208{
1209 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1210 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1211 pull_rt_task(rq);
1212}
1213
9a897c5a 1214static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1215{
1216 /*
1217 * If we have more than one rt_task queued, then
1218 * see if we can push the other rt_tasks off to other CPUS.
1219 * Note we may release the rq lock, and since
1220 * the lock was owned by prev, we need to release it
1221 * first via finish_lock_switch and then reaquire it here.
1222 */
a22d7fc1 1223 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1224 spin_lock_irq(&rq->lock);
1225 push_rt_tasks(rq);
1226 spin_unlock_irq(&rq->lock);
1227 }
1228}
1229
8ae121ac
GH
1230/*
1231 * If we are not running and we are not going to reschedule soon, we should
1232 * try to push tasks away now
1233 */
9a897c5a 1234static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1235{
9a897c5a 1236 if (!task_running(rq, p) &&
8ae121ac 1237 !test_tsk_need_resched(rq->curr) &&
a22d7fc1 1238 rq->rt.overloaded)
4642dafd
SR
1239 push_rt_tasks(rq);
1240}
1241
43010659 1242static unsigned long
bb44e5d1 1243load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1244 unsigned long max_load_move,
1245 struct sched_domain *sd, enum cpu_idle_type idle,
1246 int *all_pinned, int *this_best_prio)
bb44e5d1 1247{
c7a1e46a
SR
1248 /* don't touch RT tasks */
1249 return 0;
e1d1484f
PW
1250}
1251
1252static int
1253move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1254 struct sched_domain *sd, enum cpu_idle_type idle)
1255{
c7a1e46a
SR
1256 /* don't touch RT tasks */
1257 return 0;
bb44e5d1 1258}
deeeccd4 1259
cd8ba7cd
MT
1260static void set_cpus_allowed_rt(struct task_struct *p,
1261 const cpumask_t *new_mask)
73fe6aae
GH
1262{
1263 int weight = cpus_weight(*new_mask);
1264
1265 BUG_ON(!rt_task(p));
1266
1267 /*
1268 * Update the migration status of the RQ if we have an RT task
1269 * which is running AND changing its weight value.
1270 */
6f505b16 1271 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1272 struct rq *rq = task_rq(p);
1273
6f505b16 1274 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1275 rq->rt.rt_nr_migratory++;
6f505b16 1276 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1277 BUG_ON(!rq->rt.rt_nr_migratory);
1278 rq->rt.rt_nr_migratory--;
1279 }
1280
1281 update_rt_migration(rq);
1282 }
1283
1284 p->cpus_allowed = *new_mask;
6f505b16 1285 p->rt.nr_cpus_allowed = weight;
73fe6aae 1286}
deeeccd4 1287
bdd7c81b 1288/* Assumes rq->lock is held */
1f11eb6a 1289static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1290{
1291 if (rq->rt.overloaded)
1292 rt_set_overload(rq);
6e0534f2 1293
7def2be1
PZ
1294 __enable_runtime(rq);
1295
6e0534f2 1296 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
bdd7c81b
IM
1297}
1298
1299/* Assumes rq->lock is held */
1f11eb6a 1300static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1301{
1302 if (rq->rt.overloaded)
1303 rt_clear_overload(rq);
6e0534f2 1304
7def2be1
PZ
1305 __disable_runtime(rq);
1306
6e0534f2 1307 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1308}
cb469845
SR
1309
1310/*
1311 * When switch from the rt queue, we bring ourselves to a position
1312 * that we might want to pull RT tasks from other runqueues.
1313 */
1314static void switched_from_rt(struct rq *rq, struct task_struct *p,
1315 int running)
1316{
1317 /*
1318 * If there are other RT tasks then we will reschedule
1319 * and the scheduling of the other RT tasks will handle
1320 * the balancing. But if we are the last RT task
1321 * we may need to handle the pulling of RT tasks
1322 * now.
1323 */
1324 if (!rq->rt.rt_nr_running)
1325 pull_rt_task(rq);
1326}
1327#endif /* CONFIG_SMP */
1328
1329/*
1330 * When switching a task to RT, we may overload the runqueue
1331 * with RT tasks. In this case we try to push them off to
1332 * other runqueues.
1333 */
1334static void switched_to_rt(struct rq *rq, struct task_struct *p,
1335 int running)
1336{
1337 int check_resched = 1;
1338
1339 /*
1340 * If we are already running, then there's nothing
1341 * that needs to be done. But if we are not running
1342 * we may need to preempt the current running task.
1343 * If that current running task is also an RT task
1344 * then see if we can move to another run queue.
1345 */
1346 if (!running) {
1347#ifdef CONFIG_SMP
1348 if (rq->rt.overloaded && push_rt_task(rq) &&
1349 /* Don't resched if we changed runqueues */
1350 rq != task_rq(p))
1351 check_resched = 0;
1352#endif /* CONFIG_SMP */
1353 if (check_resched && p->prio < rq->curr->prio)
1354 resched_task(rq->curr);
1355 }
1356}
1357
1358/*
1359 * Priority of the task has changed. This may cause
1360 * us to initiate a push or pull.
1361 */
1362static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1363 int oldprio, int running)
1364{
1365 if (running) {
1366#ifdef CONFIG_SMP
1367 /*
1368 * If our priority decreases while running, we
1369 * may need to pull tasks to this runqueue.
1370 */
1371 if (oldprio < p->prio)
1372 pull_rt_task(rq);
1373 /*
1374 * If there's a higher priority task waiting to run
6fa46fa5
SR
1375 * then reschedule. Note, the above pull_rt_task
1376 * can release the rq lock and p could migrate.
1377 * Only reschedule if p is still on the same runqueue.
cb469845 1378 */
6fa46fa5 1379 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1380 resched_task(p);
1381#else
1382 /* For UP simply resched on drop of prio */
1383 if (oldprio < p->prio)
1384 resched_task(p);
e8fa1362 1385#endif /* CONFIG_SMP */
cb469845
SR
1386 } else {
1387 /*
1388 * This task is not running, but if it is
1389 * greater than the current running task
1390 * then reschedule.
1391 */
1392 if (p->prio < rq->curr->prio)
1393 resched_task(rq->curr);
1394 }
1395}
1396
78f2c7db
PZ
1397static void watchdog(struct rq *rq, struct task_struct *p)
1398{
1399 unsigned long soft, hard;
1400
1401 if (!p->signal)
1402 return;
1403
1404 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1405 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1406
1407 if (soft != RLIM_INFINITY) {
1408 unsigned long next;
1409
1410 p->rt.timeout++;
1411 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1412 if (p->rt.timeout > next)
78f2c7db
PZ
1413 p->it_sched_expires = p->se.sum_exec_runtime;
1414 }
1415}
bb44e5d1 1416
8f4d37ec 1417static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1418{
67e2be02
PZ
1419 update_curr_rt(rq);
1420
78f2c7db
PZ
1421 watchdog(rq, p);
1422
bb44e5d1
IM
1423 /*
1424 * RR tasks need a special form of timeslice management.
1425 * FIFO tasks have no timeslices.
1426 */
1427 if (p->policy != SCHED_RR)
1428 return;
1429
fa717060 1430 if (--p->rt.time_slice)
bb44e5d1
IM
1431 return;
1432
fa717060 1433 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1434
98fbc798
DA
1435 /*
1436 * Requeue to the end of queue if we are not the only element
1437 * on the queue:
1438 */
fa717060 1439 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1440 requeue_task_rt(rq, p, 0);
98fbc798
DA
1441 set_tsk_need_resched(p);
1442 }
bb44e5d1
IM
1443}
1444
83b699ed
SV
1445static void set_curr_task_rt(struct rq *rq)
1446{
1447 struct task_struct *p = rq->curr;
1448
1449 p->se.exec_start = rq->clock;
1450}
1451
2abdad0a 1452static const struct sched_class rt_sched_class = {
5522d5d5 1453 .next = &fair_sched_class,
bb44e5d1
IM
1454 .enqueue_task = enqueue_task_rt,
1455 .dequeue_task = dequeue_task_rt,
1456 .yield_task = yield_task_rt,
e7693a36
GH
1457#ifdef CONFIG_SMP
1458 .select_task_rq = select_task_rq_rt,
1459#endif /* CONFIG_SMP */
bb44e5d1
IM
1460
1461 .check_preempt_curr = check_preempt_curr_rt,
1462
1463 .pick_next_task = pick_next_task_rt,
1464 .put_prev_task = put_prev_task_rt,
1465
681f3e68 1466#ifdef CONFIG_SMP
bb44e5d1 1467 .load_balance = load_balance_rt,
e1d1484f 1468 .move_one_task = move_one_task_rt,
73fe6aae 1469 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1470 .rq_online = rq_online_rt,
1471 .rq_offline = rq_offline_rt,
9a897c5a
SR
1472 .pre_schedule = pre_schedule_rt,
1473 .post_schedule = post_schedule_rt,
1474 .task_wake_up = task_wake_up_rt,
cb469845 1475 .switched_from = switched_from_rt,
681f3e68 1476#endif
bb44e5d1 1477
83b699ed 1478 .set_curr_task = set_curr_task_rt,
bb44e5d1 1479 .task_tick = task_tick_rt,
cb469845
SR
1480
1481 .prio_changed = prio_changed_rt,
1482 .switched_to = switched_to_rt,
bb44e5d1 1483};
ada18de2
PZ
1484
1485#ifdef CONFIG_SCHED_DEBUG
1486extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1487
1488static void print_rt_stats(struct seq_file *m, int cpu)
1489{
1490 struct rt_rq *rt_rq;
1491
1492 rcu_read_lock();
1493 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1494 print_rt_rq(m, cpu, rt_rq);
1495 rcu_read_unlock();
1496}
55e12e5e 1497#endif /* CONFIG_SCHED_DEBUG */