sched: remove wait_runtime limit
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
172ac3db 49unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
71fd3714 61 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
2bd8e6d4 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
2e09bf55 77const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
bf0f6f24 78
bf0f6f24
IM
79unsigned int sysctl_sched_runtime_limit __read_mostly;
80
bf0f6f24
IM
81extern struct sched_class fair_sched_class;
82
83/**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
62160e3f 98#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 99
62160e3f
IM
100static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101{
102 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
103}
104
105#define entity_is_task(se) 1
106
bf0f6f24
IM
107#endif /* CONFIG_FAIR_GROUP_SCHED */
108
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111 return container_of(se, struct task_struct, se);
112}
113
114
115/**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
e9acbff6
IM
119static inline void
120set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
121{
122 struct sched_entity *se;
123
124 cfs_rq->rb_leftmost = leftmost;
125 if (leftmost) {
126 se = rb_entry(leftmost, struct sched_entity, run_node);
9014623c
PZ
127 if ((se->vruntime > cfs_rq->min_vruntime) ||
128 (cfs_rq->min_vruntime > (1ULL << 61) &&
129 se->vruntime < (1ULL << 50)))
130 cfs_rq->min_vruntime = se->vruntime;
e9acbff6
IM
131 }
132}
133
9014623c
PZ
134s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
135{
136 return se->fair_key - cfs_rq->min_vruntime;
137}
138
bf0f6f24
IM
139/*
140 * Enqueue an entity into the rb-tree:
141 */
19ccd97a 142static void
bf0f6f24
IM
143__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
144{
145 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
146 struct rb_node *parent = NULL;
147 struct sched_entity *entry;
9014623c 148 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
149 int leftmost = 1;
150
151 /*
152 * Find the right place in the rbtree:
153 */
154 while (*link) {
155 parent = *link;
156 entry = rb_entry(parent, struct sched_entity, run_node);
157 /*
158 * We dont care about collisions. Nodes with
159 * the same key stay together.
160 */
9014623c 161 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
162 link = &parent->rb_left;
163 } else {
164 link = &parent->rb_right;
165 leftmost = 0;
166 }
167 }
168
169 /*
170 * Maintain a cache of leftmost tree entries (it is frequently
171 * used):
172 */
173 if (leftmost)
e9acbff6 174 set_leftmost(cfs_rq, &se->run_node);
bf0f6f24
IM
175
176 rb_link_node(&se->run_node, parent, link);
177 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
178 update_load_add(&cfs_rq->load, se->load.weight);
179 cfs_rq->nr_running++;
180 se->on_rq = 1;
a206c072
IM
181
182 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
bf0f6f24
IM
183}
184
19ccd97a 185static void
bf0f6f24
IM
186__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
187{
188 if (cfs_rq->rb_leftmost == &se->run_node)
e9acbff6
IM
189 set_leftmost(cfs_rq, rb_next(&se->run_node));
190
bf0f6f24
IM
191 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
192 update_load_sub(&cfs_rq->load, se->load.weight);
193 cfs_rq->nr_running--;
194 se->on_rq = 0;
a206c072
IM
195
196 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
bf0f6f24
IM
197}
198
199static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
200{
201 return cfs_rq->rb_leftmost;
202}
203
204static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
205{
206 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
207}
208
aeb73b04
PZ
209static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
210{
211 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
212 struct sched_entity *se = NULL;
213 struct rb_node *parent;
214
215 while (*link) {
216 parent = *link;
217 se = rb_entry(parent, struct sched_entity, run_node);
218 link = &parent->rb_right;
219 }
220
221 return se;
222}
223
bf0f6f24
IM
224/**************************************************************
225 * Scheduling class statistics methods:
226 */
227
4d78e7b6
PZ
228static u64 __sched_period(unsigned long nr_running)
229{
230 u64 period = sysctl_sched_latency;
231 unsigned long nr_latency =
232 sysctl_sched_latency / sysctl_sched_min_granularity;
233
234 if (unlikely(nr_running > nr_latency)) {
235 period *= nr_running;
236 do_div(period, nr_latency);
237 }
238
239 return period;
240}
241
6d0f0ebd 242static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 243{
6d0f0ebd 244 u64 period = __sched_period(cfs_rq->nr_running);
21805085 245
6d0f0ebd
PZ
246 period *= se->load.weight;
247 do_div(period, cfs_rq->load.weight);
21805085 248
6d0f0ebd 249 return period;
bf0f6f24
IM
250}
251
bf0f6f24
IM
252static void
253add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
254{
e22f5bbf
IM
255 se->wait_runtime += delta;
256 schedstat_add(cfs_rq, wait_runtime, delta);
bf0f6f24
IM
257}
258
259/*
260 * Update the current task's runtime statistics. Skip current tasks that
261 * are not in our scheduling class.
262 */
263static inline void
8ebc91d9
IM
264__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
265 unsigned long delta_exec)
bf0f6f24 266{
e22f5bbf 267 unsigned long delta_fair, delta_mine, delta_exec_weighted;
bf0f6f24
IM
268 struct load_weight *lw = &cfs_rq->load;
269 unsigned long load = lw->weight;
270
8179ca23 271 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
272
273 curr->sum_exec_runtime += delta_exec;
7a62eabc 274 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
275 delta_exec_weighted = delta_exec;
276 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
277 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
278 &curr->load);
279 }
280 curr->vruntime += delta_exec_weighted;
bf0f6f24 281
6cb58195
IM
282 if (!sched_feat(FAIR_SLEEPERS))
283 return;
284
fd8bb43e
IM
285 if (unlikely(!load))
286 return;
287
bf0f6f24
IM
288 delta_fair = calc_delta_fair(delta_exec, lw);
289 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
290
bf0f6f24
IM
291 cfs_rq->fair_clock += delta_fair;
292 /*
293 * We executed delta_exec amount of time on the CPU,
294 * but we were only entitled to delta_mine amount of
295 * time during that period (if nr_running == 1 then
296 * the two values are equal)
297 * [Note: delta_mine - delta_exec is negative]:
298 */
299 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
300}
301
b7cc0896 302static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 303{
429d43bc 304 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 305 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
306 unsigned long delta_exec;
307
308 if (unlikely(!curr))
309 return;
310
311 /*
312 * Get the amount of time the current task was running
313 * since the last time we changed load (this cannot
314 * overflow on 32 bits):
315 */
8ebc91d9 316 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 317
8ebc91d9
IM
318 __update_curr(cfs_rq, curr, delta_exec);
319 curr->exec_start = now;
bf0f6f24
IM
320}
321
322static inline void
5870db5b 323update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
324{
325 se->wait_start_fair = cfs_rq->fair_clock;
d281918d 326 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
327}
328
bf0f6f24 329static inline unsigned long
08e2388a 330calc_weighted(unsigned long delta, struct sched_entity *se)
bf0f6f24 331{
08e2388a 332 unsigned long weight = se->load.weight;
bf0f6f24 333
08e2388a
IM
334 if (unlikely(weight != NICE_0_LOAD))
335 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
336 else
337 return delta;
bf0f6f24 338}
bf0f6f24
IM
339
340/*
341 * Task is being enqueued - update stats:
342 */
d2417e5a 343static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 344{
bf0f6f24
IM
345 /*
346 * Are we enqueueing a waiting task? (for current tasks
347 * a dequeue/enqueue event is a NOP)
348 */
429d43bc 349 if (se != cfs_rq->curr)
5870db5b 350 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
351 /*
352 * Update the key:
353 */
e9acbff6 354 se->fair_key = se->vruntime;
bf0f6f24
IM
355}
356
357/*
358 * Note: must be called with a freshly updated rq->fair_clock.
359 */
360static inline void
8ebc91d9
IM
361__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
362 unsigned long delta_fair)
bf0f6f24 363{
d281918d
IM
364 schedstat_set(se->wait_max, max(se->wait_max,
365 rq_of(cfs_rq)->clock - se->wait_start));
bf0f6f24 366
08e2388a 367 delta_fair = calc_weighted(delta_fair, se);
bf0f6f24
IM
368
369 add_wait_runtime(cfs_rq, se, delta_fair);
370}
371
372static void
9ef0a961 373update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
374{
375 unsigned long delta_fair;
376
b77d69db
IM
377 if (unlikely(!se->wait_start_fair))
378 return;
379
bf0f6f24
IM
380 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
381 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
382
8ebc91d9 383 __update_stats_wait_end(cfs_rq, se, delta_fair);
bf0f6f24
IM
384
385 se->wait_start_fair = 0;
6cfb0d5d 386 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
387}
388
389static inline void
19b6a2e3 390update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 391{
b7cc0896 392 update_curr(cfs_rq);
bf0f6f24
IM
393 /*
394 * Mark the end of the wait period if dequeueing a
395 * waiting task:
396 */
429d43bc 397 if (se != cfs_rq->curr)
9ef0a961 398 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
399}
400
401/*
402 * We are picking a new current task - update its stats:
403 */
404static inline void
79303e9e 405update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
406{
407 /*
408 * We are starting a new run period:
409 */
d281918d 410 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
411}
412
413/*
414 * We are descheduling a task - update its stats:
415 */
416static inline void
c7e9b5b2 417update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
418{
419 se->exec_start = 0;
420}
421
422/**************************************************
423 * Scheduling class queueing methods:
424 */
425
2396af69 426static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 427{
bf0f6f24
IM
428#ifdef CONFIG_SCHEDSTATS
429 if (se->sleep_start) {
d281918d 430 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
431
432 if ((s64)delta < 0)
433 delta = 0;
434
435 if (unlikely(delta > se->sleep_max))
436 se->sleep_max = delta;
437
438 se->sleep_start = 0;
439 se->sum_sleep_runtime += delta;
440 }
441 if (se->block_start) {
d281918d 442 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
443
444 if ((s64)delta < 0)
445 delta = 0;
446
447 if (unlikely(delta > se->block_max))
448 se->block_max = delta;
449
450 se->block_start = 0;
451 se->sum_sleep_runtime += delta;
30084fbd
IM
452
453 /*
454 * Blocking time is in units of nanosecs, so shift by 20 to
455 * get a milliseconds-range estimation of the amount of
456 * time that the task spent sleeping:
457 */
458 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
459 struct task_struct *tsk = task_of(se);
460
30084fbd
IM
461 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
462 delta >> 20);
463 }
bf0f6f24
IM
464 }
465#endif
466}
467
aeb73b04
PZ
468static void
469place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
470{
aeb73b04
PZ
471 u64 min_runtime, latency;
472
473 min_runtime = cfs_rq->min_vruntime;
94dfb5e7
PZ
474
475 if (sched_feat(USE_TREE_AVG)) {
476 struct sched_entity *last = __pick_last_entity(cfs_rq);
477 if (last) {
478 min_runtime = __pick_next_entity(cfs_rq)->vruntime;
479 min_runtime += last->vruntime;
480 min_runtime >>= 1;
481 }
482 } else if (sched_feat(APPROX_AVG))
483 min_runtime += sysctl_sched_latency/2;
484
485 if (initial && sched_feat(START_DEBIT))
486 min_runtime += sched_slice(cfs_rq, se);
aeb73b04
PZ
487
488 if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
489 latency = sysctl_sched_latency;
490 if (min_runtime > latency)
491 min_runtime -= latency;
492 else
493 min_runtime = 0;
494 }
495
496 se->vruntime = max(se->vruntime, min_runtime);
497}
498
bf0f6f24 499static void
668031ca 500enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
501{
502 /*
503 * Update the fair clock.
504 */
b7cc0896 505 update_curr(cfs_rq);
bf0f6f24 506
e9acbff6 507 if (wakeup) {
aeb73b04 508 place_entity(cfs_rq, se, 0);
2396af69 509 enqueue_sleeper(cfs_rq, se);
e9acbff6 510 }
bf0f6f24 511
d2417e5a 512 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
513 __enqueue_entity(cfs_rq, se);
514}
515
516static void
525c2716 517dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 518{
19b6a2e3 519 update_stats_dequeue(cfs_rq, se);
bf0f6f24 520 if (sleep) {
bf0f6f24
IM
521#ifdef CONFIG_SCHEDSTATS
522 if (entity_is_task(se)) {
523 struct task_struct *tsk = task_of(se);
524
525 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 526 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 527 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 528 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 529 }
bf0f6f24
IM
530#endif
531 }
532 __dequeue_entity(cfs_rq, se);
533}
534
535/*
536 * Preempt the current task with a newly woken task if needed:
537 */
7c92e54f 538static void
2e09bf55 539check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 540{
11697830
PZ
541 unsigned long ideal_runtime, delta_exec;
542
6d0f0ebd 543 ideal_runtime = sched_slice(cfs_rq, curr);
11697830
PZ
544 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
545 if (delta_exec > ideal_runtime)
bf0f6f24
IM
546 resched_task(rq_of(cfs_rq)->curr);
547}
548
549static inline void
8494f412 550set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
551{
552 /*
553 * Any task has to be enqueued before it get to execute on
554 * a CPU. So account for the time it spent waiting on the
555 * runqueue. (note, here we rely on pick_next_task() having
556 * done a put_prev_task_fair() shortly before this, which
557 * updated rq->fair_clock - used by update_stats_wait_end())
558 */
9ef0a961 559 update_stats_wait_end(cfs_rq, se);
79303e9e 560 update_stats_curr_start(cfs_rq, se);
429d43bc 561 cfs_rq->curr = se;
eba1ed4b
IM
562#ifdef CONFIG_SCHEDSTATS
563 /*
564 * Track our maximum slice length, if the CPU's load is at
565 * least twice that of our own weight (i.e. dont track it
566 * when there are only lesser-weight tasks around):
567 */
495eca49 568 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
569 se->slice_max = max(se->slice_max,
570 se->sum_exec_runtime - se->prev_sum_exec_runtime);
571 }
572#endif
4a55b450 573 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
574}
575
9948f4b2 576static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
577{
578 struct sched_entity *se = __pick_next_entity(cfs_rq);
579
8494f412 580 set_next_entity(cfs_rq, se);
bf0f6f24
IM
581
582 return se;
583}
584
ab6cde26 585static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
586{
587 /*
588 * If still on the runqueue then deactivate_task()
589 * was not called and update_curr() has to be done:
590 */
591 if (prev->on_rq)
b7cc0896 592 update_curr(cfs_rq);
bf0f6f24 593
c7e9b5b2 594 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
595
596 if (prev->on_rq)
5870db5b 597 update_stats_wait_start(cfs_rq, prev);
429d43bc 598 cfs_rq->curr = NULL;
bf0f6f24
IM
599}
600
601static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
602{
bf0f6f24
IM
603 /*
604 * Dequeue and enqueue the task to update its
605 * position within the tree:
606 */
525c2716 607 dequeue_entity(cfs_rq, curr, 0);
668031ca 608 enqueue_entity(cfs_rq, curr, 0);
bf0f6f24 609
2e09bf55
IM
610 if (cfs_rq->nr_running > 1)
611 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
612}
613
614/**************************************************
615 * CFS operations on tasks:
616 */
617
618#ifdef CONFIG_FAIR_GROUP_SCHED
619
620/* Walk up scheduling entities hierarchy */
621#define for_each_sched_entity(se) \
622 for (; se; se = se->parent)
623
624static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
625{
626 return p->se.cfs_rq;
627}
628
629/* runqueue on which this entity is (to be) queued */
630static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
631{
632 return se->cfs_rq;
633}
634
635/* runqueue "owned" by this group */
636static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
637{
638 return grp->my_q;
639}
640
641/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
642 * another cpu ('this_cpu')
643 */
644static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
645{
646 /* A later patch will take group into account */
647 return &cpu_rq(this_cpu)->cfs;
648}
649
650/* Iterate thr' all leaf cfs_rq's on a runqueue */
651#define for_each_leaf_cfs_rq(rq, cfs_rq) \
652 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
653
654/* Do the two (enqueued) tasks belong to the same group ? */
655static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
656{
657 if (curr->se.cfs_rq == p->se.cfs_rq)
658 return 1;
659
660 return 0;
661}
662
663#else /* CONFIG_FAIR_GROUP_SCHED */
664
665#define for_each_sched_entity(se) \
666 for (; se; se = NULL)
667
668static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
669{
670 return &task_rq(p)->cfs;
671}
672
673static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
674{
675 struct task_struct *p = task_of(se);
676 struct rq *rq = task_rq(p);
677
678 return &rq->cfs;
679}
680
681/* runqueue "owned" by this group */
682static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
683{
684 return NULL;
685}
686
687static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
688{
689 return &cpu_rq(this_cpu)->cfs;
690}
691
692#define for_each_leaf_cfs_rq(rq, cfs_rq) \
693 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
694
695static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
696{
697 return 1;
698}
699
700#endif /* CONFIG_FAIR_GROUP_SCHED */
701
702/*
703 * The enqueue_task method is called before nr_running is
704 * increased. Here we update the fair scheduling stats and
705 * then put the task into the rbtree:
706 */
fd390f6a 707static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
708{
709 struct cfs_rq *cfs_rq;
710 struct sched_entity *se = &p->se;
711
712 for_each_sched_entity(se) {
713 if (se->on_rq)
714 break;
715 cfs_rq = cfs_rq_of(se);
668031ca 716 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
717 }
718}
719
720/*
721 * The dequeue_task method is called before nr_running is
722 * decreased. We remove the task from the rbtree and
723 * update the fair scheduling stats:
724 */
f02231e5 725static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
726{
727 struct cfs_rq *cfs_rq;
728 struct sched_entity *se = &p->se;
729
730 for_each_sched_entity(se) {
731 cfs_rq = cfs_rq_of(se);
525c2716 732 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
733 /* Don't dequeue parent if it has other entities besides us */
734 if (cfs_rq->load.weight)
735 break;
736 }
737}
738
739/*
1799e35d
IM
740 * sched_yield() support is very simple - we dequeue and enqueue.
741 *
742 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24
IM
743 */
744static void yield_task_fair(struct rq *rq, struct task_struct *p)
745{
746 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1799e35d
IM
747 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
748 struct sched_entity *rightmost, *se = &p->se;
749 struct rb_node *parent;
bf0f6f24
IM
750
751 /*
1799e35d
IM
752 * Are we the only task in the tree?
753 */
754 if (unlikely(cfs_rq->nr_running == 1))
755 return;
756
757 if (likely(!sysctl_sched_compat_yield)) {
758 __update_rq_clock(rq);
759 /*
760 * Dequeue and enqueue the task to update its
761 * position within the tree:
762 */
763 dequeue_entity(cfs_rq, &p->se, 0);
764 enqueue_entity(cfs_rq, &p->se, 0);
765
766 return;
767 }
768 /*
769 * Find the rightmost entry in the rbtree:
bf0f6f24 770 */
1799e35d
IM
771 do {
772 parent = *link;
773 link = &parent->rb_right;
774 } while (*link);
775
776 rightmost = rb_entry(parent, struct sched_entity, run_node);
777 /*
778 * Already in the rightmost position?
779 */
780 if (unlikely(rightmost == se))
781 return;
782
783 /*
784 * Minimally necessary key value to be last in the tree:
785 */
786 se->fair_key = rightmost->fair_key + 1;
787
788 if (cfs_rq->rb_leftmost == &se->run_node)
789 cfs_rq->rb_leftmost = rb_next(&se->run_node);
790 /*
791 * Relink the task to the rightmost position:
792 */
793 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
794 rb_link_node(&se->run_node, parent, link);
795 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
796}
797
798/*
799 * Preempt the current task with a newly woken task if needed:
800 */
2e09bf55 801static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
802{
803 struct task_struct *curr = rq->curr;
804 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24
IM
805
806 if (unlikely(rt_prio(p->prio))) {
a8e504d2 807 update_rq_clock(rq);
b7cc0896 808 update_curr(cfs_rq);
bf0f6f24
IM
809 resched_task(curr);
810 return;
811 }
2e09bf55
IM
812 if (is_same_group(curr, p)) {
813 s64 delta = curr->se.vruntime - p->se.vruntime;
bf0f6f24 814
2e09bf55
IM
815 if (delta > (s64)sysctl_sched_wakeup_granularity)
816 resched_task(curr);
817 }
bf0f6f24
IM
818}
819
fb8d4724 820static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
821{
822 struct cfs_rq *cfs_rq = &rq->cfs;
823 struct sched_entity *se;
824
825 if (unlikely(!cfs_rq->nr_running))
826 return NULL;
827
828 do {
9948f4b2 829 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
830 cfs_rq = group_cfs_rq(se);
831 } while (cfs_rq);
832
833 return task_of(se);
834}
835
836/*
837 * Account for a descheduled task:
838 */
31ee529c 839static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
840{
841 struct sched_entity *se = &prev->se;
842 struct cfs_rq *cfs_rq;
843
844 for_each_sched_entity(se) {
845 cfs_rq = cfs_rq_of(se);
ab6cde26 846 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
847 }
848}
849
850/**************************************************
851 * Fair scheduling class load-balancing methods:
852 */
853
854/*
855 * Load-balancing iterator. Note: while the runqueue stays locked
856 * during the whole iteration, the current task might be
857 * dequeued so the iterator has to be dequeue-safe. Here we
858 * achieve that by always pre-iterating before returning
859 * the current task:
860 */
861static inline struct task_struct *
862__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
863{
864 struct task_struct *p;
865
866 if (!curr)
867 return NULL;
868
869 p = rb_entry(curr, struct task_struct, se.run_node);
870 cfs_rq->rb_load_balance_curr = rb_next(curr);
871
872 return p;
873}
874
875static struct task_struct *load_balance_start_fair(void *arg)
876{
877 struct cfs_rq *cfs_rq = arg;
878
879 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
880}
881
882static struct task_struct *load_balance_next_fair(void *arg)
883{
884 struct cfs_rq *cfs_rq = arg;
885
886 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
887}
888
a4ac01c3 889#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
890static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
891{
892 struct sched_entity *curr;
893 struct task_struct *p;
894
895 if (!cfs_rq->nr_running)
896 return MAX_PRIO;
897
898 curr = __pick_next_entity(cfs_rq);
899 p = task_of(curr);
900
901 return p->prio;
902}
a4ac01c3 903#endif
bf0f6f24 904
43010659 905static unsigned long
bf0f6f24 906load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
907 unsigned long max_nr_move, unsigned long max_load_move,
908 struct sched_domain *sd, enum cpu_idle_type idle,
909 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
910{
911 struct cfs_rq *busy_cfs_rq;
912 unsigned long load_moved, total_nr_moved = 0, nr_moved;
913 long rem_load_move = max_load_move;
914 struct rq_iterator cfs_rq_iterator;
915
916 cfs_rq_iterator.start = load_balance_start_fair;
917 cfs_rq_iterator.next = load_balance_next_fair;
918
919 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 920#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 921 struct cfs_rq *this_cfs_rq;
e56f31aa 922 long imbalance;
bf0f6f24 923 unsigned long maxload;
bf0f6f24
IM
924
925 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
926
e56f31aa 927 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
928 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
929 if (imbalance <= 0)
930 continue;
931
932 /* Don't pull more than imbalance/2 */
933 imbalance /= 2;
934 maxload = min(rem_load_move, imbalance);
935
a4ac01c3
PW
936 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
937#else
e56f31aa 938# define maxload rem_load_move
a4ac01c3 939#endif
bf0f6f24
IM
940 /* pass busy_cfs_rq argument into
941 * load_balance_[start|next]_fair iterators
942 */
943 cfs_rq_iterator.arg = busy_cfs_rq;
944 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
945 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 946 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
947
948 total_nr_moved += nr_moved;
949 max_nr_move -= nr_moved;
950 rem_load_move -= load_moved;
951
952 if (max_nr_move <= 0 || rem_load_move <= 0)
953 break;
954 }
955
43010659 956 return max_load_move - rem_load_move;
bf0f6f24
IM
957}
958
959/*
960 * scheduler tick hitting a task of our scheduling class:
961 */
962static void task_tick_fair(struct rq *rq, struct task_struct *curr)
963{
964 struct cfs_rq *cfs_rq;
965 struct sched_entity *se = &curr->se;
966
967 for_each_sched_entity(se) {
968 cfs_rq = cfs_rq_of(se);
969 entity_tick(cfs_rq, se);
970 }
971}
972
4d78e7b6
PZ
973#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
974
bf0f6f24
IM
975/*
976 * Share the fairness runtime between parent and child, thus the
977 * total amount of pressure for CPU stays equal - new tasks
978 * get a chance to run but frequent forkers are not allowed to
979 * monopolize the CPU. Note: the parent runqueue is locked,
980 * the child is not running yet.
981 */
ee0827d8 982static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
983{
984 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 985 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
986
987 sched_info_queued(p);
988
7109c442 989 update_curr(cfs_rq);
aeb73b04 990 place_entity(cfs_rq, se, 1);
4d78e7b6 991
bf0f6f24
IM
992 /*
993 * The statistical average of wait_runtime is about
994 * -granularity/2, so initialize the task with that:
995 */
e59c80c5 996 if (sched_feat(START_DEBIT))
4d78e7b6
PZ
997 se->wait_runtime = -(__sched_period(cfs_rq->nr_running+1) / 2);
998
999 if (sysctl_sched_child_runs_first &&
1000 curr->vruntime < se->vruntime) {
1001
1002 dequeue_entity(cfs_rq, curr, 0);
1003 swap(curr->vruntime, se->vruntime);
1004 enqueue_entity(cfs_rq, curr, 0);
1005 }
bf0f6f24 1006
e9acbff6 1007 update_stats_enqueue(cfs_rq, se);
bf0f6f24 1008 __enqueue_entity(cfs_rq, se);
bb61c210 1009 resched_task(rq->curr);
bf0f6f24
IM
1010}
1011
1012#ifdef CONFIG_FAIR_GROUP_SCHED
1013/* Account for a task changing its policy or group.
1014 *
1015 * This routine is mostly called to set cfs_rq->curr field when a task
1016 * migrates between groups/classes.
1017 */
1018static void set_curr_task_fair(struct rq *rq)
1019{
7c6c16f3 1020 struct sched_entity *se = &rq->curr->se;
a8e504d2 1021
c3b64f1e
IM
1022 for_each_sched_entity(se)
1023 set_next_entity(cfs_rq_of(se), se);
bf0f6f24
IM
1024}
1025#else
1026static void set_curr_task_fair(struct rq *rq)
1027{
1028}
1029#endif
1030
1031/*
1032 * All the scheduling class methods:
1033 */
1034struct sched_class fair_sched_class __read_mostly = {
1035 .enqueue_task = enqueue_task_fair,
1036 .dequeue_task = dequeue_task_fair,
1037 .yield_task = yield_task_fair,
1038
2e09bf55 1039 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1040
1041 .pick_next_task = pick_next_task_fair,
1042 .put_prev_task = put_prev_task_fair,
1043
1044 .load_balance = load_balance_fair,
1045
1046 .set_curr_task = set_curr_task_fair,
1047 .task_tick = task_tick_fair,
1048 .task_new = task_new_fair,
1049};
1050
1051#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1052static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1053{
bf0f6f24
IM
1054 struct cfs_rq *cfs_rq;
1055
c3b64f1e 1056 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1057 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1058}
1059#endif