sched: fix formatting of /proc/sched_debug
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
172ac3db 49unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
71fd3714 61 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
2bd8e6d4 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
2e09bf55 77const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
bf0f6f24 78
bf0f6f24
IM
79unsigned int sysctl_sched_runtime_limit __read_mostly;
80
bf0f6f24
IM
81extern struct sched_class fair_sched_class;
82
83/**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
62160e3f 98#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 99
62160e3f
IM
100static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101{
102 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
103}
104
105#define entity_is_task(se) 1
106
bf0f6f24
IM
107#endif /* CONFIG_FAIR_GROUP_SCHED */
108
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111 return container_of(se, struct task_struct, se);
112}
113
114
115/**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
02e0431a
PZ
119static inline u64
120max_vruntime(u64 min_vruntime, u64 vruntime)
121{
122 if ((vruntime > min_vruntime) ||
123 (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
124 min_vruntime = vruntime;
125
126 return min_vruntime;
127}
128
e9acbff6
IM
129static inline void
130set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
131{
132 struct sched_entity *se;
133
134 cfs_rq->rb_leftmost = leftmost;
02e0431a 135 if (leftmost)
e9acbff6 136 se = rb_entry(leftmost, struct sched_entity, run_node);
e9acbff6
IM
137}
138
02e0431a
PZ
139static inline s64
140entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 141{
30cfdcfc 142 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
143}
144
bf0f6f24
IM
145/*
146 * Enqueue an entity into the rb-tree:
147 */
19ccd97a 148static void
bf0f6f24
IM
149__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
150{
151 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
152 struct rb_node *parent = NULL;
153 struct sched_entity *entry;
9014623c 154 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
155 int leftmost = 1;
156
157 /*
158 * Find the right place in the rbtree:
159 */
160 while (*link) {
161 parent = *link;
162 entry = rb_entry(parent, struct sched_entity, run_node);
163 /*
164 * We dont care about collisions. Nodes with
165 * the same key stay together.
166 */
9014623c 167 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
168 link = &parent->rb_left;
169 } else {
170 link = &parent->rb_right;
171 leftmost = 0;
172 }
173 }
174
175 /*
176 * Maintain a cache of leftmost tree entries (it is frequently
177 * used):
178 */
179 if (leftmost)
e9acbff6 180 set_leftmost(cfs_rq, &se->run_node);
bf0f6f24
IM
181
182 rb_link_node(&se->run_node, parent, link);
183 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
184}
185
19ccd97a 186static void
bf0f6f24
IM
187__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
188{
189 if (cfs_rq->rb_leftmost == &se->run_node)
e9acbff6
IM
190 set_leftmost(cfs_rq, rb_next(&se->run_node));
191
bf0f6f24 192 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
193}
194
195static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
196{
197 return cfs_rq->rb_leftmost;
198}
199
200static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
201{
202 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
203}
204
aeb73b04
PZ
205static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
206{
207 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
208 struct sched_entity *se = NULL;
209 struct rb_node *parent;
210
211 while (*link) {
212 parent = *link;
213 se = rb_entry(parent, struct sched_entity, run_node);
214 link = &parent->rb_right;
215 }
216
217 return se;
218}
219
bf0f6f24
IM
220/**************************************************************
221 * Scheduling class statistics methods:
222 */
223
4d78e7b6
PZ
224static u64 __sched_period(unsigned long nr_running)
225{
226 u64 period = sysctl_sched_latency;
227 unsigned long nr_latency =
228 sysctl_sched_latency / sysctl_sched_min_granularity;
229
230 if (unlikely(nr_running > nr_latency)) {
231 period *= nr_running;
232 do_div(period, nr_latency);
233 }
234
235 return period;
236}
237
6d0f0ebd 238static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 239{
6d0f0ebd 240 u64 period = __sched_period(cfs_rq->nr_running);
21805085 241
6d0f0ebd
PZ
242 period *= se->load.weight;
243 do_div(period, cfs_rq->load.weight);
21805085 244
6d0f0ebd 245 return period;
bf0f6f24
IM
246}
247
bf0f6f24
IM
248/*
249 * Update the current task's runtime statistics. Skip current tasks that
250 * are not in our scheduling class.
251 */
252static inline void
8ebc91d9
IM
253__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
254 unsigned long delta_exec)
bf0f6f24 255{
bbdba7c0 256 unsigned long delta_exec_weighted;
02e0431a 257 u64 next_vruntime, min_vruntime;
bf0f6f24 258
8179ca23 259 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
260
261 curr->sum_exec_runtime += delta_exec;
7a62eabc 262 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
263 delta_exec_weighted = delta_exec;
264 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
265 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
266 &curr->load);
267 }
268 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
269
270 /*
271 * maintain cfs_rq->min_vruntime to be a monotonic increasing
272 * value tracking the leftmost vruntime in the tree.
273 */
274 if (first_fair(cfs_rq)) {
275 next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
276
277 /* min_vruntime() := !max_vruntime() */
278 min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
279 if (min_vruntime == next_vruntime)
280 min_vruntime = curr->vruntime;
281 else
282 min_vruntime = next_vruntime;
283 } else
284 min_vruntime = curr->vruntime;
285
286 cfs_rq->min_vruntime =
287 max_vruntime(cfs_rq->min_vruntime, min_vruntime);
bf0f6f24
IM
288}
289
b7cc0896 290static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 291{
429d43bc 292 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 293 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
294 unsigned long delta_exec;
295
296 if (unlikely(!curr))
297 return;
298
299 /*
300 * Get the amount of time the current task was running
301 * since the last time we changed load (this cannot
302 * overflow on 32 bits):
303 */
8ebc91d9 304 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 305
8ebc91d9
IM
306 __update_curr(cfs_rq, curr, delta_exec);
307 curr->exec_start = now;
bf0f6f24
IM
308}
309
310static inline void
5870db5b 311update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 312{
d281918d 313 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
314}
315
bf0f6f24 316static inline unsigned long
08e2388a 317calc_weighted(unsigned long delta, struct sched_entity *se)
bf0f6f24 318{
08e2388a 319 unsigned long weight = se->load.weight;
bf0f6f24 320
08e2388a
IM
321 if (unlikely(weight != NICE_0_LOAD))
322 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
323 else
324 return delta;
bf0f6f24 325}
bf0f6f24
IM
326
327/*
328 * Task is being enqueued - update stats:
329 */
d2417e5a 330static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 331{
bf0f6f24
IM
332 /*
333 * Are we enqueueing a waiting task? (for current tasks
334 * a dequeue/enqueue event is a NOP)
335 */
429d43bc 336 if (se != cfs_rq->curr)
5870db5b 337 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
338}
339
bf0f6f24 340static void
9ef0a961 341update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 342{
bbdba7c0
IM
343 schedstat_set(se->wait_max, max(se->wait_max,
344 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 345 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
346}
347
348static inline void
19b6a2e3 349update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 350{
b7cc0896 351 update_curr(cfs_rq);
bf0f6f24
IM
352 /*
353 * Mark the end of the wait period if dequeueing a
354 * waiting task:
355 */
429d43bc 356 if (se != cfs_rq->curr)
9ef0a961 357 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
358}
359
360/*
361 * We are picking a new current task - update its stats:
362 */
363static inline void
79303e9e 364update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
365{
366 /*
367 * We are starting a new run period:
368 */
d281918d 369 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
370}
371
372/*
373 * We are descheduling a task - update its stats:
374 */
375static inline void
c7e9b5b2 376update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
377{
378 se->exec_start = 0;
379}
380
381/**************************************************
382 * Scheduling class queueing methods:
383 */
384
30cfdcfc
DA
385static void
386account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
387{
388 update_load_add(&cfs_rq->load, se->load.weight);
389 cfs_rq->nr_running++;
390 se->on_rq = 1;
391}
392
393static void
394account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
395{
396 update_load_sub(&cfs_rq->load, se->load.weight);
397 cfs_rq->nr_running--;
398 se->on_rq = 0;
399}
400
2396af69 401static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 402{
bf0f6f24
IM
403#ifdef CONFIG_SCHEDSTATS
404 if (se->sleep_start) {
d281918d 405 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
406
407 if ((s64)delta < 0)
408 delta = 0;
409
410 if (unlikely(delta > se->sleep_max))
411 se->sleep_max = delta;
412
413 se->sleep_start = 0;
414 se->sum_sleep_runtime += delta;
415 }
416 if (se->block_start) {
d281918d 417 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
418
419 if ((s64)delta < 0)
420 delta = 0;
421
422 if (unlikely(delta > se->block_max))
423 se->block_max = delta;
424
425 se->block_start = 0;
426 se->sum_sleep_runtime += delta;
30084fbd
IM
427
428 /*
429 * Blocking time is in units of nanosecs, so shift by 20 to
430 * get a milliseconds-range estimation of the amount of
431 * time that the task spent sleeping:
432 */
433 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
434 struct task_struct *tsk = task_of(se);
435
30084fbd
IM
436 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
437 delta >> 20);
438 }
bf0f6f24
IM
439 }
440#endif
441}
442
aeb73b04
PZ
443static void
444place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
445{
aeb73b04
PZ
446 u64 min_runtime, latency;
447
448 min_runtime = cfs_rq->min_vruntime;
94dfb5e7
PZ
449
450 if (sched_feat(USE_TREE_AVG)) {
451 struct sched_entity *last = __pick_last_entity(cfs_rq);
452 if (last) {
453 min_runtime = __pick_next_entity(cfs_rq)->vruntime;
454 min_runtime += last->vruntime;
455 min_runtime >>= 1;
456 }
457 } else if (sched_feat(APPROX_AVG))
458 min_runtime += sysctl_sched_latency/2;
459
460 if (initial && sched_feat(START_DEBIT))
461 min_runtime += sched_slice(cfs_rq, se);
aeb73b04
PZ
462
463 if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
464 latency = sysctl_sched_latency;
465 if (min_runtime > latency)
466 min_runtime -= latency;
467 else
468 min_runtime = 0;
469 }
470
471 se->vruntime = max(se->vruntime, min_runtime);
472}
473
bf0f6f24 474static void
f6b53205
DA
475enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
476 int wakeup, int set_curr)
bf0f6f24 477{
f6b53205
DA
478 /*
479 * In case of the 'current'.
480 */
481 if (unlikely(set_curr)) {
482 update_stats_curr_start(cfs_rq, se);
483 cfs_rq->curr = se;
484 account_entity_enqueue(cfs_rq, se);
485 return;
486 }
487
bf0f6f24
IM
488 /*
489 * Update the fair clock.
490 */
b7cc0896 491 update_curr(cfs_rq);
bf0f6f24 492
e9acbff6 493 if (wakeup) {
aeb73b04 494 place_entity(cfs_rq, se, 0);
2396af69 495 enqueue_sleeper(cfs_rq, se);
e9acbff6 496 }
bf0f6f24 497
d2417e5a 498 update_stats_enqueue(cfs_rq, se);
f6b53205 499 __enqueue_entity(cfs_rq, se);
30cfdcfc 500 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
501}
502
503static void
525c2716 504dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 505{
19b6a2e3 506 update_stats_dequeue(cfs_rq, se);
bf0f6f24 507#ifdef CONFIG_SCHEDSTATS
db36cc7d 508 if (sleep) {
bf0f6f24
IM
509 if (entity_is_task(se)) {
510 struct task_struct *tsk = task_of(se);
511
512 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 513 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 514 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 515 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 516 }
bf0f6f24 517 }
db36cc7d 518#endif
f6b53205 519 if (likely(se != cfs_rq->curr))
30cfdcfc 520 __dequeue_entity(cfs_rq, se);
f6b53205
DA
521 else {
522 update_stats_curr_end(cfs_rq, se);
523 cfs_rq->curr = NULL;
524 }
30cfdcfc 525 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
526}
527
528/*
529 * Preempt the current task with a newly woken task if needed:
530 */
7c92e54f 531static void
2e09bf55 532check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 533{
11697830
PZ
534 unsigned long ideal_runtime, delta_exec;
535
6d0f0ebd 536 ideal_runtime = sched_slice(cfs_rq, curr);
11697830
PZ
537 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
538 if (delta_exec > ideal_runtime)
bf0f6f24
IM
539 resched_task(rq_of(cfs_rq)->curr);
540}
541
542static inline void
8494f412 543set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
544{
545 /*
546 * Any task has to be enqueued before it get to execute on
547 * a CPU. So account for the time it spent waiting on the
bbdba7c0 548 * runqueue.
bf0f6f24 549 */
9ef0a961 550 update_stats_wait_end(cfs_rq, se);
79303e9e 551 update_stats_curr_start(cfs_rq, se);
429d43bc 552 cfs_rq->curr = se;
eba1ed4b
IM
553#ifdef CONFIG_SCHEDSTATS
554 /*
555 * Track our maximum slice length, if the CPU's load is at
556 * least twice that of our own weight (i.e. dont track it
557 * when there are only lesser-weight tasks around):
558 */
495eca49 559 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
560 se->slice_max = max(se->slice_max,
561 se->sum_exec_runtime - se->prev_sum_exec_runtime);
562 }
563#endif
4a55b450 564 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
565}
566
9948f4b2 567static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
568{
569 struct sched_entity *se = __pick_next_entity(cfs_rq);
570
30cfdcfc
DA
571 /* 'current' is not kept within the tree. */
572 if (se)
573 __dequeue_entity(cfs_rq, se);
574
8494f412 575 set_next_entity(cfs_rq, se);
bf0f6f24
IM
576
577 return se;
578}
579
ab6cde26 580static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
581{
582 /*
583 * If still on the runqueue then deactivate_task()
584 * was not called and update_curr() has to be done:
585 */
586 if (prev->on_rq)
b7cc0896 587 update_curr(cfs_rq);
bf0f6f24 588
c7e9b5b2 589 update_stats_curr_end(cfs_rq, prev);
bf0f6f24 590
30cfdcfc 591 if (prev->on_rq) {
5870db5b 592 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
593 /* Put 'current' back into the tree. */
594 __enqueue_entity(cfs_rq, prev);
595 }
429d43bc 596 cfs_rq->curr = NULL;
bf0f6f24
IM
597}
598
599static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
600{
bf0f6f24 601 /*
30cfdcfc 602 * Update run-time statistics of the 'current'.
bf0f6f24 603 */
30cfdcfc 604 update_curr(cfs_rq);
bf0f6f24 605
2e09bf55
IM
606 if (cfs_rq->nr_running > 1)
607 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
608}
609
610/**************************************************
611 * CFS operations on tasks:
612 */
613
614#ifdef CONFIG_FAIR_GROUP_SCHED
615
616/* Walk up scheduling entities hierarchy */
617#define for_each_sched_entity(se) \
618 for (; se; se = se->parent)
619
620static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
621{
622 return p->se.cfs_rq;
623}
624
625/* runqueue on which this entity is (to be) queued */
626static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
627{
628 return se->cfs_rq;
629}
630
631/* runqueue "owned" by this group */
632static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
633{
634 return grp->my_q;
635}
636
637/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
638 * another cpu ('this_cpu')
639 */
640static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
641{
29f59db3 642 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
643}
644
645/* Iterate thr' all leaf cfs_rq's on a runqueue */
646#define for_each_leaf_cfs_rq(rq, cfs_rq) \
647 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
648
649/* Do the two (enqueued) tasks belong to the same group ? */
650static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
651{
652 if (curr->se.cfs_rq == p->se.cfs_rq)
653 return 1;
654
655 return 0;
656}
657
658#else /* CONFIG_FAIR_GROUP_SCHED */
659
660#define for_each_sched_entity(se) \
661 for (; se; se = NULL)
662
663static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
664{
665 return &task_rq(p)->cfs;
666}
667
668static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
669{
670 struct task_struct *p = task_of(se);
671 struct rq *rq = task_rq(p);
672
673 return &rq->cfs;
674}
675
676/* runqueue "owned" by this group */
677static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
678{
679 return NULL;
680}
681
682static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
683{
684 return &cpu_rq(this_cpu)->cfs;
685}
686
687#define for_each_leaf_cfs_rq(rq, cfs_rq) \
688 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
689
690static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
691{
692 return 1;
693}
694
695#endif /* CONFIG_FAIR_GROUP_SCHED */
696
697/*
698 * The enqueue_task method is called before nr_running is
699 * increased. Here we update the fair scheduling stats and
700 * then put the task into the rbtree:
701 */
fd390f6a 702static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
703{
704 struct cfs_rq *cfs_rq;
705 struct sched_entity *se = &p->se;
f6b53205
DA
706 int set_curr = 0;
707
708 /* Are we enqueuing the current task? */
709 if (unlikely(task_running(rq, p)))
710 set_curr = 1;
bf0f6f24
IM
711
712 for_each_sched_entity(se) {
713 if (se->on_rq)
714 break;
715 cfs_rq = cfs_rq_of(se);
f6b53205 716 enqueue_entity(cfs_rq, se, wakeup, set_curr);
bf0f6f24
IM
717 }
718}
719
720/*
721 * The dequeue_task method is called before nr_running is
722 * decreased. We remove the task from the rbtree and
723 * update the fair scheduling stats:
724 */
f02231e5 725static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
726{
727 struct cfs_rq *cfs_rq;
728 struct sched_entity *se = &p->se;
729
730 for_each_sched_entity(se) {
731 cfs_rq = cfs_rq_of(se);
525c2716 732 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
733 /* Don't dequeue parent if it has other entities besides us */
734 if (cfs_rq->load.weight)
735 break;
736 }
737}
738
739/*
1799e35d
IM
740 * sched_yield() support is very simple - we dequeue and enqueue.
741 *
742 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 743 */
4530d7ab 744static void yield_task_fair(struct rq *rq)
bf0f6f24 745{
4530d7ab 746 struct cfs_rq *cfs_rq = &rq->cfs;
1799e35d 747 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
4530d7ab 748 struct sched_entity *rightmost, *se = &rq->curr->se;
1799e35d 749 struct rb_node *parent;
bf0f6f24
IM
750
751 /*
1799e35d
IM
752 * Are we the only task in the tree?
753 */
754 if (unlikely(cfs_rq->nr_running == 1))
755 return;
756
757 if (likely(!sysctl_sched_compat_yield)) {
758 __update_rq_clock(rq);
759 /*
760 * Dequeue and enqueue the task to update its
761 * position within the tree:
762 */
4530d7ab 763 dequeue_entity(cfs_rq, se, 0);
f6b53205 764 enqueue_entity(cfs_rq, se, 0, 1);
1799e35d
IM
765
766 return;
767 }
768 /*
769 * Find the rightmost entry in the rbtree:
bf0f6f24 770 */
1799e35d
IM
771 do {
772 parent = *link;
773 link = &parent->rb_right;
774 } while (*link);
775
776 rightmost = rb_entry(parent, struct sched_entity, run_node);
777 /*
778 * Already in the rightmost position?
779 */
780 if (unlikely(rightmost == se))
781 return;
782
783 /*
784 * Minimally necessary key value to be last in the tree:
785 */
30cfdcfc 786 se->vruntime = rightmost->vruntime + 1;
1799e35d
IM
787
788 if (cfs_rq->rb_leftmost == &se->run_node)
789 cfs_rq->rb_leftmost = rb_next(&se->run_node);
790 /*
791 * Relink the task to the rightmost position:
792 */
793 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
794 rb_link_node(&se->run_node, parent, link);
795 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
796}
797
798/*
799 * Preempt the current task with a newly woken task if needed:
800 */
2e09bf55 801static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
802{
803 struct task_struct *curr = rq->curr;
804 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24
IM
805
806 if (unlikely(rt_prio(p->prio))) {
a8e504d2 807 update_rq_clock(rq);
b7cc0896 808 update_curr(cfs_rq);
bf0f6f24
IM
809 resched_task(curr);
810 return;
811 }
2e09bf55
IM
812 if (is_same_group(curr, p)) {
813 s64 delta = curr->se.vruntime - p->se.vruntime;
bf0f6f24 814
2e09bf55
IM
815 if (delta > (s64)sysctl_sched_wakeup_granularity)
816 resched_task(curr);
817 }
bf0f6f24
IM
818}
819
fb8d4724 820static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
821{
822 struct cfs_rq *cfs_rq = &rq->cfs;
823 struct sched_entity *se;
824
825 if (unlikely(!cfs_rq->nr_running))
826 return NULL;
827
828 do {
9948f4b2 829 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
830 cfs_rq = group_cfs_rq(se);
831 } while (cfs_rq);
832
833 return task_of(se);
834}
835
836/*
837 * Account for a descheduled task:
838 */
31ee529c 839static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
840{
841 struct sched_entity *se = &prev->se;
842 struct cfs_rq *cfs_rq;
843
844 for_each_sched_entity(se) {
845 cfs_rq = cfs_rq_of(se);
ab6cde26 846 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
847 }
848}
849
850/**************************************************
851 * Fair scheduling class load-balancing methods:
852 */
853
854/*
855 * Load-balancing iterator. Note: while the runqueue stays locked
856 * during the whole iteration, the current task might be
857 * dequeued so the iterator has to be dequeue-safe. Here we
858 * achieve that by always pre-iterating before returning
859 * the current task:
860 */
861static inline struct task_struct *
862__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
863{
864 struct task_struct *p;
865
866 if (!curr)
867 return NULL;
868
869 p = rb_entry(curr, struct task_struct, se.run_node);
870 cfs_rq->rb_load_balance_curr = rb_next(curr);
871
872 return p;
873}
874
875static struct task_struct *load_balance_start_fair(void *arg)
876{
877 struct cfs_rq *cfs_rq = arg;
878
879 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
880}
881
882static struct task_struct *load_balance_next_fair(void *arg)
883{
884 struct cfs_rq *cfs_rq = arg;
885
886 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
887}
888
a4ac01c3 889#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
890static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
891{
892 struct sched_entity *curr;
893 struct task_struct *p;
894
895 if (!cfs_rq->nr_running)
896 return MAX_PRIO;
897
898 curr = __pick_next_entity(cfs_rq);
899 p = task_of(curr);
900
901 return p->prio;
902}
a4ac01c3 903#endif
bf0f6f24 904
43010659 905static unsigned long
bf0f6f24 906load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
907 unsigned long max_nr_move, unsigned long max_load_move,
908 struct sched_domain *sd, enum cpu_idle_type idle,
909 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
910{
911 struct cfs_rq *busy_cfs_rq;
912 unsigned long load_moved, total_nr_moved = 0, nr_moved;
913 long rem_load_move = max_load_move;
914 struct rq_iterator cfs_rq_iterator;
915
916 cfs_rq_iterator.start = load_balance_start_fair;
917 cfs_rq_iterator.next = load_balance_next_fair;
918
919 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 920#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 921 struct cfs_rq *this_cfs_rq;
e56f31aa 922 long imbalance;
bf0f6f24 923 unsigned long maxload;
bf0f6f24
IM
924
925 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
926
e56f31aa 927 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
928 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
929 if (imbalance <= 0)
930 continue;
931
932 /* Don't pull more than imbalance/2 */
933 imbalance /= 2;
934 maxload = min(rem_load_move, imbalance);
935
a4ac01c3
PW
936 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
937#else
e56f31aa 938# define maxload rem_load_move
a4ac01c3 939#endif
bf0f6f24
IM
940 /* pass busy_cfs_rq argument into
941 * load_balance_[start|next]_fair iterators
942 */
943 cfs_rq_iterator.arg = busy_cfs_rq;
944 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
945 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 946 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
947
948 total_nr_moved += nr_moved;
949 max_nr_move -= nr_moved;
950 rem_load_move -= load_moved;
951
952 if (max_nr_move <= 0 || rem_load_move <= 0)
953 break;
954 }
955
43010659 956 return max_load_move - rem_load_move;
bf0f6f24
IM
957}
958
959/*
960 * scheduler tick hitting a task of our scheduling class:
961 */
962static void task_tick_fair(struct rq *rq, struct task_struct *curr)
963{
964 struct cfs_rq *cfs_rq;
965 struct sched_entity *se = &curr->se;
966
967 for_each_sched_entity(se) {
968 cfs_rq = cfs_rq_of(se);
969 entity_tick(cfs_rq, se);
970 }
971}
972
4d78e7b6
PZ
973#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
974
bf0f6f24
IM
975/*
976 * Share the fairness runtime between parent and child, thus the
977 * total amount of pressure for CPU stays equal - new tasks
978 * get a chance to run but frequent forkers are not allowed to
979 * monopolize the CPU. Note: the parent runqueue is locked,
980 * the child is not running yet.
981 */
ee0827d8 982static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
983{
984 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 985 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
986
987 sched_info_queued(p);
988
7109c442 989 update_curr(cfs_rq);
aeb73b04 990 place_entity(cfs_rq, se, 1);
4d78e7b6 991
4d78e7b6
PZ
992 if (sysctl_sched_child_runs_first &&
993 curr->vruntime < se->vruntime) {
87fefa38
DA
994 /*
995 * Upon rescheduling, sched_class::put_prev_task() will place
996 * 'current' within the tree based on its new key value.
997 */
4d78e7b6 998 swap(curr->vruntime, se->vruntime);
4d78e7b6 999 }
bf0f6f24 1000
e9acbff6 1001 update_stats_enqueue(cfs_rq, se);
bf0f6f24 1002 __enqueue_entity(cfs_rq, se);
30cfdcfc 1003 account_entity_enqueue(cfs_rq, se);
bb61c210 1004 resched_task(rq->curr);
bf0f6f24
IM
1005}
1006
bf0f6f24
IM
1007/*
1008 * All the scheduling class methods:
1009 */
1010struct sched_class fair_sched_class __read_mostly = {
1011 .enqueue_task = enqueue_task_fair,
1012 .dequeue_task = dequeue_task_fair,
1013 .yield_task = yield_task_fair,
1014
2e09bf55 1015 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1016
1017 .pick_next_task = pick_next_task_fair,
1018 .put_prev_task = put_prev_task_fair,
1019
1020 .load_balance = load_balance_fair,
1021
bf0f6f24
IM
1022 .task_tick = task_tick_fair,
1023 .task_new = task_new_fair,
1024};
1025
1026#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1027static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1028{
bf0f6f24
IM
1029 struct cfs_rq *cfs_rq;
1030
c3b64f1e 1031 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1032 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1033}
1034#endif