sched: Cleanup/optimize clock updates
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
172e082a 28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
172e082a 38unsigned int sysctl_sched_latency = 5000000ULL;
0bcdcf28 39unsigned int normalized_sysctl_sched_latency = 5000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
172e082a 55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
172e082a 57unsigned int sysctl_sched_min_granularity = 1000000ULL;
0bcdcf28 58unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
722aab0c 63static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
1799e35d
IM
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a4c2f00f
PZ
92static const struct sched_class fair_sched_class;
93
bf0f6f24
IM
94/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
62160e3f 98#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 99
62160e3f 100/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
62160e3f 103 return cfs_rq->rq;
bf0f6f24
IM
104}
105
62160e3f
IM
106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
bf0f6f24 108
8f48894f
PZ
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
b758149c
PZ
117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
146/* Iterate thr' all leaf cfs_rq's on a runqueue */
147#define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150/* Do the two (enqueued) entities belong to the same group ? */
151static inline int
152is_same_group(struct sched_entity *se, struct sched_entity *pse)
153{
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158}
159
160static inline struct sched_entity *parent_entity(struct sched_entity *se)
161{
162 return se->parent;
163}
164
464b7527
PZ
165/* return depth at which a sched entity is present in the hierarchy */
166static inline int depth_se(struct sched_entity *se)
167{
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174}
175
176static void
177find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178{
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206}
207
8f48894f
PZ
208#else /* !CONFIG_FAIR_GROUP_SCHED */
209
210static inline struct task_struct *task_of(struct sched_entity *se)
211{
212 return container_of(se, struct task_struct, se);
213}
bf0f6f24 214
62160e3f
IM
215static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216{
217 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
218}
219
220#define entity_is_task(se) 1
221
b758149c
PZ
222#define for_each_sched_entity(se) \
223 for (; se; se = NULL)
bf0f6f24 224
b758149c 225static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 226{
b758149c 227 return &task_rq(p)->cfs;
bf0f6f24
IM
228}
229
b758149c
PZ
230static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231{
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236}
237
238/* runqueue "owned" by this group */
239static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240{
241 return NULL;
242}
243
244static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245{
246 return &cpu_rq(this_cpu)->cfs;
247}
248
249#define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252static inline int
253is_same_group(struct sched_entity *se, struct sched_entity *pse)
254{
255 return 1;
256}
257
258static inline struct sched_entity *parent_entity(struct sched_entity *se)
259{
260 return NULL;
261}
262
464b7527
PZ
263static inline void
264find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265{
266}
267
b758149c
PZ
268#endif /* CONFIG_FAIR_GROUP_SCHED */
269
bf0f6f24
IM
270
271/**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
0702e3eb 275static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 276{
368059a9
PZ
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
02e0431a
PZ
279 min_vruntime = vruntime;
280
281 return min_vruntime;
282}
283
0702e3eb 284static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
285{
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291}
292
54fdc581
FC
293static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295{
296 return (s64)(a->vruntime - b->vruntime) < 0;
297}
298
0702e3eb 299static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 300{
30cfdcfc 301 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
302}
303
1af5f730
PZ
304static void update_min_vruntime(struct cfs_rq *cfs_rq)
305{
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
e17036da 316 if (!cfs_rq->curr)
1af5f730
PZ
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323}
324
bf0f6f24
IM
325/*
326 * Enqueue an entity into the rb-tree:
327 */
0702e3eb 328static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
329{
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
9014623c 333 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
9014623c 346 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
1af5f730 358 if (leftmost)
57cb499d 359 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
363}
364
0702e3eb 365static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 366{
3fe69747
PZ
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
3fe69747
PZ
369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
3fe69747 372 }
e9acbff6 373
bf0f6f24 374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
375}
376
bf0f6f24
IM
377static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378{
f4b6755f
PZ
379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
385}
386
f4b6755f 387static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 388{
7eee3e67 389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 390
70eee74b
BS
391 if (!last)
392 return NULL;
7eee3e67
IM
393
394 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
395}
396
bf0f6f24
IM
397/**************************************************************
398 * Scheduling class statistics methods:
399 */
400
b2be5e96 401#ifdef CONFIG_SCHED_DEBUG
acb4a848 402int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 403 void __user *buffer, size_t *lenp,
b2be5e96
PZ
404 loff_t *ppos)
405{
8d65af78 406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 407 int factor = get_update_sysctl_factor();
b2be5e96
PZ
408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
acb4a848
CE
415#define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421#undef WRT_SYSCTL
422
b2be5e96
PZ
423 return 0;
424}
425#endif
647e7cac 426
a7be37ac 427/*
f9c0b095 428 * delta /= w
a7be37ac
PZ
429 */
430static inline unsigned long
431calc_delta_fair(unsigned long delta, struct sched_entity *se)
432{
f9c0b095
PZ
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
435
436 return delta;
437}
438
647e7cac
IM
439/*
440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
4d78e7b6
PZ
447static u64 __sched_period(unsigned long nr_running)
448{
449 u64 period = sysctl_sched_latency;
b2be5e96 450 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
451
452 if (unlikely(nr_running > nr_latency)) {
4bf0b771 453 period = sysctl_sched_min_granularity;
4d78e7b6 454 period *= nr_running;
4d78e7b6
PZ
455 }
456
457 return period;
458}
459
647e7cac
IM
460/*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
f9c0b095 464 * s = p*P[w/rw]
647e7cac 465 */
6d0f0ebd 466static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 467{
0a582440 468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 469
0a582440 470 for_each_sched_entity(se) {
6272d68c 471 struct load_weight *load;
3104bf03 472 struct load_weight lw;
6272d68c
LM
473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
f9c0b095 476
0a582440 477 if (unlikely(!se->on_rq)) {
3104bf03 478 lw = cfs_rq->load;
0a582440
MG
479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
bf0f6f24
IM
486}
487
647e7cac 488/*
ac884dec 489 * We calculate the vruntime slice of a to be inserted task
647e7cac 490 *
f9c0b095 491 * vs = s/w
647e7cac 492 */
f9c0b095 493static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 494{
f9c0b095 495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
496}
497
bf0f6f24
IM
498/*
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502static inline void
8ebc91d9
IM
503__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
bf0f6f24 505{
bbdba7c0 506 unsigned long delta_exec_weighted;
bf0f6f24 507
41acab88
LDM
508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
510
511 curr->sum_exec_runtime += delta_exec;
7a62eabc 512 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 514
e9acbff6 515 curr->vruntime += delta_exec_weighted;
1af5f730 516 update_min_vruntime(cfs_rq);
bf0f6f24
IM
517}
518
b7cc0896 519static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 520{
429d43bc 521 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 522 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
523 unsigned long delta_exec;
524
525 if (unlikely(!curr))
526 return;
527
528 /*
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
532 */
8ebc91d9 533 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
534 if (!delta_exec)
535 return;
bf0f6f24 536
8ebc91d9
IM
537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
d842de87
SV
539
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
542
f977bb49 543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 544 cpuacct_charge(curtask, delta_exec);
f06febc9 545 account_group_exec_runtime(curtask, delta_exec);
d842de87 546 }
bf0f6f24
IM
547}
548
549static inline void
5870db5b 550update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 551{
41acab88 552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
553}
554
bf0f6f24
IM
555/*
556 * Task is being enqueued - update stats:
557 */
d2417e5a 558static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 559{
bf0f6f24
IM
560 /*
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
563 */
429d43bc 564 if (se != cfs_rq->curr)
5870db5b 565 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
566}
567
bf0f6f24 568static void
9ef0a961 569update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 570{
41acab88
LDM
571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
576#ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
41acab88 579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
580 }
581#endif
41acab88 582 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
583}
584
585static inline void
19b6a2e3 586update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 587{
bf0f6f24
IM
588 /*
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
591 */
429d43bc 592 if (se != cfs_rq->curr)
9ef0a961 593 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
594}
595
596/*
597 * We are picking a new current task - update its stats:
598 */
599static inline void
79303e9e 600update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
601{
602 /*
603 * We are starting a new run period:
604 */
d281918d 605 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
606}
607
bf0f6f24
IM
608/**************************************************
609 * Scheduling class queueing methods:
610 */
611
c09595f6
PZ
612#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613static void
614add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615{
616 cfs_rq->task_weight += weight;
617}
618#else
619static inline void
620add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621{
622}
623#endif
624
30cfdcfc
DA
625static void
626account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
628 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 631 if (entity_is_task(se)) {
c09595f6 632 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
633 list_add(&se->group_node, &cfs_rq->tasks);
634 }
30cfdcfc
DA
635 cfs_rq->nr_running++;
636 se->on_rq = 1;
637}
638
639static void
640account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641{
642 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 645 if (entity_is_task(se)) {
c09595f6 646 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
647 list_del_init(&se->group_node);
648 }
30cfdcfc
DA
649 cfs_rq->nr_running--;
650 se->on_rq = 0;
651}
652
2396af69 653static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 654{
bf0f6f24 655#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
656 struct task_struct *tsk = NULL;
657
658 if (entity_is_task(se))
659 tsk = task_of(se);
660
41acab88
LDM
661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
663
664 if ((s64)delta < 0)
665 delta = 0;
666
41acab88
LDM
667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
bf0f6f24 669
41acab88
LDM
670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
9745512c 672
768d0c27 673 if (tsk) {
e414314c 674 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
675 trace_sched_stat_sleep(tsk, delta);
676 }
bf0f6f24 677 }
41acab88
LDM
678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
680
681 if ((s64)delta < 0)
682 delta = 0;
683
41acab88
LDM
684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
bf0f6f24 686
41acab88
LDM
687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
30084fbd 689
e414314c 690 if (tsk) {
8f0dfc34 691 if (tsk->in_iowait) {
41acab88
LDM
692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
768d0c27 694 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
695 }
696
e414314c
PZ
697 /*
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
701 */
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
706 }
707 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 708 }
bf0f6f24
IM
709 }
710#endif
711}
712
ddc97297
PZ
713static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714{
715#ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
717
718 if (d < 0)
719 d = -d;
720
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723#endif
724}
725
aeb73b04
PZ
726static void
727place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728{
1af5f730 729 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 730
2cb8600e
PZ
731 /*
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
736 */
94dfb5e7 737 if (initial && sched_feat(START_DEBIT))
f9c0b095 738 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 739
a2e7a7eb
MG
740 /* sleeps up to a single latency don't count. */
741 if (!initial && sched_feat(FAIR_SLEEPERS)) {
742 unsigned long thresh = sysctl_sched_latency;
a7be37ac 743
a2e7a7eb
MG
744 /*
745 * Convert the sleeper threshold into virtual time.
746 * SCHED_IDLE is a special sub-class. We care about
747 * fairness only relative to other SCHED_IDLE tasks,
748 * all of which have the same weight.
749 */
750 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
751 task_of(se)->policy != SCHED_IDLE))
752 thresh = calc_delta_fair(thresh, se);
a7be37ac 753
a2e7a7eb
MG
754 /*
755 * Halve their sleep time's effect, to allow
756 * for a gentler effect of sleepers:
757 */
758 if (sched_feat(GENTLE_FAIR_SLEEPERS))
759 thresh >>= 1;
51e0304c 760
a2e7a7eb 761 vruntime -= thresh;
aeb73b04
PZ
762 }
763
b5d9d734
MG
764 /* ensure we never gain time by being placed backwards. */
765 vruntime = max_vruntime(se->vruntime, vruntime);
766
67e9fb2a 767 se->vruntime = vruntime;
aeb73b04
PZ
768}
769
88ec22d3
PZ
770#define ENQUEUE_WAKEUP 1
771#define ENQUEUE_MIGRATE 2
772
bf0f6f24 773static void
88ec22d3 774enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 775{
88ec22d3
PZ
776 /*
777 * Update the normalized vruntime before updating min_vruntime
778 * through callig update_curr().
779 */
780 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
781 se->vruntime += cfs_rq->min_vruntime;
782
bf0f6f24 783 /*
a2a2d680 784 * Update run-time statistics of the 'current'.
bf0f6f24 785 */
b7cc0896 786 update_curr(cfs_rq);
a992241d 787 account_entity_enqueue(cfs_rq, se);
bf0f6f24 788
88ec22d3 789 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 790 place_entity(cfs_rq, se, 0);
2396af69 791 enqueue_sleeper(cfs_rq, se);
e9acbff6 792 }
bf0f6f24 793
d2417e5a 794 update_stats_enqueue(cfs_rq, se);
ddc97297 795 check_spread(cfs_rq, se);
83b699ed
SV
796 if (se != cfs_rq->curr)
797 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
798}
799
a571bbea 800static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 801{
de69a80b 802 if (!se || cfs_rq->last == se)
2002c695
PZ
803 cfs_rq->last = NULL;
804
de69a80b 805 if (!se || cfs_rq->next == se)
2002c695
PZ
806 cfs_rq->next = NULL;
807}
808
a571bbea
PZ
809static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
810{
811 for_each_sched_entity(se)
812 __clear_buddies(cfs_rq_of(se), se);
813}
814
bf0f6f24 815static void
525c2716 816dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 817{
a2a2d680
DA
818 /*
819 * Update run-time statistics of the 'current'.
820 */
821 update_curr(cfs_rq);
822
19b6a2e3 823 update_stats_dequeue(cfs_rq, se);
db36cc7d 824 if (sleep) {
67e9fb2a 825#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
826 if (entity_is_task(se)) {
827 struct task_struct *tsk = task_of(se);
828
829 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 830 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 831 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 832 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 833 }
db36cc7d 834#endif
67e9fb2a
PZ
835 }
836
2002c695 837 clear_buddies(cfs_rq, se);
4793241b 838
83b699ed 839 if (se != cfs_rq->curr)
30cfdcfc
DA
840 __dequeue_entity(cfs_rq, se);
841 account_entity_dequeue(cfs_rq, se);
1af5f730 842 update_min_vruntime(cfs_rq);
88ec22d3
PZ
843
844 /*
845 * Normalize the entity after updating the min_vruntime because the
846 * update can refer to the ->curr item and we need to reflect this
847 * movement in our normalized position.
848 */
849 if (!sleep)
850 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
851}
852
853/*
854 * Preempt the current task with a newly woken task if needed:
855 */
7c92e54f 856static void
2e09bf55 857check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 858{
11697830
PZ
859 unsigned long ideal_runtime, delta_exec;
860
6d0f0ebd 861 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 862 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 863 if (delta_exec > ideal_runtime) {
bf0f6f24 864 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
865 /*
866 * The current task ran long enough, ensure it doesn't get
867 * re-elected due to buddy favours.
868 */
869 clear_buddies(cfs_rq, curr);
f685ceac
MG
870 return;
871 }
872
873 /*
874 * Ensure that a task that missed wakeup preemption by a
875 * narrow margin doesn't have to wait for a full slice.
876 * This also mitigates buddy induced latencies under load.
877 */
878 if (!sched_feat(WAKEUP_PREEMPT))
879 return;
880
881 if (delta_exec < sysctl_sched_min_granularity)
882 return;
883
884 if (cfs_rq->nr_running > 1) {
885 struct sched_entity *se = __pick_next_entity(cfs_rq);
886 s64 delta = curr->vruntime - se->vruntime;
887
888 if (delta > ideal_runtime)
889 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 890 }
bf0f6f24
IM
891}
892
83b699ed 893static void
8494f412 894set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 895{
83b699ed
SV
896 /* 'current' is not kept within the tree. */
897 if (se->on_rq) {
898 /*
899 * Any task has to be enqueued before it get to execute on
900 * a CPU. So account for the time it spent waiting on the
901 * runqueue.
902 */
903 update_stats_wait_end(cfs_rq, se);
904 __dequeue_entity(cfs_rq, se);
905 }
906
79303e9e 907 update_stats_curr_start(cfs_rq, se);
429d43bc 908 cfs_rq->curr = se;
eba1ed4b
IM
909#ifdef CONFIG_SCHEDSTATS
910 /*
911 * Track our maximum slice length, if the CPU's load is at
912 * least twice that of our own weight (i.e. dont track it
913 * when there are only lesser-weight tasks around):
914 */
495eca49 915 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 916 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
917 se->sum_exec_runtime - se->prev_sum_exec_runtime);
918 }
919#endif
4a55b450 920 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
921}
922
3f3a4904
PZ
923static int
924wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
925
f4b6755f 926static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 927{
f4b6755f 928 struct sched_entity *se = __pick_next_entity(cfs_rq);
f685ceac 929 struct sched_entity *left = se;
f4b6755f 930
f685ceac
MG
931 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
932 se = cfs_rq->next;
aa2ac252 933
f685ceac
MG
934 /*
935 * Prefer last buddy, try to return the CPU to a preempted task.
936 */
937 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
938 se = cfs_rq->last;
939
940 clear_buddies(cfs_rq, se);
4793241b
PZ
941
942 return se;
aa2ac252
PZ
943}
944
ab6cde26 945static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
946{
947 /*
948 * If still on the runqueue then deactivate_task()
949 * was not called and update_curr() has to be done:
950 */
951 if (prev->on_rq)
b7cc0896 952 update_curr(cfs_rq);
bf0f6f24 953
ddc97297 954 check_spread(cfs_rq, prev);
30cfdcfc 955 if (prev->on_rq) {
5870db5b 956 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
957 /* Put 'current' back into the tree. */
958 __enqueue_entity(cfs_rq, prev);
959 }
429d43bc 960 cfs_rq->curr = NULL;
bf0f6f24
IM
961}
962
8f4d37ec
PZ
963static void
964entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 965{
bf0f6f24 966 /*
30cfdcfc 967 * Update run-time statistics of the 'current'.
bf0f6f24 968 */
30cfdcfc 969 update_curr(cfs_rq);
bf0f6f24 970
8f4d37ec
PZ
971#ifdef CONFIG_SCHED_HRTICK
972 /*
973 * queued ticks are scheduled to match the slice, so don't bother
974 * validating it and just reschedule.
975 */
983ed7a6
HH
976 if (queued) {
977 resched_task(rq_of(cfs_rq)->curr);
978 return;
979 }
8f4d37ec
PZ
980 /*
981 * don't let the period tick interfere with the hrtick preemption
982 */
983 if (!sched_feat(DOUBLE_TICK) &&
984 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
985 return;
986#endif
987
ce6c1311 988 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 989 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
990}
991
992/**************************************************
993 * CFS operations on tasks:
994 */
995
8f4d37ec
PZ
996#ifdef CONFIG_SCHED_HRTICK
997static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
998{
8f4d37ec
PZ
999 struct sched_entity *se = &p->se;
1000 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1001
1002 WARN_ON(task_rq(p) != rq);
1003
1004 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1005 u64 slice = sched_slice(cfs_rq, se);
1006 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1007 s64 delta = slice - ran;
1008
1009 if (delta < 0) {
1010 if (rq->curr == p)
1011 resched_task(p);
1012 return;
1013 }
1014
1015 /*
1016 * Don't schedule slices shorter than 10000ns, that just
1017 * doesn't make sense. Rely on vruntime for fairness.
1018 */
31656519 1019 if (rq->curr != p)
157124c1 1020 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1021
31656519 1022 hrtick_start(rq, delta);
8f4d37ec
PZ
1023 }
1024}
a4c2f00f
PZ
1025
1026/*
1027 * called from enqueue/dequeue and updates the hrtick when the
1028 * current task is from our class and nr_running is low enough
1029 * to matter.
1030 */
1031static void hrtick_update(struct rq *rq)
1032{
1033 struct task_struct *curr = rq->curr;
1034
1035 if (curr->sched_class != &fair_sched_class)
1036 return;
1037
1038 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1039 hrtick_start_fair(rq, curr);
1040}
55e12e5e 1041#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1042static inline void
1043hrtick_start_fair(struct rq *rq, struct task_struct *p)
1044{
1045}
a4c2f00f
PZ
1046
1047static inline void hrtick_update(struct rq *rq)
1048{
1049}
8f4d37ec
PZ
1050#endif
1051
bf0f6f24
IM
1052/*
1053 * The enqueue_task method is called before nr_running is
1054 * increased. Here we update the fair scheduling stats and
1055 * then put the task into the rbtree:
1056 */
ea87bb78
TG
1057static void
1058enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
bf0f6f24
IM
1059{
1060 struct cfs_rq *cfs_rq;
62fb1851 1061 struct sched_entity *se = &p->se;
88ec22d3
PZ
1062 int flags = 0;
1063
1064 if (wakeup)
1065 flags |= ENQUEUE_WAKEUP;
1066 if (p->state == TASK_WAKING)
1067 flags |= ENQUEUE_MIGRATE;
bf0f6f24
IM
1068
1069 for_each_sched_entity(se) {
62fb1851 1070 if (se->on_rq)
bf0f6f24
IM
1071 break;
1072 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1073 enqueue_entity(cfs_rq, se, flags);
1074 flags = ENQUEUE_WAKEUP;
bf0f6f24 1075 }
8f4d37ec 1076
a4c2f00f 1077 hrtick_update(rq);
bf0f6f24
IM
1078}
1079
1080/*
1081 * The dequeue_task method is called before nr_running is
1082 * decreased. We remove the task from the rbtree and
1083 * update the fair scheduling stats:
1084 */
f02231e5 1085static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
1086{
1087 struct cfs_rq *cfs_rq;
62fb1851 1088 struct sched_entity *se = &p->se;
bf0f6f24
IM
1089
1090 for_each_sched_entity(se) {
1091 cfs_rq = cfs_rq_of(se);
525c2716 1092 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 1093 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1094 if (cfs_rq->load.weight)
bf0f6f24 1095 break;
b9fa3df3 1096 sleep = 1;
bf0f6f24 1097 }
8f4d37ec 1098
a4c2f00f 1099 hrtick_update(rq);
bf0f6f24
IM
1100}
1101
1102/*
1799e35d
IM
1103 * sched_yield() support is very simple - we dequeue and enqueue.
1104 *
1105 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1106 */
4530d7ab 1107static void yield_task_fair(struct rq *rq)
bf0f6f24 1108{
db292ca3
IM
1109 struct task_struct *curr = rq->curr;
1110 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1111 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1112
1113 /*
1799e35d
IM
1114 * Are we the only task in the tree?
1115 */
1116 if (unlikely(cfs_rq->nr_running == 1))
1117 return;
1118
2002c695
PZ
1119 clear_buddies(cfs_rq, se);
1120
db292ca3 1121 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1122 update_rq_clock(rq);
1799e35d 1123 /*
a2a2d680 1124 * Update run-time statistics of the 'current'.
1799e35d 1125 */
2b1e315d 1126 update_curr(cfs_rq);
1799e35d
IM
1127
1128 return;
1129 }
1130 /*
1131 * Find the rightmost entry in the rbtree:
bf0f6f24 1132 */
2b1e315d 1133 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1134 /*
1135 * Already in the rightmost position?
1136 */
54fdc581 1137 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1138 return;
1139
1140 /*
1141 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1142 * Upon rescheduling, sched_class::put_prev_task() will place
1143 * 'current' within the tree based on its new key value.
1799e35d 1144 */
30cfdcfc 1145 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1146}
1147
e7693a36 1148#ifdef CONFIG_SMP
098fb9db 1149
88ec22d3
PZ
1150static void task_waking_fair(struct rq *rq, struct task_struct *p)
1151{
1152 struct sched_entity *se = &p->se;
1153 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1154
1155 se->vruntime -= cfs_rq->min_vruntime;
1156}
1157
bb3469ac 1158#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1159/*
1160 * effective_load() calculates the load change as seen from the root_task_group
1161 *
1162 * Adding load to a group doesn't make a group heavier, but can cause movement
1163 * of group shares between cpus. Assuming the shares were perfectly aligned one
1164 * can calculate the shift in shares.
1165 *
1166 * The problem is that perfectly aligning the shares is rather expensive, hence
1167 * we try to avoid doing that too often - see update_shares(), which ratelimits
1168 * this change.
1169 *
1170 * We compensate this by not only taking the current delta into account, but
1171 * also considering the delta between when the shares were last adjusted and
1172 * now.
1173 *
1174 * We still saw a performance dip, some tracing learned us that between
1175 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1176 * significantly. Therefore try to bias the error in direction of failing
1177 * the affine wakeup.
1178 *
1179 */
f1d239f7
PZ
1180static long effective_load(struct task_group *tg, int cpu,
1181 long wl, long wg)
bb3469ac 1182{
4be9daaa 1183 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1184
1185 if (!tg->parent)
1186 return wl;
1187
f5bfb7d9
PZ
1188 /*
1189 * By not taking the decrease of shares on the other cpu into
1190 * account our error leans towards reducing the affine wakeups.
1191 */
1192 if (!wl && sched_feat(ASYM_EFF_LOAD))
1193 return wl;
1194
4be9daaa 1195 for_each_sched_entity(se) {
cb5ef42a 1196 long S, rw, s, a, b;
940959e9
PZ
1197 long more_w;
1198
1199 /*
1200 * Instead of using this increment, also add the difference
1201 * between when the shares were last updated and now.
1202 */
1203 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1204 wl += more_w;
1205 wg += more_w;
4be9daaa
PZ
1206
1207 S = se->my_q->tg->shares;
1208 s = se->my_q->shares;
f1d239f7 1209 rw = se->my_q->rq_weight;
bb3469ac 1210
cb5ef42a
PZ
1211 a = S*(rw + wl);
1212 b = S*rw + s*wg;
4be9daaa 1213
940959e9
PZ
1214 wl = s*(a-b);
1215
1216 if (likely(b))
1217 wl /= b;
1218
83378269
PZ
1219 /*
1220 * Assume the group is already running and will
1221 * thus already be accounted for in the weight.
1222 *
1223 * That is, moving shares between CPUs, does not
1224 * alter the group weight.
1225 */
4be9daaa 1226 wg = 0;
4be9daaa 1227 }
bb3469ac 1228
4be9daaa 1229 return wl;
bb3469ac 1230}
4be9daaa 1231
bb3469ac 1232#else
4be9daaa 1233
83378269
PZ
1234static inline unsigned long effective_load(struct task_group *tg, int cpu,
1235 unsigned long wl, unsigned long wg)
4be9daaa 1236{
83378269 1237 return wl;
bb3469ac 1238}
4be9daaa 1239
bb3469ac
PZ
1240#endif
1241
c88d5910 1242static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1243{
c88d5910
PZ
1244 unsigned long this_load, load;
1245 int idx, this_cpu, prev_cpu;
098fb9db 1246 unsigned long tl_per_task;
c88d5910
PZ
1247 unsigned int imbalance;
1248 struct task_group *tg;
83378269 1249 unsigned long weight;
b3137bc8 1250 int balanced;
098fb9db 1251
c88d5910
PZ
1252 idx = sd->wake_idx;
1253 this_cpu = smp_processor_id();
1254 prev_cpu = task_cpu(p);
1255 load = source_load(prev_cpu, idx);
1256 this_load = target_load(this_cpu, idx);
098fb9db 1257
b3137bc8
MG
1258 /*
1259 * If sync wakeup then subtract the (maximum possible)
1260 * effect of the currently running task from the load
1261 * of the current CPU:
1262 */
83378269
PZ
1263 if (sync) {
1264 tg = task_group(current);
1265 weight = current->se.load.weight;
1266
c88d5910 1267 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1268 load += effective_load(tg, prev_cpu, 0, -weight);
1269 }
b3137bc8 1270
83378269
PZ
1271 tg = task_group(p);
1272 weight = p->se.load.weight;
b3137bc8 1273
c88d5910
PZ
1274 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1275
71a29aa7
PZ
1276 /*
1277 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1278 * due to the sync cause above having dropped this_load to 0, we'll
1279 * always have an imbalance, but there's really nothing you can do
1280 * about that, so that's good too.
71a29aa7
PZ
1281 *
1282 * Otherwise check if either cpus are near enough in load to allow this
1283 * task to be woken on this_cpu.
1284 */
c88d5910
PZ
1285 balanced = !this_load ||
1286 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
83378269 1287 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1288
098fb9db 1289 /*
4ae7d5ce
IM
1290 * If the currently running task will sleep within
1291 * a reasonable amount of time then attract this newly
1292 * woken task:
098fb9db 1293 */
2fb7635c
PZ
1294 if (sync && balanced)
1295 return 1;
098fb9db 1296
41acab88 1297 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1298 tl_per_task = cpu_avg_load_per_task(this_cpu);
1299
c88d5910
PZ
1300 if (balanced ||
1301 (this_load <= load &&
1302 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1303 /*
1304 * This domain has SD_WAKE_AFFINE and
1305 * p is cache cold in this domain, and
1306 * there is no bad imbalance.
1307 */
c88d5910 1308 schedstat_inc(sd, ttwu_move_affine);
41acab88 1309 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1310
1311 return 1;
1312 }
1313 return 0;
1314}
1315
aaee1203
PZ
1316/*
1317 * find_idlest_group finds and returns the least busy CPU group within the
1318 * domain.
1319 */
1320static struct sched_group *
78e7ed53 1321find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1322 int this_cpu, int load_idx)
e7693a36 1323{
aaee1203
PZ
1324 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1325 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1326 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1327
aaee1203
PZ
1328 do {
1329 unsigned long load, avg_load;
1330 int local_group;
1331 int i;
e7693a36 1332
aaee1203
PZ
1333 /* Skip over this group if it has no CPUs allowed */
1334 if (!cpumask_intersects(sched_group_cpus(group),
1335 &p->cpus_allowed))
1336 continue;
1337
1338 local_group = cpumask_test_cpu(this_cpu,
1339 sched_group_cpus(group));
1340
1341 /* Tally up the load of all CPUs in the group */
1342 avg_load = 0;
1343
1344 for_each_cpu(i, sched_group_cpus(group)) {
1345 /* Bias balancing toward cpus of our domain */
1346 if (local_group)
1347 load = source_load(i, load_idx);
1348 else
1349 load = target_load(i, load_idx);
1350
1351 avg_load += load;
1352 }
1353
1354 /* Adjust by relative CPU power of the group */
1355 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1356
1357 if (local_group) {
1358 this_load = avg_load;
1359 this = group;
1360 } else if (avg_load < min_load) {
1361 min_load = avg_load;
1362 idlest = group;
1363 }
1364 } while (group = group->next, group != sd->groups);
1365
1366 if (!idlest || 100*this_load < imbalance*min_load)
1367 return NULL;
1368 return idlest;
1369}
1370
1371/*
1372 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1373 */
1374static int
1375find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1376{
1377 unsigned long load, min_load = ULONG_MAX;
1378 int idlest = -1;
1379 int i;
1380
1381 /* Traverse only the allowed CPUs */
1382 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1383 load = weighted_cpuload(i);
1384
1385 if (load < min_load || (load == min_load && i == this_cpu)) {
1386 min_load = load;
1387 idlest = i;
e7693a36
GH
1388 }
1389 }
1390
aaee1203
PZ
1391 return idlest;
1392}
e7693a36 1393
a50bde51
PZ
1394/*
1395 * Try and locate an idle CPU in the sched_domain.
1396 */
1397static int
1398select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1399{
1400 int cpu = smp_processor_id();
1401 int prev_cpu = task_cpu(p);
1402 int i;
1403
1404 /*
1405 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1406 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1407 * always a better target than the current cpu.
1408 */
fe3bcfe1
PZ
1409 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1410 return prev_cpu;
a50bde51
PZ
1411
1412 /*
1413 * Otherwise, iterate the domain and find an elegible idle cpu.
1414 */
fe3bcfe1
PZ
1415 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1416 if (!cpu_rq(i)->cfs.nr_running) {
1417 target = i;
1418 break;
a50bde51
PZ
1419 }
1420 }
1421
1422 return target;
1423}
1424
aaee1203
PZ
1425/*
1426 * sched_balance_self: balance the current task (running on cpu) in domains
1427 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1428 * SD_BALANCE_EXEC.
1429 *
1430 * Balance, ie. select the least loaded group.
1431 *
1432 * Returns the target CPU number, or the same CPU if no balancing is needed.
1433 *
1434 * preempt must be disabled.
1435 */
5158f4e4 1436static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1437{
29cd8bae 1438 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1439 int cpu = smp_processor_id();
1440 int prev_cpu = task_cpu(p);
1441 int new_cpu = cpu;
1442 int want_affine = 0;
29cd8bae 1443 int want_sd = 1;
5158f4e4 1444 int sync = wake_flags & WF_SYNC;
c88d5910 1445
0763a660 1446 if (sd_flag & SD_BALANCE_WAKE) {
3f04e8cd
MG
1447 if (sched_feat(AFFINE_WAKEUPS) &&
1448 cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1449 want_affine = 1;
1450 new_cpu = prev_cpu;
1451 }
aaee1203
PZ
1452
1453 for_each_domain(cpu, tmp) {
e4f42888
PZ
1454 if (!(tmp->flags & SD_LOAD_BALANCE))
1455 continue;
1456
aaee1203 1457 /*
ae154be1
PZ
1458 * If power savings logic is enabled for a domain, see if we
1459 * are not overloaded, if so, don't balance wider.
aaee1203 1460 */
59abf026 1461 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1462 unsigned long power = 0;
1463 unsigned long nr_running = 0;
1464 unsigned long capacity;
1465 int i;
1466
1467 for_each_cpu(i, sched_domain_span(tmp)) {
1468 power += power_of(i);
1469 nr_running += cpu_rq(i)->cfs.nr_running;
1470 }
1471
1472 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1473
59abf026
PZ
1474 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1475 nr_running /= 2;
1476
1477 if (nr_running < capacity)
29cd8bae 1478 want_sd = 0;
ae154be1 1479 }
aaee1203 1480
fe3bcfe1
PZ
1481 /*
1482 * While iterating the domains looking for a spanning
1483 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1484 * in cache sharing domains along the way.
1485 */
1486 if (want_affine) {
a50bde51 1487 int target = -1;
c88d5910 1488
a50bde51
PZ
1489 /*
1490 * If both cpu and prev_cpu are part of this domain,
1491 * cpu is a valid SD_WAKE_AFFINE target.
1492 */
a1f84a3a 1493 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
a50bde51 1494 target = cpu;
a1f84a3a
MG
1495
1496 /*
a50bde51
PZ
1497 * If there's an idle sibling in this domain, make that
1498 * the wake_affine target instead of the current cpu.
a1f84a3a 1499 */
50b926e4 1500 if (tmp->flags & SD_SHARE_PKG_RESOURCES)
a50bde51 1501 target = select_idle_sibling(p, tmp, target);
a1f84a3a 1502
a50bde51 1503 if (target >= 0) {
fe3bcfe1
PZ
1504 if (tmp->flags & SD_WAKE_AFFINE) {
1505 affine_sd = tmp;
1506 want_affine = 0;
1507 }
a50bde51 1508 cpu = target;
a1f84a3a 1509 }
c88d5910
PZ
1510 }
1511
29cd8bae
PZ
1512 if (!want_sd && !want_affine)
1513 break;
1514
0763a660 1515 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1516 continue;
1517
29cd8bae
PZ
1518 if (want_sd)
1519 sd = tmp;
1520 }
1521
1522 if (sched_feat(LB_SHARES_UPDATE)) {
1523 /*
1524 * Pick the largest domain to update shares over
1525 */
1526 tmp = sd;
1527 if (affine_sd && (!tmp ||
1528 cpumask_weight(sched_domain_span(affine_sd)) >
1529 cpumask_weight(sched_domain_span(sd))))
1530 tmp = affine_sd;
1531
1532 if (tmp)
1533 update_shares(tmp);
c88d5910 1534 }
aaee1203 1535
fb58bac5
PZ
1536 if (affine_sd && wake_affine(affine_sd, p, sync))
1537 return cpu;
e7693a36 1538
aaee1203 1539 while (sd) {
5158f4e4 1540 int load_idx = sd->forkexec_idx;
aaee1203 1541 struct sched_group *group;
c88d5910 1542 int weight;
098fb9db 1543
0763a660 1544 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1545 sd = sd->child;
1546 continue;
1547 }
098fb9db 1548
5158f4e4
PZ
1549 if (sd_flag & SD_BALANCE_WAKE)
1550 load_idx = sd->wake_idx;
098fb9db 1551
5158f4e4 1552 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1553 if (!group) {
1554 sd = sd->child;
1555 continue;
1556 }
4ae7d5ce 1557
d7c33c49 1558 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1559 if (new_cpu == -1 || new_cpu == cpu) {
1560 /* Now try balancing at a lower domain level of cpu */
1561 sd = sd->child;
1562 continue;
e7693a36 1563 }
aaee1203
PZ
1564
1565 /* Now try balancing at a lower domain level of new_cpu */
1566 cpu = new_cpu;
1567 weight = cpumask_weight(sched_domain_span(sd));
1568 sd = NULL;
1569 for_each_domain(cpu, tmp) {
1570 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1571 break;
0763a660 1572 if (tmp->flags & sd_flag)
aaee1203
PZ
1573 sd = tmp;
1574 }
1575 /* while loop will break here if sd == NULL */
e7693a36
GH
1576 }
1577
c88d5910 1578 return new_cpu;
e7693a36
GH
1579}
1580#endif /* CONFIG_SMP */
1581
e52fb7c0
PZ
1582static unsigned long
1583wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1584{
1585 unsigned long gran = sysctl_sched_wakeup_granularity;
1586
1587 /*
e52fb7c0
PZ
1588 * Since its curr running now, convert the gran from real-time
1589 * to virtual-time in his units.
0bbd3336 1590 */
e52fb7c0
PZ
1591 if (sched_feat(ASYM_GRAN)) {
1592 /*
1593 * By using 'se' instead of 'curr' we penalize light tasks, so
1594 * they get preempted easier. That is, if 'se' < 'curr' then
1595 * the resulting gran will be larger, therefore penalizing the
1596 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1597 * be smaller, again penalizing the lighter task.
1598 *
1599 * This is especially important for buddies when the leftmost
1600 * task is higher priority than the buddy.
1601 */
1602 if (unlikely(se->load.weight != NICE_0_LOAD))
1603 gran = calc_delta_fair(gran, se);
1604 } else {
1605 if (unlikely(curr->load.weight != NICE_0_LOAD))
1606 gran = calc_delta_fair(gran, curr);
1607 }
0bbd3336
PZ
1608
1609 return gran;
1610}
1611
464b7527
PZ
1612/*
1613 * Should 'se' preempt 'curr'.
1614 *
1615 * |s1
1616 * |s2
1617 * |s3
1618 * g
1619 * |<--->|c
1620 *
1621 * w(c, s1) = -1
1622 * w(c, s2) = 0
1623 * w(c, s3) = 1
1624 *
1625 */
1626static int
1627wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1628{
1629 s64 gran, vdiff = curr->vruntime - se->vruntime;
1630
1631 if (vdiff <= 0)
1632 return -1;
1633
e52fb7c0 1634 gran = wakeup_gran(curr, se);
464b7527
PZ
1635 if (vdiff > gran)
1636 return 1;
1637
1638 return 0;
1639}
1640
02479099
PZ
1641static void set_last_buddy(struct sched_entity *se)
1642{
6bc912b7
PZ
1643 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1644 for_each_sched_entity(se)
1645 cfs_rq_of(se)->last = se;
1646 }
02479099
PZ
1647}
1648
1649static void set_next_buddy(struct sched_entity *se)
1650{
6bc912b7
PZ
1651 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1652 for_each_sched_entity(se)
1653 cfs_rq_of(se)->next = se;
1654 }
02479099
PZ
1655}
1656
bf0f6f24
IM
1657/*
1658 * Preempt the current task with a newly woken task if needed:
1659 */
5a9b86f6 1660static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1661{
1662 struct task_struct *curr = rq->curr;
8651a86c 1663 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1664 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5a9b86f6 1665 int sync = wake_flags & WF_SYNC;
f685ceac 1666 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1667
3a7e73a2
PZ
1668 if (unlikely(rt_prio(p->prio)))
1669 goto preempt;
aa2ac252 1670
d95f98d0
PZ
1671 if (unlikely(p->sched_class != &fair_sched_class))
1672 return;
1673
4ae7d5ce
IM
1674 if (unlikely(se == pse))
1675 return;
1676
f685ceac 1677 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1678 set_next_buddy(pse);
57fdc26d 1679
aec0a514
BR
1680 /*
1681 * We can come here with TIF_NEED_RESCHED already set from new task
1682 * wake up path.
1683 */
1684 if (test_tsk_need_resched(curr))
1685 return;
1686
91c234b4 1687 /*
6bc912b7 1688 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1689 * the tick):
1690 */
6bc912b7 1691 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1692 return;
bf0f6f24 1693
6bc912b7 1694 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1695 if (unlikely(curr->policy == SCHED_IDLE))
1696 goto preempt;
bf0f6f24 1697
3a7e73a2
PZ
1698 if (sched_feat(WAKEUP_SYNC) && sync)
1699 goto preempt;
15afe09b 1700
ad4b78bb
PZ
1701 if (!sched_feat(WAKEUP_PREEMPT))
1702 return;
1703
3a7e73a2 1704 update_curr(cfs_rq);
464b7527 1705 find_matching_se(&se, &pse);
002f128b 1706 BUG_ON(!pse);
3a7e73a2
PZ
1707 if (wakeup_preempt_entity(se, pse) == 1)
1708 goto preempt;
464b7527 1709
3a7e73a2 1710 return;
a65ac745 1711
3a7e73a2
PZ
1712preempt:
1713 resched_task(curr);
1714 /*
1715 * Only set the backward buddy when the current task is still
1716 * on the rq. This can happen when a wakeup gets interleaved
1717 * with schedule on the ->pre_schedule() or idle_balance()
1718 * point, either of which can * drop the rq lock.
1719 *
1720 * Also, during early boot the idle thread is in the fair class,
1721 * for obvious reasons its a bad idea to schedule back to it.
1722 */
1723 if (unlikely(!se->on_rq || curr == rq->idle))
1724 return;
1725
1726 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1727 set_last_buddy(se);
bf0f6f24
IM
1728}
1729
fb8d4724 1730static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1731{
8f4d37ec 1732 struct task_struct *p;
bf0f6f24
IM
1733 struct cfs_rq *cfs_rq = &rq->cfs;
1734 struct sched_entity *se;
1735
36ace27e 1736 if (!cfs_rq->nr_running)
bf0f6f24
IM
1737 return NULL;
1738
1739 do {
9948f4b2 1740 se = pick_next_entity(cfs_rq);
f4b6755f 1741 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1742 cfs_rq = group_cfs_rq(se);
1743 } while (cfs_rq);
1744
8f4d37ec
PZ
1745 p = task_of(se);
1746 hrtick_start_fair(rq, p);
1747
1748 return p;
bf0f6f24
IM
1749}
1750
1751/*
1752 * Account for a descheduled task:
1753 */
31ee529c 1754static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1755{
1756 struct sched_entity *se = &prev->se;
1757 struct cfs_rq *cfs_rq;
1758
1759 for_each_sched_entity(se) {
1760 cfs_rq = cfs_rq_of(se);
ab6cde26 1761 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1762 }
1763}
1764
681f3e68 1765#ifdef CONFIG_SMP
bf0f6f24
IM
1766/**************************************************
1767 * Fair scheduling class load-balancing methods:
1768 */
1769
1e3c88bd
PZ
1770/*
1771 * pull_task - move a task from a remote runqueue to the local runqueue.
1772 * Both runqueues must be locked.
1773 */
1774static void pull_task(struct rq *src_rq, struct task_struct *p,
1775 struct rq *this_rq, int this_cpu)
1776{
1777 deactivate_task(src_rq, p, 0);
1778 set_task_cpu(p, this_cpu);
1779 activate_task(this_rq, p, 0);
1780 check_preempt_curr(this_rq, p, 0);
1781}
1782
1783/*
1784 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1785 */
1786static
1787int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1788 struct sched_domain *sd, enum cpu_idle_type idle,
1789 int *all_pinned)
1790{
1791 int tsk_cache_hot = 0;
1792 /*
1793 * We do not migrate tasks that are:
1794 * 1) running (obviously), or
1795 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1796 * 3) are cache-hot on their current CPU.
1797 */
1798 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 1799 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
1800 return 0;
1801 }
1802 *all_pinned = 0;
1803
1804 if (task_running(rq, p)) {
41acab88 1805 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
1806 return 0;
1807 }
1808
1809 /*
1810 * Aggressive migration if:
1811 * 1) task is cache cold, or
1812 * 2) too many balance attempts have failed.
1813 */
1814
1815 tsk_cache_hot = task_hot(p, rq->clock, sd);
1816 if (!tsk_cache_hot ||
1817 sd->nr_balance_failed > sd->cache_nice_tries) {
1818#ifdef CONFIG_SCHEDSTATS
1819 if (tsk_cache_hot) {
1820 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 1821 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
1822 }
1823#endif
1824 return 1;
1825 }
1826
1827 if (tsk_cache_hot) {
41acab88 1828 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
1829 return 0;
1830 }
1831 return 1;
1832}
1833
897c395f
PZ
1834/*
1835 * move_one_task tries to move exactly one task from busiest to this_rq, as
1836 * part of active balancing operations within "domain".
1837 * Returns 1 if successful and 0 otherwise.
1838 *
1839 * Called with both runqueues locked.
1840 */
1841static int
1842move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1843 struct sched_domain *sd, enum cpu_idle_type idle)
1844{
1845 struct task_struct *p, *n;
1846 struct cfs_rq *cfs_rq;
1847 int pinned = 0;
1848
1849 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1850 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1851
1852 if (!can_migrate_task(p, busiest, this_cpu,
1853 sd, idle, &pinned))
1854 continue;
1855
1856 pull_task(busiest, p, this_rq, this_cpu);
1857 /*
1858 * Right now, this is only the second place pull_task()
1859 * is called, so we can safely collect pull_task()
1860 * stats here rather than inside pull_task().
1861 */
1862 schedstat_inc(sd, lb_gained[idle]);
1863 return 1;
1864 }
1865 }
1866
1867 return 0;
1868}
1869
1e3c88bd
PZ
1870static unsigned long
1871balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1872 unsigned long max_load_move, struct sched_domain *sd,
1873 enum cpu_idle_type idle, int *all_pinned,
ee00e66f 1874 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1e3c88bd
PZ
1875{
1876 int loops = 0, pulled = 0, pinned = 0;
1e3c88bd 1877 long rem_load_move = max_load_move;
ee00e66f 1878 struct task_struct *p, *n;
1e3c88bd
PZ
1879
1880 if (max_load_move == 0)
1881 goto out;
1882
1883 pinned = 1;
1884
ee00e66f
PZ
1885 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1886 if (loops++ > sysctl_sched_nr_migrate)
1887 break;
1e3c88bd 1888
ee00e66f
PZ
1889 if ((p->se.load.weight >> 1) > rem_load_move ||
1890 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1891 continue;
1e3c88bd 1892
ee00e66f
PZ
1893 pull_task(busiest, p, this_rq, this_cpu);
1894 pulled++;
1895 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
1896
1897#ifdef CONFIG_PREEMPT
ee00e66f
PZ
1898 /*
1899 * NEWIDLE balancing is a source of latency, so preemptible
1900 * kernels will stop after the first task is pulled to minimize
1901 * the critical section.
1902 */
1903 if (idle == CPU_NEWLY_IDLE)
1904 break;
1e3c88bd
PZ
1905#endif
1906
ee00e66f
PZ
1907 /*
1908 * We only want to steal up to the prescribed amount of
1909 * weighted load.
1910 */
1911 if (rem_load_move <= 0)
1912 break;
1913
1e3c88bd
PZ
1914 if (p->prio < *this_best_prio)
1915 *this_best_prio = p->prio;
1e3c88bd
PZ
1916 }
1917out:
1918 /*
1919 * Right now, this is one of only two places pull_task() is called,
1920 * so we can safely collect pull_task() stats here rather than
1921 * inside pull_task().
1922 */
1923 schedstat_add(sd, lb_gained[idle], pulled);
1924
1925 if (all_pinned)
1926 *all_pinned = pinned;
1927
1928 return max_load_move - rem_load_move;
1929}
1930
230059de
PZ
1931#ifdef CONFIG_FAIR_GROUP_SCHED
1932static unsigned long
1933load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1934 unsigned long max_load_move,
1935 struct sched_domain *sd, enum cpu_idle_type idle,
1936 int *all_pinned, int *this_best_prio)
1937{
1938 long rem_load_move = max_load_move;
1939 int busiest_cpu = cpu_of(busiest);
1940 struct task_group *tg;
1941
1942 rcu_read_lock();
1943 update_h_load(busiest_cpu);
1944
1945 list_for_each_entry_rcu(tg, &task_groups, list) {
1946 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1947 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1948 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1949 u64 rem_load, moved_load;
1950
1951 /*
1952 * empty group
1953 */
1954 if (!busiest_cfs_rq->task_weight)
1955 continue;
1956
1957 rem_load = (u64)rem_load_move * busiest_weight;
1958 rem_load = div_u64(rem_load, busiest_h_load + 1);
1959
1960 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1961 rem_load, sd, idle, all_pinned, this_best_prio,
1962 busiest_cfs_rq);
1963
1964 if (!moved_load)
1965 continue;
1966
1967 moved_load *= busiest_h_load;
1968 moved_load = div_u64(moved_load, busiest_weight + 1);
1969
1970 rem_load_move -= moved_load;
1971 if (rem_load_move < 0)
1972 break;
1973 }
1974 rcu_read_unlock();
1975
1976 return max_load_move - rem_load_move;
1977}
1978#else
1979static unsigned long
1980load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1981 unsigned long max_load_move,
1982 struct sched_domain *sd, enum cpu_idle_type idle,
1983 int *all_pinned, int *this_best_prio)
1984{
1985 return balance_tasks(this_rq, this_cpu, busiest,
1986 max_load_move, sd, idle, all_pinned,
1987 this_best_prio, &busiest->cfs);
1988}
1989#endif
1990
1e3c88bd
PZ
1991/*
1992 * move_tasks tries to move up to max_load_move weighted load from busiest to
1993 * this_rq, as part of a balancing operation within domain "sd".
1994 * Returns 1 if successful and 0 otherwise.
1995 *
1996 * Called with both runqueues locked.
1997 */
1998static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1999 unsigned long max_load_move,
2000 struct sched_domain *sd, enum cpu_idle_type idle,
2001 int *all_pinned)
2002{
3d45fd80 2003 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2004 int this_best_prio = this_rq->curr->prio;
2005
2006 do {
3d45fd80 2007 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd
PZ
2008 max_load_move - total_load_moved,
2009 sd, idle, all_pinned, &this_best_prio);
3d45fd80
PZ
2010
2011 total_load_moved += load_moved;
1e3c88bd
PZ
2012
2013#ifdef CONFIG_PREEMPT
2014 /*
2015 * NEWIDLE balancing is a source of latency, so preemptible
2016 * kernels will stop after the first task is pulled to minimize
2017 * the critical section.
2018 */
2019 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2020 break;
baa8c110
PZ
2021
2022 if (raw_spin_is_contended(&this_rq->lock) ||
2023 raw_spin_is_contended(&busiest->lock))
2024 break;
1e3c88bd 2025#endif
3d45fd80 2026 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2027
2028 return total_load_moved > 0;
2029}
2030
1e3c88bd
PZ
2031/********** Helpers for find_busiest_group ************************/
2032/*
2033 * sd_lb_stats - Structure to store the statistics of a sched_domain
2034 * during load balancing.
2035 */
2036struct sd_lb_stats {
2037 struct sched_group *busiest; /* Busiest group in this sd */
2038 struct sched_group *this; /* Local group in this sd */
2039 unsigned long total_load; /* Total load of all groups in sd */
2040 unsigned long total_pwr; /* Total power of all groups in sd */
2041 unsigned long avg_load; /* Average load across all groups in sd */
2042
2043 /** Statistics of this group */
2044 unsigned long this_load;
2045 unsigned long this_load_per_task;
2046 unsigned long this_nr_running;
2047
2048 /* Statistics of the busiest group */
2049 unsigned long max_load;
2050 unsigned long busiest_load_per_task;
2051 unsigned long busiest_nr_running;
dd5feea1 2052 unsigned long busiest_group_capacity;
1e3c88bd
PZ
2053
2054 int group_imb; /* Is there imbalance in this sd */
2055#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2056 int power_savings_balance; /* Is powersave balance needed for this sd */
2057 struct sched_group *group_min; /* Least loaded group in sd */
2058 struct sched_group *group_leader; /* Group which relieves group_min */
2059 unsigned long min_load_per_task; /* load_per_task in group_min */
2060 unsigned long leader_nr_running; /* Nr running of group_leader */
2061 unsigned long min_nr_running; /* Nr running of group_min */
2062#endif
2063};
2064
2065/*
2066 * sg_lb_stats - stats of a sched_group required for load_balancing
2067 */
2068struct sg_lb_stats {
2069 unsigned long avg_load; /*Avg load across the CPUs of the group */
2070 unsigned long group_load; /* Total load over the CPUs of the group */
2071 unsigned long sum_nr_running; /* Nr tasks running in the group */
2072 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2073 unsigned long group_capacity;
2074 int group_imb; /* Is there an imbalance in the group ? */
2075};
2076
2077/**
2078 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2079 * @group: The group whose first cpu is to be returned.
2080 */
2081static inline unsigned int group_first_cpu(struct sched_group *group)
2082{
2083 return cpumask_first(sched_group_cpus(group));
2084}
2085
2086/**
2087 * get_sd_load_idx - Obtain the load index for a given sched domain.
2088 * @sd: The sched_domain whose load_idx is to be obtained.
2089 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2090 */
2091static inline int get_sd_load_idx(struct sched_domain *sd,
2092 enum cpu_idle_type idle)
2093{
2094 int load_idx;
2095
2096 switch (idle) {
2097 case CPU_NOT_IDLE:
2098 load_idx = sd->busy_idx;
2099 break;
2100
2101 case CPU_NEWLY_IDLE:
2102 load_idx = sd->newidle_idx;
2103 break;
2104 default:
2105 load_idx = sd->idle_idx;
2106 break;
2107 }
2108
2109 return load_idx;
2110}
2111
2112
2113#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2114/**
2115 * init_sd_power_savings_stats - Initialize power savings statistics for
2116 * the given sched_domain, during load balancing.
2117 *
2118 * @sd: Sched domain whose power-savings statistics are to be initialized.
2119 * @sds: Variable containing the statistics for sd.
2120 * @idle: Idle status of the CPU at which we're performing load-balancing.
2121 */
2122static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2123 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2124{
2125 /*
2126 * Busy processors will not participate in power savings
2127 * balance.
2128 */
2129 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2130 sds->power_savings_balance = 0;
2131 else {
2132 sds->power_savings_balance = 1;
2133 sds->min_nr_running = ULONG_MAX;
2134 sds->leader_nr_running = 0;
2135 }
2136}
2137
2138/**
2139 * update_sd_power_savings_stats - Update the power saving stats for a
2140 * sched_domain while performing load balancing.
2141 *
2142 * @group: sched_group belonging to the sched_domain under consideration.
2143 * @sds: Variable containing the statistics of the sched_domain
2144 * @local_group: Does group contain the CPU for which we're performing
2145 * load balancing ?
2146 * @sgs: Variable containing the statistics of the group.
2147 */
2148static inline void update_sd_power_savings_stats(struct sched_group *group,
2149 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2150{
2151
2152 if (!sds->power_savings_balance)
2153 return;
2154
2155 /*
2156 * If the local group is idle or completely loaded
2157 * no need to do power savings balance at this domain
2158 */
2159 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2160 !sds->this_nr_running))
2161 sds->power_savings_balance = 0;
2162
2163 /*
2164 * If a group is already running at full capacity or idle,
2165 * don't include that group in power savings calculations
2166 */
2167 if (!sds->power_savings_balance ||
2168 sgs->sum_nr_running >= sgs->group_capacity ||
2169 !sgs->sum_nr_running)
2170 return;
2171
2172 /*
2173 * Calculate the group which has the least non-idle load.
2174 * This is the group from where we need to pick up the load
2175 * for saving power
2176 */
2177 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2178 (sgs->sum_nr_running == sds->min_nr_running &&
2179 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2180 sds->group_min = group;
2181 sds->min_nr_running = sgs->sum_nr_running;
2182 sds->min_load_per_task = sgs->sum_weighted_load /
2183 sgs->sum_nr_running;
2184 }
2185
2186 /*
2187 * Calculate the group which is almost near its
2188 * capacity but still has some space to pick up some load
2189 * from other group and save more power
2190 */
2191 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2192 return;
2193
2194 if (sgs->sum_nr_running > sds->leader_nr_running ||
2195 (sgs->sum_nr_running == sds->leader_nr_running &&
2196 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2197 sds->group_leader = group;
2198 sds->leader_nr_running = sgs->sum_nr_running;
2199 }
2200}
2201
2202/**
2203 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2204 * @sds: Variable containing the statistics of the sched_domain
2205 * under consideration.
2206 * @this_cpu: Cpu at which we're currently performing load-balancing.
2207 * @imbalance: Variable to store the imbalance.
2208 *
2209 * Description:
2210 * Check if we have potential to perform some power-savings balance.
2211 * If yes, set the busiest group to be the least loaded group in the
2212 * sched_domain, so that it's CPUs can be put to idle.
2213 *
2214 * Returns 1 if there is potential to perform power-savings balance.
2215 * Else returns 0.
2216 */
2217static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2218 int this_cpu, unsigned long *imbalance)
2219{
2220 if (!sds->power_savings_balance)
2221 return 0;
2222
2223 if (sds->this != sds->group_leader ||
2224 sds->group_leader == sds->group_min)
2225 return 0;
2226
2227 *imbalance = sds->min_load_per_task;
2228 sds->busiest = sds->group_min;
2229
2230 return 1;
2231
2232}
2233#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2234static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2235 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2236{
2237 return;
2238}
2239
2240static inline void update_sd_power_savings_stats(struct sched_group *group,
2241 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2242{
2243 return;
2244}
2245
2246static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2247 int this_cpu, unsigned long *imbalance)
2248{
2249 return 0;
2250}
2251#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2252
2253
2254unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2255{
2256 return SCHED_LOAD_SCALE;
2257}
2258
2259unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2260{
2261 return default_scale_freq_power(sd, cpu);
2262}
2263
2264unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2265{
2266 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2267 unsigned long smt_gain = sd->smt_gain;
2268
2269 smt_gain /= weight;
2270
2271 return smt_gain;
2272}
2273
2274unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2275{
2276 return default_scale_smt_power(sd, cpu);
2277}
2278
2279unsigned long scale_rt_power(int cpu)
2280{
2281 struct rq *rq = cpu_rq(cpu);
2282 u64 total, available;
2283
2284 sched_avg_update(rq);
2285
2286 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2287 available = total - rq->rt_avg;
2288
2289 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2290 total = SCHED_LOAD_SCALE;
2291
2292 total >>= SCHED_LOAD_SHIFT;
2293
2294 return div_u64(available, total);
2295}
2296
2297static void update_cpu_power(struct sched_domain *sd, int cpu)
2298{
2299 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2300 unsigned long power = SCHED_LOAD_SCALE;
2301 struct sched_group *sdg = sd->groups;
2302
2303 if (sched_feat(ARCH_POWER))
2304 power *= arch_scale_freq_power(sd, cpu);
2305 else
2306 power *= default_scale_freq_power(sd, cpu);
2307
2308 power >>= SCHED_LOAD_SHIFT;
2309
2310 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2311 if (sched_feat(ARCH_POWER))
2312 power *= arch_scale_smt_power(sd, cpu);
2313 else
2314 power *= default_scale_smt_power(sd, cpu);
2315
2316 power >>= SCHED_LOAD_SHIFT;
2317 }
2318
2319 power *= scale_rt_power(cpu);
2320 power >>= SCHED_LOAD_SHIFT;
2321
2322 if (!power)
2323 power = 1;
2324
2325 sdg->cpu_power = power;
2326}
2327
2328static void update_group_power(struct sched_domain *sd, int cpu)
2329{
2330 struct sched_domain *child = sd->child;
2331 struct sched_group *group, *sdg = sd->groups;
2332 unsigned long power;
2333
2334 if (!child) {
2335 update_cpu_power(sd, cpu);
2336 return;
2337 }
2338
2339 power = 0;
2340
2341 group = child->groups;
2342 do {
2343 power += group->cpu_power;
2344 group = group->next;
2345 } while (group != child->groups);
2346
2347 sdg->cpu_power = power;
2348}
2349
2350/**
2351 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2352 * @sd: The sched_domain whose statistics are to be updated.
2353 * @group: sched_group whose statistics are to be updated.
2354 * @this_cpu: Cpu for which load balance is currently performed.
2355 * @idle: Idle status of this_cpu
2356 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2357 * @sd_idle: Idle status of the sched_domain containing group.
2358 * @local_group: Does group contain this_cpu.
2359 * @cpus: Set of cpus considered for load balancing.
2360 * @balance: Should we balance.
2361 * @sgs: variable to hold the statistics for this group.
2362 */
2363static inline void update_sg_lb_stats(struct sched_domain *sd,
2364 struct sched_group *group, int this_cpu,
2365 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2366 int local_group, const struct cpumask *cpus,
2367 int *balance, struct sg_lb_stats *sgs)
2368{
2369 unsigned long load, max_cpu_load, min_cpu_load;
2370 int i;
2371 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2372 unsigned long avg_load_per_task = 0;
1e3c88bd 2373
871e35bc 2374 if (local_group)
1e3c88bd 2375 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2376
2377 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2378 max_cpu_load = 0;
2379 min_cpu_load = ~0UL;
2380
2381 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2382 struct rq *rq = cpu_rq(i);
2383
2384 if (*sd_idle && rq->nr_running)
2385 *sd_idle = 0;
2386
2387 /* Bias balancing toward cpus of our domain */
2388 if (local_group) {
2389 if (idle_cpu(i) && !first_idle_cpu) {
2390 first_idle_cpu = 1;
2391 balance_cpu = i;
2392 }
2393
2394 load = target_load(i, load_idx);
2395 } else {
2396 load = source_load(i, load_idx);
2397 if (load > max_cpu_load)
2398 max_cpu_load = load;
2399 if (min_cpu_load > load)
2400 min_cpu_load = load;
2401 }
2402
2403 sgs->group_load += load;
2404 sgs->sum_nr_running += rq->nr_running;
2405 sgs->sum_weighted_load += weighted_cpuload(i);
2406
1e3c88bd
PZ
2407 }
2408
2409 /*
2410 * First idle cpu or the first cpu(busiest) in this sched group
2411 * is eligible for doing load balancing at this and above
2412 * domains. In the newly idle case, we will allow all the cpu's
2413 * to do the newly idle load balance.
2414 */
2415 if (idle != CPU_NEWLY_IDLE && local_group &&
8f190fb3 2416 balance_cpu != this_cpu) {
1e3c88bd
PZ
2417 *balance = 0;
2418 return;
2419 }
2420
871e35bc
GS
2421 update_group_power(sd, this_cpu);
2422
1e3c88bd
PZ
2423 /* Adjust by relative CPU power of the group */
2424 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2425
1e3c88bd
PZ
2426 /*
2427 * Consider the group unbalanced when the imbalance is larger
2428 * than the average weight of two tasks.
2429 *
2430 * APZ: with cgroup the avg task weight can vary wildly and
2431 * might not be a suitable number - should we keep a
2432 * normalized nr_running number somewhere that negates
2433 * the hierarchy?
2434 */
dd5feea1
SS
2435 if (sgs->sum_nr_running)
2436 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd
PZ
2437
2438 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2439 sgs->group_imb = 1;
2440
2441 sgs->group_capacity =
2442 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2443}
2444
2445/**
2446 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2447 * @sd: sched_domain whose statistics are to be updated.
2448 * @this_cpu: Cpu for which load balance is currently performed.
2449 * @idle: Idle status of this_cpu
2450 * @sd_idle: Idle status of the sched_domain containing group.
2451 * @cpus: Set of cpus considered for load balancing.
2452 * @balance: Should we balance.
2453 * @sds: variable to hold the statistics for this sched_domain.
2454 */
2455static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2456 enum cpu_idle_type idle, int *sd_idle,
2457 const struct cpumask *cpus, int *balance,
2458 struct sd_lb_stats *sds)
2459{
2460 struct sched_domain *child = sd->child;
2461 struct sched_group *group = sd->groups;
2462 struct sg_lb_stats sgs;
2463 int load_idx, prefer_sibling = 0;
2464
2465 if (child && child->flags & SD_PREFER_SIBLING)
2466 prefer_sibling = 1;
2467
2468 init_sd_power_savings_stats(sd, sds, idle);
2469 load_idx = get_sd_load_idx(sd, idle);
2470
2471 do {
2472 int local_group;
2473
2474 local_group = cpumask_test_cpu(this_cpu,
2475 sched_group_cpus(group));
2476 memset(&sgs, 0, sizeof(sgs));
2477 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2478 local_group, cpus, balance, &sgs);
2479
8f190fb3 2480 if (local_group && !(*balance))
1e3c88bd
PZ
2481 return;
2482
2483 sds->total_load += sgs.group_load;
2484 sds->total_pwr += group->cpu_power;
2485
2486 /*
2487 * In case the child domain prefers tasks go to siblings
2488 * first, lower the group capacity to one so that we'll try
2489 * and move all the excess tasks away.
2490 */
2491 if (prefer_sibling)
2492 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2493
2494 if (local_group) {
2495 sds->this_load = sgs.avg_load;
2496 sds->this = group;
2497 sds->this_nr_running = sgs.sum_nr_running;
2498 sds->this_load_per_task = sgs.sum_weighted_load;
2499 } else if (sgs.avg_load > sds->max_load &&
2500 (sgs.sum_nr_running > sgs.group_capacity ||
2501 sgs.group_imb)) {
2502 sds->max_load = sgs.avg_load;
2503 sds->busiest = group;
2504 sds->busiest_nr_running = sgs.sum_nr_running;
dd5feea1 2505 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd
PZ
2506 sds->busiest_load_per_task = sgs.sum_weighted_load;
2507 sds->group_imb = sgs.group_imb;
2508 }
2509
2510 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2511 group = group->next;
2512 } while (group != sd->groups);
2513}
2514
2515/**
2516 * fix_small_imbalance - Calculate the minor imbalance that exists
2517 * amongst the groups of a sched_domain, during
2518 * load balancing.
2519 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2520 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2521 * @imbalance: Variable to store the imbalance.
2522 */
2523static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2524 int this_cpu, unsigned long *imbalance)
2525{
2526 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2527 unsigned int imbn = 2;
dd5feea1 2528 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2529
2530 if (sds->this_nr_running) {
2531 sds->this_load_per_task /= sds->this_nr_running;
2532 if (sds->busiest_load_per_task >
2533 sds->this_load_per_task)
2534 imbn = 1;
2535 } else
2536 sds->this_load_per_task =
2537 cpu_avg_load_per_task(this_cpu);
2538
dd5feea1
SS
2539 scaled_busy_load_per_task = sds->busiest_load_per_task
2540 * SCHED_LOAD_SCALE;
2541 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2542
2543 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2544 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
2545 *imbalance = sds->busiest_load_per_task;
2546 return;
2547 }
2548
2549 /*
2550 * OK, we don't have enough imbalance to justify moving tasks,
2551 * however we may be able to increase total CPU power used by
2552 * moving them.
2553 */
2554
2555 pwr_now += sds->busiest->cpu_power *
2556 min(sds->busiest_load_per_task, sds->max_load);
2557 pwr_now += sds->this->cpu_power *
2558 min(sds->this_load_per_task, sds->this_load);
2559 pwr_now /= SCHED_LOAD_SCALE;
2560
2561 /* Amount of load we'd subtract */
2562 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2563 sds->busiest->cpu_power;
2564 if (sds->max_load > tmp)
2565 pwr_move += sds->busiest->cpu_power *
2566 min(sds->busiest_load_per_task, sds->max_load - tmp);
2567
2568 /* Amount of load we'd add */
2569 if (sds->max_load * sds->busiest->cpu_power <
2570 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2571 tmp = (sds->max_load * sds->busiest->cpu_power) /
2572 sds->this->cpu_power;
2573 else
2574 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2575 sds->this->cpu_power;
2576 pwr_move += sds->this->cpu_power *
2577 min(sds->this_load_per_task, sds->this_load + tmp);
2578 pwr_move /= SCHED_LOAD_SCALE;
2579
2580 /* Move if we gain throughput */
2581 if (pwr_move > pwr_now)
2582 *imbalance = sds->busiest_load_per_task;
2583}
2584
2585/**
2586 * calculate_imbalance - Calculate the amount of imbalance present within the
2587 * groups of a given sched_domain during load balance.
2588 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2589 * @this_cpu: Cpu for which currently load balance is being performed.
2590 * @imbalance: The variable to store the imbalance.
2591 */
2592static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2593 unsigned long *imbalance)
2594{
dd5feea1
SS
2595 unsigned long max_pull, load_above_capacity = ~0UL;
2596
2597 sds->busiest_load_per_task /= sds->busiest_nr_running;
2598 if (sds->group_imb) {
2599 sds->busiest_load_per_task =
2600 min(sds->busiest_load_per_task, sds->avg_load);
2601 }
2602
1e3c88bd
PZ
2603 /*
2604 * In the presence of smp nice balancing, certain scenarios can have
2605 * max load less than avg load(as we skip the groups at or below
2606 * its cpu_power, while calculating max_load..)
2607 */
2608 if (sds->max_load < sds->avg_load) {
2609 *imbalance = 0;
2610 return fix_small_imbalance(sds, this_cpu, imbalance);
2611 }
2612
dd5feea1
SS
2613 if (!sds->group_imb) {
2614 /*
2615 * Don't want to pull so many tasks that a group would go idle.
2616 */
2617 load_above_capacity = (sds->busiest_nr_running -
2618 sds->busiest_group_capacity);
2619
2620 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2621
2622 load_above_capacity /= sds->busiest->cpu_power;
2623 }
2624
2625 /*
2626 * We're trying to get all the cpus to the average_load, so we don't
2627 * want to push ourselves above the average load, nor do we wish to
2628 * reduce the max loaded cpu below the average load. At the same time,
2629 * we also don't want to reduce the group load below the group capacity
2630 * (so that we can implement power-savings policies etc). Thus we look
2631 * for the minimum possible imbalance.
2632 * Be careful of negative numbers as they'll appear as very large values
2633 * with unsigned longs.
2634 */
2635 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
2636
2637 /* How much load to actually move to equalise the imbalance */
2638 *imbalance = min(max_pull * sds->busiest->cpu_power,
2639 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2640 / SCHED_LOAD_SCALE;
2641
2642 /*
2643 * if *imbalance is less than the average load per runnable task
2644 * there is no gaurantee that any tasks will be moved so we'll have
2645 * a think about bumping its value to force at least one task to be
2646 * moved
2647 */
2648 if (*imbalance < sds->busiest_load_per_task)
2649 return fix_small_imbalance(sds, this_cpu, imbalance);
2650
2651}
2652/******* find_busiest_group() helpers end here *********************/
2653
2654/**
2655 * find_busiest_group - Returns the busiest group within the sched_domain
2656 * if there is an imbalance. If there isn't an imbalance, and
2657 * the user has opted for power-savings, it returns a group whose
2658 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2659 * such a group exists.
2660 *
2661 * Also calculates the amount of weighted load which should be moved
2662 * to restore balance.
2663 *
2664 * @sd: The sched_domain whose busiest group is to be returned.
2665 * @this_cpu: The cpu for which load balancing is currently being performed.
2666 * @imbalance: Variable which stores amount of weighted load which should
2667 * be moved to restore balance/put a group to idle.
2668 * @idle: The idle status of this_cpu.
2669 * @sd_idle: The idleness of sd
2670 * @cpus: The set of CPUs under consideration for load-balancing.
2671 * @balance: Pointer to a variable indicating if this_cpu
2672 * is the appropriate cpu to perform load balancing at this_level.
2673 *
2674 * Returns: - the busiest group if imbalance exists.
2675 * - If no imbalance and user has opted for power-savings balance,
2676 * return the least loaded group whose CPUs can be
2677 * put to idle by rebalancing its tasks onto our group.
2678 */
2679static struct sched_group *
2680find_busiest_group(struct sched_domain *sd, int this_cpu,
2681 unsigned long *imbalance, enum cpu_idle_type idle,
2682 int *sd_idle, const struct cpumask *cpus, int *balance)
2683{
2684 struct sd_lb_stats sds;
2685
2686 memset(&sds, 0, sizeof(sds));
2687
2688 /*
2689 * Compute the various statistics relavent for load balancing at
2690 * this level.
2691 */
2692 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2693 balance, &sds);
2694
2695 /* Cases where imbalance does not exist from POV of this_cpu */
2696 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2697 * at this level.
2698 * 2) There is no busy sibling group to pull from.
2699 * 3) This group is the busiest group.
2700 * 4) This group is more busy than the avg busieness at this
2701 * sched_domain.
2702 * 5) The imbalance is within the specified limit.
1e3c88bd 2703 */
8f190fb3 2704 if (!(*balance))
1e3c88bd
PZ
2705 goto ret;
2706
2707 if (!sds.busiest || sds.busiest_nr_running == 0)
2708 goto out_balanced;
2709
2710 if (sds.this_load >= sds.max_load)
2711 goto out_balanced;
2712
2713 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2714
2715 if (sds.this_load >= sds.avg_load)
2716 goto out_balanced;
2717
2718 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2719 goto out_balanced;
2720
1e3c88bd
PZ
2721 /* Looks like there is an imbalance. Compute it */
2722 calculate_imbalance(&sds, this_cpu, imbalance);
2723 return sds.busiest;
2724
2725out_balanced:
2726 /*
2727 * There is no obvious imbalance. But check if we can do some balancing
2728 * to save power.
2729 */
2730 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2731 return sds.busiest;
2732ret:
2733 *imbalance = 0;
2734 return NULL;
2735}
2736
2737/*
2738 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2739 */
2740static struct rq *
2741find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2742 unsigned long imbalance, const struct cpumask *cpus)
2743{
2744 struct rq *busiest = NULL, *rq;
2745 unsigned long max_load = 0;
2746 int i;
2747
2748 for_each_cpu(i, sched_group_cpus(group)) {
2749 unsigned long power = power_of(i);
2750 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2751 unsigned long wl;
2752
2753 if (!cpumask_test_cpu(i, cpus))
2754 continue;
2755
2756 rq = cpu_rq(i);
6e40f5bb 2757 wl = weighted_cpuload(i);
1e3c88bd 2758
6e40f5bb
TG
2759 /*
2760 * When comparing with imbalance, use weighted_cpuload()
2761 * which is not scaled with the cpu power.
2762 */
1e3c88bd
PZ
2763 if (capacity && rq->nr_running == 1 && wl > imbalance)
2764 continue;
2765
6e40f5bb
TG
2766 /*
2767 * For the load comparisons with the other cpu's, consider
2768 * the weighted_cpuload() scaled with the cpu power, so that
2769 * the load can be moved away from the cpu that is potentially
2770 * running at a lower capacity.
2771 */
2772 wl = (wl * SCHED_LOAD_SCALE) / power;
2773
1e3c88bd
PZ
2774 if (wl > max_load) {
2775 max_load = wl;
2776 busiest = rq;
2777 }
2778 }
2779
2780 return busiest;
2781}
2782
2783/*
2784 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2785 * so long as it is large enough.
2786 */
2787#define MAX_PINNED_INTERVAL 512
2788
2789/* Working cpumask for load_balance and load_balance_newidle. */
2790static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2791
1af3ed3d
PZ
2792static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2793{
2794 if (idle == CPU_NEWLY_IDLE) {
2795 /*
2796 * The only task running in a non-idle cpu can be moved to this
2797 * cpu in an attempt to completely freeup the other CPU
2798 * package.
2799 *
2800 * The package power saving logic comes from
2801 * find_busiest_group(). If there are no imbalance, then
2802 * f_b_g() will return NULL. However when sched_mc={1,2} then
2803 * f_b_g() will select a group from which a running task may be
2804 * pulled to this cpu in order to make the other package idle.
2805 * If there is no opportunity to make a package idle and if
2806 * there are no imbalance, then f_b_g() will return NULL and no
2807 * action will be taken in load_balance_newidle().
2808 *
2809 * Under normal task pull operation due to imbalance, there
2810 * will be more than one task in the source run queue and
2811 * move_tasks() will succeed. ld_moved will be true and this
2812 * active balance code will not be triggered.
2813 */
2814 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2815 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2816 return 0;
2817
2818 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2819 return 0;
2820 }
2821
2822 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2823}
2824
1e3c88bd
PZ
2825/*
2826 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2827 * tasks if there is an imbalance.
2828 */
2829static int load_balance(int this_cpu, struct rq *this_rq,
2830 struct sched_domain *sd, enum cpu_idle_type idle,
2831 int *balance)
2832{
2833 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2834 struct sched_group *group;
2835 unsigned long imbalance;
2836 struct rq *busiest;
2837 unsigned long flags;
2838 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2839
2840 cpumask_copy(cpus, cpu_active_mask);
2841
2842 /*
2843 * When power savings policy is enabled for the parent domain, idle
2844 * sibling can pick up load irrespective of busy siblings. In this case,
2845 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2846 * portraying it as CPU_NOT_IDLE.
2847 */
2848 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2849 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2850 sd_idle = 1;
2851
2852 schedstat_inc(sd, lb_count[idle]);
2853
2854redo:
2855 update_shares(sd);
2856 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2857 cpus, balance);
2858
2859 if (*balance == 0)
2860 goto out_balanced;
2861
2862 if (!group) {
2863 schedstat_inc(sd, lb_nobusyg[idle]);
2864 goto out_balanced;
2865 }
2866
2867 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2868 if (!busiest) {
2869 schedstat_inc(sd, lb_nobusyq[idle]);
2870 goto out_balanced;
2871 }
2872
2873 BUG_ON(busiest == this_rq);
2874
2875 schedstat_add(sd, lb_imbalance[idle], imbalance);
2876
2877 ld_moved = 0;
2878 if (busiest->nr_running > 1) {
2879 /*
2880 * Attempt to move tasks. If find_busiest_group has found
2881 * an imbalance but busiest->nr_running <= 1, the group is
2882 * still unbalanced. ld_moved simply stays zero, so it is
2883 * correctly treated as an imbalance.
2884 */
2885 local_irq_save(flags);
2886 double_rq_lock(this_rq, busiest);
2887 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2888 imbalance, sd, idle, &all_pinned);
2889 double_rq_unlock(this_rq, busiest);
2890 local_irq_restore(flags);
2891
2892 /*
2893 * some other cpu did the load balance for us.
2894 */
2895 if (ld_moved && this_cpu != smp_processor_id())
2896 resched_cpu(this_cpu);
2897
2898 /* All tasks on this runqueue were pinned by CPU affinity */
2899 if (unlikely(all_pinned)) {
2900 cpumask_clear_cpu(cpu_of(busiest), cpus);
2901 if (!cpumask_empty(cpus))
2902 goto redo;
2903 goto out_balanced;
2904 }
2905 }
2906
2907 if (!ld_moved) {
2908 schedstat_inc(sd, lb_failed[idle]);
2909 sd->nr_balance_failed++;
2910
1af3ed3d 2911 if (need_active_balance(sd, sd_idle, idle)) {
1e3c88bd
PZ
2912 raw_spin_lock_irqsave(&busiest->lock, flags);
2913
2914 /* don't kick the migration_thread, if the curr
2915 * task on busiest cpu can't be moved to this_cpu
2916 */
2917 if (!cpumask_test_cpu(this_cpu,
2918 &busiest->curr->cpus_allowed)) {
2919 raw_spin_unlock_irqrestore(&busiest->lock,
2920 flags);
2921 all_pinned = 1;
2922 goto out_one_pinned;
2923 }
2924
2925 if (!busiest->active_balance) {
2926 busiest->active_balance = 1;
2927 busiest->push_cpu = this_cpu;
2928 active_balance = 1;
2929 }
2930 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2931 if (active_balance)
2932 wake_up_process(busiest->migration_thread);
2933
2934 /*
2935 * We've kicked active balancing, reset the failure
2936 * counter.
2937 */
2938 sd->nr_balance_failed = sd->cache_nice_tries+1;
2939 }
2940 } else
2941 sd->nr_balance_failed = 0;
2942
2943 if (likely(!active_balance)) {
2944 /* We were unbalanced, so reset the balancing interval */
2945 sd->balance_interval = sd->min_interval;
2946 } else {
2947 /*
2948 * If we've begun active balancing, start to back off. This
2949 * case may not be covered by the all_pinned logic if there
2950 * is only 1 task on the busy runqueue (because we don't call
2951 * move_tasks).
2952 */
2953 if (sd->balance_interval < sd->max_interval)
2954 sd->balance_interval *= 2;
2955 }
2956
2957 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2958 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2959 ld_moved = -1;
2960
2961 goto out;
2962
2963out_balanced:
2964 schedstat_inc(sd, lb_balanced[idle]);
2965
2966 sd->nr_balance_failed = 0;
2967
2968out_one_pinned:
2969 /* tune up the balancing interval */
2970 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2971 (sd->balance_interval < sd->max_interval))
2972 sd->balance_interval *= 2;
2973
2974 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2975 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2976 ld_moved = -1;
2977 else
2978 ld_moved = 0;
2979out:
2980 if (ld_moved)
2981 update_shares(sd);
2982 return ld_moved;
2983}
2984
1e3c88bd
PZ
2985/*
2986 * idle_balance is called by schedule() if this_cpu is about to become
2987 * idle. Attempts to pull tasks from other CPUs.
2988 */
2989static void idle_balance(int this_cpu, struct rq *this_rq)
2990{
2991 struct sched_domain *sd;
2992 int pulled_task = 0;
2993 unsigned long next_balance = jiffies + HZ;
2994
2995 this_rq->idle_stamp = this_rq->clock;
2996
2997 if (this_rq->avg_idle < sysctl_sched_migration_cost)
2998 return;
2999
f492e12e
PZ
3000 /*
3001 * Drop the rq->lock, but keep IRQ/preempt disabled.
3002 */
3003 raw_spin_unlock(&this_rq->lock);
3004
1e3c88bd
PZ
3005 for_each_domain(this_cpu, sd) {
3006 unsigned long interval;
f492e12e 3007 int balance = 1;
1e3c88bd
PZ
3008
3009 if (!(sd->flags & SD_LOAD_BALANCE))
3010 continue;
3011
f492e12e 3012 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3013 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3014 pulled_task = load_balance(this_cpu, this_rq,
3015 sd, CPU_NEWLY_IDLE, &balance);
3016 }
1e3c88bd
PZ
3017
3018 interval = msecs_to_jiffies(sd->balance_interval);
3019 if (time_after(next_balance, sd->last_balance + interval))
3020 next_balance = sd->last_balance + interval;
3021 if (pulled_task) {
3022 this_rq->idle_stamp = 0;
3023 break;
3024 }
3025 }
f492e12e
PZ
3026
3027 raw_spin_lock(&this_rq->lock);
3028
1e3c88bd
PZ
3029 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3030 /*
3031 * We are going idle. next_balance may be set based on
3032 * a busy processor. So reset next_balance.
3033 */
3034 this_rq->next_balance = next_balance;
3035 }
3036}
3037
3038/*
3039 * active_load_balance is run by migration threads. It pushes running tasks
3040 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3041 * running on each physical CPU where possible, and avoids physical /
3042 * logical imbalances.
3043 *
3044 * Called with busiest_rq locked.
3045 */
3046static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3047{
3048 int target_cpu = busiest_rq->push_cpu;
3049 struct sched_domain *sd;
3050 struct rq *target_rq;
3051
3052 /* Is there any task to move? */
3053 if (busiest_rq->nr_running <= 1)
3054 return;
3055
3056 target_rq = cpu_rq(target_cpu);
3057
3058 /*
3059 * This condition is "impossible", if it occurs
3060 * we need to fix it. Originally reported by
3061 * Bjorn Helgaas on a 128-cpu setup.
3062 */
3063 BUG_ON(busiest_rq == target_rq);
3064
3065 /* move a task from busiest_rq to target_rq */
3066 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3067
3068 /* Search for an sd spanning us and the target CPU. */
3069 for_each_domain(target_cpu, sd) {
3070 if ((sd->flags & SD_LOAD_BALANCE) &&
3071 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3072 break;
3073 }
3074
3075 if (likely(sd)) {
3076 schedstat_inc(sd, alb_count);
3077
3078 if (move_one_task(target_rq, target_cpu, busiest_rq,
3079 sd, CPU_IDLE))
3080 schedstat_inc(sd, alb_pushed);
3081 else
3082 schedstat_inc(sd, alb_failed);
3083 }
3084 double_unlock_balance(busiest_rq, target_rq);
3085}
3086
3087#ifdef CONFIG_NO_HZ
3088static struct {
3089 atomic_t load_balancer;
3090 cpumask_var_t cpu_mask;
3091 cpumask_var_t ilb_grp_nohz_mask;
3092} nohz ____cacheline_aligned = {
3093 .load_balancer = ATOMIC_INIT(-1),
3094};
3095
3096int get_nohz_load_balancer(void)
3097{
3098 return atomic_read(&nohz.load_balancer);
3099}
3100
3101#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3102/**
3103 * lowest_flag_domain - Return lowest sched_domain containing flag.
3104 * @cpu: The cpu whose lowest level of sched domain is to
3105 * be returned.
3106 * @flag: The flag to check for the lowest sched_domain
3107 * for the given cpu.
3108 *
3109 * Returns the lowest sched_domain of a cpu which contains the given flag.
3110 */
3111static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3112{
3113 struct sched_domain *sd;
3114
3115 for_each_domain(cpu, sd)
3116 if (sd && (sd->flags & flag))
3117 break;
3118
3119 return sd;
3120}
3121
3122/**
3123 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3124 * @cpu: The cpu whose domains we're iterating over.
3125 * @sd: variable holding the value of the power_savings_sd
3126 * for cpu.
3127 * @flag: The flag to filter the sched_domains to be iterated.
3128 *
3129 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3130 * set, starting from the lowest sched_domain to the highest.
3131 */
3132#define for_each_flag_domain(cpu, sd, flag) \
3133 for (sd = lowest_flag_domain(cpu, flag); \
3134 (sd && (sd->flags & flag)); sd = sd->parent)
3135
3136/**
3137 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3138 * @ilb_group: group to be checked for semi-idleness
3139 *
3140 * Returns: 1 if the group is semi-idle. 0 otherwise.
3141 *
3142 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3143 * and atleast one non-idle CPU. This helper function checks if the given
3144 * sched_group is semi-idle or not.
3145 */
3146static inline int is_semi_idle_group(struct sched_group *ilb_group)
3147{
3148 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3149 sched_group_cpus(ilb_group));
3150
3151 /*
3152 * A sched_group is semi-idle when it has atleast one busy cpu
3153 * and atleast one idle cpu.
3154 */
3155 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3156 return 0;
3157
3158 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3159 return 0;
3160
3161 return 1;
3162}
3163/**
3164 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3165 * @cpu: The cpu which is nominating a new idle_load_balancer.
3166 *
3167 * Returns: Returns the id of the idle load balancer if it exists,
3168 * Else, returns >= nr_cpu_ids.
3169 *
3170 * This algorithm picks the idle load balancer such that it belongs to a
3171 * semi-idle powersavings sched_domain. The idea is to try and avoid
3172 * completely idle packages/cores just for the purpose of idle load balancing
3173 * when there are other idle cpu's which are better suited for that job.
3174 */
3175static int find_new_ilb(int cpu)
3176{
3177 struct sched_domain *sd;
3178 struct sched_group *ilb_group;
3179
3180 /*
3181 * Have idle load balancer selection from semi-idle packages only
3182 * when power-aware load balancing is enabled
3183 */
3184 if (!(sched_smt_power_savings || sched_mc_power_savings))
3185 goto out_done;
3186
3187 /*
3188 * Optimize for the case when we have no idle CPUs or only one
3189 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3190 */
3191 if (cpumask_weight(nohz.cpu_mask) < 2)
3192 goto out_done;
3193
3194 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3195 ilb_group = sd->groups;
3196
3197 do {
3198 if (is_semi_idle_group(ilb_group))
3199 return cpumask_first(nohz.ilb_grp_nohz_mask);
3200
3201 ilb_group = ilb_group->next;
3202
3203 } while (ilb_group != sd->groups);
3204 }
3205
3206out_done:
3207 return cpumask_first(nohz.cpu_mask);
3208}
3209#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3210static inline int find_new_ilb(int call_cpu)
3211{
3212 return cpumask_first(nohz.cpu_mask);
3213}
3214#endif
3215
3216/*
3217 * This routine will try to nominate the ilb (idle load balancing)
3218 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3219 * load balancing on behalf of all those cpus. If all the cpus in the system
3220 * go into this tickless mode, then there will be no ilb owner (as there is
3221 * no need for one) and all the cpus will sleep till the next wakeup event
3222 * arrives...
3223 *
3224 * For the ilb owner, tick is not stopped. And this tick will be used
3225 * for idle load balancing. ilb owner will still be part of
3226 * nohz.cpu_mask..
3227 *
3228 * While stopping the tick, this cpu will become the ilb owner if there
3229 * is no other owner. And will be the owner till that cpu becomes busy
3230 * or if all cpus in the system stop their ticks at which point
3231 * there is no need for ilb owner.
3232 *
3233 * When the ilb owner becomes busy, it nominates another owner, during the
3234 * next busy scheduler_tick()
3235 */
3236int select_nohz_load_balancer(int stop_tick)
3237{
3238 int cpu = smp_processor_id();
3239
3240 if (stop_tick) {
3241 cpu_rq(cpu)->in_nohz_recently = 1;
3242
3243 if (!cpu_active(cpu)) {
3244 if (atomic_read(&nohz.load_balancer) != cpu)
3245 return 0;
3246
3247 /*
3248 * If we are going offline and still the leader,
3249 * give up!
3250 */
3251 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3252 BUG();
3253
3254 return 0;
3255 }
3256
3257 cpumask_set_cpu(cpu, nohz.cpu_mask);
3258
3259 /* time for ilb owner also to sleep */
3260 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3261 if (atomic_read(&nohz.load_balancer) == cpu)
3262 atomic_set(&nohz.load_balancer, -1);
3263 return 0;
3264 }
3265
3266 if (atomic_read(&nohz.load_balancer) == -1) {
3267 /* make me the ilb owner */
3268 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3269 return 1;
3270 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3271 int new_ilb;
3272
3273 if (!(sched_smt_power_savings ||
3274 sched_mc_power_savings))
3275 return 1;
3276 /*
3277 * Check to see if there is a more power-efficient
3278 * ilb.
3279 */
3280 new_ilb = find_new_ilb(cpu);
3281 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3282 atomic_set(&nohz.load_balancer, -1);
3283 resched_cpu(new_ilb);
3284 return 0;
3285 }
3286 return 1;
3287 }
3288 } else {
3289 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3290 return 0;
3291
3292 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3293
3294 if (atomic_read(&nohz.load_balancer) == cpu)
3295 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3296 BUG();
3297 }
3298 return 0;
3299}
3300#endif
3301
3302static DEFINE_SPINLOCK(balancing);
3303
3304/*
3305 * It checks each scheduling domain to see if it is due to be balanced,
3306 * and initiates a balancing operation if so.
3307 *
3308 * Balancing parameters are set up in arch_init_sched_domains.
3309 */
3310static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3311{
3312 int balance = 1;
3313 struct rq *rq = cpu_rq(cpu);
3314 unsigned long interval;
3315 struct sched_domain *sd;
3316 /* Earliest time when we have to do rebalance again */
3317 unsigned long next_balance = jiffies + 60*HZ;
3318 int update_next_balance = 0;
3319 int need_serialize;
3320
3321 for_each_domain(cpu, sd) {
3322 if (!(sd->flags & SD_LOAD_BALANCE))
3323 continue;
3324
3325 interval = sd->balance_interval;
3326 if (idle != CPU_IDLE)
3327 interval *= sd->busy_factor;
3328
3329 /* scale ms to jiffies */
3330 interval = msecs_to_jiffies(interval);
3331 if (unlikely(!interval))
3332 interval = 1;
3333 if (interval > HZ*NR_CPUS/10)
3334 interval = HZ*NR_CPUS/10;
3335
3336 need_serialize = sd->flags & SD_SERIALIZE;
3337
3338 if (need_serialize) {
3339 if (!spin_trylock(&balancing))
3340 goto out;
3341 }
3342
3343 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3344 if (load_balance(cpu, rq, sd, idle, &balance)) {
3345 /*
3346 * We've pulled tasks over so either we're no
3347 * longer idle, or one of our SMT siblings is
3348 * not idle.
3349 */
3350 idle = CPU_NOT_IDLE;
3351 }
3352 sd->last_balance = jiffies;
3353 }
3354 if (need_serialize)
3355 spin_unlock(&balancing);
3356out:
3357 if (time_after(next_balance, sd->last_balance + interval)) {
3358 next_balance = sd->last_balance + interval;
3359 update_next_balance = 1;
3360 }
3361
3362 /*
3363 * Stop the load balance at this level. There is another
3364 * CPU in our sched group which is doing load balancing more
3365 * actively.
3366 */
3367 if (!balance)
3368 break;
3369 }
3370
3371 /*
3372 * next_balance will be updated only when there is a need.
3373 * When the cpu is attached to null domain for ex, it will not be
3374 * updated.
3375 */
3376 if (likely(update_next_balance))
3377 rq->next_balance = next_balance;
3378}
3379
3380/*
3381 * run_rebalance_domains is triggered when needed from the scheduler tick.
3382 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3383 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3384 */
3385static void run_rebalance_domains(struct softirq_action *h)
3386{
3387 int this_cpu = smp_processor_id();
3388 struct rq *this_rq = cpu_rq(this_cpu);
3389 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3390 CPU_IDLE : CPU_NOT_IDLE;
3391
3392 rebalance_domains(this_cpu, idle);
3393
3394#ifdef CONFIG_NO_HZ
3395 /*
3396 * If this cpu is the owner for idle load balancing, then do the
3397 * balancing on behalf of the other idle cpus whose ticks are
3398 * stopped.
3399 */
3400 if (this_rq->idle_at_tick &&
3401 atomic_read(&nohz.load_balancer) == this_cpu) {
3402 struct rq *rq;
3403 int balance_cpu;
3404
3405 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3406 if (balance_cpu == this_cpu)
3407 continue;
3408
3409 /*
3410 * If this cpu gets work to do, stop the load balancing
3411 * work being done for other cpus. Next load
3412 * balancing owner will pick it up.
3413 */
3414 if (need_resched())
3415 break;
3416
3417 rebalance_domains(balance_cpu, CPU_IDLE);
3418
3419 rq = cpu_rq(balance_cpu);
3420 if (time_after(this_rq->next_balance, rq->next_balance))
3421 this_rq->next_balance = rq->next_balance;
3422 }
3423 }
3424#endif
3425}
3426
3427static inline int on_null_domain(int cpu)
3428{
3429 return !rcu_dereference(cpu_rq(cpu)->sd);
3430}
3431
3432/*
3433 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3434 *
3435 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3436 * idle load balancing owner or decide to stop the periodic load balancing,
3437 * if the whole system is idle.
3438 */
3439static inline void trigger_load_balance(struct rq *rq, int cpu)
3440{
3441#ifdef CONFIG_NO_HZ
3442 /*
3443 * If we were in the nohz mode recently and busy at the current
3444 * scheduler tick, then check if we need to nominate new idle
3445 * load balancer.
3446 */
3447 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3448 rq->in_nohz_recently = 0;
3449
3450 if (atomic_read(&nohz.load_balancer) == cpu) {
3451 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3452 atomic_set(&nohz.load_balancer, -1);
3453 }
3454
3455 if (atomic_read(&nohz.load_balancer) == -1) {
3456 int ilb = find_new_ilb(cpu);
3457
3458 if (ilb < nr_cpu_ids)
3459 resched_cpu(ilb);
3460 }
3461 }
3462
3463 /*
3464 * If this cpu is idle and doing idle load balancing for all the
3465 * cpus with ticks stopped, is it time for that to stop?
3466 */
3467 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3468 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3469 resched_cpu(cpu);
3470 return;
3471 }
3472
3473 /*
3474 * If this cpu is idle and the idle load balancing is done by
3475 * someone else, then no need raise the SCHED_SOFTIRQ
3476 */
3477 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3478 cpumask_test_cpu(cpu, nohz.cpu_mask))
3479 return;
3480#endif
3481 /* Don't need to rebalance while attached to NULL domain */
3482 if (time_after_eq(jiffies, rq->next_balance) &&
3483 likely(!on_null_domain(cpu)))
3484 raise_softirq(SCHED_SOFTIRQ);
3485}
3486
0bcdcf28
CE
3487static void rq_online_fair(struct rq *rq)
3488{
3489 update_sysctl();
3490}
3491
3492static void rq_offline_fair(struct rq *rq)
3493{
3494 update_sysctl();
3495}
3496
1e3c88bd
PZ
3497#else /* CONFIG_SMP */
3498
3499/*
3500 * on UP we do not need to balance between CPUs:
3501 */
3502static inline void idle_balance(int cpu, struct rq *rq)
3503{
3504}
3505
55e12e5e 3506#endif /* CONFIG_SMP */
e1d1484f 3507
bf0f6f24
IM
3508/*
3509 * scheduler tick hitting a task of our scheduling class:
3510 */
8f4d37ec 3511static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
3512{
3513 struct cfs_rq *cfs_rq;
3514 struct sched_entity *se = &curr->se;
3515
3516 for_each_sched_entity(se) {
3517 cfs_rq = cfs_rq_of(se);
8f4d37ec 3518 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
3519 }
3520}
3521
3522/*
cd29fe6f
PZ
3523 * called on fork with the child task as argument from the parent's context
3524 * - child not yet on the tasklist
3525 * - preemption disabled
bf0f6f24 3526 */
cd29fe6f 3527static void task_fork_fair(struct task_struct *p)
bf0f6f24 3528{
cd29fe6f 3529 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 3530 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 3531 int this_cpu = smp_processor_id();
cd29fe6f
PZ
3532 struct rq *rq = this_rq();
3533 unsigned long flags;
3534
05fa785c 3535 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 3536
cd29fe6f
PZ
3537 if (unlikely(task_cpu(p) != this_cpu))
3538 __set_task_cpu(p, this_cpu);
bf0f6f24 3539
7109c442 3540 update_curr(cfs_rq);
cd29fe6f 3541
b5d9d734
MG
3542 if (curr)
3543 se->vruntime = curr->vruntime;
aeb73b04 3544 place_entity(cfs_rq, se, 1);
4d78e7b6 3545
cd29fe6f 3546 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 3547 /*
edcb60a3
IM
3548 * Upon rescheduling, sched_class::put_prev_task() will place
3549 * 'current' within the tree based on its new key value.
3550 */
4d78e7b6 3551 swap(curr->vruntime, se->vruntime);
aec0a514 3552 resched_task(rq->curr);
4d78e7b6 3553 }
bf0f6f24 3554
88ec22d3
PZ
3555 se->vruntime -= cfs_rq->min_vruntime;
3556
05fa785c 3557 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
3558}
3559
cb469845
SR
3560/*
3561 * Priority of the task has changed. Check to see if we preempt
3562 * the current task.
3563 */
3564static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3565 int oldprio, int running)
3566{
3567 /*
3568 * Reschedule if we are currently running on this runqueue and
3569 * our priority decreased, or if we are not currently running on
3570 * this runqueue and our priority is higher than the current's
3571 */
3572 if (running) {
3573 if (p->prio > oldprio)
3574 resched_task(rq->curr);
3575 } else
15afe09b 3576 check_preempt_curr(rq, p, 0);
cb469845
SR
3577}
3578
3579/*
3580 * We switched to the sched_fair class.
3581 */
3582static void switched_to_fair(struct rq *rq, struct task_struct *p,
3583 int running)
3584{
3585 /*
3586 * We were most likely switched from sched_rt, so
3587 * kick off the schedule if running, otherwise just see
3588 * if we can still preempt the current task.
3589 */
3590 if (running)
3591 resched_task(rq->curr);
3592 else
15afe09b 3593 check_preempt_curr(rq, p, 0);
cb469845
SR
3594}
3595
83b699ed
SV
3596/* Account for a task changing its policy or group.
3597 *
3598 * This routine is mostly called to set cfs_rq->curr field when a task
3599 * migrates between groups/classes.
3600 */
3601static void set_curr_task_fair(struct rq *rq)
3602{
3603 struct sched_entity *se = &rq->curr->se;
3604
3605 for_each_sched_entity(se)
3606 set_next_entity(cfs_rq_of(se), se);
3607}
3608
810b3817 3609#ifdef CONFIG_FAIR_GROUP_SCHED
88ec22d3 3610static void moved_group_fair(struct task_struct *p, int on_rq)
810b3817
PZ
3611{
3612 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3613
3614 update_curr(cfs_rq);
88ec22d3
PZ
3615 if (!on_rq)
3616 place_entity(cfs_rq, &p->se, 1);
810b3817
PZ
3617}
3618#endif
3619
6d686f45 3620static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
3621{
3622 struct sched_entity *se = &task->se;
0d721cea
PW
3623 unsigned int rr_interval = 0;
3624
3625 /*
3626 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3627 * idle runqueue:
3628 */
0d721cea
PW
3629 if (rq->cfs.load.weight)
3630 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
3631
3632 return rr_interval;
3633}
3634
bf0f6f24
IM
3635/*
3636 * All the scheduling class methods:
3637 */
5522d5d5
IM
3638static const struct sched_class fair_sched_class = {
3639 .next = &idle_sched_class,
bf0f6f24
IM
3640 .enqueue_task = enqueue_task_fair,
3641 .dequeue_task = dequeue_task_fair,
3642 .yield_task = yield_task_fair,
3643
2e09bf55 3644 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
3645
3646 .pick_next_task = pick_next_task_fair,
3647 .put_prev_task = put_prev_task_fair,
3648
681f3e68 3649#ifdef CONFIG_SMP
4ce72a2c
LZ
3650 .select_task_rq = select_task_rq_fair,
3651
0bcdcf28
CE
3652 .rq_online = rq_online_fair,
3653 .rq_offline = rq_offline_fair,
88ec22d3
PZ
3654
3655 .task_waking = task_waking_fair,
681f3e68 3656#endif
bf0f6f24 3657
83b699ed 3658 .set_curr_task = set_curr_task_fair,
bf0f6f24 3659 .task_tick = task_tick_fair,
cd29fe6f 3660 .task_fork = task_fork_fair,
cb469845
SR
3661
3662 .prio_changed = prio_changed_fair,
3663 .switched_to = switched_to_fair,
810b3817 3664
0d721cea
PW
3665 .get_rr_interval = get_rr_interval_fair,
3666
810b3817
PZ
3667#ifdef CONFIG_FAIR_GROUP_SCHED
3668 .moved_group = moved_group_fair,
3669#endif
bf0f6f24
IM
3670};
3671
3672#ifdef CONFIG_SCHED_DEBUG
5cef9eca 3673static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 3674{
bf0f6f24
IM
3675 struct cfs_rq *cfs_rq;
3676
5973e5b9 3677 rcu_read_lock();
c3b64f1e 3678 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 3679 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 3680 rcu_read_unlock();
bf0f6f24
IM
3681}
3682#endif