sched: Add SD_PREFER_LOCAL
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
172e082a 27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
172e082a 37unsigned int sysctl_sched_latency = 5000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
172e082a 41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
172e082a 43unsigned int sysctl_sched_min_granularity = 1000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
2bba22c5 51 * After fork, child runs first. If set to 0 (default) then
b2be5e96 52 * parent will (try to) run first.
21805085 53 */
2bba22c5 54unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
172e082a 66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
172e082a 72unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
62160e3f 82#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 83
62160e3f 84/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
85static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86{
62160e3f 87 return cfs_rq->rq;
bf0f6f24
IM
88}
89
62160e3f
IM
90/* An entity is a task if it doesn't "own" a runqueue */
91#define entity_is_task(se) (!se->my_q)
bf0f6f24 92
8f48894f
PZ
93static inline struct task_struct *task_of(struct sched_entity *se)
94{
95#ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97#endif
98 return container_of(se, struct task_struct, se);
99}
100
b758149c
PZ
101/* Walk up scheduling entities hierarchy */
102#define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106{
107 return p->se.cfs_rq;
108}
109
110/* runqueue on which this entity is (to be) queued */
111static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112{
113 return se->cfs_rq;
114}
115
116/* runqueue "owned" by this group */
117static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118{
119 return grp->my_q;
120}
121
122/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126{
127 return cfs_rq->tg->cfs_rq[this_cpu];
128}
129
130/* Iterate thr' all leaf cfs_rq's on a runqueue */
131#define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134/* Do the two (enqueued) entities belong to the same group ? */
135static inline int
136is_same_group(struct sched_entity *se, struct sched_entity *pse)
137{
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142}
143
144static inline struct sched_entity *parent_entity(struct sched_entity *se)
145{
146 return se->parent;
147}
148
464b7527
PZ
149/* return depth at which a sched entity is present in the hierarchy */
150static inline int depth_se(struct sched_entity *se)
151{
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158}
159
160static void
161find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162{
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190}
191
8f48894f
PZ
192#else /* !CONFIG_FAIR_GROUP_SCHED */
193
194static inline struct task_struct *task_of(struct sched_entity *se)
195{
196 return container_of(se, struct task_struct, se);
197}
bf0f6f24 198
62160e3f
IM
199static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200{
201 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
202}
203
204#define entity_is_task(se) 1
205
b758149c
PZ
206#define for_each_sched_entity(se) \
207 for (; se; se = NULL)
bf0f6f24 208
b758149c 209static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 210{
b758149c 211 return &task_rq(p)->cfs;
bf0f6f24
IM
212}
213
b758149c
PZ
214static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215{
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220}
221
222/* runqueue "owned" by this group */
223static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224{
225 return NULL;
226}
227
228static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229{
230 return &cpu_rq(this_cpu)->cfs;
231}
232
233#define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236static inline int
237is_same_group(struct sched_entity *se, struct sched_entity *pse)
238{
239 return 1;
240}
241
242static inline struct sched_entity *parent_entity(struct sched_entity *se)
243{
244 return NULL;
245}
246
464b7527
PZ
247static inline void
248find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249{
250}
251
b758149c
PZ
252#endif /* CONFIG_FAIR_GROUP_SCHED */
253
bf0f6f24
IM
254
255/**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
0702e3eb 259static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 260{
368059a9
PZ
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
02e0431a
PZ
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266}
267
0702e3eb 268static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
269{
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275}
276
54fdc581
FC
277static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279{
280 return (s64)(a->vruntime - b->vruntime) < 0;
281}
282
0702e3eb 283static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 284{
30cfdcfc 285 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
286}
287
1af5f730
PZ
288static void update_min_vruntime(struct cfs_rq *cfs_rq)
289{
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
e17036da 300 if (!cfs_rq->curr)
1af5f730
PZ
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307}
308
bf0f6f24
IM
309/*
310 * Enqueue an entity into the rb-tree:
311 */
0702e3eb 312static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
313{
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
9014623c 317 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
9014623c 330 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
1af5f730 342 if (leftmost)
57cb499d 343 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
347}
348
0702e3eb 349static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 350{
3fe69747
PZ
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
3fe69747
PZ
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
3fe69747 356 }
e9acbff6 357
bf0f6f24 358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
359}
360
bf0f6f24
IM
361static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362{
f4b6755f
PZ
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
369}
370
f4b6755f 371static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 372{
7eee3e67 373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 374
70eee74b
BS
375 if (!last)
376 return NULL;
7eee3e67
IM
377
378 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
379}
380
bf0f6f24
IM
381/**************************************************************
382 * Scheduling class statistics methods:
383 */
384
b2be5e96
PZ
385#ifdef CONFIG_SCHED_DEBUG
386int sched_nr_latency_handler(struct ctl_table *table, int write,
387 struct file *filp, void __user *buffer, size_t *lenp,
388 loff_t *ppos)
389{
390 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399}
400#endif
647e7cac 401
a7be37ac 402/*
f9c0b095 403 * delta /= w
a7be37ac
PZ
404 */
405static inline unsigned long
406calc_delta_fair(unsigned long delta, struct sched_entity *se)
407{
f9c0b095
PZ
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
410
411 return delta;
412}
413
647e7cac
IM
414/*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
4d78e7b6
PZ
422static u64 __sched_period(unsigned long nr_running)
423{
424 u64 period = sysctl_sched_latency;
b2be5e96 425 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
426
427 if (unlikely(nr_running > nr_latency)) {
4bf0b771 428 period = sysctl_sched_min_granularity;
4d78e7b6 429 period *= nr_running;
4d78e7b6
PZ
430 }
431
432 return period;
433}
434
647e7cac
IM
435/*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
f9c0b095 439 * s = p*P[w/rw]
647e7cac 440 */
6d0f0ebd 441static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 442{
0a582440 443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 444
0a582440 445 for_each_sched_entity(se) {
6272d68c 446 struct load_weight *load;
3104bf03 447 struct load_weight lw;
6272d68c
LM
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
f9c0b095 451
0a582440 452 if (unlikely(!se->on_rq)) {
3104bf03 453 lw = cfs_rq->load;
0a582440
MG
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
bf0f6f24
IM
461}
462
647e7cac 463/*
ac884dec 464 * We calculate the vruntime slice of a to be inserted task
647e7cac 465 *
f9c0b095 466 * vs = s/w
647e7cac 467 */
f9c0b095 468static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 469{
f9c0b095 470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
471}
472
bf0f6f24
IM
473/*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477static inline void
8ebc91d9
IM
478__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
bf0f6f24 480{
bbdba7c0 481 unsigned long delta_exec_weighted;
bf0f6f24 482
8179ca23 483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
484
485 curr->sum_exec_runtime += delta_exec;
7a62eabc 486 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 488 curr->vruntime += delta_exec_weighted;
1af5f730 489 update_min_vruntime(cfs_rq);
bf0f6f24
IM
490}
491
b7cc0896 492static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 493{
429d43bc 494 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 495 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
8ebc91d9 506 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
507 if (!delta_exec)
508 return;
bf0f6f24 509
8ebc91d9
IM
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
d842de87
SV
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
516 cpuacct_charge(curtask, delta_exec);
f06febc9 517 account_group_exec_runtime(curtask, delta_exec);
d842de87 518 }
bf0f6f24
IM
519}
520
521static inline void
5870db5b 522update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
d281918d 524 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
525}
526
bf0f6f24
IM
527/*
528 * Task is being enqueued - update stats:
529 */
d2417e5a 530static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 531{
bf0f6f24
IM
532 /*
533 * Are we enqueueing a waiting task? (for current tasks
534 * a dequeue/enqueue event is a NOP)
535 */
429d43bc 536 if (se != cfs_rq->curr)
5870db5b 537 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
538}
539
bf0f6f24 540static void
9ef0a961 541update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
bbdba7c0
IM
543 schedstat_set(se->wait_max, max(se->wait_max,
544 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
545 schedstat_set(se->wait_count, se->wait_count + 1);
546 schedstat_set(se->wait_sum, se->wait_sum +
547 rq_of(cfs_rq)->clock - se->wait_start);
768d0c27
PZ
548#ifdef CONFIG_SCHEDSTATS
549 if (entity_is_task(se)) {
550 trace_sched_stat_wait(task_of(se),
551 rq_of(cfs_rq)->clock - se->wait_start);
552 }
553#endif
e1f84508 554 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
555}
556
557static inline void
19b6a2e3 558update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 559{
bf0f6f24
IM
560 /*
561 * Mark the end of the wait period if dequeueing a
562 * waiting task:
563 */
429d43bc 564 if (se != cfs_rq->curr)
9ef0a961 565 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
566}
567
568/*
569 * We are picking a new current task - update its stats:
570 */
571static inline void
79303e9e 572update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
573{
574 /*
575 * We are starting a new run period:
576 */
d281918d 577 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
578}
579
bf0f6f24
IM
580/**************************************************
581 * Scheduling class queueing methods:
582 */
583
c09595f6
PZ
584#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
585static void
586add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
587{
588 cfs_rq->task_weight += weight;
589}
590#else
591static inline void
592add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
593{
594}
595#endif
596
30cfdcfc
DA
597static void
598account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
599{
600 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
601 if (!parent_entity(se))
602 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 603 if (entity_is_task(se)) {
c09595f6 604 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
605 list_add(&se->group_node, &cfs_rq->tasks);
606 }
30cfdcfc
DA
607 cfs_rq->nr_running++;
608 se->on_rq = 1;
609}
610
611static void
612account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
613{
614 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
615 if (!parent_entity(se))
616 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 617 if (entity_is_task(se)) {
c09595f6 618 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
619 list_del_init(&se->group_node);
620 }
30cfdcfc
DA
621 cfs_rq->nr_running--;
622 se->on_rq = 0;
623}
624
2396af69 625static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 626{
bf0f6f24 627#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
628 struct task_struct *tsk = NULL;
629
630 if (entity_is_task(se))
631 tsk = task_of(se);
632
bf0f6f24 633 if (se->sleep_start) {
d281918d 634 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
635
636 if ((s64)delta < 0)
637 delta = 0;
638
639 if (unlikely(delta > se->sleep_max))
640 se->sleep_max = delta;
641
642 se->sleep_start = 0;
643 se->sum_sleep_runtime += delta;
9745512c 644
768d0c27 645 if (tsk) {
e414314c 646 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
647 trace_sched_stat_sleep(tsk, delta);
648 }
bf0f6f24
IM
649 }
650 if (se->block_start) {
d281918d 651 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
652
653 if ((s64)delta < 0)
654 delta = 0;
655
656 if (unlikely(delta > se->block_max))
657 se->block_max = delta;
658
659 se->block_start = 0;
660 se->sum_sleep_runtime += delta;
30084fbd 661
e414314c 662 if (tsk) {
8f0dfc34
AV
663 if (tsk->in_iowait) {
664 se->iowait_sum += delta;
665 se->iowait_count++;
768d0c27 666 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
667 }
668
e414314c
PZ
669 /*
670 * Blocking time is in units of nanosecs, so shift by
671 * 20 to get a milliseconds-range estimation of the
672 * amount of time that the task spent sleeping:
673 */
674 if (unlikely(prof_on == SLEEP_PROFILING)) {
675 profile_hits(SLEEP_PROFILING,
676 (void *)get_wchan(tsk),
677 delta >> 20);
678 }
679 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 680 }
bf0f6f24
IM
681 }
682#endif
683}
684
ddc97297
PZ
685static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
686{
687#ifdef CONFIG_SCHED_DEBUG
688 s64 d = se->vruntime - cfs_rq->min_vruntime;
689
690 if (d < 0)
691 d = -d;
692
693 if (d > 3*sysctl_sched_latency)
694 schedstat_inc(cfs_rq, nr_spread_over);
695#endif
696}
697
aeb73b04
PZ
698static void
699place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
700{
1af5f730 701 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 702
2cb8600e
PZ
703 /*
704 * The 'current' period is already promised to the current tasks,
705 * however the extra weight of the new task will slow them down a
706 * little, place the new task so that it fits in the slot that
707 * stays open at the end.
708 */
94dfb5e7 709 if (initial && sched_feat(START_DEBIT))
f9c0b095 710 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 711
8465e792 712 if (!initial) {
2cb8600e 713 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
714 if (sched_feat(NEW_FAIR_SLEEPERS)) {
715 unsigned long thresh = sysctl_sched_latency;
716
717 /*
6bc912b7
PZ
718 * Convert the sleeper threshold into virtual time.
719 * SCHED_IDLE is a special sub-class. We care about
720 * fairness only relative to other SCHED_IDLE tasks,
721 * all of which have the same weight.
a7be37ac 722 */
6bc912b7 723 if (sched_feat(NORMALIZED_SLEEPER) &&
d07387b4
PT
724 (!entity_is_task(se) ||
725 task_of(se)->policy != SCHED_IDLE))
a7be37ac
PZ
726 thresh = calc_delta_fair(thresh, se);
727
728 vruntime -= thresh;
729 }
aeb73b04
PZ
730 }
731
b5d9d734
MG
732 /* ensure we never gain time by being placed backwards. */
733 vruntime = max_vruntime(se->vruntime, vruntime);
734
67e9fb2a 735 se->vruntime = vruntime;
aeb73b04
PZ
736}
737
bf0f6f24 738static void
83b699ed 739enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
740{
741 /*
a2a2d680 742 * Update run-time statistics of the 'current'.
bf0f6f24 743 */
b7cc0896 744 update_curr(cfs_rq);
a992241d 745 account_entity_enqueue(cfs_rq, se);
bf0f6f24 746
e9acbff6 747 if (wakeup) {
aeb73b04 748 place_entity(cfs_rq, se, 0);
2396af69 749 enqueue_sleeper(cfs_rq, se);
e9acbff6 750 }
bf0f6f24 751
d2417e5a 752 update_stats_enqueue(cfs_rq, se);
ddc97297 753 check_spread(cfs_rq, se);
83b699ed
SV
754 if (se != cfs_rq->curr)
755 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
756}
757
a571bbea 758static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695
PZ
759{
760 if (cfs_rq->last == se)
761 cfs_rq->last = NULL;
762
763 if (cfs_rq->next == se)
764 cfs_rq->next = NULL;
765}
766
a571bbea
PZ
767static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
768{
769 for_each_sched_entity(se)
770 __clear_buddies(cfs_rq_of(se), se);
771}
772
bf0f6f24 773static void
525c2716 774dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 775{
a2a2d680
DA
776 /*
777 * Update run-time statistics of the 'current'.
778 */
779 update_curr(cfs_rq);
780
19b6a2e3 781 update_stats_dequeue(cfs_rq, se);
db36cc7d 782 if (sleep) {
67e9fb2a 783#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
784 if (entity_is_task(se)) {
785 struct task_struct *tsk = task_of(se);
786
787 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 788 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 789 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 790 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 791 }
db36cc7d 792#endif
67e9fb2a
PZ
793 }
794
2002c695 795 clear_buddies(cfs_rq, se);
4793241b 796
83b699ed 797 if (se != cfs_rq->curr)
30cfdcfc
DA
798 __dequeue_entity(cfs_rq, se);
799 account_entity_dequeue(cfs_rq, se);
1af5f730 800 update_min_vruntime(cfs_rq);
bf0f6f24
IM
801}
802
803/*
804 * Preempt the current task with a newly woken task if needed:
805 */
7c92e54f 806static void
2e09bf55 807check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 808{
11697830
PZ
809 unsigned long ideal_runtime, delta_exec;
810
6d0f0ebd 811 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 812 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 813 if (delta_exec > ideal_runtime) {
bf0f6f24 814 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
815 /*
816 * The current task ran long enough, ensure it doesn't get
817 * re-elected due to buddy favours.
818 */
819 clear_buddies(cfs_rq, curr);
820 }
bf0f6f24
IM
821}
822
83b699ed 823static void
8494f412 824set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 825{
83b699ed
SV
826 /* 'current' is not kept within the tree. */
827 if (se->on_rq) {
828 /*
829 * Any task has to be enqueued before it get to execute on
830 * a CPU. So account for the time it spent waiting on the
831 * runqueue.
832 */
833 update_stats_wait_end(cfs_rq, se);
834 __dequeue_entity(cfs_rq, se);
835 }
836
79303e9e 837 update_stats_curr_start(cfs_rq, se);
429d43bc 838 cfs_rq->curr = se;
eba1ed4b
IM
839#ifdef CONFIG_SCHEDSTATS
840 /*
841 * Track our maximum slice length, if the CPU's load is at
842 * least twice that of our own weight (i.e. dont track it
843 * when there are only lesser-weight tasks around):
844 */
495eca49 845 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
846 se->slice_max = max(se->slice_max,
847 se->sum_exec_runtime - se->prev_sum_exec_runtime);
848 }
849#endif
4a55b450 850 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
851}
852
3f3a4904
PZ
853static int
854wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
855
f4b6755f 856static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 857{
f4b6755f
PZ
858 struct sched_entity *se = __pick_next_entity(cfs_rq);
859
4793241b
PZ
860 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
861 return cfs_rq->next;
aa2ac252 862
4793241b
PZ
863 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
864 return cfs_rq->last;
865
866 return se;
aa2ac252
PZ
867}
868
ab6cde26 869static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
870{
871 /*
872 * If still on the runqueue then deactivate_task()
873 * was not called and update_curr() has to be done:
874 */
875 if (prev->on_rq)
b7cc0896 876 update_curr(cfs_rq);
bf0f6f24 877
ddc97297 878 check_spread(cfs_rq, prev);
30cfdcfc 879 if (prev->on_rq) {
5870db5b 880 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
881 /* Put 'current' back into the tree. */
882 __enqueue_entity(cfs_rq, prev);
883 }
429d43bc 884 cfs_rq->curr = NULL;
bf0f6f24
IM
885}
886
8f4d37ec
PZ
887static void
888entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 889{
bf0f6f24 890 /*
30cfdcfc 891 * Update run-time statistics of the 'current'.
bf0f6f24 892 */
30cfdcfc 893 update_curr(cfs_rq);
bf0f6f24 894
8f4d37ec
PZ
895#ifdef CONFIG_SCHED_HRTICK
896 /*
897 * queued ticks are scheduled to match the slice, so don't bother
898 * validating it and just reschedule.
899 */
983ed7a6
HH
900 if (queued) {
901 resched_task(rq_of(cfs_rq)->curr);
902 return;
903 }
8f4d37ec
PZ
904 /*
905 * don't let the period tick interfere with the hrtick preemption
906 */
907 if (!sched_feat(DOUBLE_TICK) &&
908 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
909 return;
910#endif
911
ce6c1311 912 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 913 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
914}
915
916/**************************************************
917 * CFS operations on tasks:
918 */
919
8f4d37ec
PZ
920#ifdef CONFIG_SCHED_HRTICK
921static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
922{
8f4d37ec
PZ
923 struct sched_entity *se = &p->se;
924 struct cfs_rq *cfs_rq = cfs_rq_of(se);
925
926 WARN_ON(task_rq(p) != rq);
927
928 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
929 u64 slice = sched_slice(cfs_rq, se);
930 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
931 s64 delta = slice - ran;
932
933 if (delta < 0) {
934 if (rq->curr == p)
935 resched_task(p);
936 return;
937 }
938
939 /*
940 * Don't schedule slices shorter than 10000ns, that just
941 * doesn't make sense. Rely on vruntime for fairness.
942 */
31656519 943 if (rq->curr != p)
157124c1 944 delta = max_t(s64, 10000LL, delta);
8f4d37ec 945
31656519 946 hrtick_start(rq, delta);
8f4d37ec
PZ
947 }
948}
a4c2f00f
PZ
949
950/*
951 * called from enqueue/dequeue and updates the hrtick when the
952 * current task is from our class and nr_running is low enough
953 * to matter.
954 */
955static void hrtick_update(struct rq *rq)
956{
957 struct task_struct *curr = rq->curr;
958
959 if (curr->sched_class != &fair_sched_class)
960 return;
961
962 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
963 hrtick_start_fair(rq, curr);
964}
55e12e5e 965#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
966static inline void
967hrtick_start_fair(struct rq *rq, struct task_struct *p)
968{
969}
a4c2f00f
PZ
970
971static inline void hrtick_update(struct rq *rq)
972{
973}
8f4d37ec
PZ
974#endif
975
bf0f6f24
IM
976/*
977 * The enqueue_task method is called before nr_running is
978 * increased. Here we update the fair scheduling stats and
979 * then put the task into the rbtree:
980 */
fd390f6a 981static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
982{
983 struct cfs_rq *cfs_rq;
62fb1851 984 struct sched_entity *se = &p->se;
bf0f6f24
IM
985
986 for_each_sched_entity(se) {
62fb1851 987 if (se->on_rq)
bf0f6f24
IM
988 break;
989 cfs_rq = cfs_rq_of(se);
83b699ed 990 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 991 wakeup = 1;
bf0f6f24 992 }
8f4d37ec 993
a4c2f00f 994 hrtick_update(rq);
bf0f6f24
IM
995}
996
997/*
998 * The dequeue_task method is called before nr_running is
999 * decreased. We remove the task from the rbtree and
1000 * update the fair scheduling stats:
1001 */
f02231e5 1002static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
1003{
1004 struct cfs_rq *cfs_rq;
62fb1851 1005 struct sched_entity *se = &p->se;
bf0f6f24
IM
1006
1007 for_each_sched_entity(se) {
1008 cfs_rq = cfs_rq_of(se);
525c2716 1009 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 1010 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1011 if (cfs_rq->load.weight)
bf0f6f24 1012 break;
b9fa3df3 1013 sleep = 1;
bf0f6f24 1014 }
8f4d37ec 1015
a4c2f00f 1016 hrtick_update(rq);
bf0f6f24
IM
1017}
1018
1019/*
1799e35d
IM
1020 * sched_yield() support is very simple - we dequeue and enqueue.
1021 *
1022 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1023 */
4530d7ab 1024static void yield_task_fair(struct rq *rq)
bf0f6f24 1025{
db292ca3
IM
1026 struct task_struct *curr = rq->curr;
1027 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1028 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1029
1030 /*
1799e35d
IM
1031 * Are we the only task in the tree?
1032 */
1033 if (unlikely(cfs_rq->nr_running == 1))
1034 return;
1035
2002c695
PZ
1036 clear_buddies(cfs_rq, se);
1037
db292ca3 1038 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1039 update_rq_clock(rq);
1799e35d 1040 /*
a2a2d680 1041 * Update run-time statistics of the 'current'.
1799e35d 1042 */
2b1e315d 1043 update_curr(cfs_rq);
1799e35d
IM
1044
1045 return;
1046 }
1047 /*
1048 * Find the rightmost entry in the rbtree:
bf0f6f24 1049 */
2b1e315d 1050 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1051 /*
1052 * Already in the rightmost position?
1053 */
54fdc581 1054 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1055 return;
1056
1057 /*
1058 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1059 * Upon rescheduling, sched_class::put_prev_task() will place
1060 * 'current' within the tree based on its new key value.
1799e35d 1061 */
30cfdcfc 1062 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1063}
1064
e7693a36 1065#ifdef CONFIG_SMP
098fb9db 1066
bb3469ac 1067#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1068/*
1069 * effective_load() calculates the load change as seen from the root_task_group
1070 *
1071 * Adding load to a group doesn't make a group heavier, but can cause movement
1072 * of group shares between cpus. Assuming the shares were perfectly aligned one
1073 * can calculate the shift in shares.
1074 *
1075 * The problem is that perfectly aligning the shares is rather expensive, hence
1076 * we try to avoid doing that too often - see update_shares(), which ratelimits
1077 * this change.
1078 *
1079 * We compensate this by not only taking the current delta into account, but
1080 * also considering the delta between when the shares were last adjusted and
1081 * now.
1082 *
1083 * We still saw a performance dip, some tracing learned us that between
1084 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1085 * significantly. Therefore try to bias the error in direction of failing
1086 * the affine wakeup.
1087 *
1088 */
f1d239f7
PZ
1089static long effective_load(struct task_group *tg, int cpu,
1090 long wl, long wg)
bb3469ac 1091{
4be9daaa 1092 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1093
1094 if (!tg->parent)
1095 return wl;
1096
f5bfb7d9
PZ
1097 /*
1098 * By not taking the decrease of shares on the other cpu into
1099 * account our error leans towards reducing the affine wakeups.
1100 */
1101 if (!wl && sched_feat(ASYM_EFF_LOAD))
1102 return wl;
1103
4be9daaa 1104 for_each_sched_entity(se) {
cb5ef42a 1105 long S, rw, s, a, b;
940959e9
PZ
1106 long more_w;
1107
1108 /*
1109 * Instead of using this increment, also add the difference
1110 * between when the shares were last updated and now.
1111 */
1112 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1113 wl += more_w;
1114 wg += more_w;
4be9daaa
PZ
1115
1116 S = se->my_q->tg->shares;
1117 s = se->my_q->shares;
f1d239f7 1118 rw = se->my_q->rq_weight;
bb3469ac 1119
cb5ef42a
PZ
1120 a = S*(rw + wl);
1121 b = S*rw + s*wg;
4be9daaa 1122
940959e9
PZ
1123 wl = s*(a-b);
1124
1125 if (likely(b))
1126 wl /= b;
1127
83378269
PZ
1128 /*
1129 * Assume the group is already running and will
1130 * thus already be accounted for in the weight.
1131 *
1132 * That is, moving shares between CPUs, does not
1133 * alter the group weight.
1134 */
4be9daaa 1135 wg = 0;
4be9daaa 1136 }
bb3469ac 1137
4be9daaa 1138 return wl;
bb3469ac 1139}
4be9daaa 1140
bb3469ac 1141#else
4be9daaa 1142
83378269
PZ
1143static inline unsigned long effective_load(struct task_group *tg, int cpu,
1144 unsigned long wl, unsigned long wg)
4be9daaa 1145{
83378269 1146 return wl;
bb3469ac 1147}
4be9daaa 1148
bb3469ac
PZ
1149#endif
1150
c88d5910 1151static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1152{
c88d5910
PZ
1153 struct task_struct *curr = current;
1154 unsigned long this_load, load;
1155 int idx, this_cpu, prev_cpu;
098fb9db 1156 unsigned long tl_per_task;
c88d5910
PZ
1157 unsigned int imbalance;
1158 struct task_group *tg;
83378269 1159 unsigned long weight;
b3137bc8 1160 int balanced;
098fb9db 1161
c88d5910
PZ
1162 idx = sd->wake_idx;
1163 this_cpu = smp_processor_id();
1164 prev_cpu = task_cpu(p);
1165 load = source_load(prev_cpu, idx);
1166 this_load = target_load(this_cpu, idx);
098fb9db 1167
e69b0f1b
PZ
1168 if (sync) {
1169 if (sched_feat(SYNC_LESS) &&
1170 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1171 p->se.avg_overlap > sysctl_sched_migration_cost))
1172 sync = 0;
1173 } else {
1174 if (sched_feat(SYNC_MORE) &&
1175 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1176 p->se.avg_overlap < sysctl_sched_migration_cost))
1177 sync = 1;
1178 }
fc631c82 1179
b3137bc8
MG
1180 /*
1181 * If sync wakeup then subtract the (maximum possible)
1182 * effect of the currently running task from the load
1183 * of the current CPU:
1184 */
83378269
PZ
1185 if (sync) {
1186 tg = task_group(current);
1187 weight = current->se.load.weight;
1188
c88d5910 1189 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1190 load += effective_load(tg, prev_cpu, 0, -weight);
1191 }
b3137bc8 1192
83378269
PZ
1193 tg = task_group(p);
1194 weight = p->se.load.weight;
b3137bc8 1195
c88d5910
PZ
1196 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1197
71a29aa7
PZ
1198 /*
1199 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1200 * due to the sync cause above having dropped this_load to 0, we'll
1201 * always have an imbalance, but there's really nothing you can do
1202 * about that, so that's good too.
71a29aa7
PZ
1203 *
1204 * Otherwise check if either cpus are near enough in load to allow this
1205 * task to be woken on this_cpu.
1206 */
c88d5910
PZ
1207 balanced = !this_load ||
1208 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
83378269 1209 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1210
098fb9db 1211 /*
4ae7d5ce
IM
1212 * If the currently running task will sleep within
1213 * a reasonable amount of time then attract this newly
1214 * woken task:
098fb9db 1215 */
2fb7635c
PZ
1216 if (sync && balanced)
1217 return 1;
098fb9db
IM
1218
1219 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1220 tl_per_task = cpu_avg_load_per_task(this_cpu);
1221
c88d5910
PZ
1222 if (balanced ||
1223 (this_load <= load &&
1224 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1225 /*
1226 * This domain has SD_WAKE_AFFINE and
1227 * p is cache cold in this domain, and
1228 * there is no bad imbalance.
1229 */
c88d5910 1230 schedstat_inc(sd, ttwu_move_affine);
098fb9db
IM
1231 schedstat_inc(p, se.nr_wakeups_affine);
1232
1233 return 1;
1234 }
1235 return 0;
1236}
1237
aaee1203
PZ
1238/*
1239 * find_idlest_group finds and returns the least busy CPU group within the
1240 * domain.
1241 */
1242static struct sched_group *
78e7ed53
PZ
1243find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1244 int this_cpu, int flag)
aaee1203
PZ
1245{
1246 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1247 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1248 int imbalance = 100 + (sd->imbalance_pct-100)/2;
78e7ed53
PZ
1249 int load_idx = 0;
1250
1251 switch (flag) {
1252 case SD_BALANCE_FORK:
1253 case SD_BALANCE_EXEC:
1254 load_idx = sd->forkexec_idx;
1255 break;
1256
1257 case SD_BALANCE_WAKE:
1258 load_idx = sd->wake_idx;
1259 break;
1260
1261 default:
1262 break;
1263 }
aaee1203
PZ
1264
1265 do {
1266 unsigned long load, avg_load;
1267 int local_group;
1268 int i;
1269
1270 /* Skip over this group if it has no CPUs allowed */
1271 if (!cpumask_intersects(sched_group_cpus(group),
1272 &p->cpus_allowed))
1273 continue;
1274
1275 local_group = cpumask_test_cpu(this_cpu,
1276 sched_group_cpus(group));
1277
1278 /* Tally up the load of all CPUs in the group */
1279 avg_load = 0;
1280
1281 for_each_cpu(i, sched_group_cpus(group)) {
1282 /* Bias balancing toward cpus of our domain */
1283 if (local_group)
1284 load = source_load(i, load_idx);
1285 else
1286 load = target_load(i, load_idx);
1287
1288 avg_load += load;
1289 }
1290
1291 /* Adjust by relative CPU power of the group */
1292 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1293
1294 if (local_group) {
1295 this_load = avg_load;
1296 this = group;
1297 } else if (avg_load < min_load) {
1298 min_load = avg_load;
1299 idlest = group;
1300 }
1301 } while (group = group->next, group != sd->groups);
1302
1303 if (!idlest || 100*this_load < imbalance*min_load)
1304 return NULL;
1305 return idlest;
1306}
1307
1308/*
1309 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1310 */
1311static int
1312find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1313{
1314 unsigned long load, min_load = ULONG_MAX;
1315 int idlest = -1;
1316 int i;
1317
1318 /* Traverse only the allowed CPUs */
1319 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1320 load = weighted_cpuload(i);
1321
1322 if (load < min_load || (load == min_load && i == this_cpu)) {
1323 min_load = load;
1324 idlest = i;
1325 }
1326 }
1327
1328 return idlest;
1329}
1330
1331/*
1332 * sched_balance_self: balance the current task (running on cpu) in domains
1333 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1334 * SD_BALANCE_EXEC.
1335 *
1336 * Balance, ie. select the least loaded group.
1337 *
1338 * Returns the target CPU number, or the same CPU if no balancing is needed.
1339 *
1340 * preempt must be disabled.
1341 */
7d478721 1342static int select_task_rq_fair(struct task_struct *p, int sd_flag, int flags)
aaee1203 1343{
aaee1203 1344 struct sched_domain *tmp, *sd = NULL;
c88d5910
PZ
1345 int cpu = smp_processor_id();
1346 int prev_cpu = task_cpu(p);
1347 int new_cpu = cpu;
1348 int want_affine = 0;
7d478721 1349 int sync = flags & WF_SYNC;
c88d5910 1350
0763a660 1351 if (sd_flag & SD_BALANCE_WAKE) {
c88d5910
PZ
1352 if (sched_feat(AFFINE_WAKEUPS))
1353 want_affine = 1;
1354 new_cpu = prev_cpu;
1355 }
aaee1203 1356
83f54960 1357 rcu_read_lock();
aaee1203
PZ
1358 for_each_domain(cpu, tmp) {
1359 /*
ae154be1
PZ
1360 * If power savings logic is enabled for a domain, see if we
1361 * are not overloaded, if so, don't balance wider.
aaee1203 1362 */
59abf026 1363 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1364 unsigned long power = 0;
1365 unsigned long nr_running = 0;
1366 unsigned long capacity;
1367 int i;
1368
1369 for_each_cpu(i, sched_domain_span(tmp)) {
1370 power += power_of(i);
1371 nr_running += cpu_rq(i)->cfs.nr_running;
1372 }
1373
1374 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1375
59abf026
PZ
1376 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1377 nr_running /= 2;
1378
1379 if (nr_running < capacity)
ae154be1
PZ
1380 break;
1381 }
aaee1203 1382
0763a660 1383 switch (sd_flag) {
c88d5910
PZ
1384 case SD_BALANCE_WAKE:
1385 if (!sched_feat(LB_WAKEUP_UPDATE))
1386 break;
1387 case SD_BALANCE_FORK:
1388 case SD_BALANCE_EXEC:
1389 if (root_task_group_empty())
1390 break;
1391 update_shares(tmp);
1392 default:
1393 break;
1394 }
1395
1396 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1397 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1398
83f54960
PZ
1399 if (wake_affine(tmp, p, sync)) {
1400 new_cpu = cpu;
1401 goto out;
1402 }
c88d5910
PZ
1403
1404 want_affine = 0;
1405 }
1406
0763a660 1407 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1408 continue;
1409
1410 sd = tmp;
1411 }
aaee1203
PZ
1412
1413 while (sd) {
1414 struct sched_group *group;
c88d5910 1415 int weight;
aaee1203 1416
0763a660 1417 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1418 sd = sd->child;
1419 continue;
1420 }
1421
0763a660 1422 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
1423 if (!group) {
1424 sd = sd->child;
1425 continue;
1426 }
1427
d7c33c49 1428 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1429 if (new_cpu == -1 || new_cpu == cpu) {
1430 /* Now try balancing at a lower domain level of cpu */
1431 sd = sd->child;
1432 continue;
1433 }
1434
1435 /* Now try balancing at a lower domain level of new_cpu */
1436 cpu = new_cpu;
1437 weight = cpumask_weight(sched_domain_span(sd));
1438 sd = NULL;
1439 for_each_domain(cpu, tmp) {
1440 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1441 break;
0763a660 1442 if (tmp->flags & sd_flag)
aaee1203
PZ
1443 sd = tmp;
1444 }
1445 /* while loop will break here if sd == NULL */
1446 }
1447
83f54960
PZ
1448out:
1449 rcu_read_unlock();
c88d5910 1450 return new_cpu;
aaee1203 1451}
e7693a36
GH
1452#endif /* CONFIG_SMP */
1453
e52fb7c0
PZ
1454/*
1455 * Adaptive granularity
1456 *
1457 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1458 * with the limit of wakeup_gran -- when it never does a wakeup.
1459 *
1460 * So the smaller avg_wakeup is the faster we want this task to preempt,
1461 * but we don't want to treat the preemptee unfairly and therefore allow it
1462 * to run for at least the amount of time we'd like to run.
1463 *
1464 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1465 *
1466 * NOTE: we use *nr_running to scale with load, this nicely matches the
1467 * degrading latency on load.
1468 */
1469static unsigned long
1470adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1471{
1472 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1473 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1474 u64 gran = 0;
1475
1476 if (this_run < expected_wakeup)
1477 gran = expected_wakeup - this_run;
1478
1479 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1480}
1481
1482static unsigned long
1483wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1484{
1485 unsigned long gran = sysctl_sched_wakeup_granularity;
1486
e52fb7c0
PZ
1487 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1488 gran = adaptive_gran(curr, se);
1489
0bbd3336 1490 /*
e52fb7c0
PZ
1491 * Since its curr running now, convert the gran from real-time
1492 * to virtual-time in his units.
0bbd3336 1493 */
e52fb7c0
PZ
1494 if (sched_feat(ASYM_GRAN)) {
1495 /*
1496 * By using 'se' instead of 'curr' we penalize light tasks, so
1497 * they get preempted easier. That is, if 'se' < 'curr' then
1498 * the resulting gran will be larger, therefore penalizing the
1499 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1500 * be smaller, again penalizing the lighter task.
1501 *
1502 * This is especially important for buddies when the leftmost
1503 * task is higher priority than the buddy.
1504 */
1505 if (unlikely(se->load.weight != NICE_0_LOAD))
1506 gran = calc_delta_fair(gran, se);
1507 } else {
1508 if (unlikely(curr->load.weight != NICE_0_LOAD))
1509 gran = calc_delta_fair(gran, curr);
1510 }
0bbd3336
PZ
1511
1512 return gran;
1513}
1514
464b7527
PZ
1515/*
1516 * Should 'se' preempt 'curr'.
1517 *
1518 * |s1
1519 * |s2
1520 * |s3
1521 * g
1522 * |<--->|c
1523 *
1524 * w(c, s1) = -1
1525 * w(c, s2) = 0
1526 * w(c, s3) = 1
1527 *
1528 */
1529static int
1530wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1531{
1532 s64 gran, vdiff = curr->vruntime - se->vruntime;
1533
1534 if (vdiff <= 0)
1535 return -1;
1536
e52fb7c0 1537 gran = wakeup_gran(curr, se);
464b7527
PZ
1538 if (vdiff > gran)
1539 return 1;
1540
1541 return 0;
1542}
1543
02479099
PZ
1544static void set_last_buddy(struct sched_entity *se)
1545{
6bc912b7
PZ
1546 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1547 for_each_sched_entity(se)
1548 cfs_rq_of(se)->last = se;
1549 }
02479099
PZ
1550}
1551
1552static void set_next_buddy(struct sched_entity *se)
1553{
6bc912b7
PZ
1554 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1555 for_each_sched_entity(se)
1556 cfs_rq_of(se)->next = se;
1557 }
02479099
PZ
1558}
1559
bf0f6f24
IM
1560/*
1561 * Preempt the current task with a newly woken task if needed:
1562 */
7d478721 1563static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1564{
1565 struct task_struct *curr = rq->curr;
8651a86c 1566 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1567 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7d478721 1568 int sync = flags & WF_SYNC;
bf0f6f24 1569
03e89e45 1570 update_curr(cfs_rq);
4793241b 1571
03e89e45 1572 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1573 resched_task(curr);
1574 return;
1575 }
aa2ac252 1576
d95f98d0
PZ
1577 if (unlikely(p->sched_class != &fair_sched_class))
1578 return;
1579
4ae7d5ce
IM
1580 if (unlikely(se == pse))
1581 return;
1582
4793241b
PZ
1583 /*
1584 * Only set the backward buddy when the current task is still on the
1585 * rq. This can happen when a wakeup gets interleaved with schedule on
1586 * the ->pre_schedule() or idle_balance() point, either of which can
1587 * drop the rq lock.
1588 *
1589 * Also, during early boot the idle thread is in the fair class, for
1590 * obvious reasons its a bad idea to schedule back to the idle thread.
1591 */
1592 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099 1593 set_last_buddy(se);
a7558e01 1594 if (sched_feat(NEXT_BUDDY) && !(flags & WF_FORK))
3cb63d52 1595 set_next_buddy(pse);
57fdc26d 1596
aec0a514
BR
1597 /*
1598 * We can come here with TIF_NEED_RESCHED already set from new task
1599 * wake up path.
1600 */
1601 if (test_tsk_need_resched(curr))
1602 return;
1603
91c234b4 1604 /*
6bc912b7 1605 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1606 * the tick):
1607 */
6bc912b7 1608 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1609 return;
bf0f6f24 1610
6bc912b7
PZ
1611 /* Idle tasks are by definition preempted by everybody. */
1612 if (unlikely(curr->policy == SCHED_IDLE)) {
1613 resched_task(curr);
91c234b4 1614 return;
6bc912b7 1615 }
bf0f6f24 1616
77d9cc44
IM
1617 if (!sched_feat(WAKEUP_PREEMPT))
1618 return;
8651a86c 1619
e6b1b2c9
PZ
1620 if ((sched_feat(WAKEUP_SYNC) && sync) ||
1621 (sched_feat(WAKEUP_OVERLAP) &&
1622 (se->avg_overlap < sysctl_sched_migration_cost &&
1623 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1624 resched_task(curr);
1625 return;
1626 }
1627
464b7527
PZ
1628 find_matching_se(&se, &pse);
1629
002f128b 1630 BUG_ON(!pse);
464b7527 1631
002f128b
PT
1632 if (wakeup_preempt_entity(se, pse) == 1)
1633 resched_task(curr);
bf0f6f24
IM
1634}
1635
fb8d4724 1636static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1637{
8f4d37ec 1638 struct task_struct *p;
bf0f6f24
IM
1639 struct cfs_rq *cfs_rq = &rq->cfs;
1640 struct sched_entity *se;
1641
1642 if (unlikely(!cfs_rq->nr_running))
1643 return NULL;
1644
1645 do {
9948f4b2 1646 se = pick_next_entity(cfs_rq);
a9f3e2b5
MG
1647 /*
1648 * If se was a buddy, clear it so that it will have to earn
1649 * the favour again.
1650 */
a571bbea 1651 __clear_buddies(cfs_rq, se);
f4b6755f 1652 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1653 cfs_rq = group_cfs_rq(se);
1654 } while (cfs_rq);
1655
8f4d37ec
PZ
1656 p = task_of(se);
1657 hrtick_start_fair(rq, p);
1658
1659 return p;
bf0f6f24
IM
1660}
1661
1662/*
1663 * Account for a descheduled task:
1664 */
31ee529c 1665static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1666{
1667 struct sched_entity *se = &prev->se;
1668 struct cfs_rq *cfs_rq;
1669
1670 for_each_sched_entity(se) {
1671 cfs_rq = cfs_rq_of(se);
ab6cde26 1672 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1673 }
1674}
1675
681f3e68 1676#ifdef CONFIG_SMP
bf0f6f24
IM
1677/**************************************************
1678 * Fair scheduling class load-balancing methods:
1679 */
1680
1681/*
1682 * Load-balancing iterator. Note: while the runqueue stays locked
1683 * during the whole iteration, the current task might be
1684 * dequeued so the iterator has to be dequeue-safe. Here we
1685 * achieve that by always pre-iterating before returning
1686 * the current task:
1687 */
a9957449 1688static struct task_struct *
4a55bd5e 1689__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1690{
354d60c2
DG
1691 struct task_struct *p = NULL;
1692 struct sched_entity *se;
bf0f6f24 1693
77ae6513
MG
1694 if (next == &cfs_rq->tasks)
1695 return NULL;
1696
b87f1724
BR
1697 se = list_entry(next, struct sched_entity, group_node);
1698 p = task_of(se);
1699 cfs_rq->balance_iterator = next->next;
77ae6513 1700
bf0f6f24
IM
1701 return p;
1702}
1703
1704static struct task_struct *load_balance_start_fair(void *arg)
1705{
1706 struct cfs_rq *cfs_rq = arg;
1707
4a55bd5e 1708 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1709}
1710
1711static struct task_struct *load_balance_next_fair(void *arg)
1712{
1713 struct cfs_rq *cfs_rq = arg;
1714
4a55bd5e 1715 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1716}
1717
c09595f6
PZ
1718static unsigned long
1719__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1720 unsigned long max_load_move, struct sched_domain *sd,
1721 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1722 struct cfs_rq *cfs_rq)
62fb1851 1723{
c09595f6 1724 struct rq_iterator cfs_rq_iterator;
62fb1851 1725
c09595f6
PZ
1726 cfs_rq_iterator.start = load_balance_start_fair;
1727 cfs_rq_iterator.next = load_balance_next_fair;
1728 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1729
c09595f6
PZ
1730 return balance_tasks(this_rq, this_cpu, busiest,
1731 max_load_move, sd, idle, all_pinned,
1732 this_best_prio, &cfs_rq_iterator);
62fb1851 1733}
62fb1851 1734
c09595f6 1735#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1736static unsigned long
bf0f6f24 1737load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1738 unsigned long max_load_move,
a4ac01c3
PW
1739 struct sched_domain *sd, enum cpu_idle_type idle,
1740 int *all_pinned, int *this_best_prio)
bf0f6f24 1741{
bf0f6f24 1742 long rem_load_move = max_load_move;
c09595f6
PZ
1743 int busiest_cpu = cpu_of(busiest);
1744 struct task_group *tg;
18d95a28 1745
c09595f6 1746 rcu_read_lock();
c8cba857 1747 update_h_load(busiest_cpu);
18d95a28 1748
caea8a03 1749 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1750 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1751 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1752 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1753 u64 rem_load, moved_load;
18d95a28 1754
c09595f6
PZ
1755 /*
1756 * empty group
1757 */
c8cba857 1758 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1759 continue;
1760
243e0e7b
SV
1761 rem_load = (u64)rem_load_move * busiest_weight;
1762 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1763
c09595f6 1764 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1765 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1766 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1767
c09595f6 1768 if (!moved_load)
bf0f6f24
IM
1769 continue;
1770
42a3ac7d 1771 moved_load *= busiest_h_load;
243e0e7b 1772 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1773
c09595f6
PZ
1774 rem_load_move -= moved_load;
1775 if (rem_load_move < 0)
bf0f6f24
IM
1776 break;
1777 }
c09595f6 1778 rcu_read_unlock();
bf0f6f24 1779
43010659 1780 return max_load_move - rem_load_move;
bf0f6f24 1781}
c09595f6
PZ
1782#else
1783static unsigned long
1784load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1785 unsigned long max_load_move,
1786 struct sched_domain *sd, enum cpu_idle_type idle,
1787 int *all_pinned, int *this_best_prio)
1788{
1789 return __load_balance_fair(this_rq, this_cpu, busiest,
1790 max_load_move, sd, idle, all_pinned,
1791 this_best_prio, &busiest->cfs);
1792}
1793#endif
bf0f6f24 1794
e1d1484f
PW
1795static int
1796move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1797 struct sched_domain *sd, enum cpu_idle_type idle)
1798{
1799 struct cfs_rq *busy_cfs_rq;
1800 struct rq_iterator cfs_rq_iterator;
1801
1802 cfs_rq_iterator.start = load_balance_start_fair;
1803 cfs_rq_iterator.next = load_balance_next_fair;
1804
1805 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1806 /*
1807 * pass busy_cfs_rq argument into
1808 * load_balance_[start|next]_fair iterators
1809 */
1810 cfs_rq_iterator.arg = busy_cfs_rq;
1811 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1812 &cfs_rq_iterator))
1813 return 1;
1814 }
1815
1816 return 0;
1817}
55e12e5e 1818#endif /* CONFIG_SMP */
e1d1484f 1819
bf0f6f24
IM
1820/*
1821 * scheduler tick hitting a task of our scheduling class:
1822 */
8f4d37ec 1823static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1824{
1825 struct cfs_rq *cfs_rq;
1826 struct sched_entity *se = &curr->se;
1827
1828 for_each_sched_entity(se) {
1829 cfs_rq = cfs_rq_of(se);
8f4d37ec 1830 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1831 }
1832}
1833
1834/*
1835 * Share the fairness runtime between parent and child, thus the
1836 * total amount of pressure for CPU stays equal - new tasks
1837 * get a chance to run but frequent forkers are not allowed to
1838 * monopolize the CPU. Note: the parent runqueue is locked,
1839 * the child is not running yet.
1840 */
ee0827d8 1841static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1842{
1843 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1844 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1845 int this_cpu = smp_processor_id();
bf0f6f24
IM
1846
1847 sched_info_queued(p);
1848
7109c442 1849 update_curr(cfs_rq);
b5d9d734
MG
1850 if (curr)
1851 se->vruntime = curr->vruntime;
aeb73b04 1852 place_entity(cfs_rq, se, 1);
4d78e7b6 1853
3c90e6e9 1854 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1855 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
54fdc581 1856 curr && entity_before(curr, se)) {
87fefa38 1857 /*
edcb60a3
IM
1858 * Upon rescheduling, sched_class::put_prev_task() will place
1859 * 'current' within the tree based on its new key value.
1860 */
4d78e7b6 1861 swap(curr->vruntime, se->vruntime);
aec0a514 1862 resched_task(rq->curr);
4d78e7b6 1863 }
bf0f6f24 1864
b9dca1e0 1865 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1866}
1867
cb469845
SR
1868/*
1869 * Priority of the task has changed. Check to see if we preempt
1870 * the current task.
1871 */
1872static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1873 int oldprio, int running)
1874{
1875 /*
1876 * Reschedule if we are currently running on this runqueue and
1877 * our priority decreased, or if we are not currently running on
1878 * this runqueue and our priority is higher than the current's
1879 */
1880 if (running) {
1881 if (p->prio > oldprio)
1882 resched_task(rq->curr);
1883 } else
15afe09b 1884 check_preempt_curr(rq, p, 0);
cb469845
SR
1885}
1886
1887/*
1888 * We switched to the sched_fair class.
1889 */
1890static void switched_to_fair(struct rq *rq, struct task_struct *p,
1891 int running)
1892{
1893 /*
1894 * We were most likely switched from sched_rt, so
1895 * kick off the schedule if running, otherwise just see
1896 * if we can still preempt the current task.
1897 */
1898 if (running)
1899 resched_task(rq->curr);
1900 else
15afe09b 1901 check_preempt_curr(rq, p, 0);
cb469845
SR
1902}
1903
83b699ed
SV
1904/* Account for a task changing its policy or group.
1905 *
1906 * This routine is mostly called to set cfs_rq->curr field when a task
1907 * migrates between groups/classes.
1908 */
1909static void set_curr_task_fair(struct rq *rq)
1910{
1911 struct sched_entity *se = &rq->curr->se;
1912
1913 for_each_sched_entity(se)
1914 set_next_entity(cfs_rq_of(se), se);
1915}
1916
810b3817
PZ
1917#ifdef CONFIG_FAIR_GROUP_SCHED
1918static void moved_group_fair(struct task_struct *p)
1919{
1920 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1921
1922 update_curr(cfs_rq);
1923 place_entity(cfs_rq, &p->se, 1);
1924}
1925#endif
1926
bf0f6f24
IM
1927/*
1928 * All the scheduling class methods:
1929 */
5522d5d5
IM
1930static const struct sched_class fair_sched_class = {
1931 .next = &idle_sched_class,
bf0f6f24
IM
1932 .enqueue_task = enqueue_task_fair,
1933 .dequeue_task = dequeue_task_fair,
1934 .yield_task = yield_task_fair,
1935
2e09bf55 1936 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1937
1938 .pick_next_task = pick_next_task_fair,
1939 .put_prev_task = put_prev_task_fair,
1940
681f3e68 1941#ifdef CONFIG_SMP
4ce72a2c
LZ
1942 .select_task_rq = select_task_rq_fair,
1943
bf0f6f24 1944 .load_balance = load_balance_fair,
e1d1484f 1945 .move_one_task = move_one_task_fair,
681f3e68 1946#endif
bf0f6f24 1947
83b699ed 1948 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1949 .task_tick = task_tick_fair,
1950 .task_new = task_new_fair,
cb469845
SR
1951
1952 .prio_changed = prio_changed_fair,
1953 .switched_to = switched_to_fair,
810b3817
PZ
1954
1955#ifdef CONFIG_FAIR_GROUP_SCHED
1956 .moved_group = moved_group_fair,
1957#endif
bf0f6f24
IM
1958};
1959
1960#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1961static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1962{
bf0f6f24
IM
1963 struct cfs_rq *cfs_rq;
1964
5973e5b9 1965 rcu_read_lock();
c3b64f1e 1966 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1967 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1968 rcu_read_unlock();
bf0f6f24
IM
1969}
1970#endif