sched: whitespace cleanups
[linux-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
5f6d858e 49const_debug unsigned int sysctl_sched_nr_latency = 20;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
71fd3714 61 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
2bd8e6d4 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
2e09bf55 77const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
bf0f6f24 78
bf0f6f24
IM
79/**************************************************************
80 * CFS operations on generic schedulable entities:
81 */
82
62160e3f 83#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 84
62160e3f 85/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
86static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
87{
62160e3f 88 return cfs_rq->rq;
bf0f6f24
IM
89}
90
62160e3f
IM
91/* An entity is a task if it doesn't "own" a runqueue */
92#define entity_is_task(se) (!se->my_q)
bf0f6f24 93
62160e3f 94#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 95
62160e3f
IM
96static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
97{
98 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
99}
100
101#define entity_is_task(se) 1
102
bf0f6f24
IM
103#endif /* CONFIG_FAIR_GROUP_SCHED */
104
105static inline struct task_struct *task_of(struct sched_entity *se)
106{
107 return container_of(se, struct task_struct, se);
108}
109
110
111/**************************************************************
112 * Scheduling class tree data structure manipulation methods:
113 */
114
02e0431a
PZ
115static inline u64
116max_vruntime(u64 min_vruntime, u64 vruntime)
117{
368059a9
PZ
118 s64 delta = (s64)(vruntime - min_vruntime);
119 if (delta > 0)
02e0431a
PZ
120 min_vruntime = vruntime;
121
122 return min_vruntime;
123}
124
b0ffd246
PZ
125static inline u64
126min_vruntime(u64 min_vruntime, u64 vruntime)
127{
128 s64 delta = (s64)(vruntime - min_vruntime);
129 if (delta < 0)
130 min_vruntime = vruntime;
131
132 return min_vruntime;
133}
134
02e0431a
PZ
135static inline s64
136entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 137{
30cfdcfc 138 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
139}
140
bf0f6f24
IM
141/*
142 * Enqueue an entity into the rb-tree:
143 */
19ccd97a 144static void
bf0f6f24
IM
145__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
146{
147 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
148 struct rb_node *parent = NULL;
149 struct sched_entity *entry;
9014623c 150 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
151 int leftmost = 1;
152
153 /*
154 * Find the right place in the rbtree:
155 */
156 while (*link) {
157 parent = *link;
158 entry = rb_entry(parent, struct sched_entity, run_node);
159 /*
160 * We dont care about collisions. Nodes with
161 * the same key stay together.
162 */
9014623c 163 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
164 link = &parent->rb_left;
165 } else {
166 link = &parent->rb_right;
167 leftmost = 0;
168 }
169 }
170
171 /*
172 * Maintain a cache of leftmost tree entries (it is frequently
173 * used):
174 */
175 if (leftmost)
57cb499d 176 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
177
178 rb_link_node(&se->run_node, parent, link);
179 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
180}
181
19ccd97a 182static void
bf0f6f24
IM
183__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
184{
185 if (cfs_rq->rb_leftmost == &se->run_node)
57cb499d 186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
e9acbff6 187
bf0f6f24 188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
189}
190
191static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
192{
193 return cfs_rq->rb_leftmost;
194}
195
196static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
197{
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
199}
200
aeb73b04
PZ
201static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
202{
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
206
207 while (*link) {
208 parent = *link;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
211 }
212
213 return se;
214}
215
bf0f6f24
IM
216/**************************************************************
217 * Scheduling class statistics methods:
218 */
219
4d78e7b6
PZ
220static u64 __sched_period(unsigned long nr_running)
221{
222 u64 period = sysctl_sched_latency;
5f6d858e 223 unsigned long nr_latency = sysctl_sched_nr_latency;
4d78e7b6
PZ
224
225 if (unlikely(nr_running > nr_latency)) {
226 period *= nr_running;
227 do_div(period, nr_latency);
228 }
229
230 return period;
231}
232
6d0f0ebd 233static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 234{
6d0f0ebd 235 u64 period = __sched_period(cfs_rq->nr_running);
21805085 236
6d0f0ebd
PZ
237 period *= se->load.weight;
238 do_div(period, cfs_rq->load.weight);
21805085 239
6d0f0ebd 240 return period;
bf0f6f24
IM
241}
242
67e9fb2a
PZ
243static u64 __sched_vslice(unsigned long nr_running)
244{
5f6d858e
PZ
245 unsigned long period = sysctl_sched_latency;
246 unsigned long nr_latency = sysctl_sched_nr_latency;
67e9fb2a 247
5f6d858e
PZ
248 if (unlikely(nr_running > nr_latency))
249 nr_running = nr_latency;
67e9fb2a 250
5f6d858e
PZ
251 period /= nr_running;
252
253 return (u64)period;
67e9fb2a
PZ
254}
255
bf0f6f24
IM
256/*
257 * Update the current task's runtime statistics. Skip current tasks that
258 * are not in our scheduling class.
259 */
260static inline void
8ebc91d9
IM
261__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
262 unsigned long delta_exec)
bf0f6f24 263{
bbdba7c0 264 unsigned long delta_exec_weighted;
b0ffd246 265 u64 vruntime;
bf0f6f24 266
8179ca23 267 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
268
269 curr->sum_exec_runtime += delta_exec;
7a62eabc 270 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
271 delta_exec_weighted = delta_exec;
272 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
273 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
274 &curr->load);
275 }
276 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
277
278 /*
279 * maintain cfs_rq->min_vruntime to be a monotonic increasing
280 * value tracking the leftmost vruntime in the tree.
281 */
282 if (first_fair(cfs_rq)) {
b0ffd246
PZ
283 vruntime = min_vruntime(curr->vruntime,
284 __pick_next_entity(cfs_rq)->vruntime);
02e0431a 285 } else
b0ffd246 286 vruntime = curr->vruntime;
02e0431a
PZ
287
288 cfs_rq->min_vruntime =
b0ffd246 289 max_vruntime(cfs_rq->min_vruntime, vruntime);
bf0f6f24
IM
290}
291
b7cc0896 292static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 293{
429d43bc 294 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 295 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
296 unsigned long delta_exec;
297
298 if (unlikely(!curr))
299 return;
300
301 /*
302 * Get the amount of time the current task was running
303 * since the last time we changed load (this cannot
304 * overflow on 32 bits):
305 */
8ebc91d9 306 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 307
8ebc91d9
IM
308 __update_curr(cfs_rq, curr, delta_exec);
309 curr->exec_start = now;
bf0f6f24
IM
310}
311
312static inline void
5870db5b 313update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 314{
d281918d 315 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
316}
317
bf0f6f24 318static inline unsigned long
08e2388a 319calc_weighted(unsigned long delta, struct sched_entity *se)
bf0f6f24 320{
08e2388a 321 unsigned long weight = se->load.weight;
bf0f6f24 322
08e2388a
IM
323 if (unlikely(weight != NICE_0_LOAD))
324 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
325 else
326 return delta;
bf0f6f24 327}
bf0f6f24
IM
328
329/*
330 * Task is being enqueued - update stats:
331 */
d2417e5a 332static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 333{
bf0f6f24
IM
334 /*
335 * Are we enqueueing a waiting task? (for current tasks
336 * a dequeue/enqueue event is a NOP)
337 */
429d43bc 338 if (se != cfs_rq->curr)
5870db5b 339 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
340}
341
bf0f6f24 342static void
9ef0a961 343update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 344{
bbdba7c0
IM
345 schedstat_set(se->wait_max, max(se->wait_max,
346 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 347 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
348}
349
350static inline void
19b6a2e3 351update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 352{
b7cc0896 353 update_curr(cfs_rq);
bf0f6f24
IM
354 /*
355 * Mark the end of the wait period if dequeueing a
356 * waiting task:
357 */
429d43bc 358 if (se != cfs_rq->curr)
9ef0a961 359 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
360}
361
362/*
363 * We are picking a new current task - update its stats:
364 */
365static inline void
79303e9e 366update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
367{
368 /*
369 * We are starting a new run period:
370 */
d281918d 371 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
372}
373
374/*
375 * We are descheduling a task - update its stats:
376 */
377static inline void
c7e9b5b2 378update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
379{
380 se->exec_start = 0;
381}
382
383/**************************************************
384 * Scheduling class queueing methods:
385 */
386
30cfdcfc
DA
387static void
388account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
389{
390 update_load_add(&cfs_rq->load, se->load.weight);
391 cfs_rq->nr_running++;
392 se->on_rq = 1;
393}
394
395static void
396account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
397{
398 update_load_sub(&cfs_rq->load, se->load.weight);
399 cfs_rq->nr_running--;
400 se->on_rq = 0;
401}
402
2396af69 403static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 404{
bf0f6f24
IM
405#ifdef CONFIG_SCHEDSTATS
406 if (se->sleep_start) {
d281918d 407 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
408
409 if ((s64)delta < 0)
410 delta = 0;
411
412 if (unlikely(delta > se->sleep_max))
413 se->sleep_max = delta;
414
415 se->sleep_start = 0;
416 se->sum_sleep_runtime += delta;
417 }
418 if (se->block_start) {
d281918d 419 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
420
421 if ((s64)delta < 0)
422 delta = 0;
423
424 if (unlikely(delta > se->block_max))
425 se->block_max = delta;
426
427 se->block_start = 0;
428 se->sum_sleep_runtime += delta;
30084fbd
IM
429
430 /*
431 * Blocking time is in units of nanosecs, so shift by 20 to
432 * get a milliseconds-range estimation of the amount of
433 * time that the task spent sleeping:
434 */
435 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
436 struct task_struct *tsk = task_of(se);
437
30084fbd
IM
438 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
439 delta >> 20);
440 }
bf0f6f24
IM
441 }
442#endif
443}
444
ddc97297
PZ
445static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
446{
447#ifdef CONFIG_SCHED_DEBUG
448 s64 d = se->vruntime - cfs_rq->min_vruntime;
449
450 if (d < 0)
451 d = -d;
452
453 if (d > 3*sysctl_sched_latency)
454 schedstat_inc(cfs_rq, nr_spread_over);
455#endif
456}
457
aeb73b04
PZ
458static void
459place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
460{
67e9fb2a 461 u64 vruntime;
aeb73b04 462
67e9fb2a 463 vruntime = cfs_rq->min_vruntime;
94dfb5e7
PZ
464
465 if (sched_feat(USE_TREE_AVG)) {
466 struct sched_entity *last = __pick_last_entity(cfs_rq);
467 if (last) {
67e9fb2a
PZ
468 vruntime += last->vruntime;
469 vruntime >>= 1;
94dfb5e7 470 }
67e9fb2a
PZ
471 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
472 vruntime += __sched_vslice(cfs_rq->nr_running)/2;
94dfb5e7
PZ
473
474 if (initial && sched_feat(START_DEBIT))
67e9fb2a 475 vruntime += __sched_vslice(cfs_rq->nr_running + 1);
aeb73b04 476
8465e792 477 if (!initial) {
94359f05
IM
478 if (sched_feat(NEW_FAIR_SLEEPERS))
479 vruntime -= sysctl_sched_latency;
480
b8487b92 481 vruntime = max_t(s64, vruntime, se->vruntime);
aeb73b04
PZ
482 }
483
67e9fb2a
PZ
484 se->vruntime = vruntime;
485
aeb73b04
PZ
486}
487
bf0f6f24 488static void
83b699ed 489enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
490{
491 /*
492 * Update the fair clock.
493 */
b7cc0896 494 update_curr(cfs_rq);
bf0f6f24 495
e9acbff6 496 if (wakeup) {
aeb73b04 497 place_entity(cfs_rq, se, 0);
2396af69 498 enqueue_sleeper(cfs_rq, se);
e9acbff6 499 }
bf0f6f24 500
d2417e5a 501 update_stats_enqueue(cfs_rq, se);
ddc97297 502 check_spread(cfs_rq, se);
83b699ed
SV
503 if (se != cfs_rq->curr)
504 __enqueue_entity(cfs_rq, se);
30cfdcfc 505 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
506}
507
508static void
525c2716 509dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 510{
19b6a2e3 511 update_stats_dequeue(cfs_rq, se);
db36cc7d 512 if (sleep) {
67e9fb2a 513#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
514 if (entity_is_task(se)) {
515 struct task_struct *tsk = task_of(se);
516
517 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 518 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 519 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 520 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 521 }
db36cc7d 522#endif
67e9fb2a
PZ
523 }
524
83b699ed 525 if (se != cfs_rq->curr)
30cfdcfc
DA
526 __dequeue_entity(cfs_rq, se);
527 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
528}
529
530/*
531 * Preempt the current task with a newly woken task if needed:
532 */
7c92e54f 533static void
2e09bf55 534check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 535{
11697830
PZ
536 unsigned long ideal_runtime, delta_exec;
537
6d0f0ebd 538 ideal_runtime = sched_slice(cfs_rq, curr);
11697830
PZ
539 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
540 if (delta_exec > ideal_runtime)
bf0f6f24
IM
541 resched_task(rq_of(cfs_rq)->curr);
542}
543
83b699ed 544static void
8494f412 545set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 546{
83b699ed
SV
547 /* 'current' is not kept within the tree. */
548 if (se->on_rq) {
549 /*
550 * Any task has to be enqueued before it get to execute on
551 * a CPU. So account for the time it spent waiting on the
552 * runqueue.
553 */
554 update_stats_wait_end(cfs_rq, se);
555 __dequeue_entity(cfs_rq, se);
556 }
557
79303e9e 558 update_stats_curr_start(cfs_rq, se);
429d43bc 559 cfs_rq->curr = se;
eba1ed4b
IM
560#ifdef CONFIG_SCHEDSTATS
561 /*
562 * Track our maximum slice length, if the CPU's load is at
563 * least twice that of our own weight (i.e. dont track it
564 * when there are only lesser-weight tasks around):
565 */
495eca49 566 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
567 se->slice_max = max(se->slice_max,
568 se->sum_exec_runtime - se->prev_sum_exec_runtime);
569 }
570#endif
4a55b450 571 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
572}
573
9948f4b2 574static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
575{
576 struct sched_entity *se = __pick_next_entity(cfs_rq);
577
8494f412 578 set_next_entity(cfs_rq, se);
bf0f6f24
IM
579
580 return se;
581}
582
ab6cde26 583static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
584{
585 /*
586 * If still on the runqueue then deactivate_task()
587 * was not called and update_curr() has to be done:
588 */
589 if (prev->on_rq)
b7cc0896 590 update_curr(cfs_rq);
bf0f6f24 591
c7e9b5b2 592 update_stats_curr_end(cfs_rq, prev);
bf0f6f24 593
ddc97297 594 check_spread(cfs_rq, prev);
30cfdcfc 595 if (prev->on_rq) {
5870db5b 596 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
597 /* Put 'current' back into the tree. */
598 __enqueue_entity(cfs_rq, prev);
599 }
429d43bc 600 cfs_rq->curr = NULL;
bf0f6f24
IM
601}
602
603static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
604{
bf0f6f24 605 /*
30cfdcfc 606 * Update run-time statistics of the 'current'.
bf0f6f24 607 */
30cfdcfc 608 update_curr(cfs_rq);
bf0f6f24 609
2e09bf55
IM
610 if (cfs_rq->nr_running > 1)
611 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
612}
613
614/**************************************************
615 * CFS operations on tasks:
616 */
617
618#ifdef CONFIG_FAIR_GROUP_SCHED
619
620/* Walk up scheduling entities hierarchy */
621#define for_each_sched_entity(se) \
622 for (; se; se = se->parent)
623
624static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
625{
626 return p->se.cfs_rq;
627}
628
629/* runqueue on which this entity is (to be) queued */
630static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
631{
632 return se->cfs_rq;
633}
634
635/* runqueue "owned" by this group */
636static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
637{
638 return grp->my_q;
639}
640
641/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
642 * another cpu ('this_cpu')
643 */
644static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
645{
29f59db3 646 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
647}
648
649/* Iterate thr' all leaf cfs_rq's on a runqueue */
650#define for_each_leaf_cfs_rq(rq, cfs_rq) \
651 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
652
fad095a7
SV
653/* Do the two (enqueued) entities belong to the same group ? */
654static inline int
655is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 656{
fad095a7 657 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
658 return 1;
659
660 return 0;
661}
662
fad095a7
SV
663static inline struct sched_entity *parent_entity(struct sched_entity *se)
664{
665 return se->parent;
666}
667
bf0f6f24
IM
668#else /* CONFIG_FAIR_GROUP_SCHED */
669
670#define for_each_sched_entity(se) \
671 for (; se; se = NULL)
672
673static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
674{
675 return &task_rq(p)->cfs;
676}
677
678static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
679{
680 struct task_struct *p = task_of(se);
681 struct rq *rq = task_rq(p);
682
683 return &rq->cfs;
684}
685
686/* runqueue "owned" by this group */
687static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
688{
689 return NULL;
690}
691
692static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
693{
694 return &cpu_rq(this_cpu)->cfs;
695}
696
697#define for_each_leaf_cfs_rq(rq, cfs_rq) \
698 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
699
fad095a7
SV
700static inline int
701is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
702{
703 return 1;
704}
705
fad095a7
SV
706static inline struct sched_entity *parent_entity(struct sched_entity *se)
707{
708 return NULL;
709}
710
bf0f6f24
IM
711#endif /* CONFIG_FAIR_GROUP_SCHED */
712
713/*
714 * The enqueue_task method is called before nr_running is
715 * increased. Here we update the fair scheduling stats and
716 * then put the task into the rbtree:
717 */
fd390f6a 718static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
719{
720 struct cfs_rq *cfs_rq;
721 struct sched_entity *se = &p->se;
722
723 for_each_sched_entity(se) {
724 if (se->on_rq)
725 break;
726 cfs_rq = cfs_rq_of(se);
83b699ed 727 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 728 wakeup = 1;
bf0f6f24
IM
729 }
730}
731
732/*
733 * The dequeue_task method is called before nr_running is
734 * decreased. We remove the task from the rbtree and
735 * update the fair scheduling stats:
736 */
f02231e5 737static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
738{
739 struct cfs_rq *cfs_rq;
740 struct sched_entity *se = &p->se;
741
742 for_each_sched_entity(se) {
743 cfs_rq = cfs_rq_of(se);
525c2716 744 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
745 /* Don't dequeue parent if it has other entities besides us */
746 if (cfs_rq->load.weight)
747 break;
b9fa3df3 748 sleep = 1;
bf0f6f24
IM
749 }
750}
751
752/*
1799e35d
IM
753 * sched_yield() support is very simple - we dequeue and enqueue.
754 *
755 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 756 */
4530d7ab 757static void yield_task_fair(struct rq *rq)
bf0f6f24 758{
72ea22f8 759 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
4530d7ab 760 struct sched_entity *rightmost, *se = &rq->curr->se;
bf0f6f24
IM
761
762 /*
1799e35d
IM
763 * Are we the only task in the tree?
764 */
765 if (unlikely(cfs_rq->nr_running == 1))
766 return;
767
768 if (likely(!sysctl_sched_compat_yield)) {
769 __update_rq_clock(rq);
770 /*
771 * Dequeue and enqueue the task to update its
772 * position within the tree:
773 */
2b1e315d 774 update_curr(cfs_rq);
1799e35d
IM
775
776 return;
777 }
778 /*
779 * Find the rightmost entry in the rbtree:
bf0f6f24 780 */
2b1e315d 781 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
782 /*
783 * Already in the rightmost position?
784 */
2b1e315d 785 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
786 return;
787
788 /*
789 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
790 * Upon rescheduling, sched_class::put_prev_task() will place
791 * 'current' within the tree based on its new key value.
1799e35d 792 */
30cfdcfc 793 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
794}
795
796/*
797 * Preempt the current task with a newly woken task if needed:
798 */
2e09bf55 799static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
800{
801 struct task_struct *curr = rq->curr;
fad095a7 802 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 803 struct sched_entity *se = &curr->se, *pse = &p->se;
fad095a7 804 s64 delta;
bf0f6f24
IM
805
806 if (unlikely(rt_prio(p->prio))) {
a8e504d2 807 update_rq_clock(rq);
b7cc0896 808 update_curr(cfs_rq);
bf0f6f24
IM
809 resched_task(curr);
810 return;
811 }
812
fad095a7
SV
813 while (!is_same_group(se, pse)) {
814 se = parent_entity(se);
815 pse = parent_entity(pse);
816 }
8651a86c 817
fad095a7 818 delta = se->vruntime - pse->vruntime;
8651a86c 819
fad095a7
SV
820 if (delta > (s64)sysctl_sched_wakeup_granularity)
821 resched_task(curr);
bf0f6f24
IM
822}
823
fb8d4724 824static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
825{
826 struct cfs_rq *cfs_rq = &rq->cfs;
827 struct sched_entity *se;
828
829 if (unlikely(!cfs_rq->nr_running))
830 return NULL;
831
832 do {
9948f4b2 833 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
834 cfs_rq = group_cfs_rq(se);
835 } while (cfs_rq);
836
837 return task_of(se);
838}
839
840/*
841 * Account for a descheduled task:
842 */
31ee529c 843static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
844{
845 struct sched_entity *se = &prev->se;
846 struct cfs_rq *cfs_rq;
847
848 for_each_sched_entity(se) {
849 cfs_rq = cfs_rq_of(se);
ab6cde26 850 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
851 }
852}
853
854/**************************************************
855 * Fair scheduling class load-balancing methods:
856 */
857
858/*
859 * Load-balancing iterator. Note: while the runqueue stays locked
860 * during the whole iteration, the current task might be
861 * dequeued so the iterator has to be dequeue-safe. Here we
862 * achieve that by always pre-iterating before returning
863 * the current task:
864 */
865static inline struct task_struct *
866__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
867{
868 struct task_struct *p;
869
870 if (!curr)
871 return NULL;
872
873 p = rb_entry(curr, struct task_struct, se.run_node);
874 cfs_rq->rb_load_balance_curr = rb_next(curr);
875
876 return p;
877}
878
879static struct task_struct *load_balance_start_fair(void *arg)
880{
881 struct cfs_rq *cfs_rq = arg;
882
883 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
884}
885
886static struct task_struct *load_balance_next_fair(void *arg)
887{
888 struct cfs_rq *cfs_rq = arg;
889
890 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
891}
892
a4ac01c3 893#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
894static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
895{
896 struct sched_entity *curr;
897 struct task_struct *p;
898
899 if (!cfs_rq->nr_running)
900 return MAX_PRIO;
901
9b5b7751
SV
902 curr = cfs_rq->curr;
903 if (!curr)
904 curr = __pick_next_entity(cfs_rq);
905
bf0f6f24
IM
906 p = task_of(curr);
907
908 return p->prio;
909}
a4ac01c3 910#endif
bf0f6f24 911
43010659 912static unsigned long
bf0f6f24 913load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
914 unsigned long max_nr_move, unsigned long max_load_move,
915 struct sched_domain *sd, enum cpu_idle_type idle,
916 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
917{
918 struct cfs_rq *busy_cfs_rq;
919 unsigned long load_moved, total_nr_moved = 0, nr_moved;
920 long rem_load_move = max_load_move;
921 struct rq_iterator cfs_rq_iterator;
922
923 cfs_rq_iterator.start = load_balance_start_fair;
924 cfs_rq_iterator.next = load_balance_next_fair;
925
926 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 927#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 928 struct cfs_rq *this_cfs_rq;
e56f31aa 929 long imbalance;
bf0f6f24 930 unsigned long maxload;
bf0f6f24
IM
931
932 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
933
e56f31aa 934 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
935 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
936 if (imbalance <= 0)
937 continue;
938
939 /* Don't pull more than imbalance/2 */
940 imbalance /= 2;
941 maxload = min(rem_load_move, imbalance);
942
a4ac01c3
PW
943 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
944#else
e56f31aa 945# define maxload rem_load_move
a4ac01c3 946#endif
bf0f6f24
IM
947 /* pass busy_cfs_rq argument into
948 * load_balance_[start|next]_fair iterators
949 */
950 cfs_rq_iterator.arg = busy_cfs_rq;
951 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
952 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 953 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
954
955 total_nr_moved += nr_moved;
956 max_nr_move -= nr_moved;
957 rem_load_move -= load_moved;
958
959 if (max_nr_move <= 0 || rem_load_move <= 0)
960 break;
961 }
962
43010659 963 return max_load_move - rem_load_move;
bf0f6f24
IM
964}
965
966/*
967 * scheduler tick hitting a task of our scheduling class:
968 */
969static void task_tick_fair(struct rq *rq, struct task_struct *curr)
970{
971 struct cfs_rq *cfs_rq;
972 struct sched_entity *se = &curr->se;
973
974 for_each_sched_entity(se) {
975 cfs_rq = cfs_rq_of(se);
976 entity_tick(cfs_rq, se);
977 }
978}
979
4d78e7b6
PZ
980#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
981
bf0f6f24
IM
982/*
983 * Share the fairness runtime between parent and child, thus the
984 * total amount of pressure for CPU stays equal - new tasks
985 * get a chance to run but frequent forkers are not allowed to
986 * monopolize the CPU. Note: the parent runqueue is locked,
987 * the child is not running yet.
988 */
ee0827d8 989static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
990{
991 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 992 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
993
994 sched_info_queued(p);
995
7109c442 996 update_curr(cfs_rq);
aeb73b04 997 place_entity(cfs_rq, se, 1);
4d78e7b6 998
4d78e7b6
PZ
999 if (sysctl_sched_child_runs_first &&
1000 curr->vruntime < se->vruntime) {
87fefa38 1001 /*
edcb60a3
IM
1002 * Upon rescheduling, sched_class::put_prev_task() will place
1003 * 'current' within the tree based on its new key value.
1004 */
4d78e7b6 1005 swap(curr->vruntime, se->vruntime);
4d78e7b6 1006 }
bf0f6f24 1007
e9acbff6 1008 update_stats_enqueue(cfs_rq, se);
ddc97297
PZ
1009 check_spread(cfs_rq, se);
1010 check_spread(cfs_rq, curr);
bf0f6f24 1011 __enqueue_entity(cfs_rq, se);
30cfdcfc 1012 account_entity_enqueue(cfs_rq, se);
bb61c210 1013 resched_task(rq->curr);
bf0f6f24
IM
1014}
1015
83b699ed
SV
1016/* Account for a task changing its policy or group.
1017 *
1018 * This routine is mostly called to set cfs_rq->curr field when a task
1019 * migrates between groups/classes.
1020 */
1021static void set_curr_task_fair(struct rq *rq)
1022{
1023 struct sched_entity *se = &rq->curr->se;
1024
1025 for_each_sched_entity(se)
1026 set_next_entity(cfs_rq_of(se), se);
1027}
1028
bf0f6f24
IM
1029/*
1030 * All the scheduling class methods:
1031 */
5522d5d5
IM
1032static const struct sched_class fair_sched_class = {
1033 .next = &idle_sched_class,
bf0f6f24
IM
1034 .enqueue_task = enqueue_task_fair,
1035 .dequeue_task = dequeue_task_fair,
1036 .yield_task = yield_task_fair,
1037
2e09bf55 1038 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1039
1040 .pick_next_task = pick_next_task_fair,
1041 .put_prev_task = put_prev_task_fair,
1042
1043 .load_balance = load_balance_fair,
1044
83b699ed 1045 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1046 .task_tick = task_tick_fair,
1047 .task_new = task_new_fair,
1048};
1049
1050#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1051static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1052{
bf0f6f24
IM
1053 struct cfs_rq *cfs_rq;
1054
75c28ace
SV
1055#ifdef CONFIG_FAIR_GROUP_SCHED
1056 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1057#endif
c3b64f1e 1058 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1059 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1060}
1061#endif