sched: wakeup granularity increase
[linux-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
172ac3db 49unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
71fd3714 61 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
2bd8e6d4 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
2e09bf55 77const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
bf0f6f24 78
bf0f6f24
IM
79unsigned int sysctl_sched_runtime_limit __read_mostly;
80
bf0f6f24
IM
81extern struct sched_class fair_sched_class;
82
83/**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
62160e3f 98#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 99
62160e3f
IM
100static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101{
102 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
103}
104
105#define entity_is_task(se) 1
106
bf0f6f24
IM
107#endif /* CONFIG_FAIR_GROUP_SCHED */
108
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111 return container_of(se, struct task_struct, se);
112}
113
114
115/**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
e9acbff6
IM
119static inline void
120set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
121{
122 struct sched_entity *se;
123
124 cfs_rq->rb_leftmost = leftmost;
125 if (leftmost) {
126 se = rb_entry(leftmost, struct sched_entity, run_node);
127 cfs_rq->min_vruntime = max(se->vruntime,
128 cfs_rq->min_vruntime);
129 }
130}
131
bf0f6f24
IM
132/*
133 * Enqueue an entity into the rb-tree:
134 */
19ccd97a 135static void
bf0f6f24
IM
136__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
137{
138 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
139 struct rb_node *parent = NULL;
140 struct sched_entity *entry;
141 s64 key = se->fair_key;
142 int leftmost = 1;
143
144 /*
145 * Find the right place in the rbtree:
146 */
147 while (*link) {
148 parent = *link;
149 entry = rb_entry(parent, struct sched_entity, run_node);
150 /*
151 * We dont care about collisions. Nodes with
152 * the same key stay together.
153 */
154 if (key - entry->fair_key < 0) {
155 link = &parent->rb_left;
156 } else {
157 link = &parent->rb_right;
158 leftmost = 0;
159 }
160 }
161
162 /*
163 * Maintain a cache of leftmost tree entries (it is frequently
164 * used):
165 */
166 if (leftmost)
e9acbff6 167 set_leftmost(cfs_rq, &se->run_node);
bf0f6f24
IM
168
169 rb_link_node(&se->run_node, parent, link);
170 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
171 update_load_add(&cfs_rq->load, se->load.weight);
172 cfs_rq->nr_running++;
173 se->on_rq = 1;
a206c072
IM
174
175 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
bf0f6f24
IM
176}
177
19ccd97a 178static void
bf0f6f24
IM
179__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
180{
181 if (cfs_rq->rb_leftmost == &se->run_node)
e9acbff6
IM
182 set_leftmost(cfs_rq, rb_next(&se->run_node));
183
bf0f6f24
IM
184 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
185 update_load_sub(&cfs_rq->load, se->load.weight);
186 cfs_rq->nr_running--;
187 se->on_rq = 0;
a206c072
IM
188
189 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
bf0f6f24
IM
190}
191
192static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
193{
194 return cfs_rq->rb_leftmost;
195}
196
197static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
198{
199 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
200}
201
202/**************************************************************
203 * Scheduling class statistics methods:
204 */
205
4d78e7b6
PZ
206static u64 __sched_period(unsigned long nr_running)
207{
208 u64 period = sysctl_sched_latency;
209 unsigned long nr_latency =
210 sysctl_sched_latency / sysctl_sched_min_granularity;
211
212 if (unlikely(nr_running > nr_latency)) {
213 period *= nr_running;
214 do_div(period, nr_latency);
215 }
216
217 return period;
218}
219
6d0f0ebd 220static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 221{
6d0f0ebd 222 u64 period = __sched_period(cfs_rq->nr_running);
21805085 223
6d0f0ebd
PZ
224 period *= se->load.weight;
225 do_div(period, cfs_rq->load.weight);
21805085 226
6d0f0ebd 227 return period;
bf0f6f24
IM
228}
229
230static inline void
231limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
232{
233 long limit = sysctl_sched_runtime_limit;
234
235 /*
236 * Niced tasks have the same history dynamic range as
237 * non-niced tasks:
238 */
239 if (unlikely(se->wait_runtime > limit)) {
240 se->wait_runtime = limit;
241 schedstat_inc(se, wait_runtime_overruns);
242 schedstat_inc(cfs_rq, wait_runtime_overruns);
243 }
244 if (unlikely(se->wait_runtime < -limit)) {
245 se->wait_runtime = -limit;
246 schedstat_inc(se, wait_runtime_underruns);
247 schedstat_inc(cfs_rq, wait_runtime_underruns);
248 }
249}
250
251static inline void
252__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
253{
254 se->wait_runtime += delta;
255 schedstat_add(se, sum_wait_runtime, delta);
256 limit_wait_runtime(cfs_rq, se);
257}
258
259static void
260add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
261{
262 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
263 __add_wait_runtime(cfs_rq, se, delta);
264 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
265}
266
267/*
268 * Update the current task's runtime statistics. Skip current tasks that
269 * are not in our scheduling class.
270 */
271static inline void
8ebc91d9
IM
272__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
273 unsigned long delta_exec)
bf0f6f24 274{
e9acbff6 275 unsigned long delta, delta_fair, delta_mine, delta_exec_weighted;
bf0f6f24
IM
276 struct load_weight *lw = &cfs_rq->load;
277 unsigned long load = lw->weight;
278
8179ca23 279 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
280
281 curr->sum_exec_runtime += delta_exec;
282 cfs_rq->exec_clock += delta_exec;
e9acbff6
IM
283 delta_exec_weighted = delta_exec;
284 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
285 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
286 &curr->load);
287 }
288 curr->vruntime += delta_exec_weighted;
bf0f6f24 289
6cb58195
IM
290 if (!sched_feat(FAIR_SLEEPERS))
291 return;
292
fd8bb43e
IM
293 if (unlikely(!load))
294 return;
295
bf0f6f24
IM
296 delta_fair = calc_delta_fair(delta_exec, lw);
297 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
298
5f01d519 299 if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
ea0aa3b2 300 delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
b2133c8b
IM
301 delta = min(delta, (unsigned long)(
302 (long)sysctl_sched_runtime_limit - curr->wait_runtime));
bf0f6f24
IM
303 cfs_rq->sleeper_bonus -= delta;
304 delta_mine -= delta;
305 }
306
307 cfs_rq->fair_clock += delta_fair;
308 /*
309 * We executed delta_exec amount of time on the CPU,
310 * but we were only entitled to delta_mine amount of
311 * time during that period (if nr_running == 1 then
312 * the two values are equal)
313 * [Note: delta_mine - delta_exec is negative]:
314 */
315 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
316}
317
b7cc0896 318static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 319{
429d43bc 320 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 321 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
322 unsigned long delta_exec;
323
324 if (unlikely(!curr))
325 return;
326
327 /*
328 * Get the amount of time the current task was running
329 * since the last time we changed load (this cannot
330 * overflow on 32 bits):
331 */
8ebc91d9 332 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 333
8ebc91d9
IM
334 __update_curr(cfs_rq, curr, delta_exec);
335 curr->exec_start = now;
bf0f6f24
IM
336}
337
338static inline void
5870db5b 339update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
340{
341 se->wait_start_fair = cfs_rq->fair_clock;
d281918d 342 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
343}
344
bf0f6f24 345static inline unsigned long
08e2388a 346calc_weighted(unsigned long delta, struct sched_entity *se)
bf0f6f24 347{
08e2388a 348 unsigned long weight = se->load.weight;
bf0f6f24 349
08e2388a
IM
350 if (unlikely(weight != NICE_0_LOAD))
351 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
352 else
353 return delta;
bf0f6f24 354}
bf0f6f24
IM
355
356/*
357 * Task is being enqueued - update stats:
358 */
d2417e5a 359static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 360{
bf0f6f24
IM
361 /*
362 * Are we enqueueing a waiting task? (for current tasks
363 * a dequeue/enqueue event is a NOP)
364 */
429d43bc 365 if (se != cfs_rq->curr)
5870db5b 366 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
367 /*
368 * Update the key:
369 */
e9acbff6 370 se->fair_key = se->vruntime;
bf0f6f24
IM
371}
372
373/*
374 * Note: must be called with a freshly updated rq->fair_clock.
375 */
376static inline void
8ebc91d9
IM
377__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
378 unsigned long delta_fair)
bf0f6f24 379{
d281918d
IM
380 schedstat_set(se->wait_max, max(se->wait_max,
381 rq_of(cfs_rq)->clock - se->wait_start));
bf0f6f24 382
08e2388a 383 delta_fair = calc_weighted(delta_fair, se);
bf0f6f24
IM
384
385 add_wait_runtime(cfs_rq, se, delta_fair);
386}
387
388static void
9ef0a961 389update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
390{
391 unsigned long delta_fair;
392
b77d69db
IM
393 if (unlikely(!se->wait_start_fair))
394 return;
395
bf0f6f24
IM
396 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
397 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
398
8ebc91d9 399 __update_stats_wait_end(cfs_rq, se, delta_fair);
bf0f6f24
IM
400
401 se->wait_start_fair = 0;
6cfb0d5d 402 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
403}
404
405static inline void
19b6a2e3 406update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 407{
b7cc0896 408 update_curr(cfs_rq);
bf0f6f24
IM
409 /*
410 * Mark the end of the wait period if dequeueing a
411 * waiting task:
412 */
429d43bc 413 if (se != cfs_rq->curr)
9ef0a961 414 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
415}
416
417/*
418 * We are picking a new current task - update its stats:
419 */
420static inline void
79303e9e 421update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
422{
423 /*
424 * We are starting a new run period:
425 */
d281918d 426 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
427}
428
429/*
430 * We are descheduling a task - update its stats:
431 */
432static inline void
c7e9b5b2 433update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
434{
435 se->exec_start = 0;
436}
437
438/**************************************************
439 * Scheduling class queueing methods:
440 */
441
8ebc91d9
IM
442static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
443 unsigned long delta_fair)
bf0f6f24 444{
8ebc91d9 445 unsigned long load = cfs_rq->load.weight;
bf0f6f24
IM
446 long prev_runtime;
447
b2133c8b
IM
448 /*
449 * Do not boost sleepers if there's too much bonus 'in flight'
450 * already:
451 */
452 if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
453 return;
454
e59c80c5 455 if (sched_feat(SLEEPER_LOAD_AVG))
bf0f6f24
IM
456 load = rq_of(cfs_rq)->cpu_load[2];
457
bf0f6f24
IM
458 /*
459 * Fix up delta_fair with the effect of us running
460 * during the whole sleep period:
461 */
e59c80c5 462 if (sched_feat(SLEEPER_AVG))
bf0f6f24
IM
463 delta_fair = div64_likely32((u64)delta_fair * load,
464 load + se->load.weight);
465
08e2388a 466 delta_fair = calc_weighted(delta_fair, se);
bf0f6f24
IM
467
468 prev_runtime = se->wait_runtime;
469 __add_wait_runtime(cfs_rq, se, delta_fair);
470 delta_fair = se->wait_runtime - prev_runtime;
471
472 /*
473 * Track the amount of bonus we've given to sleepers:
474 */
475 cfs_rq->sleeper_bonus += delta_fair;
bf0f6f24
IM
476}
477
2396af69 478static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
479{
480 struct task_struct *tsk = task_of(se);
481 unsigned long delta_fair;
482
483 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
e59c80c5 484 !sched_feat(FAIR_SLEEPERS))
bf0f6f24
IM
485 return;
486
487 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
488 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
489
8ebc91d9 490 __enqueue_sleeper(cfs_rq, se, delta_fair);
bf0f6f24
IM
491
492 se->sleep_start_fair = 0;
493
494#ifdef CONFIG_SCHEDSTATS
495 if (se->sleep_start) {
d281918d 496 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
497
498 if ((s64)delta < 0)
499 delta = 0;
500
501 if (unlikely(delta > se->sleep_max))
502 se->sleep_max = delta;
503
504 se->sleep_start = 0;
505 se->sum_sleep_runtime += delta;
506 }
507 if (se->block_start) {
d281918d 508 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
509
510 if ((s64)delta < 0)
511 delta = 0;
512
513 if (unlikely(delta > se->block_max))
514 se->block_max = delta;
515
516 se->block_start = 0;
517 se->sum_sleep_runtime += delta;
30084fbd
IM
518
519 /*
520 * Blocking time is in units of nanosecs, so shift by 20 to
521 * get a milliseconds-range estimation of the amount of
522 * time that the task spent sleeping:
523 */
524 if (unlikely(prof_on == SLEEP_PROFILING)) {
525 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
526 delta >> 20);
527 }
bf0f6f24
IM
528 }
529#endif
530}
531
532static void
668031ca 533enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
534{
535 /*
536 * Update the fair clock.
537 */
b7cc0896 538 update_curr(cfs_rq);
bf0f6f24 539
e9acbff6
IM
540 if (wakeup) {
541 u64 min_runtime, latency;
542
543 min_runtime = cfs_rq->min_vruntime;
544 min_runtime += sysctl_sched_latency/2;
545
546 if (sched_feat(NEW_FAIR_SLEEPERS)) {
547 latency = calc_weighted(sysctl_sched_latency, se);
548 if (min_runtime > latency)
549 min_runtime -= latency;
550 }
551
552 se->vruntime = max(se->vruntime, min_runtime);
553
2396af69 554 enqueue_sleeper(cfs_rq, se);
e9acbff6 555 }
bf0f6f24 556
d2417e5a 557 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
558 __enqueue_entity(cfs_rq, se);
559}
560
561static void
525c2716 562dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 563{
19b6a2e3 564 update_stats_dequeue(cfs_rq, se);
bf0f6f24
IM
565 if (sleep) {
566 se->sleep_start_fair = cfs_rq->fair_clock;
567#ifdef CONFIG_SCHEDSTATS
568 if (entity_is_task(se)) {
569 struct task_struct *tsk = task_of(se);
570
571 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 572 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 573 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 574 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 575 }
bf0f6f24
IM
576#endif
577 }
578 __dequeue_entity(cfs_rq, se);
579}
580
581/*
582 * Preempt the current task with a newly woken task if needed:
583 */
7c92e54f 584static void
2e09bf55 585check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 586{
11697830
PZ
587 unsigned long ideal_runtime, delta_exec;
588
6d0f0ebd 589 ideal_runtime = sched_slice(cfs_rq, curr);
11697830
PZ
590 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
591 if (delta_exec > ideal_runtime)
bf0f6f24
IM
592 resched_task(rq_of(cfs_rq)->curr);
593}
594
595static inline void
8494f412 596set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
597{
598 /*
599 * Any task has to be enqueued before it get to execute on
600 * a CPU. So account for the time it spent waiting on the
601 * runqueue. (note, here we rely on pick_next_task() having
602 * done a put_prev_task_fair() shortly before this, which
603 * updated rq->fair_clock - used by update_stats_wait_end())
604 */
9ef0a961 605 update_stats_wait_end(cfs_rq, se);
79303e9e 606 update_stats_curr_start(cfs_rq, se);
429d43bc 607 cfs_rq->curr = se;
eba1ed4b
IM
608#ifdef CONFIG_SCHEDSTATS
609 /*
610 * Track our maximum slice length, if the CPU's load is at
611 * least twice that of our own weight (i.e. dont track it
612 * when there are only lesser-weight tasks around):
613 */
614 if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
615 se->slice_max = max(se->slice_max,
616 se->sum_exec_runtime - se->prev_sum_exec_runtime);
617 }
618#endif
4a55b450 619 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
620}
621
9948f4b2 622static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
623{
624 struct sched_entity *se = __pick_next_entity(cfs_rq);
625
8494f412 626 set_next_entity(cfs_rq, se);
bf0f6f24
IM
627
628 return se;
629}
630
ab6cde26 631static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
632{
633 /*
634 * If still on the runqueue then deactivate_task()
635 * was not called and update_curr() has to be done:
636 */
637 if (prev->on_rq)
b7cc0896 638 update_curr(cfs_rq);
bf0f6f24 639
c7e9b5b2 640 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
641
642 if (prev->on_rq)
5870db5b 643 update_stats_wait_start(cfs_rq, prev);
429d43bc 644 cfs_rq->curr = NULL;
bf0f6f24
IM
645}
646
647static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
648{
bf0f6f24
IM
649 /*
650 * Dequeue and enqueue the task to update its
651 * position within the tree:
652 */
525c2716 653 dequeue_entity(cfs_rq, curr, 0);
668031ca 654 enqueue_entity(cfs_rq, curr, 0);
bf0f6f24 655
2e09bf55
IM
656 if (cfs_rq->nr_running > 1)
657 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
658}
659
660/**************************************************
661 * CFS operations on tasks:
662 */
663
664#ifdef CONFIG_FAIR_GROUP_SCHED
665
666/* Walk up scheduling entities hierarchy */
667#define for_each_sched_entity(se) \
668 for (; se; se = se->parent)
669
670static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
671{
672 return p->se.cfs_rq;
673}
674
675/* runqueue on which this entity is (to be) queued */
676static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
677{
678 return se->cfs_rq;
679}
680
681/* runqueue "owned" by this group */
682static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
683{
684 return grp->my_q;
685}
686
687/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
688 * another cpu ('this_cpu')
689 */
690static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
691{
692 /* A later patch will take group into account */
693 return &cpu_rq(this_cpu)->cfs;
694}
695
696/* Iterate thr' all leaf cfs_rq's on a runqueue */
697#define for_each_leaf_cfs_rq(rq, cfs_rq) \
698 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
699
700/* Do the two (enqueued) tasks belong to the same group ? */
701static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
702{
703 if (curr->se.cfs_rq == p->se.cfs_rq)
704 return 1;
705
706 return 0;
707}
708
709#else /* CONFIG_FAIR_GROUP_SCHED */
710
711#define for_each_sched_entity(se) \
712 for (; se; se = NULL)
713
714static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
715{
716 return &task_rq(p)->cfs;
717}
718
719static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
720{
721 struct task_struct *p = task_of(se);
722 struct rq *rq = task_rq(p);
723
724 return &rq->cfs;
725}
726
727/* runqueue "owned" by this group */
728static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
729{
730 return NULL;
731}
732
733static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
734{
735 return &cpu_rq(this_cpu)->cfs;
736}
737
738#define for_each_leaf_cfs_rq(rq, cfs_rq) \
739 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
740
741static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
742{
743 return 1;
744}
745
746#endif /* CONFIG_FAIR_GROUP_SCHED */
747
748/*
749 * The enqueue_task method is called before nr_running is
750 * increased. Here we update the fair scheduling stats and
751 * then put the task into the rbtree:
752 */
fd390f6a 753static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
754{
755 struct cfs_rq *cfs_rq;
756 struct sched_entity *se = &p->se;
757
758 for_each_sched_entity(se) {
759 if (se->on_rq)
760 break;
761 cfs_rq = cfs_rq_of(se);
668031ca 762 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
763 }
764}
765
766/*
767 * The dequeue_task method is called before nr_running is
768 * decreased. We remove the task from the rbtree and
769 * update the fair scheduling stats:
770 */
f02231e5 771static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
772{
773 struct cfs_rq *cfs_rq;
774 struct sched_entity *se = &p->se;
775
776 for_each_sched_entity(se) {
777 cfs_rq = cfs_rq_of(se);
525c2716 778 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
779 /* Don't dequeue parent if it has other entities besides us */
780 if (cfs_rq->load.weight)
781 break;
782 }
783}
784
785/*
1799e35d
IM
786 * sched_yield() support is very simple - we dequeue and enqueue.
787 *
788 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24
IM
789 */
790static void yield_task_fair(struct rq *rq, struct task_struct *p)
791{
792 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1799e35d
IM
793 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
794 struct sched_entity *rightmost, *se = &p->se;
795 struct rb_node *parent;
bf0f6f24
IM
796
797 /*
1799e35d
IM
798 * Are we the only task in the tree?
799 */
800 if (unlikely(cfs_rq->nr_running == 1))
801 return;
802
803 if (likely(!sysctl_sched_compat_yield)) {
804 __update_rq_clock(rq);
805 /*
806 * Dequeue and enqueue the task to update its
807 * position within the tree:
808 */
809 dequeue_entity(cfs_rq, &p->se, 0);
810 enqueue_entity(cfs_rq, &p->se, 0);
811
812 return;
813 }
814 /*
815 * Find the rightmost entry in the rbtree:
bf0f6f24 816 */
1799e35d
IM
817 do {
818 parent = *link;
819 link = &parent->rb_right;
820 } while (*link);
821
822 rightmost = rb_entry(parent, struct sched_entity, run_node);
823 /*
824 * Already in the rightmost position?
825 */
826 if (unlikely(rightmost == se))
827 return;
828
829 /*
830 * Minimally necessary key value to be last in the tree:
831 */
832 se->fair_key = rightmost->fair_key + 1;
833
834 if (cfs_rq->rb_leftmost == &se->run_node)
835 cfs_rq->rb_leftmost = rb_next(&se->run_node);
836 /*
837 * Relink the task to the rightmost position:
838 */
839 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
840 rb_link_node(&se->run_node, parent, link);
841 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
842}
843
844/*
845 * Preempt the current task with a newly woken task if needed:
846 */
2e09bf55 847static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
848{
849 struct task_struct *curr = rq->curr;
850 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24
IM
851
852 if (unlikely(rt_prio(p->prio))) {
a8e504d2 853 update_rq_clock(rq);
b7cc0896 854 update_curr(cfs_rq);
bf0f6f24
IM
855 resched_task(curr);
856 return;
857 }
2e09bf55
IM
858 if (is_same_group(curr, p)) {
859 s64 delta = curr->se.vruntime - p->se.vruntime;
bf0f6f24 860
2e09bf55
IM
861 if (delta > (s64)sysctl_sched_wakeup_granularity)
862 resched_task(curr);
863 }
bf0f6f24
IM
864}
865
fb8d4724 866static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
867{
868 struct cfs_rq *cfs_rq = &rq->cfs;
869 struct sched_entity *se;
870
871 if (unlikely(!cfs_rq->nr_running))
872 return NULL;
873
874 do {
9948f4b2 875 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
876 cfs_rq = group_cfs_rq(se);
877 } while (cfs_rq);
878
879 return task_of(se);
880}
881
882/*
883 * Account for a descheduled task:
884 */
31ee529c 885static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
886{
887 struct sched_entity *se = &prev->se;
888 struct cfs_rq *cfs_rq;
889
890 for_each_sched_entity(se) {
891 cfs_rq = cfs_rq_of(se);
ab6cde26 892 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
893 }
894}
895
896/**************************************************
897 * Fair scheduling class load-balancing methods:
898 */
899
900/*
901 * Load-balancing iterator. Note: while the runqueue stays locked
902 * during the whole iteration, the current task might be
903 * dequeued so the iterator has to be dequeue-safe. Here we
904 * achieve that by always pre-iterating before returning
905 * the current task:
906 */
907static inline struct task_struct *
908__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
909{
910 struct task_struct *p;
911
912 if (!curr)
913 return NULL;
914
915 p = rb_entry(curr, struct task_struct, se.run_node);
916 cfs_rq->rb_load_balance_curr = rb_next(curr);
917
918 return p;
919}
920
921static struct task_struct *load_balance_start_fair(void *arg)
922{
923 struct cfs_rq *cfs_rq = arg;
924
925 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
926}
927
928static struct task_struct *load_balance_next_fair(void *arg)
929{
930 struct cfs_rq *cfs_rq = arg;
931
932 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
933}
934
a4ac01c3 935#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
936static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
937{
938 struct sched_entity *curr;
939 struct task_struct *p;
940
941 if (!cfs_rq->nr_running)
942 return MAX_PRIO;
943
944 curr = __pick_next_entity(cfs_rq);
945 p = task_of(curr);
946
947 return p->prio;
948}
a4ac01c3 949#endif
bf0f6f24 950
43010659 951static unsigned long
bf0f6f24 952load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
953 unsigned long max_nr_move, unsigned long max_load_move,
954 struct sched_domain *sd, enum cpu_idle_type idle,
955 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
956{
957 struct cfs_rq *busy_cfs_rq;
958 unsigned long load_moved, total_nr_moved = 0, nr_moved;
959 long rem_load_move = max_load_move;
960 struct rq_iterator cfs_rq_iterator;
961
962 cfs_rq_iterator.start = load_balance_start_fair;
963 cfs_rq_iterator.next = load_balance_next_fair;
964
965 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 966#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 967 struct cfs_rq *this_cfs_rq;
e56f31aa 968 long imbalance;
bf0f6f24 969 unsigned long maxload;
bf0f6f24
IM
970
971 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
972
e56f31aa 973 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
974 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
975 if (imbalance <= 0)
976 continue;
977
978 /* Don't pull more than imbalance/2 */
979 imbalance /= 2;
980 maxload = min(rem_load_move, imbalance);
981
a4ac01c3
PW
982 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
983#else
e56f31aa 984# define maxload rem_load_move
a4ac01c3 985#endif
bf0f6f24
IM
986 /* pass busy_cfs_rq argument into
987 * load_balance_[start|next]_fair iterators
988 */
989 cfs_rq_iterator.arg = busy_cfs_rq;
990 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
991 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 992 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
993
994 total_nr_moved += nr_moved;
995 max_nr_move -= nr_moved;
996 rem_load_move -= load_moved;
997
998 if (max_nr_move <= 0 || rem_load_move <= 0)
999 break;
1000 }
1001
43010659 1002 return max_load_move - rem_load_move;
bf0f6f24
IM
1003}
1004
1005/*
1006 * scheduler tick hitting a task of our scheduling class:
1007 */
1008static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1009{
1010 struct cfs_rq *cfs_rq;
1011 struct sched_entity *se = &curr->se;
1012
1013 for_each_sched_entity(se) {
1014 cfs_rq = cfs_rq_of(se);
1015 entity_tick(cfs_rq, se);
1016 }
1017}
1018
4d78e7b6
PZ
1019#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1020
bf0f6f24
IM
1021/*
1022 * Share the fairness runtime between parent and child, thus the
1023 * total amount of pressure for CPU stays equal - new tasks
1024 * get a chance to run but frequent forkers are not allowed to
1025 * monopolize the CPU. Note: the parent runqueue is locked,
1026 * the child is not running yet.
1027 */
ee0827d8 1028static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1029{
1030 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1031 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
1032
1033 sched_info_queued(p);
1034
7109c442 1035 update_curr(cfs_rq);
4d78e7b6 1036 se->vruntime = cfs_rq->min_vruntime;
d2417e5a 1037 update_stats_enqueue(cfs_rq, se);
4d78e7b6 1038
bf0f6f24
IM
1039 /*
1040 * The first wait is dominated by the child-runs-first logic,
1041 * so do not credit it with that waiting time yet:
1042 */
e59c80c5 1043 if (sched_feat(SKIP_INITIAL))
9f508f82 1044 se->wait_start_fair = 0;
bf0f6f24
IM
1045
1046 /*
1047 * The statistical average of wait_runtime is about
1048 * -granularity/2, so initialize the task with that:
1049 */
e59c80c5 1050 if (sched_feat(START_DEBIT))
4d78e7b6
PZ
1051 se->wait_runtime = -(__sched_period(cfs_rq->nr_running+1) / 2);
1052
1053 if (sysctl_sched_child_runs_first &&
1054 curr->vruntime < se->vruntime) {
1055
1056 dequeue_entity(cfs_rq, curr, 0);
1057 swap(curr->vruntime, se->vruntime);
1058 enqueue_entity(cfs_rq, curr, 0);
1059 }
bf0f6f24 1060
e9acbff6 1061 update_stats_enqueue(cfs_rq, se);
bf0f6f24 1062 __enqueue_entity(cfs_rq, se);
bb61c210 1063 resched_task(rq->curr);
bf0f6f24
IM
1064}
1065
1066#ifdef CONFIG_FAIR_GROUP_SCHED
1067/* Account for a task changing its policy or group.
1068 *
1069 * This routine is mostly called to set cfs_rq->curr field when a task
1070 * migrates between groups/classes.
1071 */
1072static void set_curr_task_fair(struct rq *rq)
1073{
7c6c16f3 1074 struct sched_entity *se = &rq->curr->se;
a8e504d2 1075
c3b64f1e
IM
1076 for_each_sched_entity(se)
1077 set_next_entity(cfs_rq_of(se), se);
bf0f6f24
IM
1078}
1079#else
1080static void set_curr_task_fair(struct rq *rq)
1081{
1082}
1083#endif
1084
1085/*
1086 * All the scheduling class methods:
1087 */
1088struct sched_class fair_sched_class __read_mostly = {
1089 .enqueue_task = enqueue_task_fair,
1090 .dequeue_task = dequeue_task_fair,
1091 .yield_task = yield_task_fair,
1092
2e09bf55 1093 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1094
1095 .pick_next_task = pick_next_task_fair,
1096 .put_prev_task = put_prev_task_fair,
1097
1098 .load_balance = load_balance_fair,
1099
1100 .set_curr_task = set_curr_task_fair,
1101 .task_tick = task_tick_fair,
1102 .task_new = task_new_fair,
1103};
1104
1105#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1106static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1107{
bf0f6f24
IM
1108 struct cfs_rq *cfs_rq;
1109
c3b64f1e 1110 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1111 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1112}
1113#endif