sched: remove the 'u64 now' parameter from enqueue_sleeper()
[linux-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 */
19
20/*
21 * Preemption granularity:
22 * (default: 2 msec, units: nanoseconds)
23 *
24 * NOTE: this granularity value is not the same as the concept of
25 * 'timeslice length' - timeslices in CFS will typically be somewhat
26 * larger than this value. (to see the precise effective timeslice
27 * length of your workload, run vmstat and monitor the context-switches
28 * field)
29 *
30 * On SMP systems the value of this is multiplied by the log2 of the
31 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
32 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
33 */
34unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;
35
36/*
37 * SCHED_BATCH wake-up granularity.
38 * (default: 10 msec, units: nanoseconds)
39 *
40 * This option delays the preemption effects of decoupled workloads
41 * and reduces their over-scheduling. Synchronous workloads will still
42 * have immediate wakeup/sleep latencies.
43 */
44unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
45 10000000000ULL/HZ;
46
47/*
48 * SCHED_OTHER wake-up granularity.
49 * (default: 1 msec, units: nanoseconds)
50 *
51 * This option delays the preemption effects of decoupled workloads
52 * and reduces their over-scheduling. Synchronous workloads will still
53 * have immediate wakeup/sleep latencies.
54 */
55unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;
56
57unsigned int sysctl_sched_stat_granularity __read_mostly;
58
59/*
60 * Initialized in sched_init_granularity():
61 */
62unsigned int sysctl_sched_runtime_limit __read_mostly;
63
64/*
65 * Debugging: various feature bits
66 */
67enum {
68 SCHED_FEAT_FAIR_SLEEPERS = 1,
69 SCHED_FEAT_SLEEPER_AVG = 2,
70 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
71 SCHED_FEAT_PRECISE_CPU_LOAD = 8,
72 SCHED_FEAT_START_DEBIT = 16,
73 SCHED_FEAT_SKIP_INITIAL = 32,
74};
75
76unsigned int sysctl_sched_features __read_mostly =
77 SCHED_FEAT_FAIR_SLEEPERS *1 |
78 SCHED_FEAT_SLEEPER_AVG *1 |
79 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
80 SCHED_FEAT_PRECISE_CPU_LOAD *1 |
81 SCHED_FEAT_START_DEBIT *1 |
82 SCHED_FEAT_SKIP_INITIAL *0;
83
84extern struct sched_class fair_sched_class;
85
86/**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90#ifdef CONFIG_FAIR_GROUP_SCHED
91
92/* cpu runqueue to which this cfs_rq is attached */
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
95 return cfs_rq->rq;
96}
97
98/* currently running entity (if any) on this cfs_rq */
99static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
100{
101 return cfs_rq->curr;
102}
103
104/* An entity is a task if it doesn't "own" a runqueue */
105#define entity_is_task(se) (!se->my_q)
106
107static inline void
108set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
109{
110 cfs_rq->curr = se;
111}
112
113#else /* CONFIG_FAIR_GROUP_SCHED */
114
115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116{
117 return container_of(cfs_rq, struct rq, cfs);
118}
119
120static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
121{
122 struct rq *rq = rq_of(cfs_rq);
123
124 if (unlikely(rq->curr->sched_class != &fair_sched_class))
125 return NULL;
126
127 return &rq->curr->se;
128}
129
130#define entity_is_task(se) 1
131
132static inline void
133set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
134
135#endif /* CONFIG_FAIR_GROUP_SCHED */
136
137static inline struct task_struct *task_of(struct sched_entity *se)
138{
139 return container_of(se, struct task_struct, se);
140}
141
142
143/**************************************************************
144 * Scheduling class tree data structure manipulation methods:
145 */
146
147/*
148 * Enqueue an entity into the rb-tree:
149 */
150static inline void
151__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
152{
153 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
154 struct rb_node *parent = NULL;
155 struct sched_entity *entry;
156 s64 key = se->fair_key;
157 int leftmost = 1;
158
159 /*
160 * Find the right place in the rbtree:
161 */
162 while (*link) {
163 parent = *link;
164 entry = rb_entry(parent, struct sched_entity, run_node);
165 /*
166 * We dont care about collisions. Nodes with
167 * the same key stay together.
168 */
169 if (key - entry->fair_key < 0) {
170 link = &parent->rb_left;
171 } else {
172 link = &parent->rb_right;
173 leftmost = 0;
174 }
175 }
176
177 /*
178 * Maintain a cache of leftmost tree entries (it is frequently
179 * used):
180 */
181 if (leftmost)
182 cfs_rq->rb_leftmost = &se->run_node;
183
184 rb_link_node(&se->run_node, parent, link);
185 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
186 update_load_add(&cfs_rq->load, se->load.weight);
187 cfs_rq->nr_running++;
188 se->on_rq = 1;
189}
190
191static inline void
192__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193{
194 if (cfs_rq->rb_leftmost == &se->run_node)
195 cfs_rq->rb_leftmost = rb_next(&se->run_node);
196 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
197 update_load_sub(&cfs_rq->load, se->load.weight);
198 cfs_rq->nr_running--;
199 se->on_rq = 0;
200}
201
202static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
203{
204 return cfs_rq->rb_leftmost;
205}
206
207static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
208{
209 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
210}
211
212/**************************************************************
213 * Scheduling class statistics methods:
214 */
215
216/*
217 * We rescale the rescheduling granularity of tasks according to their
218 * nice level, but only linearly, not exponentially:
219 */
220static long
221niced_granularity(struct sched_entity *curr, unsigned long granularity)
222{
223 u64 tmp;
224
225 /*
226 * Negative nice levels get the same granularity as nice-0:
227 */
228 if (likely(curr->load.weight >= NICE_0_LOAD))
229 return granularity;
230 /*
231 * Positive nice level tasks get linearly finer
232 * granularity:
233 */
234 tmp = curr->load.weight * (u64)granularity;
235
236 /*
237 * It will always fit into 'long':
238 */
239 return (long) (tmp >> NICE_0_SHIFT);
240}
241
242static inline void
243limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
244{
245 long limit = sysctl_sched_runtime_limit;
246
247 /*
248 * Niced tasks have the same history dynamic range as
249 * non-niced tasks:
250 */
251 if (unlikely(se->wait_runtime > limit)) {
252 se->wait_runtime = limit;
253 schedstat_inc(se, wait_runtime_overruns);
254 schedstat_inc(cfs_rq, wait_runtime_overruns);
255 }
256 if (unlikely(se->wait_runtime < -limit)) {
257 se->wait_runtime = -limit;
258 schedstat_inc(se, wait_runtime_underruns);
259 schedstat_inc(cfs_rq, wait_runtime_underruns);
260 }
261}
262
263static inline void
264__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
265{
266 se->wait_runtime += delta;
267 schedstat_add(se, sum_wait_runtime, delta);
268 limit_wait_runtime(cfs_rq, se);
269}
270
271static void
272add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
273{
274 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
275 __add_wait_runtime(cfs_rq, se, delta);
276 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
277}
278
279/*
280 * Update the current task's runtime statistics. Skip current tasks that
281 * are not in our scheduling class.
282 */
283static inline void
b7cc0896 284__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 285{
c5dcfe72 286 unsigned long delta, delta_exec, delta_fair, delta_mine;
bf0f6f24
IM
287 struct load_weight *lw = &cfs_rq->load;
288 unsigned long load = lw->weight;
289
bf0f6f24 290 delta_exec = curr->delta_exec;
8179ca23 291 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
292
293 curr->sum_exec_runtime += delta_exec;
294 cfs_rq->exec_clock += delta_exec;
295
fd8bb43e
IM
296 if (unlikely(!load))
297 return;
298
bf0f6f24
IM
299 delta_fair = calc_delta_fair(delta_exec, lw);
300 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
301
0915c4e8 302 if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
bf0f6f24
IM
303 delta = calc_delta_mine(cfs_rq->sleeper_bonus,
304 curr->load.weight, lw);
305 if (unlikely(delta > cfs_rq->sleeper_bonus))
306 delta = cfs_rq->sleeper_bonus;
307
308 cfs_rq->sleeper_bonus -= delta;
309 delta_mine -= delta;
310 }
311
312 cfs_rq->fair_clock += delta_fair;
313 /*
314 * We executed delta_exec amount of time on the CPU,
315 * but we were only entitled to delta_mine amount of
316 * time during that period (if nr_running == 1 then
317 * the two values are equal)
318 * [Note: delta_mine - delta_exec is negative]:
319 */
320 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
321}
322
b7cc0896 323static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24
IM
324{
325 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
326 unsigned long delta_exec;
327
328 if (unlikely(!curr))
329 return;
330
331 /*
332 * Get the amount of time the current task was running
333 * since the last time we changed load (this cannot
334 * overflow on 32 bits):
335 */
d281918d 336 delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
bf0f6f24
IM
337
338 curr->delta_exec += delta_exec;
339
340 if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
b7cc0896 341 __update_curr(cfs_rq, curr);
bf0f6f24
IM
342 curr->delta_exec = 0;
343 }
d281918d 344 curr->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
345}
346
347static inline void
5870db5b 348update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
349{
350 se->wait_start_fair = cfs_rq->fair_clock;
d281918d 351 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
352}
353
354/*
355 * We calculate fair deltas here, so protect against the random effects
356 * of a multiplication overflow by capping it to the runtime limit:
357 */
358#if BITS_PER_LONG == 32
359static inline unsigned long
360calc_weighted(unsigned long delta, unsigned long weight, int shift)
361{
362 u64 tmp = (u64)delta * weight >> shift;
363
364 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
365 return sysctl_sched_runtime_limit*2;
366 return tmp;
367}
368#else
369static inline unsigned long
370calc_weighted(unsigned long delta, unsigned long weight, int shift)
371{
372 return delta * weight >> shift;
373}
374#endif
375
376/*
377 * Task is being enqueued - update stats:
378 */
d2417e5a 379static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
380{
381 s64 key;
382
383 /*
384 * Are we enqueueing a waiting task? (for current tasks
385 * a dequeue/enqueue event is a NOP)
386 */
387 if (se != cfs_rq_curr(cfs_rq))
5870db5b 388 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
389 /*
390 * Update the key:
391 */
392 key = cfs_rq->fair_clock;
393
394 /*
395 * Optimize the common nice 0 case:
396 */
397 if (likely(se->load.weight == NICE_0_LOAD)) {
398 key -= se->wait_runtime;
399 } else {
400 u64 tmp;
401
402 if (se->wait_runtime < 0) {
403 tmp = -se->wait_runtime;
404 key += (tmp * se->load.inv_weight) >>
405 (WMULT_SHIFT - NICE_0_SHIFT);
406 } else {
407 tmp = se->wait_runtime;
408 key -= (tmp * se->load.weight) >> NICE_0_SHIFT;
409 }
410 }
411
412 se->fair_key = key;
413}
414
415/*
416 * Note: must be called with a freshly updated rq->fair_clock.
417 */
418static inline void
eac55ea3 419__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
420{
421 unsigned long delta_fair = se->delta_fair_run;
422
d281918d
IM
423 schedstat_set(se->wait_max, max(se->wait_max,
424 rq_of(cfs_rq)->clock - se->wait_start));
bf0f6f24
IM
425
426 if (unlikely(se->load.weight != NICE_0_LOAD))
427 delta_fair = calc_weighted(delta_fair, se->load.weight,
428 NICE_0_SHIFT);
429
430 add_wait_runtime(cfs_rq, se, delta_fair);
431}
432
433static void
9ef0a961 434update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
435{
436 unsigned long delta_fair;
437
438 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
439 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
440
441 se->delta_fair_run += delta_fair;
442 if (unlikely(abs(se->delta_fair_run) >=
443 sysctl_sched_stat_granularity)) {
eac55ea3 444 __update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
445 se->delta_fair_run = 0;
446 }
447
448 se->wait_start_fair = 0;
6cfb0d5d 449 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
450}
451
452static inline void
19b6a2e3 453update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 454{
b7cc0896 455 update_curr(cfs_rq);
bf0f6f24
IM
456 /*
457 * Mark the end of the wait period if dequeueing a
458 * waiting task:
459 */
460 if (se != cfs_rq_curr(cfs_rq))
9ef0a961 461 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
462}
463
464/*
465 * We are picking a new current task - update its stats:
466 */
467static inline void
79303e9e 468update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
469{
470 /*
471 * We are starting a new run period:
472 */
d281918d 473 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
474}
475
476/*
477 * We are descheduling a task - update its stats:
478 */
479static inline void
c7e9b5b2 480update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
481{
482 se->exec_start = 0;
483}
484
485/**************************************************
486 * Scheduling class queueing methods:
487 */
488
dfdc119e 489static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
490{
491 unsigned long load = cfs_rq->load.weight, delta_fair;
492 long prev_runtime;
493
494 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
495 load = rq_of(cfs_rq)->cpu_load[2];
496
497 delta_fair = se->delta_fair_sleep;
498
499 /*
500 * Fix up delta_fair with the effect of us running
501 * during the whole sleep period:
502 */
503 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
504 delta_fair = div64_likely32((u64)delta_fair * load,
505 load + se->load.weight);
506
507 if (unlikely(se->load.weight != NICE_0_LOAD))
508 delta_fair = calc_weighted(delta_fair, se->load.weight,
509 NICE_0_SHIFT);
510
511 prev_runtime = se->wait_runtime;
512 __add_wait_runtime(cfs_rq, se, delta_fair);
513 delta_fair = se->wait_runtime - prev_runtime;
514
515 /*
516 * Track the amount of bonus we've given to sleepers:
517 */
518 cfs_rq->sleeper_bonus += delta_fair;
519
520 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
521}
522
2396af69 523static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
524{
525 struct task_struct *tsk = task_of(se);
526 unsigned long delta_fair;
527
528 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
529 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
530 return;
531
532 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
533 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
534
535 se->delta_fair_sleep += delta_fair;
536 if (unlikely(abs(se->delta_fair_sleep) >=
537 sysctl_sched_stat_granularity)) {
dfdc119e 538 __enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
539 se->delta_fair_sleep = 0;
540 }
541
542 se->sleep_start_fair = 0;
543
544#ifdef CONFIG_SCHEDSTATS
545 if (se->sleep_start) {
d281918d 546 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
547
548 if ((s64)delta < 0)
549 delta = 0;
550
551 if (unlikely(delta > se->sleep_max))
552 se->sleep_max = delta;
553
554 se->sleep_start = 0;
555 se->sum_sleep_runtime += delta;
556 }
557 if (se->block_start) {
d281918d 558 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
559
560 if ((s64)delta < 0)
561 delta = 0;
562
563 if (unlikely(delta > se->block_max))
564 se->block_max = delta;
565
566 se->block_start = 0;
567 se->sum_sleep_runtime += delta;
568 }
569#endif
570}
571
572static void
573enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
574 int wakeup, u64 now)
575{
576 /*
577 * Update the fair clock.
578 */
b7cc0896 579 update_curr(cfs_rq);
bf0f6f24
IM
580
581 if (wakeup)
2396af69 582 enqueue_sleeper(cfs_rq, se);
bf0f6f24 583
d2417e5a 584 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
585 __enqueue_entity(cfs_rq, se);
586}
587
588static void
589dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
590 int sleep, u64 now)
591{
19b6a2e3 592 update_stats_dequeue(cfs_rq, se);
bf0f6f24
IM
593 if (sleep) {
594 se->sleep_start_fair = cfs_rq->fair_clock;
595#ifdef CONFIG_SCHEDSTATS
596 if (entity_is_task(se)) {
597 struct task_struct *tsk = task_of(se);
598
599 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 600 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 601 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 602 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
603 }
604 cfs_rq->wait_runtime -= se->wait_runtime;
605#endif
606 }
607 __dequeue_entity(cfs_rq, se);
608}
609
610/*
611 * Preempt the current task with a newly woken task if needed:
612 */
613static void
614__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
615 struct sched_entity *curr, unsigned long granularity)
616{
617 s64 __delta = curr->fair_key - se->fair_key;
618
619 /*
620 * Take scheduling granularity into account - do not
621 * preempt the current task unless the best task has
622 * a larger than sched_granularity fairness advantage:
623 */
624 if (__delta > niced_granularity(curr, granularity))
625 resched_task(rq_of(cfs_rq)->curr);
626}
627
628static inline void
629set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
630{
631 /*
632 * Any task has to be enqueued before it get to execute on
633 * a CPU. So account for the time it spent waiting on the
634 * runqueue. (note, here we rely on pick_next_task() having
635 * done a put_prev_task_fair() shortly before this, which
636 * updated rq->fair_clock - used by update_stats_wait_end())
637 */
9ef0a961 638 update_stats_wait_end(cfs_rq, se);
79303e9e 639 update_stats_curr_start(cfs_rq, se);
bf0f6f24
IM
640 set_cfs_rq_curr(cfs_rq, se);
641}
642
643static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq, u64 now)
644{
645 struct sched_entity *se = __pick_next_entity(cfs_rq);
646
647 set_next_entity(cfs_rq, se, now);
648
649 return se;
650}
651
652static void
653put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev, u64 now)
654{
655 /*
656 * If still on the runqueue then deactivate_task()
657 * was not called and update_curr() has to be done:
658 */
659 if (prev->on_rq)
b7cc0896 660 update_curr(cfs_rq);
bf0f6f24 661
c7e9b5b2 662 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
663
664 if (prev->on_rq)
5870db5b 665 update_stats_wait_start(cfs_rq, prev);
bf0f6f24
IM
666 set_cfs_rq_curr(cfs_rq, NULL);
667}
668
669static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
670{
671 struct rq *rq = rq_of(cfs_rq);
672 struct sched_entity *next;
c1b3da3e
IM
673 u64 now;
674
675 __update_rq_clock(rq);
676 now = rq->clock;
bf0f6f24
IM
677
678 /*
679 * Dequeue and enqueue the task to update its
680 * position within the tree:
681 */
682 dequeue_entity(cfs_rq, curr, 0, now);
683 enqueue_entity(cfs_rq, curr, 0, now);
684
685 /*
686 * Reschedule if another task tops the current one.
687 */
688 next = __pick_next_entity(cfs_rq);
689 if (next == curr)
690 return;
691
692 __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
693}
694
695/**************************************************
696 * CFS operations on tasks:
697 */
698
699#ifdef CONFIG_FAIR_GROUP_SCHED
700
701/* Walk up scheduling entities hierarchy */
702#define for_each_sched_entity(se) \
703 for (; se; se = se->parent)
704
705static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
706{
707 return p->se.cfs_rq;
708}
709
710/* runqueue on which this entity is (to be) queued */
711static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
712{
713 return se->cfs_rq;
714}
715
716/* runqueue "owned" by this group */
717static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
718{
719 return grp->my_q;
720}
721
722/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
723 * another cpu ('this_cpu')
724 */
725static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
726{
727 /* A later patch will take group into account */
728 return &cpu_rq(this_cpu)->cfs;
729}
730
731/* Iterate thr' all leaf cfs_rq's on a runqueue */
732#define for_each_leaf_cfs_rq(rq, cfs_rq) \
733 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
734
735/* Do the two (enqueued) tasks belong to the same group ? */
736static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
737{
738 if (curr->se.cfs_rq == p->se.cfs_rq)
739 return 1;
740
741 return 0;
742}
743
744#else /* CONFIG_FAIR_GROUP_SCHED */
745
746#define for_each_sched_entity(se) \
747 for (; se; se = NULL)
748
749static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
750{
751 return &task_rq(p)->cfs;
752}
753
754static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
755{
756 struct task_struct *p = task_of(se);
757 struct rq *rq = task_rq(p);
758
759 return &rq->cfs;
760}
761
762/* runqueue "owned" by this group */
763static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
764{
765 return NULL;
766}
767
768static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
769{
770 return &cpu_rq(this_cpu)->cfs;
771}
772
773#define for_each_leaf_cfs_rq(rq, cfs_rq) \
774 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
775
776static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
777{
778 return 1;
779}
780
781#endif /* CONFIG_FAIR_GROUP_SCHED */
782
783/*
784 * The enqueue_task method is called before nr_running is
785 * increased. Here we update the fair scheduling stats and
786 * then put the task into the rbtree:
787 */
788static void
789enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
790{
791 struct cfs_rq *cfs_rq;
792 struct sched_entity *se = &p->se;
793
794 for_each_sched_entity(se) {
795 if (se->on_rq)
796 break;
797 cfs_rq = cfs_rq_of(se);
798 enqueue_entity(cfs_rq, se, wakeup, now);
799 }
800}
801
802/*
803 * The dequeue_task method is called before nr_running is
804 * decreased. We remove the task from the rbtree and
805 * update the fair scheduling stats:
806 */
807static void
808dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep, u64 now)
809{
810 struct cfs_rq *cfs_rq;
811 struct sched_entity *se = &p->se;
812
813 for_each_sched_entity(se) {
814 cfs_rq = cfs_rq_of(se);
815 dequeue_entity(cfs_rq, se, sleep, now);
816 /* Don't dequeue parent if it has other entities besides us */
817 if (cfs_rq->load.weight)
818 break;
819 }
820}
821
822/*
823 * sched_yield() support is very simple - we dequeue and enqueue
824 */
825static void yield_task_fair(struct rq *rq, struct task_struct *p)
826{
827 struct cfs_rq *cfs_rq = task_cfs_rq(p);
c1b3da3e 828 u64 now;
bf0f6f24 829
c1b3da3e
IM
830 __update_rq_clock(rq);
831 now = rq->clock;
bf0f6f24
IM
832 /*
833 * Dequeue and enqueue the task to update its
834 * position within the tree:
835 */
836 dequeue_entity(cfs_rq, &p->se, 0, now);
837 enqueue_entity(cfs_rq, &p->se, 0, now);
838}
839
840/*
841 * Preempt the current task with a newly woken task if needed:
842 */
843static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
844{
845 struct task_struct *curr = rq->curr;
846 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
847 unsigned long gran;
848
849 if (unlikely(rt_prio(p->prio))) {
a8e504d2 850 update_rq_clock(rq);
b7cc0896 851 update_curr(cfs_rq);
bf0f6f24
IM
852 resched_task(curr);
853 return;
854 }
855
856 gran = sysctl_sched_wakeup_granularity;
857 /*
858 * Batch tasks prefer throughput over latency:
859 */
860 if (unlikely(p->policy == SCHED_BATCH))
861 gran = sysctl_sched_batch_wakeup_granularity;
862
863 if (is_same_group(curr, p))
864 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
865}
866
867static struct task_struct *pick_next_task_fair(struct rq *rq, u64 now)
868{
869 struct cfs_rq *cfs_rq = &rq->cfs;
870 struct sched_entity *se;
871
872 if (unlikely(!cfs_rq->nr_running))
873 return NULL;
874
875 do {
876 se = pick_next_entity(cfs_rq, now);
877 cfs_rq = group_cfs_rq(se);
878 } while (cfs_rq);
879
880 return task_of(se);
881}
882
883/*
884 * Account for a descheduled task:
885 */
886static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, u64 now)
887{
888 struct sched_entity *se = &prev->se;
889 struct cfs_rq *cfs_rq;
890
891 for_each_sched_entity(se) {
892 cfs_rq = cfs_rq_of(se);
893 put_prev_entity(cfs_rq, se, now);
894 }
895}
896
897/**************************************************
898 * Fair scheduling class load-balancing methods:
899 */
900
901/*
902 * Load-balancing iterator. Note: while the runqueue stays locked
903 * during the whole iteration, the current task might be
904 * dequeued so the iterator has to be dequeue-safe. Here we
905 * achieve that by always pre-iterating before returning
906 * the current task:
907 */
908static inline struct task_struct *
909__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
910{
911 struct task_struct *p;
912
913 if (!curr)
914 return NULL;
915
916 p = rb_entry(curr, struct task_struct, se.run_node);
917 cfs_rq->rb_load_balance_curr = rb_next(curr);
918
919 return p;
920}
921
922static struct task_struct *load_balance_start_fair(void *arg)
923{
924 struct cfs_rq *cfs_rq = arg;
925
926 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
927}
928
929static struct task_struct *load_balance_next_fair(void *arg)
930{
931 struct cfs_rq *cfs_rq = arg;
932
933 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
934}
935
a4ac01c3 936#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
937static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
938{
939 struct sched_entity *curr;
940 struct task_struct *p;
941
942 if (!cfs_rq->nr_running)
943 return MAX_PRIO;
944
945 curr = __pick_next_entity(cfs_rq);
946 p = task_of(curr);
947
948 return p->prio;
949}
a4ac01c3 950#endif
bf0f6f24 951
43010659 952static unsigned long
bf0f6f24 953load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
954 unsigned long max_nr_move, unsigned long max_load_move,
955 struct sched_domain *sd, enum cpu_idle_type idle,
956 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
957{
958 struct cfs_rq *busy_cfs_rq;
959 unsigned long load_moved, total_nr_moved = 0, nr_moved;
960 long rem_load_move = max_load_move;
961 struct rq_iterator cfs_rq_iterator;
962
963 cfs_rq_iterator.start = load_balance_start_fair;
964 cfs_rq_iterator.next = load_balance_next_fair;
965
966 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 967#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 968 struct cfs_rq *this_cfs_rq;
a4ac01c3 969 long imbalances;
bf0f6f24 970 unsigned long maxload;
bf0f6f24
IM
971
972 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
973
974 imbalance = busy_cfs_rq->load.weight -
975 this_cfs_rq->load.weight;
976 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
977 if (imbalance <= 0)
978 continue;
979
980 /* Don't pull more than imbalance/2 */
981 imbalance /= 2;
982 maxload = min(rem_load_move, imbalance);
983
a4ac01c3
PW
984 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
985#else
986#define maxload rem_load_move
987#endif
bf0f6f24
IM
988 /* pass busy_cfs_rq argument into
989 * load_balance_[start|next]_fair iterators
990 */
991 cfs_rq_iterator.arg = busy_cfs_rq;
992 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
993 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 994 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
995
996 total_nr_moved += nr_moved;
997 max_nr_move -= nr_moved;
998 rem_load_move -= load_moved;
999
1000 if (max_nr_move <= 0 || rem_load_move <= 0)
1001 break;
1002 }
1003
43010659 1004 return max_load_move - rem_load_move;
bf0f6f24
IM
1005}
1006
1007/*
1008 * scheduler tick hitting a task of our scheduling class:
1009 */
1010static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1011{
1012 struct cfs_rq *cfs_rq;
1013 struct sched_entity *se = &curr->se;
1014
1015 for_each_sched_entity(se) {
1016 cfs_rq = cfs_rq_of(se);
1017 entity_tick(cfs_rq, se);
1018 }
1019}
1020
1021/*
1022 * Share the fairness runtime between parent and child, thus the
1023 * total amount of pressure for CPU stays equal - new tasks
1024 * get a chance to run but frequent forkers are not allowed to
1025 * monopolize the CPU. Note: the parent runqueue is locked,
1026 * the child is not running yet.
1027 */
cad60d93 1028static void task_new_fair(struct rq *rq, struct task_struct *p, u64 now)
bf0f6f24
IM
1029{
1030 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1031 struct sched_entity *se = &p->se;
bf0f6f24
IM
1032
1033 sched_info_queued(p);
1034
d2417e5a 1035 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
1036 /*
1037 * Child runs first: we let it run before the parent
1038 * until it reschedules once. We set up the key so that
1039 * it will preempt the parent:
1040 */
1041 p->se.fair_key = current->se.fair_key -
1042 niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
1043 /*
1044 * The first wait is dominated by the child-runs-first logic,
1045 * so do not credit it with that waiting time yet:
1046 */
1047 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
1048 p->se.wait_start_fair = 0;
1049
1050 /*
1051 * The statistical average of wait_runtime is about
1052 * -granularity/2, so initialize the task with that:
1053 */
1054 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
1055 p->se.wait_runtime = -(sysctl_sched_granularity / 2);
1056
1057 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
1058}
1059
1060#ifdef CONFIG_FAIR_GROUP_SCHED
1061/* Account for a task changing its policy or group.
1062 *
1063 * This routine is mostly called to set cfs_rq->curr field when a task
1064 * migrates between groups/classes.
1065 */
1066static void set_curr_task_fair(struct rq *rq)
1067{
1068 struct task_struct *curr = rq->curr;
1069 struct sched_entity *se = &curr->se;
a8e504d2 1070 u64 now;
bf0f6f24
IM
1071 struct cfs_rq *cfs_rq;
1072
a8e504d2
IM
1073 update_rq_clock(rq);
1074 now = rq->clock;
1075
bf0f6f24
IM
1076 for_each_sched_entity(se) {
1077 cfs_rq = cfs_rq_of(se);
1078 set_next_entity(cfs_rq, se, now);
1079 }
1080}
1081#else
1082static void set_curr_task_fair(struct rq *rq)
1083{
1084}
1085#endif
1086
1087/*
1088 * All the scheduling class methods:
1089 */
1090struct sched_class fair_sched_class __read_mostly = {
1091 .enqueue_task = enqueue_task_fair,
1092 .dequeue_task = dequeue_task_fair,
1093 .yield_task = yield_task_fair,
1094
1095 .check_preempt_curr = check_preempt_curr_fair,
1096
1097 .pick_next_task = pick_next_task_fair,
1098 .put_prev_task = put_prev_task_fair,
1099
1100 .load_balance = load_balance_fair,
1101
1102 .set_curr_task = set_curr_task_fair,
1103 .task_tick = task_tick_fair,
1104 .task_new = task_new_fair,
1105};
1106
1107#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1108static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24
IM
1109{
1110 struct rq *rq = cpu_rq(cpu);
1111 struct cfs_rq *cfs_rq;
1112
1113 for_each_leaf_cfs_rq(rq, cfs_rq)
5cef9eca 1114 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1115}
1116#endif