sched: remove prio preference from balance decisions
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
bf0f6f24
IM
76/**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
b758149c
PZ
80static inline struct task_struct *task_of(struct sched_entity *se)
81{
82 return container_of(se, struct task_struct, se);
83}
84
62160e3f 85#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 86
62160e3f 87/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
88static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89{
62160e3f 90 return cfs_rq->rq;
bf0f6f24
IM
91}
92
62160e3f
IM
93/* An entity is a task if it doesn't "own" a runqueue */
94#define entity_is_task(se) (!se->my_q)
bf0f6f24 95
b758149c
PZ
96/* Walk up scheduling entities hierarchy */
97#define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101{
102 return p->se.cfs_rq;
103}
104
105/* runqueue on which this entity is (to be) queued */
106static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107{
108 return se->cfs_rq;
109}
110
111/* runqueue "owned" by this group */
112static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113{
114 return grp->my_q;
115}
116
117/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121{
122 return cfs_rq->tg->cfs_rq[this_cpu];
123}
124
125/* Iterate thr' all leaf cfs_rq's on a runqueue */
126#define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129/* Do the two (enqueued) entities belong to the same group ? */
130static inline int
131is_same_group(struct sched_entity *se, struct sched_entity *pse)
132{
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137}
138
139static inline struct sched_entity *parent_entity(struct sched_entity *se)
140{
141 return se->parent;
142}
143
62160e3f 144#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 145
62160e3f
IM
146static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147{
148 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
149}
150
151#define entity_is_task(se) 1
152
b758149c
PZ
153#define for_each_sched_entity(se) \
154 for (; se; se = NULL)
bf0f6f24 155
b758149c 156static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 157{
b758149c 158 return &task_rq(p)->cfs;
bf0f6f24
IM
159}
160
b758149c
PZ
161static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162{
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167}
168
169/* runqueue "owned" by this group */
170static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171{
172 return NULL;
173}
174
175static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176{
177 return &cpu_rq(this_cpu)->cfs;
178}
179
180#define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183static inline int
184is_same_group(struct sched_entity *se, struct sched_entity *pse)
185{
186 return 1;
187}
188
189static inline struct sched_entity *parent_entity(struct sched_entity *se)
190{
191 return NULL;
192}
193
194#endif /* CONFIG_FAIR_GROUP_SCHED */
195
bf0f6f24
IM
196
197/**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
0702e3eb 201static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 202{
368059a9
PZ
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
02e0431a
PZ
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208}
209
0702e3eb 210static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
211{
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217}
218
0702e3eb 219static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 220{
30cfdcfc 221 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
222}
223
bf0f6f24
IM
224/*
225 * Enqueue an entity into the rb-tree:
226 */
0702e3eb 227static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
228{
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
9014623c 232 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
9014623c 245 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
3fe69747 257 if (leftmost) {
57cb499d 258 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
bf0f6f24
IM
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
269}
270
0702e3eb 271static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 272{
3fe69747
PZ
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
e9acbff6 288
aa2ac252
PZ
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
bf0f6f24 292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
293}
294
295static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296{
297 return cfs_rq->rb_leftmost;
298}
299
300static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301{
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303}
304
aeb73b04
PZ
305static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306{
7eee3e67 307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 308
70eee74b
BS
309 if (!last)
310 return NULL;
7eee3e67
IM
311
312 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
313}
314
bf0f6f24
IM
315/**************************************************************
316 * Scheduling class statistics methods:
317 */
318
b2be5e96
PZ
319#ifdef CONFIG_SCHED_DEBUG
320int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323{
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333}
334#endif
647e7cac 335
a7be37ac
PZ
336/*
337 * delta *= w / rw
338 */
339static inline unsigned long
340calc_delta_weight(unsigned long delta, struct sched_entity *se)
341{
342 for_each_sched_entity(se) {
343 delta = calc_delta_mine(delta,
344 se->load.weight, &cfs_rq_of(se)->load);
345 }
346
347 return delta;
348}
349
350/*
351 * delta *= rw / w
352 */
353static inline unsigned long
354calc_delta_fair(unsigned long delta, struct sched_entity *se)
355{
356 for_each_sched_entity(se) {
357 delta = calc_delta_mine(delta,
358 cfs_rq_of(se)->load.weight, &se->load);
359 }
360
361 return delta;
362}
363
647e7cac
IM
364/*
365 * The idea is to set a period in which each task runs once.
366 *
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
369 *
370 * p = (nr <= nl) ? l : l*nr/nl
371 */
4d78e7b6
PZ
372static u64 __sched_period(unsigned long nr_running)
373{
374 u64 period = sysctl_sched_latency;
b2be5e96 375 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
376
377 if (unlikely(nr_running > nr_latency)) {
4bf0b771 378 period = sysctl_sched_min_granularity;
4d78e7b6 379 period *= nr_running;
4d78e7b6
PZ
380 }
381
382 return period;
383}
384
647e7cac
IM
385/*
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
388 *
389 * s = p*w/rw
390 */
6d0f0ebd 391static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 392{
a7be37ac 393 return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
bf0f6f24
IM
394}
395
647e7cac 396/*
ac884dec 397 * We calculate the vruntime slice of a to be inserted task
647e7cac 398 *
a7be37ac 399 * vs = s*rw/w = p
647e7cac 400 */
ac884dec 401static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 402{
ac884dec 403 unsigned long nr_running = cfs_rq->nr_running;
67e9fb2a 404
ac884dec
PZ
405 if (!se->on_rq)
406 nr_running++;
67e9fb2a 407
a7be37ac
PZ
408 return __sched_period(nr_running);
409}
410
411/*
412 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
413 * that it favours >=0 over <0.
414 *
415 * -20 |
416 * |
417 * 0 --------+-------
418 * .'
419 * 19 .'
420 *
421 */
422static unsigned long
423calc_delta_asym(unsigned long delta, struct sched_entity *se)
424{
425 struct load_weight lw = {
426 .weight = NICE_0_LOAD,
427 .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
428 };
5f6d858e 429
ac884dec 430 for_each_sched_entity(se) {
a7be37ac 431 struct load_weight *se_lw = &se->load;
ced8aa16 432 unsigned long rw = cfs_rq_of(se)->load.weight;
ac884dec 433
c9c294a6
PZ
434#ifdef CONFIG_FAIR_SCHED_GROUP
435 struct cfs_rq *cfs_rq = se->my_q;
436 struct task_group *tg = NULL
437
438 if (cfs_rq)
439 tg = cfs_rq->tg;
440
441 if (tg && tg->shares < NICE_0_LOAD) {
442 /*
443 * scale shares to what it would have been had
444 * tg->weight been NICE_0_LOAD:
445 *
446 * weight = 1024 * shares / tg->weight
447 */
448 lw.weight *= se->load.weight;
449 lw.weight /= tg->shares;
450
451 lw.inv_weight = 0;
452
453 se_lw = &lw;
ced8aa16 454 rw += lw.weight - se->load.weight;
c9c294a6
PZ
455 } else
456#endif
457
ced8aa16 458 if (se->load.weight < NICE_0_LOAD) {
a7be37ac 459 se_lw = &lw;
ced8aa16
PZ
460 rw += NICE_0_LOAD - se->load.weight;
461 }
ac884dec 462
ced8aa16 463 delta = calc_delta_mine(delta, rw, se_lw);
ac884dec
PZ
464 }
465
a7be37ac 466 return delta;
67e9fb2a
PZ
467}
468
bf0f6f24
IM
469/*
470 * Update the current task's runtime statistics. Skip current tasks that
471 * are not in our scheduling class.
472 */
473static inline void
8ebc91d9
IM
474__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
475 unsigned long delta_exec)
bf0f6f24 476{
bbdba7c0 477 unsigned long delta_exec_weighted;
bf0f6f24 478
8179ca23 479 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
480
481 curr->sum_exec_runtime += delta_exec;
7a62eabc 482 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 483 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 484 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
485}
486
b7cc0896 487static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 488{
429d43bc 489 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 490 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
491 unsigned long delta_exec;
492
493 if (unlikely(!curr))
494 return;
495
496 /*
497 * Get the amount of time the current task was running
498 * since the last time we changed load (this cannot
499 * overflow on 32 bits):
500 */
8ebc91d9 501 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 502
8ebc91d9
IM
503 __update_curr(cfs_rq, curr, delta_exec);
504 curr->exec_start = now;
d842de87
SV
505
506 if (entity_is_task(curr)) {
507 struct task_struct *curtask = task_of(curr);
508
509 cpuacct_charge(curtask, delta_exec);
510 }
bf0f6f24
IM
511}
512
513static inline void
5870db5b 514update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
d281918d 516 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
517}
518
bf0f6f24
IM
519/*
520 * Task is being enqueued - update stats:
521 */
d2417e5a 522static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
bf0f6f24
IM
524 /*
525 * Are we enqueueing a waiting task? (for current tasks
526 * a dequeue/enqueue event is a NOP)
527 */
429d43bc 528 if (se != cfs_rq->curr)
5870db5b 529 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
530}
531
bf0f6f24 532static void
9ef0a961 533update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 534{
bbdba7c0
IM
535 schedstat_set(se->wait_max, max(se->wait_max,
536 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
537 schedstat_set(se->wait_count, se->wait_count + 1);
538 schedstat_set(se->wait_sum, se->wait_sum +
539 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 540 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
541}
542
543static inline void
19b6a2e3 544update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 545{
bf0f6f24
IM
546 /*
547 * Mark the end of the wait period if dequeueing a
548 * waiting task:
549 */
429d43bc 550 if (se != cfs_rq->curr)
9ef0a961 551 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
552}
553
554/*
555 * We are picking a new current task - update its stats:
556 */
557static inline void
79303e9e 558update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
559{
560 /*
561 * We are starting a new run period:
562 */
d281918d 563 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
564}
565
bf0f6f24
IM
566/**************************************************
567 * Scheduling class queueing methods:
568 */
569
c09595f6
PZ
570#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
571static void
572add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
573{
574 cfs_rq->task_weight += weight;
575}
576#else
577static inline void
578add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
579{
580}
581#endif
582
30cfdcfc
DA
583static void
584account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
585{
586 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
587 if (!parent_entity(se))
588 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
589 if (entity_is_task(se))
590 add_cfs_task_weight(cfs_rq, se->load.weight);
30cfdcfc
DA
591 cfs_rq->nr_running++;
592 se->on_rq = 1;
4a55bd5e 593 list_add(&se->group_node, &cfs_rq->tasks);
30cfdcfc
DA
594}
595
596static void
597account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
598{
599 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
600 if (!parent_entity(se))
601 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
602 if (entity_is_task(se))
603 add_cfs_task_weight(cfs_rq, -se->load.weight);
30cfdcfc
DA
604 cfs_rq->nr_running--;
605 se->on_rq = 0;
4a55bd5e 606 list_del_init(&se->group_node);
30cfdcfc
DA
607}
608
2396af69 609static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 610{
bf0f6f24
IM
611#ifdef CONFIG_SCHEDSTATS
612 if (se->sleep_start) {
d281918d 613 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 614 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
615
616 if ((s64)delta < 0)
617 delta = 0;
618
619 if (unlikely(delta > se->sleep_max))
620 se->sleep_max = delta;
621
622 se->sleep_start = 0;
623 se->sum_sleep_runtime += delta;
9745512c
AV
624
625 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
626 }
627 if (se->block_start) {
d281918d 628 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 629 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
630
631 if ((s64)delta < 0)
632 delta = 0;
633
634 if (unlikely(delta > se->block_max))
635 se->block_max = delta;
636
637 se->block_start = 0;
638 se->sum_sleep_runtime += delta;
30084fbd
IM
639
640 /*
641 * Blocking time is in units of nanosecs, so shift by 20 to
642 * get a milliseconds-range estimation of the amount of
643 * time that the task spent sleeping:
644 */
645 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 646
30084fbd
IM
647 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
648 delta >> 20);
649 }
9745512c 650 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
651 }
652#endif
653}
654
ddc97297
PZ
655static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
656{
657#ifdef CONFIG_SCHED_DEBUG
658 s64 d = se->vruntime - cfs_rq->min_vruntime;
659
660 if (d < 0)
661 d = -d;
662
663 if (d > 3*sysctl_sched_latency)
664 schedstat_inc(cfs_rq, nr_spread_over);
665#endif
666}
667
aeb73b04
PZ
668static void
669place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
670{
67e9fb2a 671 u64 vruntime;
aeb73b04 672
3fe69747
PZ
673 if (first_fair(cfs_rq)) {
674 vruntime = min_vruntime(cfs_rq->min_vruntime,
675 __pick_next_entity(cfs_rq)->vruntime);
676 } else
677 vruntime = cfs_rq->min_vruntime;
94dfb5e7 678
2cb8600e
PZ
679 /*
680 * The 'current' period is already promised to the current tasks,
681 * however the extra weight of the new task will slow them down a
682 * little, place the new task so that it fits in the slot that
683 * stays open at the end.
684 */
94dfb5e7 685 if (initial && sched_feat(START_DEBIT))
647e7cac 686 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 687
8465e792 688 if (!initial) {
2cb8600e 689 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
690 if (sched_feat(NEW_FAIR_SLEEPERS)) {
691 unsigned long thresh = sysctl_sched_latency;
692
693 /*
694 * convert the sleeper threshold into virtual time
695 */
696 if (sched_feat(NORMALIZED_SLEEPER))
697 thresh = calc_delta_fair(thresh, se);
698
699 vruntime -= thresh;
700 }
94359f05 701
2cb8600e
PZ
702 /* ensure we never gain time by being placed backwards. */
703 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
704 }
705
67e9fb2a 706 se->vruntime = vruntime;
aeb73b04
PZ
707}
708
bf0f6f24 709static void
83b699ed 710enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
711{
712 /*
a2a2d680 713 * Update run-time statistics of the 'current'.
bf0f6f24 714 */
b7cc0896 715 update_curr(cfs_rq);
a992241d 716 account_entity_enqueue(cfs_rq, se);
bf0f6f24 717
e9acbff6 718 if (wakeup) {
aeb73b04 719 place_entity(cfs_rq, se, 0);
2396af69 720 enqueue_sleeper(cfs_rq, se);
e9acbff6 721 }
bf0f6f24 722
d2417e5a 723 update_stats_enqueue(cfs_rq, se);
ddc97297 724 check_spread(cfs_rq, se);
83b699ed
SV
725 if (se != cfs_rq->curr)
726 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
727}
728
4ae7d5ce
IM
729static void update_avg(u64 *avg, u64 sample)
730{
731 s64 diff = sample - *avg;
732 *avg += diff >> 3;
733}
734
735static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
736{
737 if (!se->last_wakeup)
738 return;
739
740 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
741 se->last_wakeup = 0;
742}
743
bf0f6f24 744static void
525c2716 745dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 746{
a2a2d680
DA
747 /*
748 * Update run-time statistics of the 'current'.
749 */
750 update_curr(cfs_rq);
751
19b6a2e3 752 update_stats_dequeue(cfs_rq, se);
db36cc7d 753 if (sleep) {
4ae7d5ce 754 update_avg_stats(cfs_rq, se);
67e9fb2a 755#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
756 if (entity_is_task(se)) {
757 struct task_struct *tsk = task_of(se);
758
759 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 760 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 761 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 762 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 763 }
db36cc7d 764#endif
67e9fb2a
PZ
765 }
766
83b699ed 767 if (se != cfs_rq->curr)
30cfdcfc
DA
768 __dequeue_entity(cfs_rq, se);
769 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
770}
771
772/*
773 * Preempt the current task with a newly woken task if needed:
774 */
7c92e54f 775static void
2e09bf55 776check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 777{
11697830
PZ
778 unsigned long ideal_runtime, delta_exec;
779
6d0f0ebd 780 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 781 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 782 if (delta_exec > ideal_runtime)
bf0f6f24
IM
783 resched_task(rq_of(cfs_rq)->curr);
784}
785
83b699ed 786static void
8494f412 787set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 788{
83b699ed
SV
789 /* 'current' is not kept within the tree. */
790 if (se->on_rq) {
791 /*
792 * Any task has to be enqueued before it get to execute on
793 * a CPU. So account for the time it spent waiting on the
794 * runqueue.
795 */
796 update_stats_wait_end(cfs_rq, se);
797 __dequeue_entity(cfs_rq, se);
798 }
799
79303e9e 800 update_stats_curr_start(cfs_rq, se);
429d43bc 801 cfs_rq->curr = se;
eba1ed4b
IM
802#ifdef CONFIG_SCHEDSTATS
803 /*
804 * Track our maximum slice length, if the CPU's load is at
805 * least twice that of our own weight (i.e. dont track it
806 * when there are only lesser-weight tasks around):
807 */
495eca49 808 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
809 se->slice_max = max(se->slice_max,
810 se->sum_exec_runtime - se->prev_sum_exec_runtime);
811 }
812#endif
4a55b450 813 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
814}
815
aa2ac252
PZ
816static struct sched_entity *
817pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
818{
103638d9
PZ
819 struct rq *rq = rq_of(cfs_rq);
820 u64 pair_slice = rq->clock - cfs_rq->pair_start;
aa2ac252 821
103638d9
PZ
822 if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
823 cfs_rq->pair_start = rq->clock;
aa2ac252 824 return se;
103638d9 825 }
aa2ac252
PZ
826
827 return cfs_rq->next;
828}
829
9948f4b2 830static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 831{
08ec3df5 832 struct sched_entity *se = NULL;
bf0f6f24 833
08ec3df5
DA
834 if (first_fair(cfs_rq)) {
835 se = __pick_next_entity(cfs_rq);
aa2ac252 836 se = pick_next(cfs_rq, se);
08ec3df5
DA
837 set_next_entity(cfs_rq, se);
838 }
bf0f6f24
IM
839
840 return se;
841}
842
ab6cde26 843static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
844{
845 /*
846 * If still on the runqueue then deactivate_task()
847 * was not called and update_curr() has to be done:
848 */
849 if (prev->on_rq)
b7cc0896 850 update_curr(cfs_rq);
bf0f6f24 851
ddc97297 852 check_spread(cfs_rq, prev);
30cfdcfc 853 if (prev->on_rq) {
5870db5b 854 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
855 /* Put 'current' back into the tree. */
856 __enqueue_entity(cfs_rq, prev);
857 }
429d43bc 858 cfs_rq->curr = NULL;
bf0f6f24
IM
859}
860
8f4d37ec
PZ
861static void
862entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 863{
bf0f6f24 864 /*
30cfdcfc 865 * Update run-time statistics of the 'current'.
bf0f6f24 866 */
30cfdcfc 867 update_curr(cfs_rq);
bf0f6f24 868
8f4d37ec
PZ
869#ifdef CONFIG_SCHED_HRTICK
870 /*
871 * queued ticks are scheduled to match the slice, so don't bother
872 * validating it and just reschedule.
873 */
983ed7a6
HH
874 if (queued) {
875 resched_task(rq_of(cfs_rq)->curr);
876 return;
877 }
8f4d37ec
PZ
878 /*
879 * don't let the period tick interfere with the hrtick preemption
880 */
881 if (!sched_feat(DOUBLE_TICK) &&
882 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
883 return;
884#endif
885
ce6c1311 886 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 887 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
888}
889
890/**************************************************
891 * CFS operations on tasks:
892 */
893
8f4d37ec
PZ
894#ifdef CONFIG_SCHED_HRTICK
895static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
896{
897 int requeue = rq->curr == p;
898 struct sched_entity *se = &p->se;
899 struct cfs_rq *cfs_rq = cfs_rq_of(se);
900
901 WARN_ON(task_rq(p) != rq);
902
903 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
904 u64 slice = sched_slice(cfs_rq, se);
905 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
906 s64 delta = slice - ran;
907
908 if (delta < 0) {
909 if (rq->curr == p)
910 resched_task(p);
911 return;
912 }
913
914 /*
915 * Don't schedule slices shorter than 10000ns, that just
916 * doesn't make sense. Rely on vruntime for fairness.
917 */
918 if (!requeue)
919 delta = max(10000LL, delta);
920
921 hrtick_start(rq, delta, requeue);
922 }
923}
924#else
925static inline void
926hrtick_start_fair(struct rq *rq, struct task_struct *p)
927{
928}
929#endif
930
bf0f6f24
IM
931/*
932 * The enqueue_task method is called before nr_running is
933 * increased. Here we update the fair scheduling stats and
934 * then put the task into the rbtree:
935 */
fd390f6a 936static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
937{
938 struct cfs_rq *cfs_rq;
62fb1851 939 struct sched_entity *se = &p->se;
bf0f6f24
IM
940
941 for_each_sched_entity(se) {
62fb1851 942 if (se->on_rq)
bf0f6f24
IM
943 break;
944 cfs_rq = cfs_rq_of(se);
83b699ed 945 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 946 wakeup = 1;
bf0f6f24 947 }
8f4d37ec
PZ
948
949 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
950}
951
952/*
953 * The dequeue_task method is called before nr_running is
954 * decreased. We remove the task from the rbtree and
955 * update the fair scheduling stats:
956 */
f02231e5 957static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
958{
959 struct cfs_rq *cfs_rq;
62fb1851 960 struct sched_entity *se = &p->se;
bf0f6f24
IM
961
962 for_each_sched_entity(se) {
963 cfs_rq = cfs_rq_of(se);
525c2716 964 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 965 /* Don't dequeue parent if it has other entities besides us */
62fb1851 966 if (cfs_rq->load.weight)
bf0f6f24 967 break;
b9fa3df3 968 sleep = 1;
bf0f6f24 969 }
8f4d37ec
PZ
970
971 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
972}
973
974/*
1799e35d
IM
975 * sched_yield() support is very simple - we dequeue and enqueue.
976 *
977 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 978 */
4530d7ab 979static void yield_task_fair(struct rq *rq)
bf0f6f24 980{
db292ca3
IM
981 struct task_struct *curr = rq->curr;
982 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
983 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
984
985 /*
1799e35d
IM
986 * Are we the only task in the tree?
987 */
988 if (unlikely(cfs_rq->nr_running == 1))
989 return;
990
db292ca3 991 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 992 update_rq_clock(rq);
1799e35d 993 /*
a2a2d680 994 * Update run-time statistics of the 'current'.
1799e35d 995 */
2b1e315d 996 update_curr(cfs_rq);
1799e35d
IM
997
998 return;
999 }
1000 /*
1001 * Find the rightmost entry in the rbtree:
bf0f6f24 1002 */
2b1e315d 1003 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1004 /*
1005 * Already in the rightmost position?
1006 */
79b3feff 1007 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
1008 return;
1009
1010 /*
1011 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1012 * Upon rescheduling, sched_class::put_prev_task() will place
1013 * 'current' within the tree based on its new key value.
1799e35d 1014 */
30cfdcfc 1015 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1016}
1017
e7693a36
GH
1018/*
1019 * wake_idle() will wake a task on an idle cpu if task->cpu is
1020 * not idle and an idle cpu is available. The span of cpus to
1021 * search starts with cpus closest then further out as needed,
1022 * so we always favor a closer, idle cpu.
1023 *
1024 * Returns the CPU we should wake onto.
1025 */
1026#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1027static int wake_idle(int cpu, struct task_struct *p)
1028{
1029 cpumask_t tmp;
1030 struct sched_domain *sd;
1031 int i;
1032
1033 /*
1034 * If it is idle, then it is the best cpu to run this task.
1035 *
1036 * This cpu is also the best, if it has more than one task already.
1037 * Siblings must be also busy(in most cases) as they didn't already
1038 * pickup the extra load from this cpu and hence we need not check
1039 * sibling runqueue info. This will avoid the checks and cache miss
1040 * penalities associated with that.
1041 */
104f6454 1042 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1043 return cpu;
1044
1045 for_each_domain(cpu, sd) {
1d3504fc
HS
1046 if ((sd->flags & SD_WAKE_IDLE)
1047 || ((sd->flags & SD_WAKE_IDLE_FAR)
1048 && !task_hot(p, task_rq(p)->clock, sd))) {
e7693a36
GH
1049 cpus_and(tmp, sd->span, p->cpus_allowed);
1050 for_each_cpu_mask(i, tmp) {
1051 if (idle_cpu(i)) {
1052 if (i != task_cpu(p)) {
1053 schedstat_inc(p,
1054 se.nr_wakeups_idle);
1055 }
1056 return i;
1057 }
1058 }
1059 } else {
1060 break;
1061 }
1062 }
1063 return cpu;
1064}
1065#else
1066static inline int wake_idle(int cpu, struct task_struct *p)
1067{
1068 return cpu;
1069}
1070#endif
1071
1072#ifdef CONFIG_SMP
098fb9db 1073
4ae7d5ce
IM
1074static const struct sched_class fair_sched_class;
1075
bb3469ac 1076#ifdef CONFIG_FAIR_GROUP_SCHED
4be9daaa 1077static unsigned long effective_load(struct task_group *tg, long wl, int cpu)
bb3469ac 1078{
4be9daaa
PZ
1079 struct sched_entity *se = tg->se[cpu];
1080 long wg = wl;
bb3469ac 1081
4be9daaa
PZ
1082 for_each_sched_entity(se) {
1083#define D(n) (likely(n) ? (n) : 1)
1084
1085 long S, Srw, rw, s, sn;
1086
1087 S = se->my_q->tg->shares;
1088 s = se->my_q->shares;
1089 rw = se->my_q->load.weight;
bb3469ac 1090
4be9daaa
PZ
1091 Srw = S * rw / D(s);
1092 sn = S * (rw + wl) / D(Srw + wg);
1093
1094 wl = sn - s;
1095 wg = 0;
1096#undef D
1097 }
bb3469ac 1098
4be9daaa 1099 return wl;
bb3469ac 1100}
4be9daaa
PZ
1101
1102static unsigned long task_load_sub(struct task_struct *p)
1103{
1104 return effective_load(task_group(p), -(long)p->se.load.weight, task_cpu(p));
1105}
1106
1107static unsigned long task_load_add(struct task_struct *p, int cpu)
1108{
1109 return effective_load(task_group(p), p->se.load.weight, cpu);
1110}
1111
bb3469ac 1112#else
4be9daaa
PZ
1113
1114static unsigned long task_load_sub(struct task_struct *p)
1115{
1116 return -p->se.load.weight;
1117}
1118
1119static unsigned long task_load_add(struct task_struct *p, int cpu)
bb3469ac
PZ
1120{
1121 return p->se.load.weight;
1122}
4be9daaa 1123
bb3469ac
PZ
1124#endif
1125
098fb9db 1126static int
4ae7d5ce
IM
1127wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1128 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1129 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1130 unsigned int imbalance)
1131{
4ae7d5ce 1132 struct task_struct *curr = this_rq->curr;
098fb9db
IM
1133 unsigned long tl = this_load;
1134 unsigned long tl_per_task;
b3137bc8 1135 int balanced;
098fb9db 1136
b3137bc8 1137 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1138 return 0;
1139
b3137bc8
MG
1140 /*
1141 * If sync wakeup then subtract the (maximum possible)
1142 * effect of the currently running task from the load
1143 * of the current CPU:
1144 */
1145 if (sync)
4be9daaa 1146 tl += task_load_sub(current);
b3137bc8 1147
4be9daaa 1148 balanced = 100*(tl + task_load_add(p, this_cpu)) <= imbalance*load;
b3137bc8 1149
098fb9db 1150 /*
4ae7d5ce
IM
1151 * If the currently running task will sleep within
1152 * a reasonable amount of time then attract this newly
1153 * woken task:
098fb9db 1154 */
b3137bc8 1155 if (sync && balanced && curr->sched_class == &fair_sched_class) {
4ae7d5ce
IM
1156 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1157 p->se.avg_overlap < sysctl_sched_migration_cost)
1158 return 1;
1159 }
098fb9db
IM
1160
1161 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1162 tl_per_task = cpu_avg_load_per_task(this_cpu);
1163
ac192d39 1164 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
b3137bc8 1165 balanced) {
098fb9db
IM
1166 /*
1167 * This domain has SD_WAKE_AFFINE and
1168 * p is cache cold in this domain, and
1169 * there is no bad imbalance.
1170 */
1171 schedstat_inc(this_sd, ttwu_move_affine);
1172 schedstat_inc(p, se.nr_wakeups_affine);
1173
1174 return 1;
1175 }
1176 return 0;
1177}
1178
e7693a36
GH
1179static int select_task_rq_fair(struct task_struct *p, int sync)
1180{
e7693a36 1181 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1182 int prev_cpu, this_cpu, new_cpu;
098fb9db 1183 unsigned long load, this_load;
4ae7d5ce 1184 struct rq *rq, *this_rq;
098fb9db 1185 unsigned int imbalance;
098fb9db 1186 int idx;
e7693a36 1187
ac192d39
IM
1188 prev_cpu = task_cpu(p);
1189 rq = task_rq(p);
1190 this_cpu = smp_processor_id();
4ae7d5ce 1191 this_rq = cpu_rq(this_cpu);
ac192d39 1192 new_cpu = prev_cpu;
e7693a36 1193
ac192d39
IM
1194 /*
1195 * 'this_sd' is the first domain that both
1196 * this_cpu and prev_cpu are present in:
1197 */
e7693a36 1198 for_each_domain(this_cpu, sd) {
ac192d39 1199 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1200 this_sd = sd;
1201 break;
1202 }
1203 }
1204
1205 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1206 goto out;
e7693a36
GH
1207
1208 /*
1209 * Check for affine wakeup and passive balancing possibilities.
1210 */
098fb9db 1211 if (!this_sd)
f4827386 1212 goto out;
e7693a36 1213
098fb9db
IM
1214 idx = this_sd->wake_idx;
1215
1216 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1217
ac192d39 1218 load = source_load(prev_cpu, idx);
098fb9db
IM
1219 this_load = target_load(this_cpu, idx);
1220
4ae7d5ce
IM
1221 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1222 load, this_load, imbalance))
1223 return this_cpu;
1224
1225 if (prev_cpu == this_cpu)
f4827386 1226 goto out;
098fb9db
IM
1227
1228 /*
1229 * Start passive balancing when half the imbalance_pct
1230 * limit is reached.
1231 */
1232 if (this_sd->flags & SD_WAKE_BALANCE) {
1233 if (imbalance*this_load <= 100*load) {
1234 schedstat_inc(this_sd, ttwu_move_balance);
1235 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1236 return this_cpu;
e7693a36
GH
1237 }
1238 }
1239
f4827386 1240out:
e7693a36
GH
1241 return wake_idle(new_cpu, p);
1242}
1243#endif /* CONFIG_SMP */
1244
0bbd3336
PZ
1245static unsigned long wakeup_gran(struct sched_entity *se)
1246{
1247 unsigned long gran = sysctl_sched_wakeup_granularity;
1248
1249 /*
a7be37ac
PZ
1250 * More easily preempt - nice tasks, while not making it harder for
1251 * + nice tasks.
0bbd3336 1252 */
c9c294a6
PZ
1253 if (sched_feat(ASYM_GRAN))
1254 gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
1255 else
1256 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
0bbd3336
PZ
1257
1258 return gran;
1259}
1260
1261/*
1262 * Should 'se' preempt 'curr'.
1263 *
1264 * |s1
1265 * |s2
1266 * |s3
1267 * g
1268 * |<--->|c
1269 *
1270 * w(c, s1) = -1
1271 * w(c, s2) = 0
1272 * w(c, s3) = 1
1273 *
1274 */
1275static int
1276wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1277{
1278 s64 gran, vdiff = curr->vruntime - se->vruntime;
1279
1280 if (vdiff < 0)
1281 return -1;
1282
1283 gran = wakeup_gran(curr);
1284 if (vdiff > gran)
1285 return 1;
1286
1287 return 0;
1288}
e7693a36 1289
354d60c2
DG
1290/* return depth at which a sched entity is present in the hierarchy */
1291static inline int depth_se(struct sched_entity *se)
1292{
1293 int depth = 0;
1294
1295 for_each_sched_entity(se)
1296 depth++;
1297
1298 return depth;
1299}
1300
bf0f6f24
IM
1301/*
1302 * Preempt the current task with a newly woken task if needed:
1303 */
2e09bf55 1304static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1305{
1306 struct task_struct *curr = rq->curr;
fad095a7 1307 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1308 struct sched_entity *se = &curr->se, *pse = &p->se;
354d60c2 1309 int se_depth, pse_depth;
bf0f6f24
IM
1310
1311 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1312 update_rq_clock(rq);
b7cc0896 1313 update_curr(cfs_rq);
bf0f6f24
IM
1314 resched_task(curr);
1315 return;
1316 }
aa2ac252 1317
4ae7d5ce
IM
1318 se->last_wakeup = se->sum_exec_runtime;
1319 if (unlikely(se == pse))
1320 return;
1321
aa2ac252
PZ
1322 cfs_rq_of(pse)->next = pse;
1323
91c234b4
IM
1324 /*
1325 * Batch tasks do not preempt (their preemption is driven by
1326 * the tick):
1327 */
1328 if (unlikely(p->policy == SCHED_BATCH))
1329 return;
bf0f6f24 1330
77d9cc44
IM
1331 if (!sched_feat(WAKEUP_PREEMPT))
1332 return;
8651a86c 1333
354d60c2
DG
1334 /*
1335 * preemption test can be made between sibling entities who are in the
1336 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1337 * both tasks until we find their ancestors who are siblings of common
1338 * parent.
1339 */
1340
1341 /* First walk up until both entities are at same depth */
1342 se_depth = depth_se(se);
1343 pse_depth = depth_se(pse);
1344
1345 while (se_depth > pse_depth) {
1346 se_depth--;
1347 se = parent_entity(se);
1348 }
1349
1350 while (pse_depth > se_depth) {
1351 pse_depth--;
1352 pse = parent_entity(pse);
1353 }
1354
77d9cc44
IM
1355 while (!is_same_group(se, pse)) {
1356 se = parent_entity(se);
1357 pse = parent_entity(pse);
ce6c1311 1358 }
77d9cc44 1359
0bbd3336 1360 if (wakeup_preempt_entity(se, pse) == 1)
77d9cc44 1361 resched_task(curr);
bf0f6f24
IM
1362}
1363
fb8d4724 1364static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1365{
8f4d37ec 1366 struct task_struct *p;
bf0f6f24
IM
1367 struct cfs_rq *cfs_rq = &rq->cfs;
1368 struct sched_entity *se;
1369
1370 if (unlikely(!cfs_rq->nr_running))
1371 return NULL;
1372
1373 do {
9948f4b2 1374 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1375 cfs_rq = group_cfs_rq(se);
1376 } while (cfs_rq);
1377
8f4d37ec
PZ
1378 p = task_of(se);
1379 hrtick_start_fair(rq, p);
1380
1381 return p;
bf0f6f24
IM
1382}
1383
1384/*
1385 * Account for a descheduled task:
1386 */
31ee529c 1387static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1388{
1389 struct sched_entity *se = &prev->se;
1390 struct cfs_rq *cfs_rq;
1391
1392 for_each_sched_entity(se) {
1393 cfs_rq = cfs_rq_of(se);
ab6cde26 1394 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1395 }
1396}
1397
681f3e68 1398#ifdef CONFIG_SMP
bf0f6f24
IM
1399/**************************************************
1400 * Fair scheduling class load-balancing methods:
1401 */
1402
1403/*
1404 * Load-balancing iterator. Note: while the runqueue stays locked
1405 * during the whole iteration, the current task might be
1406 * dequeued so the iterator has to be dequeue-safe. Here we
1407 * achieve that by always pre-iterating before returning
1408 * the current task:
1409 */
a9957449 1410static struct task_struct *
4a55bd5e 1411__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1412{
354d60c2
DG
1413 struct task_struct *p = NULL;
1414 struct sched_entity *se;
bf0f6f24 1415
6d299f1b 1416 while (next != &cfs_rq->tasks) {
4a55bd5e
PZ
1417 se = list_entry(next, struct sched_entity, group_node);
1418 next = next->next;
354d60c2 1419
6d299f1b
GH
1420 /* Skip over entities that are not tasks */
1421 if (entity_is_task(se)) {
1422 p = task_of(se);
1423 break;
1424 }
1425 }
4a55bd5e
PZ
1426
1427 cfs_rq->balance_iterator = next;
bf0f6f24
IM
1428 return p;
1429}
1430
1431static struct task_struct *load_balance_start_fair(void *arg)
1432{
1433 struct cfs_rq *cfs_rq = arg;
1434
4a55bd5e 1435 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1436}
1437
1438static struct task_struct *load_balance_next_fair(void *arg)
1439{
1440 struct cfs_rq *cfs_rq = arg;
1441
4a55bd5e 1442 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1443}
1444
c09595f6
PZ
1445static unsigned long
1446__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1447 unsigned long max_load_move, struct sched_domain *sd,
1448 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1449 struct cfs_rq *cfs_rq)
62fb1851 1450{
c09595f6 1451 struct rq_iterator cfs_rq_iterator;
6363ca57 1452
c09595f6
PZ
1453 cfs_rq_iterator.start = load_balance_start_fair;
1454 cfs_rq_iterator.next = load_balance_next_fair;
1455 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1456
c09595f6
PZ
1457 return balance_tasks(this_rq, this_cpu, busiest,
1458 max_load_move, sd, idle, all_pinned,
1459 this_best_prio, &cfs_rq_iterator);
62fb1851 1460}
62fb1851 1461
c09595f6 1462#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1463static unsigned long
bf0f6f24 1464load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1465 unsigned long max_load_move,
a4ac01c3
PW
1466 struct sched_domain *sd, enum cpu_idle_type idle,
1467 int *all_pinned, int *this_best_prio)
bf0f6f24 1468{
bf0f6f24 1469 long rem_load_move = max_load_move;
c09595f6
PZ
1470 int busiest_cpu = cpu_of(busiest);
1471 struct task_group *tg;
18d95a28 1472
c09595f6 1473 rcu_read_lock();
c8cba857
PZ
1474 update_h_load(busiest_cpu);
1475
c09595f6 1476 list_for_each_entry(tg, &task_groups, list) {
c8cba857 1477 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1478 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1479 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
53fecd8a 1480 long rem_load, moved_load;
c09595f6
PZ
1481
1482 /*
1483 * empty group
1484 */
c8cba857 1485 if (!busiest_cfs_rq->task_weight)
c09595f6 1486 continue;
18d95a28 1487
42a3ac7d
PZ
1488 rem_load = rem_load_move * busiest_weight;
1489 rem_load /= busiest_h_load + 1;
18d95a28 1490
c09595f6 1491 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1492 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6
PZ
1493 tg->cfs_rq[busiest_cpu]);
1494
1495 if (!moved_load)
bf0f6f24
IM
1496 continue;
1497
42a3ac7d
PZ
1498 moved_load *= busiest_h_load;
1499 moved_load /= busiest_weight + 1;
bf0f6f24 1500
c09595f6
PZ
1501 rem_load_move -= moved_load;
1502 if (rem_load_move < 0)
bf0f6f24
IM
1503 break;
1504 }
c09595f6 1505 rcu_read_unlock();
bf0f6f24 1506
43010659 1507 return max_load_move - rem_load_move;
bf0f6f24 1508}
c09595f6
PZ
1509#else
1510static unsigned long
1511load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1512 unsigned long max_load_move,
1513 struct sched_domain *sd, enum cpu_idle_type idle,
1514 int *all_pinned, int *this_best_prio)
1515{
1516 return __load_balance_fair(this_rq, this_cpu, busiest,
1517 max_load_move, sd, idle, all_pinned,
1518 this_best_prio, &busiest->cfs);
1519}
1520#endif
bf0f6f24 1521
e1d1484f
PW
1522static int
1523move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1524 struct sched_domain *sd, enum cpu_idle_type idle)
1525{
1526 struct cfs_rq *busy_cfs_rq;
1527 struct rq_iterator cfs_rq_iterator;
1528
1529 cfs_rq_iterator.start = load_balance_start_fair;
1530 cfs_rq_iterator.next = load_balance_next_fair;
1531
1532 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1533 /*
1534 * pass busy_cfs_rq argument into
1535 * load_balance_[start|next]_fair iterators
1536 */
1537 cfs_rq_iterator.arg = busy_cfs_rq;
1538 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1539 &cfs_rq_iterator))
1540 return 1;
1541 }
1542
1543 return 0;
1544}
681f3e68 1545#endif
e1d1484f 1546
bf0f6f24
IM
1547/*
1548 * scheduler tick hitting a task of our scheduling class:
1549 */
8f4d37ec 1550static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1551{
1552 struct cfs_rq *cfs_rq;
1553 struct sched_entity *se = &curr->se;
1554
1555 for_each_sched_entity(se) {
1556 cfs_rq = cfs_rq_of(se);
8f4d37ec 1557 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1558 }
1559}
1560
8eb172d9 1561#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1562
bf0f6f24
IM
1563/*
1564 * Share the fairness runtime between parent and child, thus the
1565 * total amount of pressure for CPU stays equal - new tasks
1566 * get a chance to run but frequent forkers are not allowed to
1567 * monopolize the CPU. Note: the parent runqueue is locked,
1568 * the child is not running yet.
1569 */
ee0827d8 1570static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1571{
1572 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1573 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1574 int this_cpu = smp_processor_id();
bf0f6f24
IM
1575
1576 sched_info_queued(p);
1577
7109c442 1578 update_curr(cfs_rq);
aeb73b04 1579 place_entity(cfs_rq, se, 1);
4d78e7b6 1580
3c90e6e9 1581 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1582 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1583 curr && curr->vruntime < se->vruntime) {
87fefa38 1584 /*
edcb60a3
IM
1585 * Upon rescheduling, sched_class::put_prev_task() will place
1586 * 'current' within the tree based on its new key value.
1587 */
4d78e7b6 1588 swap(curr->vruntime, se->vruntime);
4d78e7b6 1589 }
bf0f6f24 1590
b9dca1e0 1591 enqueue_task_fair(rq, p, 0);
bb61c210 1592 resched_task(rq->curr);
bf0f6f24
IM
1593}
1594
cb469845
SR
1595/*
1596 * Priority of the task has changed. Check to see if we preempt
1597 * the current task.
1598 */
1599static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1600 int oldprio, int running)
1601{
1602 /*
1603 * Reschedule if we are currently running on this runqueue and
1604 * our priority decreased, or if we are not currently running on
1605 * this runqueue and our priority is higher than the current's
1606 */
1607 if (running) {
1608 if (p->prio > oldprio)
1609 resched_task(rq->curr);
1610 } else
1611 check_preempt_curr(rq, p);
1612}
1613
1614/*
1615 * We switched to the sched_fair class.
1616 */
1617static void switched_to_fair(struct rq *rq, struct task_struct *p,
1618 int running)
1619{
1620 /*
1621 * We were most likely switched from sched_rt, so
1622 * kick off the schedule if running, otherwise just see
1623 * if we can still preempt the current task.
1624 */
1625 if (running)
1626 resched_task(rq->curr);
1627 else
1628 check_preempt_curr(rq, p);
1629}
1630
83b699ed
SV
1631/* Account for a task changing its policy or group.
1632 *
1633 * This routine is mostly called to set cfs_rq->curr field when a task
1634 * migrates between groups/classes.
1635 */
1636static void set_curr_task_fair(struct rq *rq)
1637{
1638 struct sched_entity *se = &rq->curr->se;
1639
1640 for_each_sched_entity(se)
1641 set_next_entity(cfs_rq_of(se), se);
1642}
1643
810b3817
PZ
1644#ifdef CONFIG_FAIR_GROUP_SCHED
1645static void moved_group_fair(struct task_struct *p)
1646{
1647 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1648
1649 update_curr(cfs_rq);
1650 place_entity(cfs_rq, &p->se, 1);
1651}
1652#endif
1653
bf0f6f24
IM
1654/*
1655 * All the scheduling class methods:
1656 */
5522d5d5
IM
1657static const struct sched_class fair_sched_class = {
1658 .next = &idle_sched_class,
bf0f6f24
IM
1659 .enqueue_task = enqueue_task_fair,
1660 .dequeue_task = dequeue_task_fair,
1661 .yield_task = yield_task_fair,
e7693a36
GH
1662#ifdef CONFIG_SMP
1663 .select_task_rq = select_task_rq_fair,
1664#endif /* CONFIG_SMP */
bf0f6f24 1665
2e09bf55 1666 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1667
1668 .pick_next_task = pick_next_task_fair,
1669 .put_prev_task = put_prev_task_fair,
1670
681f3e68 1671#ifdef CONFIG_SMP
bf0f6f24 1672 .load_balance = load_balance_fair,
e1d1484f 1673 .move_one_task = move_one_task_fair,
681f3e68 1674#endif
bf0f6f24 1675
83b699ed 1676 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1677 .task_tick = task_tick_fair,
1678 .task_new = task_new_fair,
cb469845
SR
1679
1680 .prio_changed = prio_changed_fair,
1681 .switched_to = switched_to_fair,
810b3817
PZ
1682
1683#ifdef CONFIG_FAIR_GROUP_SCHED
1684 .moved_group = moved_group_fair,
1685#endif
bf0f6f24
IM
1686};
1687
1688#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1689static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1690{
bf0f6f24
IM
1691 struct cfs_rq *cfs_rq;
1692
5973e5b9 1693 rcu_read_lock();
c3b64f1e 1694 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1695 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1696 rcu_read_unlock();
bf0f6f24
IM
1697}
1698#endif