Staging: echo: remove dead code
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
bf0f6f24
IM
76/**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
b758149c
PZ
80static inline struct task_struct *task_of(struct sched_entity *se)
81{
82 return container_of(se, struct task_struct, se);
83}
84
62160e3f 85#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 86
62160e3f 87/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
88static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89{
62160e3f 90 return cfs_rq->rq;
bf0f6f24
IM
91}
92
62160e3f
IM
93/* An entity is a task if it doesn't "own" a runqueue */
94#define entity_is_task(se) (!se->my_q)
bf0f6f24 95
b758149c
PZ
96/* Walk up scheduling entities hierarchy */
97#define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101{
102 return p->se.cfs_rq;
103}
104
105/* runqueue on which this entity is (to be) queued */
106static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107{
108 return se->cfs_rq;
109}
110
111/* runqueue "owned" by this group */
112static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113{
114 return grp->my_q;
115}
116
117/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121{
122 return cfs_rq->tg->cfs_rq[this_cpu];
123}
124
125/* Iterate thr' all leaf cfs_rq's on a runqueue */
126#define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129/* Do the two (enqueued) entities belong to the same group ? */
130static inline int
131is_same_group(struct sched_entity *se, struct sched_entity *pse)
132{
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137}
138
139static inline struct sched_entity *parent_entity(struct sched_entity *se)
140{
141 return se->parent;
142}
143
62160e3f 144#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 145
62160e3f
IM
146static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147{
148 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
149}
150
151#define entity_is_task(se) 1
152
b758149c
PZ
153#define for_each_sched_entity(se) \
154 for (; se; se = NULL)
bf0f6f24 155
b758149c 156static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 157{
b758149c 158 return &task_rq(p)->cfs;
bf0f6f24
IM
159}
160
b758149c
PZ
161static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162{
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167}
168
169/* runqueue "owned" by this group */
170static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171{
172 return NULL;
173}
174
175static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176{
177 return &cpu_rq(this_cpu)->cfs;
178}
179
180#define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183static inline int
184is_same_group(struct sched_entity *se, struct sched_entity *pse)
185{
186 return 1;
187}
188
189static inline struct sched_entity *parent_entity(struct sched_entity *se)
190{
191 return NULL;
192}
193
194#endif /* CONFIG_FAIR_GROUP_SCHED */
195
bf0f6f24
IM
196
197/**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
0702e3eb 201static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 202{
368059a9
PZ
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
02e0431a
PZ
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208}
209
0702e3eb 210static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
211{
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217}
218
0702e3eb 219static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 220{
30cfdcfc 221 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
222}
223
bf0f6f24
IM
224/*
225 * Enqueue an entity into the rb-tree:
226 */
0702e3eb 227static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
228{
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
9014623c 232 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
9014623c 245 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
3fe69747 257 if (leftmost) {
57cb499d 258 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
bf0f6f24
IM
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
269}
270
0702e3eb 271static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 272{
3fe69747
PZ
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
e9acbff6 288
aa2ac252
PZ
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
bf0f6f24 292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
293}
294
295static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296{
297 return cfs_rq->rb_leftmost;
298}
299
300static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301{
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303}
304
aeb73b04
PZ
305static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306{
7eee3e67 307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 308
70eee74b
BS
309 if (!last)
310 return NULL;
7eee3e67
IM
311
312 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
313}
314
bf0f6f24
IM
315/**************************************************************
316 * Scheduling class statistics methods:
317 */
318
b2be5e96
PZ
319#ifdef CONFIG_SCHED_DEBUG
320int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323{
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333}
334#endif
647e7cac 335
a7be37ac
PZ
336/*
337 * delta *= w / rw
338 */
339static inline unsigned long
340calc_delta_weight(unsigned long delta, struct sched_entity *se)
341{
342 for_each_sched_entity(se) {
343 delta = calc_delta_mine(delta,
344 se->load.weight, &cfs_rq_of(se)->load);
345 }
346
347 return delta;
348}
349
350/*
351 * delta *= rw / w
352 */
353static inline unsigned long
354calc_delta_fair(unsigned long delta, struct sched_entity *se)
355{
356 for_each_sched_entity(se) {
357 delta = calc_delta_mine(delta,
358 cfs_rq_of(se)->load.weight, &se->load);
359 }
360
361 return delta;
362}
363
647e7cac
IM
364/*
365 * The idea is to set a period in which each task runs once.
366 *
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
369 *
370 * p = (nr <= nl) ? l : l*nr/nl
371 */
4d78e7b6
PZ
372static u64 __sched_period(unsigned long nr_running)
373{
374 u64 period = sysctl_sched_latency;
b2be5e96 375 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
376
377 if (unlikely(nr_running > nr_latency)) {
4bf0b771 378 period = sysctl_sched_min_granularity;
4d78e7b6 379 period *= nr_running;
4d78e7b6
PZ
380 }
381
382 return period;
383}
384
647e7cac
IM
385/*
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
388 *
389 * s = p*w/rw
390 */
6d0f0ebd 391static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 392{
a7be37ac 393 return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
bf0f6f24
IM
394}
395
647e7cac 396/*
ac884dec 397 * We calculate the vruntime slice of a to be inserted task
647e7cac 398 *
a7be37ac 399 * vs = s*rw/w = p
647e7cac 400 */
ac884dec 401static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 402{
ac884dec 403 unsigned long nr_running = cfs_rq->nr_running;
67e9fb2a 404
ac884dec
PZ
405 if (!se->on_rq)
406 nr_running++;
67e9fb2a 407
a7be37ac
PZ
408 return __sched_period(nr_running);
409}
410
bf0f6f24
IM
411/*
412 * Update the current task's runtime statistics. Skip current tasks that
413 * are not in our scheduling class.
414 */
415static inline void
8ebc91d9
IM
416__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
417 unsigned long delta_exec)
bf0f6f24 418{
bbdba7c0 419 unsigned long delta_exec_weighted;
bf0f6f24 420
8179ca23 421 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
422
423 curr->sum_exec_runtime += delta_exec;
7a62eabc 424 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 425 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 426 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
427}
428
b7cc0896 429static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 430{
429d43bc 431 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 432 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
433 unsigned long delta_exec;
434
435 if (unlikely(!curr))
436 return;
437
438 /*
439 * Get the amount of time the current task was running
440 * since the last time we changed load (this cannot
441 * overflow on 32 bits):
442 */
8ebc91d9 443 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 444
8ebc91d9
IM
445 __update_curr(cfs_rq, curr, delta_exec);
446 curr->exec_start = now;
d842de87
SV
447
448 if (entity_is_task(curr)) {
449 struct task_struct *curtask = task_of(curr);
450
451 cpuacct_charge(curtask, delta_exec);
f06febc9 452 account_group_exec_runtime(curtask, delta_exec);
d842de87 453 }
bf0f6f24
IM
454}
455
456static inline void
5870db5b 457update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 458{
d281918d 459 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
460}
461
bf0f6f24
IM
462/*
463 * Task is being enqueued - update stats:
464 */
d2417e5a 465static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 466{
bf0f6f24
IM
467 /*
468 * Are we enqueueing a waiting task? (for current tasks
469 * a dequeue/enqueue event is a NOP)
470 */
429d43bc 471 if (se != cfs_rq->curr)
5870db5b 472 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
473}
474
bf0f6f24 475static void
9ef0a961 476update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 477{
bbdba7c0
IM
478 schedstat_set(se->wait_max, max(se->wait_max,
479 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
480 schedstat_set(se->wait_count, se->wait_count + 1);
481 schedstat_set(se->wait_sum, se->wait_sum +
482 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 483 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
484}
485
486static inline void
19b6a2e3 487update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 488{
bf0f6f24
IM
489 /*
490 * Mark the end of the wait period if dequeueing a
491 * waiting task:
492 */
429d43bc 493 if (se != cfs_rq->curr)
9ef0a961 494 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
495}
496
497/*
498 * We are picking a new current task - update its stats:
499 */
500static inline void
79303e9e 501update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
502{
503 /*
504 * We are starting a new run period:
505 */
d281918d 506 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
507}
508
bf0f6f24
IM
509/**************************************************
510 * Scheduling class queueing methods:
511 */
512
c09595f6
PZ
513#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
514static void
515add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
516{
517 cfs_rq->task_weight += weight;
518}
519#else
520static inline void
521add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
522{
523}
524#endif
525
30cfdcfc
DA
526static void
527account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
528{
529 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
530 if (!parent_entity(se))
531 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 532 if (entity_is_task(se)) {
c09595f6 533 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
534 list_add(&se->group_node, &cfs_rq->tasks);
535 }
30cfdcfc
DA
536 cfs_rq->nr_running++;
537 se->on_rq = 1;
538}
539
540static void
541account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
542{
543 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
544 if (!parent_entity(se))
545 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 546 if (entity_is_task(se)) {
c09595f6 547 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
548 list_del_init(&se->group_node);
549 }
30cfdcfc
DA
550 cfs_rq->nr_running--;
551 se->on_rq = 0;
552}
553
2396af69 554static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 555{
bf0f6f24
IM
556#ifdef CONFIG_SCHEDSTATS
557 if (se->sleep_start) {
d281918d 558 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 559 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
560
561 if ((s64)delta < 0)
562 delta = 0;
563
564 if (unlikely(delta > se->sleep_max))
565 se->sleep_max = delta;
566
567 se->sleep_start = 0;
568 se->sum_sleep_runtime += delta;
9745512c
AV
569
570 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
571 }
572 if (se->block_start) {
d281918d 573 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 574 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
575
576 if ((s64)delta < 0)
577 delta = 0;
578
579 if (unlikely(delta > se->block_max))
580 se->block_max = delta;
581
582 se->block_start = 0;
583 se->sum_sleep_runtime += delta;
30084fbd
IM
584
585 /*
586 * Blocking time is in units of nanosecs, so shift by 20 to
587 * get a milliseconds-range estimation of the amount of
588 * time that the task spent sleeping:
589 */
590 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 591
30084fbd
IM
592 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
593 delta >> 20);
594 }
9745512c 595 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
596 }
597#endif
598}
599
ddc97297
PZ
600static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
601{
602#ifdef CONFIG_SCHED_DEBUG
603 s64 d = se->vruntime - cfs_rq->min_vruntime;
604
605 if (d < 0)
606 d = -d;
607
608 if (d > 3*sysctl_sched_latency)
609 schedstat_inc(cfs_rq, nr_spread_over);
610#endif
611}
612
aeb73b04
PZ
613static void
614place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
615{
67e9fb2a 616 u64 vruntime;
aeb73b04 617
3fe69747
PZ
618 if (first_fair(cfs_rq)) {
619 vruntime = min_vruntime(cfs_rq->min_vruntime,
620 __pick_next_entity(cfs_rq)->vruntime);
621 } else
622 vruntime = cfs_rq->min_vruntime;
94dfb5e7 623
2cb8600e
PZ
624 /*
625 * The 'current' period is already promised to the current tasks,
626 * however the extra weight of the new task will slow them down a
627 * little, place the new task so that it fits in the slot that
628 * stays open at the end.
629 */
94dfb5e7 630 if (initial && sched_feat(START_DEBIT))
647e7cac 631 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 632
8465e792 633 if (!initial) {
2cb8600e 634 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
635 if (sched_feat(NEW_FAIR_SLEEPERS)) {
636 unsigned long thresh = sysctl_sched_latency;
637
638 /*
639 * convert the sleeper threshold into virtual time
640 */
641 if (sched_feat(NORMALIZED_SLEEPER))
642 thresh = calc_delta_fair(thresh, se);
643
644 vruntime -= thresh;
645 }
94359f05 646
2cb8600e
PZ
647 /* ensure we never gain time by being placed backwards. */
648 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
649 }
650
67e9fb2a 651 se->vruntime = vruntime;
aeb73b04
PZ
652}
653
bf0f6f24 654static void
83b699ed 655enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
656{
657 /*
a2a2d680 658 * Update run-time statistics of the 'current'.
bf0f6f24 659 */
b7cc0896 660 update_curr(cfs_rq);
a992241d 661 account_entity_enqueue(cfs_rq, se);
bf0f6f24 662
e9acbff6 663 if (wakeup) {
aeb73b04 664 place_entity(cfs_rq, se, 0);
2396af69 665 enqueue_sleeper(cfs_rq, se);
e9acbff6 666 }
bf0f6f24 667
d2417e5a 668 update_stats_enqueue(cfs_rq, se);
ddc97297 669 check_spread(cfs_rq, se);
83b699ed
SV
670 if (se != cfs_rq->curr)
671 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
672}
673
674static void
525c2716 675dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 676{
a2a2d680
DA
677 /*
678 * Update run-time statistics of the 'current'.
679 */
680 update_curr(cfs_rq);
681
19b6a2e3 682 update_stats_dequeue(cfs_rq, se);
db36cc7d 683 if (sleep) {
67e9fb2a 684#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
685 if (entity_is_task(se)) {
686 struct task_struct *tsk = task_of(se);
687
688 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 689 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 690 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 691 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 692 }
db36cc7d 693#endif
67e9fb2a
PZ
694 }
695
83b699ed 696 if (se != cfs_rq->curr)
30cfdcfc
DA
697 __dequeue_entity(cfs_rq, se);
698 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
699}
700
701/*
702 * Preempt the current task with a newly woken task if needed:
703 */
7c92e54f 704static void
2e09bf55 705check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 706{
11697830
PZ
707 unsigned long ideal_runtime, delta_exec;
708
6d0f0ebd 709 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 710 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 711 if (delta_exec > ideal_runtime)
bf0f6f24
IM
712 resched_task(rq_of(cfs_rq)->curr);
713}
714
83b699ed 715static void
8494f412 716set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 717{
83b699ed
SV
718 /* 'current' is not kept within the tree. */
719 if (se->on_rq) {
720 /*
721 * Any task has to be enqueued before it get to execute on
722 * a CPU. So account for the time it spent waiting on the
723 * runqueue.
724 */
725 update_stats_wait_end(cfs_rq, se);
726 __dequeue_entity(cfs_rq, se);
727 }
728
79303e9e 729 update_stats_curr_start(cfs_rq, se);
429d43bc 730 cfs_rq->curr = se;
eba1ed4b
IM
731#ifdef CONFIG_SCHEDSTATS
732 /*
733 * Track our maximum slice length, if the CPU's load is at
734 * least twice that of our own weight (i.e. dont track it
735 * when there are only lesser-weight tasks around):
736 */
495eca49 737 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
738 se->slice_max = max(se->slice_max,
739 se->sum_exec_runtime - se->prev_sum_exec_runtime);
740 }
741#endif
4a55b450 742 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
743}
744
aa2ac252
PZ
745static struct sched_entity *
746pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
747{
103638d9
PZ
748 struct rq *rq = rq_of(cfs_rq);
749 u64 pair_slice = rq->clock - cfs_rq->pair_start;
aa2ac252 750
103638d9
PZ
751 if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
752 cfs_rq->pair_start = rq->clock;
aa2ac252 753 return se;
103638d9 754 }
aa2ac252
PZ
755
756 return cfs_rq->next;
757}
758
9948f4b2 759static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 760{
08ec3df5 761 struct sched_entity *se = NULL;
bf0f6f24 762
08ec3df5
DA
763 if (first_fair(cfs_rq)) {
764 se = __pick_next_entity(cfs_rq);
aa2ac252 765 se = pick_next(cfs_rq, se);
08ec3df5
DA
766 set_next_entity(cfs_rq, se);
767 }
bf0f6f24
IM
768
769 return se;
770}
771
ab6cde26 772static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
773{
774 /*
775 * If still on the runqueue then deactivate_task()
776 * was not called and update_curr() has to be done:
777 */
778 if (prev->on_rq)
b7cc0896 779 update_curr(cfs_rq);
bf0f6f24 780
ddc97297 781 check_spread(cfs_rq, prev);
30cfdcfc 782 if (prev->on_rq) {
5870db5b 783 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
784 /* Put 'current' back into the tree. */
785 __enqueue_entity(cfs_rq, prev);
786 }
429d43bc 787 cfs_rq->curr = NULL;
bf0f6f24
IM
788}
789
8f4d37ec
PZ
790static void
791entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 792{
bf0f6f24 793 /*
30cfdcfc 794 * Update run-time statistics of the 'current'.
bf0f6f24 795 */
30cfdcfc 796 update_curr(cfs_rq);
bf0f6f24 797
8f4d37ec
PZ
798#ifdef CONFIG_SCHED_HRTICK
799 /*
800 * queued ticks are scheduled to match the slice, so don't bother
801 * validating it and just reschedule.
802 */
983ed7a6
HH
803 if (queued) {
804 resched_task(rq_of(cfs_rq)->curr);
805 return;
806 }
8f4d37ec
PZ
807 /*
808 * don't let the period tick interfere with the hrtick preemption
809 */
810 if (!sched_feat(DOUBLE_TICK) &&
811 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
812 return;
813#endif
814
ce6c1311 815 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 816 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
817}
818
819/**************************************************
820 * CFS operations on tasks:
821 */
822
8f4d37ec
PZ
823#ifdef CONFIG_SCHED_HRTICK
824static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
825{
8f4d37ec
PZ
826 struct sched_entity *se = &p->se;
827 struct cfs_rq *cfs_rq = cfs_rq_of(se);
828
829 WARN_ON(task_rq(p) != rq);
830
831 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
832 u64 slice = sched_slice(cfs_rq, se);
833 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
834 s64 delta = slice - ran;
835
836 if (delta < 0) {
837 if (rq->curr == p)
838 resched_task(p);
839 return;
840 }
841
842 /*
843 * Don't schedule slices shorter than 10000ns, that just
844 * doesn't make sense. Rely on vruntime for fairness.
845 */
31656519 846 if (rq->curr != p)
157124c1 847 delta = max_t(s64, 10000LL, delta);
8f4d37ec 848
31656519 849 hrtick_start(rq, delta);
8f4d37ec
PZ
850 }
851}
55e12e5e 852#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
853static inline void
854hrtick_start_fair(struct rq *rq, struct task_struct *p)
855{
856}
857#endif
858
bf0f6f24
IM
859/*
860 * The enqueue_task method is called before nr_running is
861 * increased. Here we update the fair scheduling stats and
862 * then put the task into the rbtree:
863 */
fd390f6a 864static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
865{
866 struct cfs_rq *cfs_rq;
62fb1851 867 struct sched_entity *se = &p->se;
bf0f6f24
IM
868
869 for_each_sched_entity(se) {
62fb1851 870 if (se->on_rq)
bf0f6f24
IM
871 break;
872 cfs_rq = cfs_rq_of(se);
83b699ed 873 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 874 wakeup = 1;
bf0f6f24 875 }
8f4d37ec
PZ
876
877 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
878}
879
880/*
881 * The dequeue_task method is called before nr_running is
882 * decreased. We remove the task from the rbtree and
883 * update the fair scheduling stats:
884 */
f02231e5 885static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
886{
887 struct cfs_rq *cfs_rq;
62fb1851 888 struct sched_entity *se = &p->se;
bf0f6f24
IM
889
890 for_each_sched_entity(se) {
891 cfs_rq = cfs_rq_of(se);
525c2716 892 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 893 /* Don't dequeue parent if it has other entities besides us */
62fb1851 894 if (cfs_rq->load.weight)
bf0f6f24 895 break;
b9fa3df3 896 sleep = 1;
bf0f6f24 897 }
8f4d37ec
PZ
898
899 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
900}
901
902/*
1799e35d
IM
903 * sched_yield() support is very simple - we dequeue and enqueue.
904 *
905 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 906 */
4530d7ab 907static void yield_task_fair(struct rq *rq)
bf0f6f24 908{
db292ca3
IM
909 struct task_struct *curr = rq->curr;
910 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
911 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
912
913 /*
1799e35d
IM
914 * Are we the only task in the tree?
915 */
916 if (unlikely(cfs_rq->nr_running == 1))
917 return;
918
db292ca3 919 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 920 update_rq_clock(rq);
1799e35d 921 /*
a2a2d680 922 * Update run-time statistics of the 'current'.
1799e35d 923 */
2b1e315d 924 update_curr(cfs_rq);
1799e35d
IM
925
926 return;
927 }
928 /*
929 * Find the rightmost entry in the rbtree:
bf0f6f24 930 */
2b1e315d 931 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
932 /*
933 * Already in the rightmost position?
934 */
79b3feff 935 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
936 return;
937
938 /*
939 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
940 * Upon rescheduling, sched_class::put_prev_task() will place
941 * 'current' within the tree based on its new key value.
1799e35d 942 */
30cfdcfc 943 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
944}
945
e7693a36
GH
946/*
947 * wake_idle() will wake a task on an idle cpu if task->cpu is
948 * not idle and an idle cpu is available. The span of cpus to
949 * search starts with cpus closest then further out as needed,
950 * so we always favor a closer, idle cpu.
e761b772
MK
951 * Domains may include CPUs that are not usable for migration,
952 * hence we need to mask them out (cpu_active_map)
e7693a36
GH
953 *
954 * Returns the CPU we should wake onto.
955 */
956#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
957static int wake_idle(int cpu, struct task_struct *p)
958{
959 cpumask_t tmp;
960 struct sched_domain *sd;
961 int i;
962
963 /*
964 * If it is idle, then it is the best cpu to run this task.
965 *
966 * This cpu is also the best, if it has more than one task already.
967 * Siblings must be also busy(in most cases) as they didn't already
968 * pickup the extra load from this cpu and hence we need not check
969 * sibling runqueue info. This will avoid the checks and cache miss
970 * penalities associated with that.
971 */
104f6454 972 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
973 return cpu;
974
975 for_each_domain(cpu, sd) {
1d3504fc
HS
976 if ((sd->flags & SD_WAKE_IDLE)
977 || ((sd->flags & SD_WAKE_IDLE_FAR)
978 && !task_hot(p, task_rq(p)->clock, sd))) {
e7693a36 979 cpus_and(tmp, sd->span, p->cpus_allowed);
e761b772 980 cpus_and(tmp, tmp, cpu_active_map);
363ab6f1 981 for_each_cpu_mask_nr(i, tmp) {
e7693a36
GH
982 if (idle_cpu(i)) {
983 if (i != task_cpu(p)) {
984 schedstat_inc(p,
985 se.nr_wakeups_idle);
986 }
987 return i;
988 }
989 }
990 } else {
991 break;
992 }
993 }
994 return cpu;
995}
55e12e5e 996#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
997static inline int wake_idle(int cpu, struct task_struct *p)
998{
999 return cpu;
1000}
1001#endif
1002
1003#ifdef CONFIG_SMP
098fb9db 1004
4ae7d5ce
IM
1005static const struct sched_class fair_sched_class;
1006
bb3469ac 1007#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1008/*
1009 * effective_load() calculates the load change as seen from the root_task_group
1010 *
1011 * Adding load to a group doesn't make a group heavier, but can cause movement
1012 * of group shares between cpus. Assuming the shares were perfectly aligned one
1013 * can calculate the shift in shares.
1014 *
1015 * The problem is that perfectly aligning the shares is rather expensive, hence
1016 * we try to avoid doing that too often - see update_shares(), which ratelimits
1017 * this change.
1018 *
1019 * We compensate this by not only taking the current delta into account, but
1020 * also considering the delta between when the shares were last adjusted and
1021 * now.
1022 *
1023 * We still saw a performance dip, some tracing learned us that between
1024 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1025 * significantly. Therefore try to bias the error in direction of failing
1026 * the affine wakeup.
1027 *
1028 */
f1d239f7
PZ
1029static long effective_load(struct task_group *tg, int cpu,
1030 long wl, long wg)
bb3469ac 1031{
4be9daaa 1032 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1033
1034 if (!tg->parent)
1035 return wl;
1036
f5bfb7d9
PZ
1037 /*
1038 * By not taking the decrease of shares on the other cpu into
1039 * account our error leans towards reducing the affine wakeups.
1040 */
1041 if (!wl && sched_feat(ASYM_EFF_LOAD))
1042 return wl;
1043
4be9daaa 1044 for_each_sched_entity(se) {
cb5ef42a 1045 long S, rw, s, a, b;
940959e9
PZ
1046 long more_w;
1047
1048 /*
1049 * Instead of using this increment, also add the difference
1050 * between when the shares were last updated and now.
1051 */
1052 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1053 wl += more_w;
1054 wg += more_w;
4be9daaa
PZ
1055
1056 S = se->my_q->tg->shares;
1057 s = se->my_q->shares;
f1d239f7 1058 rw = se->my_q->rq_weight;
bb3469ac 1059
cb5ef42a
PZ
1060 a = S*(rw + wl);
1061 b = S*rw + s*wg;
4be9daaa 1062
940959e9
PZ
1063 wl = s*(a-b);
1064
1065 if (likely(b))
1066 wl /= b;
1067
83378269
PZ
1068 /*
1069 * Assume the group is already running and will
1070 * thus already be accounted for in the weight.
1071 *
1072 * That is, moving shares between CPUs, does not
1073 * alter the group weight.
1074 */
4be9daaa 1075 wg = 0;
4be9daaa 1076 }
bb3469ac 1077
4be9daaa 1078 return wl;
bb3469ac 1079}
4be9daaa 1080
bb3469ac 1081#else
4be9daaa 1082
83378269
PZ
1083static inline unsigned long effective_load(struct task_group *tg, int cpu,
1084 unsigned long wl, unsigned long wg)
4be9daaa 1085{
83378269 1086 return wl;
bb3469ac 1087}
4be9daaa 1088
bb3469ac
PZ
1089#endif
1090
098fb9db 1091static int
64b9e029 1092wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1093 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1094 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1095 unsigned int imbalance)
1096{
4ae7d5ce 1097 struct task_struct *curr = this_rq->curr;
83378269 1098 struct task_group *tg;
098fb9db
IM
1099 unsigned long tl = this_load;
1100 unsigned long tl_per_task;
83378269 1101 unsigned long weight;
b3137bc8 1102 int balanced;
098fb9db 1103
b3137bc8 1104 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1105 return 0;
1106
2fb7635c
PZ
1107 if (!sync && sched_feat(SYNC_WAKEUPS) &&
1108 curr->se.avg_overlap < sysctl_sched_migration_cost &&
1109 p->se.avg_overlap < sysctl_sched_migration_cost)
1110 sync = 1;
1111
b3137bc8
MG
1112 /*
1113 * If sync wakeup then subtract the (maximum possible)
1114 * effect of the currently running task from the load
1115 * of the current CPU:
1116 */
83378269
PZ
1117 if (sync) {
1118 tg = task_group(current);
1119 weight = current->se.load.weight;
1120
1121 tl += effective_load(tg, this_cpu, -weight, -weight);
1122 load += effective_load(tg, prev_cpu, 0, -weight);
1123 }
b3137bc8 1124
83378269
PZ
1125 tg = task_group(p);
1126 weight = p->se.load.weight;
b3137bc8 1127
83378269
PZ
1128 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1129 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1130
098fb9db 1131 /*
4ae7d5ce
IM
1132 * If the currently running task will sleep within
1133 * a reasonable amount of time then attract this newly
1134 * woken task:
098fb9db 1135 */
2fb7635c
PZ
1136 if (sync && balanced)
1137 return 1;
098fb9db
IM
1138
1139 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1140 tl_per_task = cpu_avg_load_per_task(this_cpu);
1141
64b9e029
AA
1142 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1143 tl_per_task)) {
098fb9db
IM
1144 /*
1145 * This domain has SD_WAKE_AFFINE and
1146 * p is cache cold in this domain, and
1147 * there is no bad imbalance.
1148 */
1149 schedstat_inc(this_sd, ttwu_move_affine);
1150 schedstat_inc(p, se.nr_wakeups_affine);
1151
1152 return 1;
1153 }
1154 return 0;
1155}
1156
e7693a36
GH
1157static int select_task_rq_fair(struct task_struct *p, int sync)
1158{
e7693a36 1159 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1160 int prev_cpu, this_cpu, new_cpu;
098fb9db 1161 unsigned long load, this_load;
64b9e029 1162 struct rq *this_rq;
098fb9db 1163 unsigned int imbalance;
098fb9db 1164 int idx;
e7693a36 1165
ac192d39 1166 prev_cpu = task_cpu(p);
ac192d39 1167 this_cpu = smp_processor_id();
4ae7d5ce 1168 this_rq = cpu_rq(this_cpu);
ac192d39 1169 new_cpu = prev_cpu;
e7693a36 1170
64b9e029
AA
1171 if (prev_cpu == this_cpu)
1172 goto out;
ac192d39
IM
1173 /*
1174 * 'this_sd' is the first domain that both
1175 * this_cpu and prev_cpu are present in:
1176 */
e7693a36 1177 for_each_domain(this_cpu, sd) {
ac192d39 1178 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1179 this_sd = sd;
1180 break;
1181 }
1182 }
1183
1184 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1185 goto out;
e7693a36
GH
1186
1187 /*
1188 * Check for affine wakeup and passive balancing possibilities.
1189 */
098fb9db 1190 if (!this_sd)
f4827386 1191 goto out;
e7693a36 1192
098fb9db
IM
1193 idx = this_sd->wake_idx;
1194
1195 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1196
ac192d39 1197 load = source_load(prev_cpu, idx);
098fb9db
IM
1198 this_load = target_load(this_cpu, idx);
1199
64b9e029 1200 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1201 load, this_load, imbalance))
1202 return this_cpu;
1203
098fb9db
IM
1204 /*
1205 * Start passive balancing when half the imbalance_pct
1206 * limit is reached.
1207 */
1208 if (this_sd->flags & SD_WAKE_BALANCE) {
1209 if (imbalance*this_load <= 100*load) {
1210 schedstat_inc(this_sd, ttwu_move_balance);
1211 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1212 return this_cpu;
e7693a36
GH
1213 }
1214 }
1215
f4827386 1216out:
e7693a36
GH
1217 return wake_idle(new_cpu, p);
1218}
1219#endif /* CONFIG_SMP */
1220
0bbd3336
PZ
1221static unsigned long wakeup_gran(struct sched_entity *se)
1222{
1223 unsigned long gran = sysctl_sched_wakeup_granularity;
1224
1225 /*
a7be37ac
PZ
1226 * More easily preempt - nice tasks, while not making it harder for
1227 * + nice tasks.
0bbd3336 1228 */
c9c294a6 1229 if (sched_feat(ASYM_GRAN))
69569850 1230 gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
0bbd3336
PZ
1231
1232 return gran;
1233}
1234
bf0f6f24
IM
1235/*
1236 * Preempt the current task with a newly woken task if needed:
1237 */
15afe09b 1238static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1239{
1240 struct task_struct *curr = rq->curr;
fad095a7 1241 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1242 struct sched_entity *se = &curr->se, *pse = &p->se;
69569850 1243 s64 delta_exec;
bf0f6f24
IM
1244
1245 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1246 update_rq_clock(rq);
b7cc0896 1247 update_curr(cfs_rq);
bf0f6f24
IM
1248 resched_task(curr);
1249 return;
1250 }
aa2ac252 1251
4ae7d5ce
IM
1252 if (unlikely(se == pse))
1253 return;
1254
aa2ac252
PZ
1255 cfs_rq_of(pse)->next = pse;
1256
aec0a514
BR
1257 /*
1258 * We can come here with TIF_NEED_RESCHED already set from new task
1259 * wake up path.
1260 */
1261 if (test_tsk_need_resched(curr))
1262 return;
1263
91c234b4
IM
1264 /*
1265 * Batch tasks do not preempt (their preemption is driven by
1266 * the tick):
1267 */
1268 if (unlikely(p->policy == SCHED_BATCH))
1269 return;
bf0f6f24 1270
77d9cc44
IM
1271 if (!sched_feat(WAKEUP_PREEMPT))
1272 return;
8651a86c 1273
2fb7635c
PZ
1274 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1275 (se->avg_overlap < sysctl_sched_migration_cost &&
1276 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1277 resched_task(curr);
1278 return;
ce6c1311 1279 }
77d9cc44 1280
69569850
PZ
1281 delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1282 if (delta_exec > wakeup_gran(pse))
77d9cc44 1283 resched_task(curr);
bf0f6f24
IM
1284}
1285
fb8d4724 1286static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1287{
8f4d37ec 1288 struct task_struct *p;
bf0f6f24
IM
1289 struct cfs_rq *cfs_rq = &rq->cfs;
1290 struct sched_entity *se;
1291
1292 if (unlikely(!cfs_rq->nr_running))
1293 return NULL;
1294
1295 do {
9948f4b2 1296 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1297 cfs_rq = group_cfs_rq(se);
1298 } while (cfs_rq);
1299
8f4d37ec
PZ
1300 p = task_of(se);
1301 hrtick_start_fair(rq, p);
1302
1303 return p;
bf0f6f24
IM
1304}
1305
1306/*
1307 * Account for a descheduled task:
1308 */
31ee529c 1309static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1310{
1311 struct sched_entity *se = &prev->se;
1312 struct cfs_rq *cfs_rq;
1313
1314 for_each_sched_entity(se) {
1315 cfs_rq = cfs_rq_of(se);
ab6cde26 1316 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1317 }
1318}
1319
681f3e68 1320#ifdef CONFIG_SMP
bf0f6f24
IM
1321/**************************************************
1322 * Fair scheduling class load-balancing methods:
1323 */
1324
1325/*
1326 * Load-balancing iterator. Note: while the runqueue stays locked
1327 * during the whole iteration, the current task might be
1328 * dequeued so the iterator has to be dequeue-safe. Here we
1329 * achieve that by always pre-iterating before returning
1330 * the current task:
1331 */
a9957449 1332static struct task_struct *
4a55bd5e 1333__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1334{
354d60c2
DG
1335 struct task_struct *p = NULL;
1336 struct sched_entity *se;
bf0f6f24 1337
77ae6513
MG
1338 if (next == &cfs_rq->tasks)
1339 return NULL;
1340
b87f1724
BR
1341 se = list_entry(next, struct sched_entity, group_node);
1342 p = task_of(se);
1343 cfs_rq->balance_iterator = next->next;
77ae6513 1344
bf0f6f24
IM
1345 return p;
1346}
1347
1348static struct task_struct *load_balance_start_fair(void *arg)
1349{
1350 struct cfs_rq *cfs_rq = arg;
1351
4a55bd5e 1352 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1353}
1354
1355static struct task_struct *load_balance_next_fair(void *arg)
1356{
1357 struct cfs_rq *cfs_rq = arg;
1358
4a55bd5e 1359 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1360}
1361
c09595f6
PZ
1362static unsigned long
1363__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1364 unsigned long max_load_move, struct sched_domain *sd,
1365 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1366 struct cfs_rq *cfs_rq)
62fb1851 1367{
c09595f6 1368 struct rq_iterator cfs_rq_iterator;
62fb1851 1369
c09595f6
PZ
1370 cfs_rq_iterator.start = load_balance_start_fair;
1371 cfs_rq_iterator.next = load_balance_next_fair;
1372 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1373
c09595f6
PZ
1374 return balance_tasks(this_rq, this_cpu, busiest,
1375 max_load_move, sd, idle, all_pinned,
1376 this_best_prio, &cfs_rq_iterator);
62fb1851 1377}
62fb1851 1378
c09595f6 1379#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1380static unsigned long
bf0f6f24 1381load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1382 unsigned long max_load_move,
a4ac01c3
PW
1383 struct sched_domain *sd, enum cpu_idle_type idle,
1384 int *all_pinned, int *this_best_prio)
bf0f6f24 1385{
bf0f6f24 1386 long rem_load_move = max_load_move;
c09595f6
PZ
1387 int busiest_cpu = cpu_of(busiest);
1388 struct task_group *tg;
18d95a28 1389
c09595f6 1390 rcu_read_lock();
c8cba857 1391 update_h_load(busiest_cpu);
18d95a28 1392
caea8a03 1393 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1394 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1395 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1396 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1397 u64 rem_load, moved_load;
18d95a28 1398
c09595f6
PZ
1399 /*
1400 * empty group
1401 */
c8cba857 1402 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1403 continue;
1404
243e0e7b
SV
1405 rem_load = (u64)rem_load_move * busiest_weight;
1406 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1407
c09595f6 1408 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1409 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1410 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1411
c09595f6 1412 if (!moved_load)
bf0f6f24
IM
1413 continue;
1414
42a3ac7d 1415 moved_load *= busiest_h_load;
243e0e7b 1416 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1417
c09595f6
PZ
1418 rem_load_move -= moved_load;
1419 if (rem_load_move < 0)
bf0f6f24
IM
1420 break;
1421 }
c09595f6 1422 rcu_read_unlock();
bf0f6f24 1423
43010659 1424 return max_load_move - rem_load_move;
bf0f6f24 1425}
c09595f6
PZ
1426#else
1427static unsigned long
1428load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1429 unsigned long max_load_move,
1430 struct sched_domain *sd, enum cpu_idle_type idle,
1431 int *all_pinned, int *this_best_prio)
1432{
1433 return __load_balance_fair(this_rq, this_cpu, busiest,
1434 max_load_move, sd, idle, all_pinned,
1435 this_best_prio, &busiest->cfs);
1436}
1437#endif
bf0f6f24 1438
e1d1484f
PW
1439static int
1440move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1441 struct sched_domain *sd, enum cpu_idle_type idle)
1442{
1443 struct cfs_rq *busy_cfs_rq;
1444 struct rq_iterator cfs_rq_iterator;
1445
1446 cfs_rq_iterator.start = load_balance_start_fair;
1447 cfs_rq_iterator.next = load_balance_next_fair;
1448
1449 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1450 /*
1451 * pass busy_cfs_rq argument into
1452 * load_balance_[start|next]_fair iterators
1453 */
1454 cfs_rq_iterator.arg = busy_cfs_rq;
1455 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1456 &cfs_rq_iterator))
1457 return 1;
1458 }
1459
1460 return 0;
1461}
55e12e5e 1462#endif /* CONFIG_SMP */
e1d1484f 1463
bf0f6f24
IM
1464/*
1465 * scheduler tick hitting a task of our scheduling class:
1466 */
8f4d37ec 1467static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1468{
1469 struct cfs_rq *cfs_rq;
1470 struct sched_entity *se = &curr->se;
1471
1472 for_each_sched_entity(se) {
1473 cfs_rq = cfs_rq_of(se);
8f4d37ec 1474 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1475 }
1476}
1477
8eb172d9 1478#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1479
bf0f6f24
IM
1480/*
1481 * Share the fairness runtime between parent and child, thus the
1482 * total amount of pressure for CPU stays equal - new tasks
1483 * get a chance to run but frequent forkers are not allowed to
1484 * monopolize the CPU. Note: the parent runqueue is locked,
1485 * the child is not running yet.
1486 */
ee0827d8 1487static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1488{
1489 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1490 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1491 int this_cpu = smp_processor_id();
bf0f6f24
IM
1492
1493 sched_info_queued(p);
1494
7109c442 1495 update_curr(cfs_rq);
aeb73b04 1496 place_entity(cfs_rq, se, 1);
4d78e7b6 1497
3c90e6e9 1498 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1499 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1500 curr && curr->vruntime < se->vruntime) {
87fefa38 1501 /*
edcb60a3
IM
1502 * Upon rescheduling, sched_class::put_prev_task() will place
1503 * 'current' within the tree based on its new key value.
1504 */
4d78e7b6 1505 swap(curr->vruntime, se->vruntime);
aec0a514 1506 resched_task(rq->curr);
4d78e7b6 1507 }
bf0f6f24 1508
b9dca1e0 1509 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1510}
1511
cb469845
SR
1512/*
1513 * Priority of the task has changed. Check to see if we preempt
1514 * the current task.
1515 */
1516static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1517 int oldprio, int running)
1518{
1519 /*
1520 * Reschedule if we are currently running on this runqueue and
1521 * our priority decreased, or if we are not currently running on
1522 * this runqueue and our priority is higher than the current's
1523 */
1524 if (running) {
1525 if (p->prio > oldprio)
1526 resched_task(rq->curr);
1527 } else
15afe09b 1528 check_preempt_curr(rq, p, 0);
cb469845
SR
1529}
1530
1531/*
1532 * We switched to the sched_fair class.
1533 */
1534static void switched_to_fair(struct rq *rq, struct task_struct *p,
1535 int running)
1536{
1537 /*
1538 * We were most likely switched from sched_rt, so
1539 * kick off the schedule if running, otherwise just see
1540 * if we can still preempt the current task.
1541 */
1542 if (running)
1543 resched_task(rq->curr);
1544 else
15afe09b 1545 check_preempt_curr(rq, p, 0);
cb469845
SR
1546}
1547
83b699ed
SV
1548/* Account for a task changing its policy or group.
1549 *
1550 * This routine is mostly called to set cfs_rq->curr field when a task
1551 * migrates between groups/classes.
1552 */
1553static void set_curr_task_fair(struct rq *rq)
1554{
1555 struct sched_entity *se = &rq->curr->se;
1556
1557 for_each_sched_entity(se)
1558 set_next_entity(cfs_rq_of(se), se);
1559}
1560
810b3817
PZ
1561#ifdef CONFIG_FAIR_GROUP_SCHED
1562static void moved_group_fair(struct task_struct *p)
1563{
1564 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1565
1566 update_curr(cfs_rq);
1567 place_entity(cfs_rq, &p->se, 1);
1568}
1569#endif
1570
bf0f6f24
IM
1571/*
1572 * All the scheduling class methods:
1573 */
5522d5d5
IM
1574static const struct sched_class fair_sched_class = {
1575 .next = &idle_sched_class,
bf0f6f24
IM
1576 .enqueue_task = enqueue_task_fair,
1577 .dequeue_task = dequeue_task_fair,
1578 .yield_task = yield_task_fair,
e7693a36
GH
1579#ifdef CONFIG_SMP
1580 .select_task_rq = select_task_rq_fair,
1581#endif /* CONFIG_SMP */
bf0f6f24 1582
2e09bf55 1583 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1584
1585 .pick_next_task = pick_next_task_fair,
1586 .put_prev_task = put_prev_task_fair,
1587
681f3e68 1588#ifdef CONFIG_SMP
bf0f6f24 1589 .load_balance = load_balance_fair,
e1d1484f 1590 .move_one_task = move_one_task_fair,
681f3e68 1591#endif
bf0f6f24 1592
83b699ed 1593 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1594 .task_tick = task_tick_fair,
1595 .task_new = task_new_fair,
cb469845
SR
1596
1597 .prio_changed = prio_changed_fair,
1598 .switched_to = switched_to_fair,
810b3817
PZ
1599
1600#ifdef CONFIG_FAIR_GROUP_SCHED
1601 .moved_group = moved_group_fair,
1602#endif
bf0f6f24
IM
1603};
1604
1605#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1606static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1607{
bf0f6f24
IM
1608 struct cfs_rq *cfs_rq;
1609
5973e5b9 1610 rcu_read_lock();
c3b64f1e 1611 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1612 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1613 rcu_read_unlock();
bf0f6f24
IM
1614}
1615#endif