Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[linux-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
b758149c
PZ
82static inline struct task_struct *task_of(struct sched_entity *se)
83{
84 return container_of(se, struct task_struct, se);
85}
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
b758149c
PZ
98/* Walk up scheduling entities hierarchy */
99#define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103{
104 return p->se.cfs_rq;
105}
106
107/* runqueue on which this entity is (to be) queued */
108static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109{
110 return se->cfs_rq;
111}
112
113/* runqueue "owned" by this group */
114static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115{
116 return grp->my_q;
117}
118
119/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123{
124 return cfs_rq->tg->cfs_rq[this_cpu];
125}
126
127/* Iterate thr' all leaf cfs_rq's on a runqueue */
128#define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131/* Do the two (enqueued) entities belong to the same group ? */
132static inline int
133is_same_group(struct sched_entity *se, struct sched_entity *pse)
134{
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139}
140
141static inline struct sched_entity *parent_entity(struct sched_entity *se)
142{
143 return se->parent;
144}
145
464b7527
PZ
146/* return depth at which a sched entity is present in the hierarchy */
147static inline int depth_se(struct sched_entity *se)
148{
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155}
156
157static void
158find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159{
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187}
188
62160e3f 189#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 190
62160e3f
IM
191static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192{
193 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
194}
195
196#define entity_is_task(se) 1
197
b758149c
PZ
198#define for_each_sched_entity(se) \
199 for (; se; se = NULL)
bf0f6f24 200
b758149c 201static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 202{
b758149c 203 return &task_rq(p)->cfs;
bf0f6f24
IM
204}
205
b758149c
PZ
206static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207{
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212}
213
214/* runqueue "owned" by this group */
215static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216{
217 return NULL;
218}
219
220static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221{
222 return &cpu_rq(this_cpu)->cfs;
223}
224
225#define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228static inline int
229is_same_group(struct sched_entity *se, struct sched_entity *pse)
230{
231 return 1;
232}
233
234static inline struct sched_entity *parent_entity(struct sched_entity *se)
235{
236 return NULL;
237}
238
464b7527
PZ
239static inline void
240find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241{
242}
243
b758149c
PZ
244#endif /* CONFIG_FAIR_GROUP_SCHED */
245
bf0f6f24
IM
246
247/**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
0702e3eb 251static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 252{
368059a9
PZ
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
02e0431a
PZ
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258}
259
0702e3eb 260static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
261{
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267}
268
0702e3eb 269static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 270{
30cfdcfc 271 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
272}
273
1af5f730
PZ
274static void update_min_vruntime(struct cfs_rq *cfs_rq)
275{
276 u64 vruntime = cfs_rq->min_vruntime;
277
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
280
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
285
e17036da 286 if (!cfs_rq->curr)
1af5f730
PZ
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
290 }
291
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293}
294
bf0f6f24
IM
295/*
296 * Enqueue an entity into the rb-tree:
297 */
0702e3eb 298static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
299{
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
9014623c 303 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
304 int leftmost = 1;
305
306 /*
307 * Find the right place in the rbtree:
308 */
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
312 /*
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
315 */
9014623c 316 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
321 }
322 }
323
324 /*
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
327 */
1af5f730 328 if (leftmost)
57cb499d 329 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
330
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
333}
334
0702e3eb 335static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 336{
3fe69747
PZ
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
3fe69747
PZ
339
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
3fe69747 342 }
e9acbff6 343
bf0f6f24 344 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
345}
346
bf0f6f24
IM
347static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
348{
f4b6755f
PZ
349 struct rb_node *left = cfs_rq->rb_leftmost;
350
351 if (!left)
352 return NULL;
353
354 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
355}
356
f4b6755f 357static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 358{
7eee3e67 359 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 360
70eee74b
BS
361 if (!last)
362 return NULL;
7eee3e67
IM
363
364 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
365}
366
bf0f6f24
IM
367/**************************************************************
368 * Scheduling class statistics methods:
369 */
370
b2be5e96
PZ
371#ifdef CONFIG_SCHED_DEBUG
372int sched_nr_latency_handler(struct ctl_table *table, int write,
373 struct file *filp, void __user *buffer, size_t *lenp,
374 loff_t *ppos)
375{
376 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
377
378 if (ret || !write)
379 return ret;
380
381 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
382 sysctl_sched_min_granularity);
383
384 return 0;
385}
386#endif
647e7cac 387
a7be37ac 388/*
f9c0b095 389 * delta /= w
a7be37ac
PZ
390 */
391static inline unsigned long
392calc_delta_fair(unsigned long delta, struct sched_entity *se)
393{
f9c0b095
PZ
394 if (unlikely(se->load.weight != NICE_0_LOAD))
395 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
396
397 return delta;
398}
399
647e7cac
IM
400/*
401 * The idea is to set a period in which each task runs once.
402 *
403 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
404 * this period because otherwise the slices get too small.
405 *
406 * p = (nr <= nl) ? l : l*nr/nl
407 */
4d78e7b6
PZ
408static u64 __sched_period(unsigned long nr_running)
409{
410 u64 period = sysctl_sched_latency;
b2be5e96 411 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
412
413 if (unlikely(nr_running > nr_latency)) {
4bf0b771 414 period = sysctl_sched_min_granularity;
4d78e7b6 415 period *= nr_running;
4d78e7b6
PZ
416 }
417
418 return period;
419}
420
647e7cac
IM
421/*
422 * We calculate the wall-time slice from the period by taking a part
423 * proportional to the weight.
424 *
f9c0b095 425 * s = p*P[w/rw]
647e7cac 426 */
6d0f0ebd 427static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 428{
0a582440 429 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 430
0a582440 431 for_each_sched_entity(se) {
6272d68c 432 struct load_weight *load;
3104bf03 433 struct load_weight lw;
6272d68c
LM
434
435 cfs_rq = cfs_rq_of(se);
436 load = &cfs_rq->load;
f9c0b095 437
0a582440 438 if (unlikely(!se->on_rq)) {
3104bf03 439 lw = cfs_rq->load;
0a582440
MG
440
441 update_load_add(&lw, se->load.weight);
442 load = &lw;
443 }
444 slice = calc_delta_mine(slice, se->load.weight, load);
445 }
446 return slice;
bf0f6f24
IM
447}
448
647e7cac 449/*
ac884dec 450 * We calculate the vruntime slice of a to be inserted task
647e7cac 451 *
f9c0b095 452 * vs = s/w
647e7cac 453 */
f9c0b095 454static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 455{
f9c0b095 456 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
457}
458
bf0f6f24
IM
459/*
460 * Update the current task's runtime statistics. Skip current tasks that
461 * are not in our scheduling class.
462 */
463static inline void
8ebc91d9
IM
464__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
465 unsigned long delta_exec)
bf0f6f24 466{
bbdba7c0 467 unsigned long delta_exec_weighted;
bf0f6f24 468
8179ca23 469 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
470
471 curr->sum_exec_runtime += delta_exec;
7a62eabc 472 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 473 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 474 curr->vruntime += delta_exec_weighted;
1af5f730 475 update_min_vruntime(cfs_rq);
bf0f6f24
IM
476}
477
b7cc0896 478static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 479{
429d43bc 480 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 481 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
482 unsigned long delta_exec;
483
484 if (unlikely(!curr))
485 return;
486
487 /*
488 * Get the amount of time the current task was running
489 * since the last time we changed load (this cannot
490 * overflow on 32 bits):
491 */
8ebc91d9 492 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
493 if (!delta_exec)
494 return;
bf0f6f24 495
8ebc91d9
IM
496 __update_curr(cfs_rq, curr, delta_exec);
497 curr->exec_start = now;
d842de87
SV
498
499 if (entity_is_task(curr)) {
500 struct task_struct *curtask = task_of(curr);
501
502 cpuacct_charge(curtask, delta_exec);
f06febc9 503 account_group_exec_runtime(curtask, delta_exec);
d842de87 504 }
bf0f6f24
IM
505}
506
507static inline void
5870db5b 508update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 509{
d281918d 510 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
511}
512
bf0f6f24
IM
513/*
514 * Task is being enqueued - update stats:
515 */
d2417e5a 516static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 517{
bf0f6f24
IM
518 /*
519 * Are we enqueueing a waiting task? (for current tasks
520 * a dequeue/enqueue event is a NOP)
521 */
429d43bc 522 if (se != cfs_rq->curr)
5870db5b 523 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
524}
525
bf0f6f24 526static void
9ef0a961 527update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
bbdba7c0
IM
529 schedstat_set(se->wait_max, max(se->wait_max,
530 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
531 schedstat_set(se->wait_count, se->wait_count + 1);
532 schedstat_set(se->wait_sum, se->wait_sum +
533 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 534 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
535}
536
537static inline void
19b6a2e3 538update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 539{
bf0f6f24
IM
540 /*
541 * Mark the end of the wait period if dequeueing a
542 * waiting task:
543 */
429d43bc 544 if (se != cfs_rq->curr)
9ef0a961 545 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
546}
547
548/*
549 * We are picking a new current task - update its stats:
550 */
551static inline void
79303e9e 552update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
553{
554 /*
555 * We are starting a new run period:
556 */
d281918d 557 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
558}
559
bf0f6f24
IM
560/**************************************************
561 * Scheduling class queueing methods:
562 */
563
c09595f6
PZ
564#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
565static void
566add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
567{
568 cfs_rq->task_weight += weight;
569}
570#else
571static inline void
572add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
573{
574}
575#endif
576
30cfdcfc
DA
577static void
578account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
579{
580 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
581 if (!parent_entity(se))
582 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 583 if (entity_is_task(se)) {
c09595f6 584 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
585 list_add(&se->group_node, &cfs_rq->tasks);
586 }
30cfdcfc
DA
587 cfs_rq->nr_running++;
588 se->on_rq = 1;
589}
590
591static void
592account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
593{
594 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
595 if (!parent_entity(se))
596 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 597 if (entity_is_task(se)) {
c09595f6 598 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
599 list_del_init(&se->group_node);
600 }
30cfdcfc
DA
601 cfs_rq->nr_running--;
602 se->on_rq = 0;
603}
604
2396af69 605static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 606{
bf0f6f24
IM
607#ifdef CONFIG_SCHEDSTATS
608 if (se->sleep_start) {
d281918d 609 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 610 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
611
612 if ((s64)delta < 0)
613 delta = 0;
614
615 if (unlikely(delta > se->sleep_max))
616 se->sleep_max = delta;
617
618 se->sleep_start = 0;
619 se->sum_sleep_runtime += delta;
9745512c
AV
620
621 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
622 }
623 if (se->block_start) {
d281918d 624 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 625 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
626
627 if ((s64)delta < 0)
628 delta = 0;
629
630 if (unlikely(delta > se->block_max))
631 se->block_max = delta;
632
633 se->block_start = 0;
634 se->sum_sleep_runtime += delta;
30084fbd
IM
635
636 /*
637 * Blocking time is in units of nanosecs, so shift by 20 to
638 * get a milliseconds-range estimation of the amount of
639 * time that the task spent sleeping:
640 */
641 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 642
30084fbd
IM
643 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
644 delta >> 20);
645 }
9745512c 646 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
647 }
648#endif
649}
650
ddc97297
PZ
651static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
652{
653#ifdef CONFIG_SCHED_DEBUG
654 s64 d = se->vruntime - cfs_rq->min_vruntime;
655
656 if (d < 0)
657 d = -d;
658
659 if (d > 3*sysctl_sched_latency)
660 schedstat_inc(cfs_rq, nr_spread_over);
661#endif
662}
663
aeb73b04
PZ
664static void
665place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
666{
1af5f730 667 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 668
2cb8600e
PZ
669 /*
670 * The 'current' period is already promised to the current tasks,
671 * however the extra weight of the new task will slow them down a
672 * little, place the new task so that it fits in the slot that
673 * stays open at the end.
674 */
94dfb5e7 675 if (initial && sched_feat(START_DEBIT))
f9c0b095 676 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 677
8465e792 678 if (!initial) {
2cb8600e 679 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
680 if (sched_feat(NEW_FAIR_SLEEPERS)) {
681 unsigned long thresh = sysctl_sched_latency;
682
683 /*
6bc912b7
PZ
684 * Convert the sleeper threshold into virtual time.
685 * SCHED_IDLE is a special sub-class. We care about
686 * fairness only relative to other SCHED_IDLE tasks,
687 * all of which have the same weight.
a7be37ac 688 */
6bc912b7
PZ
689 if (sched_feat(NORMALIZED_SLEEPER) &&
690 task_of(se)->policy != SCHED_IDLE)
a7be37ac
PZ
691 thresh = calc_delta_fair(thresh, se);
692
693 vruntime -= thresh;
694 }
94359f05 695
2cb8600e
PZ
696 /* ensure we never gain time by being placed backwards. */
697 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
698 }
699
67e9fb2a 700 se->vruntime = vruntime;
aeb73b04
PZ
701}
702
bf0f6f24 703static void
83b699ed 704enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
705{
706 /*
a2a2d680 707 * Update run-time statistics of the 'current'.
bf0f6f24 708 */
b7cc0896 709 update_curr(cfs_rq);
a992241d 710 account_entity_enqueue(cfs_rq, se);
bf0f6f24 711
e9acbff6 712 if (wakeup) {
aeb73b04 713 place_entity(cfs_rq, se, 0);
2396af69 714 enqueue_sleeper(cfs_rq, se);
e9acbff6 715 }
bf0f6f24 716
d2417e5a 717 update_stats_enqueue(cfs_rq, se);
ddc97297 718 check_spread(cfs_rq, se);
83b699ed
SV
719 if (se != cfs_rq->curr)
720 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
721}
722
a571bbea 723static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695
PZ
724{
725 if (cfs_rq->last == se)
726 cfs_rq->last = NULL;
727
728 if (cfs_rq->next == se)
729 cfs_rq->next = NULL;
730}
731
a571bbea
PZ
732static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
733{
734 for_each_sched_entity(se)
735 __clear_buddies(cfs_rq_of(se), se);
736}
737
bf0f6f24 738static void
525c2716 739dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 740{
a2a2d680
DA
741 /*
742 * Update run-time statistics of the 'current'.
743 */
744 update_curr(cfs_rq);
745
19b6a2e3 746 update_stats_dequeue(cfs_rq, se);
db36cc7d 747 if (sleep) {
67e9fb2a 748#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
749 if (entity_is_task(se)) {
750 struct task_struct *tsk = task_of(se);
751
752 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 753 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 754 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 755 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 756 }
db36cc7d 757#endif
67e9fb2a
PZ
758 }
759
2002c695 760 clear_buddies(cfs_rq, se);
4793241b 761
83b699ed 762 if (se != cfs_rq->curr)
30cfdcfc
DA
763 __dequeue_entity(cfs_rq, se);
764 account_entity_dequeue(cfs_rq, se);
1af5f730 765 update_min_vruntime(cfs_rq);
bf0f6f24
IM
766}
767
768/*
769 * Preempt the current task with a newly woken task if needed:
770 */
7c92e54f 771static void
2e09bf55 772check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 773{
11697830
PZ
774 unsigned long ideal_runtime, delta_exec;
775
6d0f0ebd 776 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 777 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 778 if (delta_exec > ideal_runtime) {
bf0f6f24 779 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
780 /*
781 * The current task ran long enough, ensure it doesn't get
782 * re-elected due to buddy favours.
783 */
784 clear_buddies(cfs_rq, curr);
785 }
bf0f6f24
IM
786}
787
83b699ed 788static void
8494f412 789set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 790{
83b699ed
SV
791 /* 'current' is not kept within the tree. */
792 if (se->on_rq) {
793 /*
794 * Any task has to be enqueued before it get to execute on
795 * a CPU. So account for the time it spent waiting on the
796 * runqueue.
797 */
798 update_stats_wait_end(cfs_rq, se);
799 __dequeue_entity(cfs_rq, se);
800 }
801
79303e9e 802 update_stats_curr_start(cfs_rq, se);
429d43bc 803 cfs_rq->curr = se;
eba1ed4b
IM
804#ifdef CONFIG_SCHEDSTATS
805 /*
806 * Track our maximum slice length, if the CPU's load is at
807 * least twice that of our own weight (i.e. dont track it
808 * when there are only lesser-weight tasks around):
809 */
495eca49 810 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
811 se->slice_max = max(se->slice_max,
812 se->sum_exec_runtime - se->prev_sum_exec_runtime);
813 }
814#endif
4a55b450 815 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
816}
817
3f3a4904
PZ
818static int
819wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
820
f4b6755f 821static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 822{
f4b6755f
PZ
823 struct sched_entity *se = __pick_next_entity(cfs_rq);
824
4793241b
PZ
825 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
826 return cfs_rq->next;
aa2ac252 827
4793241b
PZ
828 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
829 return cfs_rq->last;
830
831 return se;
aa2ac252
PZ
832}
833
ab6cde26 834static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
835{
836 /*
837 * If still on the runqueue then deactivate_task()
838 * was not called and update_curr() has to be done:
839 */
840 if (prev->on_rq)
b7cc0896 841 update_curr(cfs_rq);
bf0f6f24 842
ddc97297 843 check_spread(cfs_rq, prev);
30cfdcfc 844 if (prev->on_rq) {
5870db5b 845 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
846 /* Put 'current' back into the tree. */
847 __enqueue_entity(cfs_rq, prev);
848 }
429d43bc 849 cfs_rq->curr = NULL;
bf0f6f24
IM
850}
851
8f4d37ec
PZ
852static void
853entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 854{
bf0f6f24 855 /*
30cfdcfc 856 * Update run-time statistics of the 'current'.
bf0f6f24 857 */
30cfdcfc 858 update_curr(cfs_rq);
bf0f6f24 859
8f4d37ec
PZ
860#ifdef CONFIG_SCHED_HRTICK
861 /*
862 * queued ticks are scheduled to match the slice, so don't bother
863 * validating it and just reschedule.
864 */
983ed7a6
HH
865 if (queued) {
866 resched_task(rq_of(cfs_rq)->curr);
867 return;
868 }
8f4d37ec
PZ
869 /*
870 * don't let the period tick interfere with the hrtick preemption
871 */
872 if (!sched_feat(DOUBLE_TICK) &&
873 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
874 return;
875#endif
876
ce6c1311 877 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 878 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
879}
880
881/**************************************************
882 * CFS operations on tasks:
883 */
884
8f4d37ec
PZ
885#ifdef CONFIG_SCHED_HRTICK
886static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
887{
8f4d37ec
PZ
888 struct sched_entity *se = &p->se;
889 struct cfs_rq *cfs_rq = cfs_rq_of(se);
890
891 WARN_ON(task_rq(p) != rq);
892
893 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
894 u64 slice = sched_slice(cfs_rq, se);
895 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
896 s64 delta = slice - ran;
897
898 if (delta < 0) {
899 if (rq->curr == p)
900 resched_task(p);
901 return;
902 }
903
904 /*
905 * Don't schedule slices shorter than 10000ns, that just
906 * doesn't make sense. Rely on vruntime for fairness.
907 */
31656519 908 if (rq->curr != p)
157124c1 909 delta = max_t(s64, 10000LL, delta);
8f4d37ec 910
31656519 911 hrtick_start(rq, delta);
8f4d37ec
PZ
912 }
913}
a4c2f00f
PZ
914
915/*
916 * called from enqueue/dequeue and updates the hrtick when the
917 * current task is from our class and nr_running is low enough
918 * to matter.
919 */
920static void hrtick_update(struct rq *rq)
921{
922 struct task_struct *curr = rq->curr;
923
924 if (curr->sched_class != &fair_sched_class)
925 return;
926
927 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
928 hrtick_start_fair(rq, curr);
929}
55e12e5e 930#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
931static inline void
932hrtick_start_fair(struct rq *rq, struct task_struct *p)
933{
934}
a4c2f00f
PZ
935
936static inline void hrtick_update(struct rq *rq)
937{
938}
8f4d37ec
PZ
939#endif
940
bf0f6f24
IM
941/*
942 * The enqueue_task method is called before nr_running is
943 * increased. Here we update the fair scheduling stats and
944 * then put the task into the rbtree:
945 */
fd390f6a 946static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
947{
948 struct cfs_rq *cfs_rq;
62fb1851 949 struct sched_entity *se = &p->se;
bf0f6f24
IM
950
951 for_each_sched_entity(se) {
62fb1851 952 if (se->on_rq)
bf0f6f24
IM
953 break;
954 cfs_rq = cfs_rq_of(se);
83b699ed 955 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 956 wakeup = 1;
bf0f6f24 957 }
8f4d37ec 958
a4c2f00f 959 hrtick_update(rq);
bf0f6f24
IM
960}
961
962/*
963 * The dequeue_task method is called before nr_running is
964 * decreased. We remove the task from the rbtree and
965 * update the fair scheduling stats:
966 */
f02231e5 967static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
968{
969 struct cfs_rq *cfs_rq;
62fb1851 970 struct sched_entity *se = &p->se;
bf0f6f24
IM
971
972 for_each_sched_entity(se) {
973 cfs_rq = cfs_rq_of(se);
525c2716 974 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 975 /* Don't dequeue parent if it has other entities besides us */
62fb1851 976 if (cfs_rq->load.weight)
bf0f6f24 977 break;
b9fa3df3 978 sleep = 1;
bf0f6f24 979 }
8f4d37ec 980
a4c2f00f 981 hrtick_update(rq);
bf0f6f24
IM
982}
983
984/*
1799e35d
IM
985 * sched_yield() support is very simple - we dequeue and enqueue.
986 *
987 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 988 */
4530d7ab 989static void yield_task_fair(struct rq *rq)
bf0f6f24 990{
db292ca3
IM
991 struct task_struct *curr = rq->curr;
992 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
993 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
994
995 /*
1799e35d
IM
996 * Are we the only task in the tree?
997 */
998 if (unlikely(cfs_rq->nr_running == 1))
999 return;
1000
2002c695
PZ
1001 clear_buddies(cfs_rq, se);
1002
db292ca3 1003 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1004 update_rq_clock(rq);
1799e35d 1005 /*
a2a2d680 1006 * Update run-time statistics of the 'current'.
1799e35d 1007 */
2b1e315d 1008 update_curr(cfs_rq);
1799e35d
IM
1009
1010 return;
1011 }
1012 /*
1013 * Find the rightmost entry in the rbtree:
bf0f6f24 1014 */
2b1e315d 1015 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1016 /*
1017 * Already in the rightmost position?
1018 */
79b3feff 1019 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
1020 return;
1021
1022 /*
1023 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1024 * Upon rescheduling, sched_class::put_prev_task() will place
1025 * 'current' within the tree based on its new key value.
1799e35d 1026 */
30cfdcfc 1027 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1028}
1029
e7693a36
GH
1030/*
1031 * wake_idle() will wake a task on an idle cpu if task->cpu is
1032 * not idle and an idle cpu is available. The span of cpus to
1033 * search starts with cpus closest then further out as needed,
1034 * so we always favor a closer, idle cpu.
e761b772 1035 * Domains may include CPUs that are not usable for migration,
96f874e2 1036 * hence we need to mask them out (cpu_active_mask)
e7693a36
GH
1037 *
1038 * Returns the CPU we should wake onto.
1039 */
1040#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1041static int wake_idle(int cpu, struct task_struct *p)
1042{
e7693a36
GH
1043 struct sched_domain *sd;
1044 int i;
7eb52dfa
VS
1045 unsigned int chosen_wakeup_cpu;
1046 int this_cpu;
1047
1048 /*
1049 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1050 * are idle and this is not a kernel thread and this task's affinity
1051 * allows it to be moved to preferred cpu, then just move!
1052 */
1053
1054 this_cpu = smp_processor_id();
1055 chosen_wakeup_cpu =
1056 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1057
1058 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1059 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1060 p->mm && !(p->flags & PF_KTHREAD) &&
1061 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1062 return chosen_wakeup_cpu;
e7693a36
GH
1063
1064 /*
1065 * If it is idle, then it is the best cpu to run this task.
1066 *
1067 * This cpu is also the best, if it has more than one task already.
1068 * Siblings must be also busy(in most cases) as they didn't already
1069 * pickup the extra load from this cpu and hence we need not check
1070 * sibling runqueue info. This will avoid the checks and cache miss
1071 * penalities associated with that.
1072 */
104f6454 1073 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1074 return cpu;
1075
1076 for_each_domain(cpu, sd) {
1d3504fc
HS
1077 if ((sd->flags & SD_WAKE_IDLE)
1078 || ((sd->flags & SD_WAKE_IDLE_FAR)
1079 && !task_hot(p, task_rq(p)->clock, sd))) {
758b2cdc
RR
1080 for_each_cpu_and(i, sched_domain_span(sd),
1081 &p->cpus_allowed) {
1082 if (cpu_active(i) && idle_cpu(i)) {
e7693a36
GH
1083 if (i != task_cpu(p)) {
1084 schedstat_inc(p,
1085 se.nr_wakeups_idle);
1086 }
1087 return i;
1088 }
1089 }
1090 } else {
1091 break;
1092 }
1093 }
1094 return cpu;
1095}
55e12e5e 1096#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1097static inline int wake_idle(int cpu, struct task_struct *p)
1098{
1099 return cpu;
1100}
1101#endif
1102
1103#ifdef CONFIG_SMP
098fb9db 1104
bb3469ac 1105#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1106/*
1107 * effective_load() calculates the load change as seen from the root_task_group
1108 *
1109 * Adding load to a group doesn't make a group heavier, but can cause movement
1110 * of group shares between cpus. Assuming the shares were perfectly aligned one
1111 * can calculate the shift in shares.
1112 *
1113 * The problem is that perfectly aligning the shares is rather expensive, hence
1114 * we try to avoid doing that too often - see update_shares(), which ratelimits
1115 * this change.
1116 *
1117 * We compensate this by not only taking the current delta into account, but
1118 * also considering the delta between when the shares were last adjusted and
1119 * now.
1120 *
1121 * We still saw a performance dip, some tracing learned us that between
1122 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1123 * significantly. Therefore try to bias the error in direction of failing
1124 * the affine wakeup.
1125 *
1126 */
f1d239f7
PZ
1127static long effective_load(struct task_group *tg, int cpu,
1128 long wl, long wg)
bb3469ac 1129{
4be9daaa 1130 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1131
1132 if (!tg->parent)
1133 return wl;
1134
f5bfb7d9
PZ
1135 /*
1136 * By not taking the decrease of shares on the other cpu into
1137 * account our error leans towards reducing the affine wakeups.
1138 */
1139 if (!wl && sched_feat(ASYM_EFF_LOAD))
1140 return wl;
1141
4be9daaa 1142 for_each_sched_entity(se) {
cb5ef42a 1143 long S, rw, s, a, b;
940959e9
PZ
1144 long more_w;
1145
1146 /*
1147 * Instead of using this increment, also add the difference
1148 * between when the shares were last updated and now.
1149 */
1150 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1151 wl += more_w;
1152 wg += more_w;
4be9daaa
PZ
1153
1154 S = se->my_q->tg->shares;
1155 s = se->my_q->shares;
f1d239f7 1156 rw = se->my_q->rq_weight;
bb3469ac 1157
cb5ef42a
PZ
1158 a = S*(rw + wl);
1159 b = S*rw + s*wg;
4be9daaa 1160
940959e9
PZ
1161 wl = s*(a-b);
1162
1163 if (likely(b))
1164 wl /= b;
1165
83378269
PZ
1166 /*
1167 * Assume the group is already running and will
1168 * thus already be accounted for in the weight.
1169 *
1170 * That is, moving shares between CPUs, does not
1171 * alter the group weight.
1172 */
4be9daaa 1173 wg = 0;
4be9daaa 1174 }
bb3469ac 1175
4be9daaa 1176 return wl;
bb3469ac 1177}
4be9daaa 1178
bb3469ac 1179#else
4be9daaa 1180
83378269
PZ
1181static inline unsigned long effective_load(struct task_group *tg, int cpu,
1182 unsigned long wl, unsigned long wg)
4be9daaa 1183{
83378269 1184 return wl;
bb3469ac 1185}
4be9daaa 1186
bb3469ac
PZ
1187#endif
1188
098fb9db 1189static int
64b9e029 1190wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1191 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1192 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1193 unsigned int imbalance)
1194{
fc631c82
PZ
1195 struct task_struct *curr = this_rq->curr;
1196 struct task_group *tg;
098fb9db
IM
1197 unsigned long tl = this_load;
1198 unsigned long tl_per_task;
83378269 1199 unsigned long weight;
b3137bc8 1200 int balanced;
098fb9db 1201
b3137bc8 1202 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1203 return 0;
1204
fc631c82
PZ
1205 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1206 p->se.avg_overlap > sysctl_sched_migration_cost))
1207 sync = 0;
1208
b3137bc8
MG
1209 /*
1210 * If sync wakeup then subtract the (maximum possible)
1211 * effect of the currently running task from the load
1212 * of the current CPU:
1213 */
83378269
PZ
1214 if (sync) {
1215 tg = task_group(current);
1216 weight = current->se.load.weight;
1217
1218 tl += effective_load(tg, this_cpu, -weight, -weight);
1219 load += effective_load(tg, prev_cpu, 0, -weight);
1220 }
b3137bc8 1221
83378269
PZ
1222 tg = task_group(p);
1223 weight = p->se.load.weight;
b3137bc8 1224
83378269
PZ
1225 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1226 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1227
098fb9db 1228 /*
4ae7d5ce
IM
1229 * If the currently running task will sleep within
1230 * a reasonable amount of time then attract this newly
1231 * woken task:
098fb9db 1232 */
2fb7635c
PZ
1233 if (sync && balanced)
1234 return 1;
098fb9db
IM
1235
1236 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1237 tl_per_task = cpu_avg_load_per_task(this_cpu);
1238
64b9e029
AA
1239 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1240 tl_per_task)) {
098fb9db
IM
1241 /*
1242 * This domain has SD_WAKE_AFFINE and
1243 * p is cache cold in this domain, and
1244 * there is no bad imbalance.
1245 */
1246 schedstat_inc(this_sd, ttwu_move_affine);
1247 schedstat_inc(p, se.nr_wakeups_affine);
1248
1249 return 1;
1250 }
1251 return 0;
1252}
1253
e7693a36
GH
1254static int select_task_rq_fair(struct task_struct *p, int sync)
1255{
e7693a36 1256 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1257 int prev_cpu, this_cpu, new_cpu;
098fb9db 1258 unsigned long load, this_load;
64b9e029 1259 struct rq *this_rq;
098fb9db 1260 unsigned int imbalance;
098fb9db 1261 int idx;
e7693a36 1262
ac192d39 1263 prev_cpu = task_cpu(p);
ac192d39 1264 this_cpu = smp_processor_id();
4ae7d5ce 1265 this_rq = cpu_rq(this_cpu);
ac192d39 1266 new_cpu = prev_cpu;
e7693a36 1267
64b9e029
AA
1268 if (prev_cpu == this_cpu)
1269 goto out;
ac192d39
IM
1270 /*
1271 * 'this_sd' is the first domain that both
1272 * this_cpu and prev_cpu are present in:
1273 */
e7693a36 1274 for_each_domain(this_cpu, sd) {
758b2cdc 1275 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
e7693a36
GH
1276 this_sd = sd;
1277 break;
1278 }
1279 }
1280
96f874e2 1281 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
f4827386 1282 goto out;
e7693a36
GH
1283
1284 /*
1285 * Check for affine wakeup and passive balancing possibilities.
1286 */
098fb9db 1287 if (!this_sd)
f4827386 1288 goto out;
e7693a36 1289
098fb9db
IM
1290 idx = this_sd->wake_idx;
1291
1292 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1293
ac192d39 1294 load = source_load(prev_cpu, idx);
098fb9db
IM
1295 this_load = target_load(this_cpu, idx);
1296
64b9e029 1297 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1298 load, this_load, imbalance))
1299 return this_cpu;
1300
098fb9db
IM
1301 /*
1302 * Start passive balancing when half the imbalance_pct
1303 * limit is reached.
1304 */
1305 if (this_sd->flags & SD_WAKE_BALANCE) {
1306 if (imbalance*this_load <= 100*load) {
1307 schedstat_inc(this_sd, ttwu_move_balance);
1308 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1309 return this_cpu;
e7693a36
GH
1310 }
1311 }
1312
f4827386 1313out:
e7693a36
GH
1314 return wake_idle(new_cpu, p);
1315}
1316#endif /* CONFIG_SMP */
1317
e52fb7c0
PZ
1318/*
1319 * Adaptive granularity
1320 *
1321 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1322 * with the limit of wakeup_gran -- when it never does a wakeup.
1323 *
1324 * So the smaller avg_wakeup is the faster we want this task to preempt,
1325 * but we don't want to treat the preemptee unfairly and therefore allow it
1326 * to run for at least the amount of time we'd like to run.
1327 *
1328 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1329 *
1330 * NOTE: we use *nr_running to scale with load, this nicely matches the
1331 * degrading latency on load.
1332 */
1333static unsigned long
1334adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1335{
1336 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1337 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1338 u64 gran = 0;
1339
1340 if (this_run < expected_wakeup)
1341 gran = expected_wakeup - this_run;
1342
1343 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1344}
1345
1346static unsigned long
1347wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1348{
1349 unsigned long gran = sysctl_sched_wakeup_granularity;
1350
e52fb7c0
PZ
1351 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1352 gran = adaptive_gran(curr, se);
1353
0bbd3336 1354 /*
e52fb7c0
PZ
1355 * Since its curr running now, convert the gran from real-time
1356 * to virtual-time in his units.
0bbd3336 1357 */
e52fb7c0
PZ
1358 if (sched_feat(ASYM_GRAN)) {
1359 /*
1360 * By using 'se' instead of 'curr' we penalize light tasks, so
1361 * they get preempted easier. That is, if 'se' < 'curr' then
1362 * the resulting gran will be larger, therefore penalizing the
1363 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1364 * be smaller, again penalizing the lighter task.
1365 *
1366 * This is especially important for buddies when the leftmost
1367 * task is higher priority than the buddy.
1368 */
1369 if (unlikely(se->load.weight != NICE_0_LOAD))
1370 gran = calc_delta_fair(gran, se);
1371 } else {
1372 if (unlikely(curr->load.weight != NICE_0_LOAD))
1373 gran = calc_delta_fair(gran, curr);
1374 }
0bbd3336
PZ
1375
1376 return gran;
1377}
1378
464b7527
PZ
1379/*
1380 * Should 'se' preempt 'curr'.
1381 *
1382 * |s1
1383 * |s2
1384 * |s3
1385 * g
1386 * |<--->|c
1387 *
1388 * w(c, s1) = -1
1389 * w(c, s2) = 0
1390 * w(c, s3) = 1
1391 *
1392 */
1393static int
1394wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1395{
1396 s64 gran, vdiff = curr->vruntime - se->vruntime;
1397
1398 if (vdiff <= 0)
1399 return -1;
1400
e52fb7c0 1401 gran = wakeup_gran(curr, se);
464b7527
PZ
1402 if (vdiff > gran)
1403 return 1;
1404
1405 return 0;
1406}
1407
02479099
PZ
1408static void set_last_buddy(struct sched_entity *se)
1409{
6bc912b7
PZ
1410 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1411 for_each_sched_entity(se)
1412 cfs_rq_of(se)->last = se;
1413 }
02479099
PZ
1414}
1415
1416static void set_next_buddy(struct sched_entity *se)
1417{
6bc912b7
PZ
1418 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1419 for_each_sched_entity(se)
1420 cfs_rq_of(se)->next = se;
1421 }
02479099
PZ
1422}
1423
bf0f6f24
IM
1424/*
1425 * Preempt the current task with a newly woken task if needed:
1426 */
15afe09b 1427static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1428{
1429 struct task_struct *curr = rq->curr;
8651a86c 1430 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1431 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24 1432
03e89e45 1433 update_curr(cfs_rq);
4793241b 1434
03e89e45 1435 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1436 resched_task(curr);
1437 return;
1438 }
aa2ac252 1439
d95f98d0
PZ
1440 if (unlikely(p->sched_class != &fair_sched_class))
1441 return;
1442
4ae7d5ce
IM
1443 if (unlikely(se == pse))
1444 return;
1445
4793241b
PZ
1446 /*
1447 * Only set the backward buddy when the current task is still on the
1448 * rq. This can happen when a wakeup gets interleaved with schedule on
1449 * the ->pre_schedule() or idle_balance() point, either of which can
1450 * drop the rq lock.
1451 *
1452 * Also, during early boot the idle thread is in the fair class, for
1453 * obvious reasons its a bad idea to schedule back to the idle thread.
1454 */
1455 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099
PZ
1456 set_last_buddy(se);
1457 set_next_buddy(pse);
57fdc26d 1458
aec0a514
BR
1459 /*
1460 * We can come here with TIF_NEED_RESCHED already set from new task
1461 * wake up path.
1462 */
1463 if (test_tsk_need_resched(curr))
1464 return;
1465
91c234b4 1466 /*
6bc912b7 1467 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1468 * the tick):
1469 */
6bc912b7 1470 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1471 return;
bf0f6f24 1472
6bc912b7
PZ
1473 /* Idle tasks are by definition preempted by everybody. */
1474 if (unlikely(curr->policy == SCHED_IDLE)) {
1475 resched_task(curr);
91c234b4 1476 return;
6bc912b7 1477 }
bf0f6f24 1478
77d9cc44
IM
1479 if (!sched_feat(WAKEUP_PREEMPT))
1480 return;
8651a86c 1481
fc631c82
PZ
1482 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1483 (se->avg_overlap < sysctl_sched_migration_cost &&
1484 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1485 resched_task(curr);
1486 return;
1487 }
1488
464b7527
PZ
1489 find_matching_se(&se, &pse);
1490
002f128b 1491 BUG_ON(!pse);
464b7527 1492
002f128b
PT
1493 if (wakeup_preempt_entity(se, pse) == 1)
1494 resched_task(curr);
bf0f6f24
IM
1495}
1496
fb8d4724 1497static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1498{
8f4d37ec 1499 struct task_struct *p;
bf0f6f24
IM
1500 struct cfs_rq *cfs_rq = &rq->cfs;
1501 struct sched_entity *se;
1502
1503 if (unlikely(!cfs_rq->nr_running))
1504 return NULL;
1505
1506 do {
9948f4b2 1507 se = pick_next_entity(cfs_rq);
a9f3e2b5
MG
1508 /*
1509 * If se was a buddy, clear it so that it will have to earn
1510 * the favour again.
1511 */
a571bbea 1512 __clear_buddies(cfs_rq, se);
f4b6755f 1513 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1514 cfs_rq = group_cfs_rq(se);
1515 } while (cfs_rq);
1516
8f4d37ec
PZ
1517 p = task_of(se);
1518 hrtick_start_fair(rq, p);
1519
1520 return p;
bf0f6f24
IM
1521}
1522
1523/*
1524 * Account for a descheduled task:
1525 */
31ee529c 1526static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1527{
1528 struct sched_entity *se = &prev->se;
1529 struct cfs_rq *cfs_rq;
1530
1531 for_each_sched_entity(se) {
1532 cfs_rq = cfs_rq_of(se);
ab6cde26 1533 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1534 }
1535}
1536
681f3e68 1537#ifdef CONFIG_SMP
bf0f6f24
IM
1538/**************************************************
1539 * Fair scheduling class load-balancing methods:
1540 */
1541
1542/*
1543 * Load-balancing iterator. Note: while the runqueue stays locked
1544 * during the whole iteration, the current task might be
1545 * dequeued so the iterator has to be dequeue-safe. Here we
1546 * achieve that by always pre-iterating before returning
1547 * the current task:
1548 */
a9957449 1549static struct task_struct *
4a55bd5e 1550__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1551{
354d60c2
DG
1552 struct task_struct *p = NULL;
1553 struct sched_entity *se;
bf0f6f24 1554
77ae6513
MG
1555 if (next == &cfs_rq->tasks)
1556 return NULL;
1557
b87f1724
BR
1558 se = list_entry(next, struct sched_entity, group_node);
1559 p = task_of(se);
1560 cfs_rq->balance_iterator = next->next;
77ae6513 1561
bf0f6f24
IM
1562 return p;
1563}
1564
1565static struct task_struct *load_balance_start_fair(void *arg)
1566{
1567 struct cfs_rq *cfs_rq = arg;
1568
4a55bd5e 1569 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1570}
1571
1572static struct task_struct *load_balance_next_fair(void *arg)
1573{
1574 struct cfs_rq *cfs_rq = arg;
1575
4a55bd5e 1576 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1577}
1578
c09595f6
PZ
1579static unsigned long
1580__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1581 unsigned long max_load_move, struct sched_domain *sd,
1582 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1583 struct cfs_rq *cfs_rq)
62fb1851 1584{
c09595f6 1585 struct rq_iterator cfs_rq_iterator;
62fb1851 1586
c09595f6
PZ
1587 cfs_rq_iterator.start = load_balance_start_fair;
1588 cfs_rq_iterator.next = load_balance_next_fair;
1589 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1590
c09595f6
PZ
1591 return balance_tasks(this_rq, this_cpu, busiest,
1592 max_load_move, sd, idle, all_pinned,
1593 this_best_prio, &cfs_rq_iterator);
62fb1851 1594}
62fb1851 1595
c09595f6 1596#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1597static unsigned long
bf0f6f24 1598load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1599 unsigned long max_load_move,
a4ac01c3
PW
1600 struct sched_domain *sd, enum cpu_idle_type idle,
1601 int *all_pinned, int *this_best_prio)
bf0f6f24 1602{
bf0f6f24 1603 long rem_load_move = max_load_move;
c09595f6
PZ
1604 int busiest_cpu = cpu_of(busiest);
1605 struct task_group *tg;
18d95a28 1606
c09595f6 1607 rcu_read_lock();
c8cba857 1608 update_h_load(busiest_cpu);
18d95a28 1609
caea8a03 1610 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1611 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1612 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1613 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1614 u64 rem_load, moved_load;
18d95a28 1615
c09595f6
PZ
1616 /*
1617 * empty group
1618 */
c8cba857 1619 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1620 continue;
1621
243e0e7b
SV
1622 rem_load = (u64)rem_load_move * busiest_weight;
1623 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1624
c09595f6 1625 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1626 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1627 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1628
c09595f6 1629 if (!moved_load)
bf0f6f24
IM
1630 continue;
1631
42a3ac7d 1632 moved_load *= busiest_h_load;
243e0e7b 1633 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1634
c09595f6
PZ
1635 rem_load_move -= moved_load;
1636 if (rem_load_move < 0)
bf0f6f24
IM
1637 break;
1638 }
c09595f6 1639 rcu_read_unlock();
bf0f6f24 1640
43010659 1641 return max_load_move - rem_load_move;
bf0f6f24 1642}
c09595f6
PZ
1643#else
1644static unsigned long
1645load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1646 unsigned long max_load_move,
1647 struct sched_domain *sd, enum cpu_idle_type idle,
1648 int *all_pinned, int *this_best_prio)
1649{
1650 return __load_balance_fair(this_rq, this_cpu, busiest,
1651 max_load_move, sd, idle, all_pinned,
1652 this_best_prio, &busiest->cfs);
1653}
1654#endif
bf0f6f24 1655
e1d1484f
PW
1656static int
1657move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1658 struct sched_domain *sd, enum cpu_idle_type idle)
1659{
1660 struct cfs_rq *busy_cfs_rq;
1661 struct rq_iterator cfs_rq_iterator;
1662
1663 cfs_rq_iterator.start = load_balance_start_fair;
1664 cfs_rq_iterator.next = load_balance_next_fair;
1665
1666 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1667 /*
1668 * pass busy_cfs_rq argument into
1669 * load_balance_[start|next]_fair iterators
1670 */
1671 cfs_rq_iterator.arg = busy_cfs_rq;
1672 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1673 &cfs_rq_iterator))
1674 return 1;
1675 }
1676
1677 return 0;
1678}
55e12e5e 1679#endif /* CONFIG_SMP */
e1d1484f 1680
bf0f6f24
IM
1681/*
1682 * scheduler tick hitting a task of our scheduling class:
1683 */
8f4d37ec 1684static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1685{
1686 struct cfs_rq *cfs_rq;
1687 struct sched_entity *se = &curr->se;
1688
1689 for_each_sched_entity(se) {
1690 cfs_rq = cfs_rq_of(se);
8f4d37ec 1691 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1692 }
1693}
1694
1695/*
1696 * Share the fairness runtime between parent and child, thus the
1697 * total amount of pressure for CPU stays equal - new tasks
1698 * get a chance to run but frequent forkers are not allowed to
1699 * monopolize the CPU. Note: the parent runqueue is locked,
1700 * the child is not running yet.
1701 */
ee0827d8 1702static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1703{
1704 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1705 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1706 int this_cpu = smp_processor_id();
bf0f6f24
IM
1707
1708 sched_info_queued(p);
1709
7109c442 1710 update_curr(cfs_rq);
aeb73b04 1711 place_entity(cfs_rq, se, 1);
4d78e7b6 1712
3c90e6e9 1713 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1714 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1715 curr && curr->vruntime < se->vruntime) {
87fefa38 1716 /*
edcb60a3
IM
1717 * Upon rescheduling, sched_class::put_prev_task() will place
1718 * 'current' within the tree based on its new key value.
1719 */
4d78e7b6 1720 swap(curr->vruntime, se->vruntime);
aec0a514 1721 resched_task(rq->curr);
4d78e7b6 1722 }
bf0f6f24 1723
b9dca1e0 1724 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1725}
1726
cb469845
SR
1727/*
1728 * Priority of the task has changed. Check to see if we preempt
1729 * the current task.
1730 */
1731static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1732 int oldprio, int running)
1733{
1734 /*
1735 * Reschedule if we are currently running on this runqueue and
1736 * our priority decreased, or if we are not currently running on
1737 * this runqueue and our priority is higher than the current's
1738 */
1739 if (running) {
1740 if (p->prio > oldprio)
1741 resched_task(rq->curr);
1742 } else
15afe09b 1743 check_preempt_curr(rq, p, 0);
cb469845
SR
1744}
1745
1746/*
1747 * We switched to the sched_fair class.
1748 */
1749static void switched_to_fair(struct rq *rq, struct task_struct *p,
1750 int running)
1751{
1752 /*
1753 * We were most likely switched from sched_rt, so
1754 * kick off the schedule if running, otherwise just see
1755 * if we can still preempt the current task.
1756 */
1757 if (running)
1758 resched_task(rq->curr);
1759 else
15afe09b 1760 check_preempt_curr(rq, p, 0);
cb469845
SR
1761}
1762
83b699ed
SV
1763/* Account for a task changing its policy or group.
1764 *
1765 * This routine is mostly called to set cfs_rq->curr field when a task
1766 * migrates between groups/classes.
1767 */
1768static void set_curr_task_fair(struct rq *rq)
1769{
1770 struct sched_entity *se = &rq->curr->se;
1771
1772 for_each_sched_entity(se)
1773 set_next_entity(cfs_rq_of(se), se);
1774}
1775
810b3817
PZ
1776#ifdef CONFIG_FAIR_GROUP_SCHED
1777static void moved_group_fair(struct task_struct *p)
1778{
1779 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1780
1781 update_curr(cfs_rq);
1782 place_entity(cfs_rq, &p->se, 1);
1783}
1784#endif
1785
bf0f6f24
IM
1786/*
1787 * All the scheduling class methods:
1788 */
5522d5d5
IM
1789static const struct sched_class fair_sched_class = {
1790 .next = &idle_sched_class,
bf0f6f24
IM
1791 .enqueue_task = enqueue_task_fair,
1792 .dequeue_task = dequeue_task_fair,
1793 .yield_task = yield_task_fair,
1794
2e09bf55 1795 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1796
1797 .pick_next_task = pick_next_task_fair,
1798 .put_prev_task = put_prev_task_fair,
1799
681f3e68 1800#ifdef CONFIG_SMP
4ce72a2c
LZ
1801 .select_task_rq = select_task_rq_fair,
1802
bf0f6f24 1803 .load_balance = load_balance_fair,
e1d1484f 1804 .move_one_task = move_one_task_fair,
681f3e68 1805#endif
bf0f6f24 1806
83b699ed 1807 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1808 .task_tick = task_tick_fair,
1809 .task_new = task_new_fair,
cb469845
SR
1810
1811 .prio_changed = prio_changed_fair,
1812 .switched_to = switched_to_fair,
810b3817
PZ
1813
1814#ifdef CONFIG_FAIR_GROUP_SCHED
1815 .moved_group = moved_group_fair,
1816#endif
bf0f6f24
IM
1817};
1818
1819#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1820static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1821{
bf0f6f24
IM
1822 struct cfs_rq *cfs_rq;
1823
5973e5b9 1824 rcu_read_lock();
c3b64f1e 1825 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1826 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1827 rcu_read_unlock();
bf0f6f24
IM
1828}
1829#endif